JP7456208B2 - ポリエチレン樹脂組成物、成形体及び容器 - Google Patents

ポリエチレン樹脂組成物、成形体及び容器 Download PDF

Info

Publication number
JP7456208B2
JP7456208B2 JP2020043137A JP2020043137A JP7456208B2 JP 7456208 B2 JP7456208 B2 JP 7456208B2 JP 2020043137 A JP2020043137 A JP 2020043137A JP 2020043137 A JP2020043137 A JP 2020043137A JP 7456208 B2 JP7456208 B2 JP 7456208B2
Authority
JP
Japan
Prior art keywords
polyethylene
resin composition
component
less
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020043137A
Other languages
English (en)
Other versions
JP2020164813A (ja
Inventor
真莉 熊谷
薫 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Publication of JP2020164813A publication Critical patent/JP2020164813A/ja
Application granted granted Critical
Publication of JP7456208B2 publication Critical patent/JP7456208B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリエチレン樹脂組成物、並びに、当該ポリエチレン樹脂組成物を含む成形体及び容器に関する。
ポリエチレンの中空成形、射出成形、インフレーション成形、押出成形においては、一般に成形加工性、及び物性の良好な材料が求められている。特に化粧品容器、洗剤、シャンプー及びリンス用容器、或いは食用油等の食品用容器等として一般的に使用されている中空ボトルには、成形加工性、物理的特性及び化学的特性に優れたポリエチレン樹脂が広く用いられている。
近年では、生産性向上のための成形サイクル短縮や、低コスト、環境負荷低減などのための容器の薄肉軽量化の動きが顕著であり、材料の成形性、剛性、耐環境応力亀裂性及び衝撃強度をより高度にバランス良くさせることが求められている。
しかしながら、容器の軽量化及び意匠の多様化が益々進む中で、容器を薄肉化したまま容器の剛性を確保しようとすると、ポリエチレンの密度を高くする必要が生じ、即ちコモノマー共重合量を抑制する必要が生じ、耐環境応力亀裂性の維持とは相反するため、依然として、剛性と耐環境応力亀裂性のバランスに優れ、薄肉化に対応できる材料が求められている。
そのため、メタロセン系触媒を用いたポリエチレンを含み、剛性と耐環境応力亀裂性バランスを向上させた、多成分から成るポリエチレン樹脂組成物が開示されている。
例えば、特許文献1には、下記要件[a]~[c]を同時に満たすエチレン系樹脂が開示されている。
[a]ASTM-D-1693に準拠して測定した、50℃における耐環境応力破壊性(ESCR)T(hr)が曲げ弾性率1000MPa~1500MPaの場合は500時間以上であり、曲げ弾性率1500MPa~2000MPaの場合は100時間以上であること。
[b]190℃における溶融張力が50(mN)以上であること。
[c]溶融延伸破断速度が90(m/min)以下であること。
特許文献1に開示されたエチレン系樹脂は、メタロセン系触媒を用いて多段重合が行われたエチレン系樹脂が用いられており、剛性とESCRに優れ、更にはパリソンの安定性とカット性にも優れ、該樹脂から形成されるボトルは外観にも優れるとされている。
しかしながら、特許文献1に記載されたエチレン系樹脂は、流動性が低く、高速成形性に乏しい。また耐衝撃性への記載がなく、一般に剛性が高いと耐衝撃性が低下するため、耐衝撃性が不十分な恐れがある。
また、特許文献2には、下記(a)~(d)の要件を満たすことを特徴とするポリエチレン樹脂組成物が開示されている。
(a)JIS K7210に従い、温度190℃及び2.16kg荷重の条件下で測定したコードDのMFRが3.5~10.0g/10min;
(b)JIS K7112に従い測定した密度が963~967kg/m
(c)DSCによる結晶化時間測定で得られる124℃におけるピークの等温結晶化時間が10分以下;かつ、
(d)環境応力下亀裂試験(ESCR)で得られるf50破壊時間が20時間以上。
特許文献2に開示されたポリエチレン樹脂組成物は、メタロセン系触媒を用いて多段重合が行われたエチレン系樹脂が用いられており、飲料ボトルの内圧に耐えうる耐環境応力亀裂性(耐ストレスクラック性)を低下させることなく、優れた剛性と優れた高速成形性を有し、開栓トルク等の要求性能にも優れたボトルキャップ用ポリエチレン樹脂組成物であるとされている。
しかしながら、特許文献2に記載されたポリエチレン樹脂組成物は、流動性は高いものの、耐衝撃性が不十分なものであった。特許文献2のポリエチレン樹脂組成物は実質的にボトルキャップ用の射出成形用であるため要求される耐衝撃性が低く、中空成形容器等に対する耐衝撃性としては不十分である。
また、特許文献3には、炭素数3~10のα-オレフィンから導かれる構成単位の含有率が0~1.0mol%であり、以下の要件(1)~(6)を満たすエチレン系重合体が開示されている。
(1)190℃における2.16kg荷重でのメルトフローレートが5~15g/10minである。
(2)190℃における2.16kg荷重でのメルトフローレートに対する190℃における21.6kg荷重でのメルトフローレートの比が40以上である。
(3)密度が940~965kg/m3である。
(4)ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn)が4.5~7.0である。
(5)135℃においてデカリン中で測定した極限粘度[η]が1.3dl/g未満である。
(6)200℃、厚み1mmにおけるスパイラルフロー長が20cm以上である。
特許文献3に開示されたエチレン系重合体は、メタロセン系触媒を用いて多段重合が行われたエチレン系樹脂が用いられており、良好な流動性を有し、高い衝撃耐性及び耐環境応力破壊性を示し、射出成形に好適であるとされている。
しかしながら、特許文献3に記載されたエチレン系重合体は、流動性は高いものの、耐衝撃性が不十分なものであった。特許文献3のエチレン系重合体は実質的に射出成形用であるため要求される耐衝撃性が低く、中空成形容器等に対する耐衝撃性としては不十分である。
メタロセン系触媒を用いたポリエチレンの耐環境応力亀裂性を更に高める目的として、分子量の増加は極めて有効である一方、他のポリエチレンとの相溶性は悪化するため、メタロセン系触媒を用いたポリエチレンを含むポリエチレン樹脂組成物においては相溶性と耐環境応力亀裂性を両立させる樹脂設計が重要である。
このような事情に鑑み、従来の容器用ポリエチレン樹脂組成物に求められた中空成形性、高剛性、耐衝撃性等を有しながら、高速成形ハイサイクル化を達成でき、更には、成形品の外観に特に優れるポリエチレン材料が求められている。
そのため、本出願人は、中空成形性、高剛性、耐衝撃性等を有しながら、更なる高速成形ハイサイクル化を達成できる結晶化速度の速いポリエチレン材料等を見出し、先に、出願を行った(特許文献4~9)。特許文献4~6には、特定のポリエチレン60~90質量%に対し、Ti、Zr又はHfを含有するメタロセン系触媒を用いて重合され、HLMFR及び密度がそれぞれ特定の値であり、長鎖分岐構造を有する特定のエチレン系重合体10~40質量%を含有してなり、かつ、特定の特性を満足する容器用ポリエチレン樹脂組成物が開示されている。
特許文献7~9には、特定の3種類のポリエチレン成分を各々特定量含有し、特性(1)~(5)を満足するポリエチレン樹脂組成物が開示されている。
特性(1):MFRが0.1~1g/10分である。
特性(2):HLMFRが10~50g/10分である。
特性(3):HLMFR/MFRが50~140である。
特性(4):密度が0.940~0.965g/cmである。
特性(5):温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測される。
また、特許文献10には、特定のポリエチレン成分(A)を5質量%以上40質量%以下、特定のポリエチレン成分(B)を60質量%以上95質量%以下含有し、下記の特性(1)~(4)を満足するポリエチレン樹脂組成物が開示されている。
特性(1):MFRが0.1g/10分以上、1g/10分以下である。
特性(2):HLMFRが10g/10分以上、50g/10分以下である。
特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上140以下である。
特性(4):密度が0.950g/cm以上0.970g/cm以下である。
しかしながら、特許文献4~10に記載されたポリエチレン樹脂組成物はいずれも、成形体の耐衝撃性は高いものの、流動性が低く、押出工程時に樹脂温度が高くなりやすいため、成形サイクル全体の短縮化の実現には未だ問題があった。
また、本出願人は、特許文献11において、密度(D)が、0.900~0.975g/cmであり、メルトフローレート(MFR(D)、JIS K7210に準じて、温度190℃、荷重2.16kgにて測定される)が、0.05~1000g/10分であるエチレン系重合体(D)10~90重量%に対して、各々特定の密度及びHLMFRを有する成分(A)及び成分(B)を多段重合してなるエチレン系重合体(C)90~10重量%を含有する薄肉容器用エチレン系重合体組成物を開示している。特許文献11に開示されたエチレン系重合体は、成形性、耐久性及び衝撃強度に優れるうえに、高分子量ゲルに由来する凹凸が生じにくく、外観に優れた成形品を製造することができるとされている。
しかしながら、製品に求められる要求性能は日々高まっており、特許文献11のエチレン系重合体よりも高い耐衝撃性が求められており、上記従来技術の問題点において更なる性能改善が求められている。
国際公開2007/094376号公報 特開2012-229355号公報 特開2017-128692号公報 特開2013-204015号公報 特開2014-208749号公報 特開2014-208750号公報 特開2017-179256号公報 特開2017-179294号公報 特開2018-131571号公報 特開2017-186515号公報 特開2016-55871号公報
中空成形、射出成形、インフレーション成形、押出成形法等の各種成形法において、成形サイクルの短縮化の効果的な手段の一つとしては、溶融樹脂を金型内で成形した後の冷却・固化工程に要する時間の短縮化が挙げられる。そのため、溶融樹脂を金型内で成形する以前の、樹脂を溶融・混練する工程における成形温度は、可能な限り低下させておくことが望ましい。
従って、容器用ポリエチレン樹脂組成物に求められる成形性、高剛性、耐環境応力亀裂性、耐衝撃性等をバランス良く有しながら、溶融樹脂を押し出す押出工程時に樹脂の発熱が抑制されるポリエチレン樹脂組成物が求められている。
本発明の目的は、上記従来技術の問題点等に鑑み、成形性、成形体の剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れ、且つ押出工程時に樹脂の発熱が抑制されるポリエチレン樹脂組成物及びそれを用いた成形体及び容器を提供することにある。
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、成形性、成形体の剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れ、且つ押出工程時に樹脂の発熱が抑制されるポリエチレン樹脂組成物及びそれよりなる成形体が得られることを見出し、本発明を完成するに至った。
本発明のポリエチレン樹脂組成物は、エチレンの単独重合体及びエチレンと炭素数3~12のα-オレフィンとの共重合体からなる群から選ばれる1種又は2種以上のエチレン系重合体を必須成分として含み、下記の特性(1)~(6)を満足する。
特性(1):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.5g/10分以上、5.0g/10分以下である。
特性(2):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が50g/10分を超えて、100g/10分以下である。
特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上100以下である。
特性(4):密度が0.950g/cm以上0.970g/cm以下である。
特性(5):190℃で測定される溶融張力(MT)(単位:mN)とHLMFR(単位:g/10分)とが下記式(1)で示される関係を満たす。
MT≧876.94×HLMFR-0.844 ・・・式(1)
特性(6):23℃における引張衝撃強度(TIS)(単位:kJ/m)と密度(d)(単位:g/cm)とが下記式(2)で示される関係を満たす。
TIS≧-7000×d+6800 ・・・式(2)
本発明のポリエチレン樹脂組成物は、剛性(密度)と耐環境応力亀裂性のような長期耐久性のバランスに優れる点から、更に下記特性(7)を満足することが好ましい。
特性(7):ISO DIS 16770に準拠して行う全周囲ノッチ式クリープ試験の破断時間(FNCT)(単位:時間)と密度(d)(単位:g/cm)とが下記式(3)で示される関係を満たす。
FNCT≧1.2×10-3×d-229.8 ・・・式(3)
本発明のポリエチレン樹脂組成物は、前記特性(1)~(6)を満足し易く、且つ、樹脂成分の相溶性が高く成形体の外観に優れる点から、下記ポリエチレン成分(A)を10質量%以上30質量%以下、下記ポリエチレン成分(B)を5質量%以上50質量%以下、下記ポリエチレン成分(C)を40質量%以上85質量%以下含有することが好ましい。
ポリエチレン成分(A);特性(a1):HLMFRが0.5g/10分以上、5.0g/10分以下であり、特性(a2):密度が0.915g/cm以上0.940g/cm以下であるエチレン系重合体。
ポリエチレン成分(B);特性(b1):HLMFRが2g/10分以上、100g/10分以下であり、特性(b2):密度が0.930g/cm以上0.970g/cm以下であり、特性(b3):温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測されるエチレン系重合体。
ポリエチレン成分(C);特性(c1):MFRが10g/10分以上、1000g/10分以下であり、特性(c2):密度が0.960g/cm以上0.980g/cm以下であるエチレン系重合体。
本発明のポリエチレン樹脂組成物においては、ゲルパーミエーションクロマトグラフィー(GPC)法により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布が5.0以上25.0以下であることが、相溶性及び成形体の外観などの点から好ましい。
本発明のポリエチレン樹脂組成物においては、スクリュー直径(Ds)が70mm、スクリュー有効長(Ls)とスクリュー直径(Ds)との比(Ls/Ds)が24、圧縮比が3.0のスクリューをシリンダー内に取り付けた押出機に外径14mm、内径10.5mmのダイを取り付けた状態において、シリンダー及びダイの設定温度を185℃として押出量70kg/時間にスクリュー回転数を調整した場合のダイ出口における樹脂の温度を、接触式樹脂温度計で測定した時の樹脂温度が235℃以下であることが、押出工程時に樹脂の発熱が抑制されやすく、冷却時間の短縮により効率的に成形サイクルを短縮化できる点から好ましい。
本発明の成形体は、前記本発明のポリエチレン樹脂組成物を含むことを特徴とする。
また、本発明の容器は、前記本発明のポリエチレン樹脂組成物を含む層を有することを特徴とする。
本発明によれば、成形性、成形体の剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れ、且つ押出工程時に樹脂の発熱が抑制されるポリエチレン樹脂組成物、及びそれを用いた成形体及び容器を提供することができるという効果を奏する。
図1は典型的な伸長粘度のプロット図であり、伸長粘度の変曲点が観測される場合を説明する図である。 図2は典型的な伸長粘度のプロット図であり、伸長粘度の変曲点が観測されない場合を説明する図である。 図3は、実施例と比較例のポリエチレン樹脂組成物のHLMFRと溶融張力(MT)の関係を示す図である。 図4は実施例と比較例のポリエチレン樹脂組成物の密度(d)と引張衝撃強度(TIS)との関係を示す図である。 図5は実施例と比較例のポリエチレン樹脂組成物のHLMFRと引張衝撃強度(TIS)との関係を示す図である。 図6は実施例と比較例のポリエチレン樹脂組成物の密度(d)と全周囲ノッチ式クリープ試験の破断時間(FNCT)との関係を示す図である。
I.ポリエチレン樹脂組成物
本発明のポリエチレン樹脂組成物は、エチレンの単独重合体及びエチレンと炭素数3~12のα-オレフィンとの共重合体からなる群から選ばれる1種又は2種以上のエチレン系重合体を必須成分として含み、下記の特性(1)~(6)を満足することを特徴とする。
特性(1):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.5g/10分以上、5.0g/10分以下である。
特性(2):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が50g/10分を超えて、100g/10分以下である。
特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上100以下である。
特性(4):密度が0.950g/cm以上0.970g/cm以下である。
特性(5):190℃で測定される溶融張力(MT)(単位:mN)とHLMFR(単位:g/10分)とが下記式(1)で示される関係を満たす。
MT≧876.94×HLMFR-0.844 ・・・式(1)
特性(6):23℃における引張衝撃強度(TIS)(単位:kJ/m)と密度(d)(単位:g/cm)とが下記式(2)で示される関係を満たす。
TIS≧-7000×d+6800 ・・・式(2)
本発明のポリエチレン樹脂組成物は、前記特性(1)~(6)を満足することにより、成形性、成形体の剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れ、且つ押出工程時に樹脂の発熱が抑制されるという効果を奏する。
本発明のポリエチレン樹脂組成物は、押出工程時に樹脂の発熱が抑制されることから、成形温度を低下させることができるため、溶融樹脂を金型内で成形した後の冷却・固化工程に要する時間を短縮化させ、成形サイクル全体の短縮化を達成することができるという効果がある。
従って、本発明のポリエチレン樹脂組成物は、成形サイクル全体の短縮化を達成しながら、物性が優れた成形体を得ることができるという効果がある。
以下、本発明を、項目毎に、詳細に説明する。
なお、本発明において、ポリエチレンとは、エチレン単独重合体及びエチレンと後述のオレフィンとの共重合体の総称をいい、エチレン系重合体とも言い換えられる。
また、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
1.ポリエチレン樹脂組成物の特性
本発明のポリエチレン樹脂組成物は、以下の特性(1)~(6)を満足することが重要である。
特性(1)
本発明のポリエチレン樹脂組成物は、流動性や長期耐久性の点から、温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.5g/10分以上、5.0g/10分以下であるものを選択する。当該MFRの下限値は、好ましくは0.6g/10分以上、更に好ましくは0.7g/10分以上、特に好ましくは0.8g/10分以上であり、当該MFRの上限値は、好ましくは4.0g/10分以下、更に好ましくは3.0g/10分以下、特に好ましくは2.0g/10分以下である。また、当該MFRは、好ましくは0.6g/10分以上4.0g/10分以下、更に好ましくは0.7g/10分以上3.0g/10分以下の範囲、特に好ましくは0.7g/10分以上2.0g/10分以下の範囲である。
このMFRが0.5g/10分未満であると、流動性が低下することにより、成形時における押出機モーター負荷やせん断による樹脂発熱量が増大するおそれや、シャークスキンやメルトフラクチャーなどの流動不安定現象が発生しやすくなるため成形体の外観を損なうおそれがある。
一方、このMFRが5.0g/10分を超えると、耐衝撃性や耐環境応力亀裂性が達成できず、成形体の落下衝撃耐性や長期耐久性が低下するおそれがある。
本発明においてMFRは、JIS K6922-2:1997に準拠して測定することができる。
ポリエチレン樹脂組成物のMFRは、ポリエチレン樹脂組成物を構成する各エチレン系重合体成分の水素量及び温度、並びに各成分の配合量により調整することができる。
特性(2)
本発明のポリエチレン樹脂組成物は、流動性及び長期耐久性の点から、温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が50g/10分を超えて、100g/10分以下であるものを選択する。当該HLMFRの下限値は、好ましくは51g/10分以上、更に好ましくは52g/10分以上であり、特に好ましくは53g/10分以上であり、当該HLMFRの上限値は、好ましくは90g/10分以下、更に好ましくは85g/10分以下、特に好ましくは83g/10分以下である。また、当該HLMFRは、好ましくは51g/10分以上90g/10分以下、更に好ましくは52g/10分以上85g/10分以下の範囲である。
このHLMFRが50g/10分以下であると、流動性が低下することにより、成形時における押出機モーター負荷やせん断による樹脂発熱量が増大するおそれがある。
一方、このHLMFRが100g/10分を超えると、耐衝撃性や耐環境応力亀裂性が達成できず、成形体の落下衝撃耐性や長期耐久性が低下するおそれがある。
本発明においてHLMFRは、JIS K6922-2:1997に準拠して測定することができる。
ポリエチレン樹脂組成物のHLMFRは、ポリエチレン樹脂組成物を構成する各エチレン系重合体成分の重合時のそれぞれの水素量及び温度、並びに各成分の配合量により調整することができる。
特性(3)
本発明のポリエチレン樹脂組成物は、耐衝撃性及び耐環境応力亀裂性の点から、MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上100以下であるものを選択する。当該メルトフローレート比の下限値は、好ましくは45以上、更に好ましくは49以上であり、当該メルトフローレート比の上限値は、好ましくは90以下、更に好ましくは80以下である。また、当該メルトフローレート比は、好ましくは45以上90以下、更に好ましくは49以上80以下の範囲である。
HLMFR/MFRは、分子量分布との相関が強く、HLMFR/MFRが大きな値をとる場合、分子量分布が広くなり、HLMFR/MFRが小さな値をとる場合、分子量分布が狭くなる。HLMFR/MFRが100を超えると各成分の相溶性の悪化や耐衝撃性が低下するおそれがあり、HLMFR/MFRが40未満では溶融張力の低下やシャークスキンなどの流動不安定現象が発生しやすくなるおそれや耐環境応力亀裂性が低下するおそれがある。
HLMFR/MFRの制御方法は、主に分子量分布の制御方法に準じて行うことができる。
特性(4)
本発明のポリエチレン樹脂組成物は、耐衝撃性及び耐環境応力亀裂性の点から、密度が0.950g/cm以上0.970g/cm以下であるものを選択する。当該密度の下限値は、好ましくは0.950g/cm以上、更に好ましくは0.952g/cm以上であり、当該密度の上限値は、好ましくは0.965g/cm以下、更に好ましくは0.960g/cm以下である。また、当該密度は、好ましくは0.950g/cm以上0.965g/cm以下、更に好ましくは0.952g/cm以上0.960g/cm以下の範囲である。
密度が0.950g/cm未満であると、剛性が不足するおそれがある。一方、密度が0.970g/cmを超えた場合には、耐衝撃性及び耐環境応力亀裂性が低下するおそれがある。
本発明において密度は、JIS K6922-1,2:1997に準拠して測定することができる。
密度は、ポリエチレン樹脂組成物を構成する各エチレン系重合体成分の重合時のα-オレフィンの量により調整することができ、また、各成分の配合量により調整することができる。
特性(5)
本発明のポリエチレン樹脂組成物は、190℃で測定される溶融張力(MT)(単位:mN)とHLMFR(単位:g/10分)とが下記式(1)で示される関係を満たす。
MT≧876.94×HLMFR-0.844 ・・・式(1)
一般に高流動性を示すポリエチレン樹脂組成物は溶融張力が低くなる傾向があるため、高流動性と良好な溶融張力を両立したポリエチレン樹脂組成物であることが望まれる。式(1)は、本発明のポリエチレン樹脂組成物が、従来のポリエチレン系樹脂に比べて、HLMFR見合いの成形性に優れる(溶融張力が大きい)ことを示すものである。即ち、本発明のポリエチレン樹脂組成物と従来のものを区別するために、溶融張力(MT)はHLMFRの増加に対して負の相関がある関数と考えて、当該関数のパラメータを設定し、本発明のポリエチレン樹脂組成物のMTが当該関数で規定されるMTよりもHLMFR見合いで大きいことを示す。具体的には、実施例及び比較例データに基づき、実施例とHLMFR見合いの溶融張力が小さい比較例を区別するMT及びHLMFRの値を仮定して、当該MTとHLMFRとの間に成立する関係式について、最小二乗法により当該関係式のパラメータを決定したものである。
式(1)を満足するためには、本発明の組成物の特定の構成成分を適宜選択することにより達成することができる。具体的には、本発明のポリエチレン樹脂組成物を構成する各ポリエチレン成分の長鎖分岐の導入量を増加させることによりMTを増加させることができ、前記各ポリエチレン成分の分子量分布を広くすることによりMTを増加させることができ、後述するポリエチレン成分(B)の配合量を増加させることによりMTを増加させることができ、これらの調整により、式(1)を満足させることができる。
本発明のポリエチレン樹脂組成物は、成形性の点から、溶融張力(MT)が25mN以上であることが好ましい。
本発明において、ポリエチレン樹脂組成物の溶融張力は、溶融させたポリエチレン樹脂組成物を一定速度で延伸したときの応力を測定することにより決定され、下記条件により測定することができる。
[測定条件]
使用機種:東洋精機製作所社製、キャピログラフ1B
ノズル径:2.095mm
ノズル長さ:8.0mm
流入角度:180°(flat)
押出速度:15mm/分
引き取り速度:6.5m/分
測定温度:190℃
特性(6)
本発明のポリエチレン樹脂組成物は、剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れる点から、23℃における引張衝撃強度(TIS)(単位:kJ/m)と密度(d)(単位:g/cm)とが下記式(2)で示される関係を満たす。
TIS≧-7000×d+6800 ・・・式(2)
本発明のポリエチレン樹脂組成物は、23℃における引張衝撃強度(TIS)(単位:kJ/m)と密度(d)(単位:g/cm)とが更に、下記式(2’)で示される関係を満たすことが、耐衝撃性の点からより好ましい。
TIS≧-7000×d+6820 ・・・式(2’)
一般に密度(剛性)が高いポリエチレン樹脂組成物は引張衝撃強度(TIS)が低くなる傾向があるため、密度(剛性)と引張衝撃強度(TIS)を両立したポリエチレン樹脂組成物であることが望まれる。式(2)は、本発明のポリエチレン樹脂組成物が、従来のポリエチレン系樹脂に比べて、密度見合いの耐衝撃性に優れる(引張衝撃強度が大きい)ことを示すものである。即ち、本発明のポリエチレン樹脂組成物と従来のものを区別するために、引張衝撃強度(TIS)は密度(d)の増加に対して負の相関がある関数と考えて、当該関数のパラメータを設定し、本発明のポリエチレン樹脂組成物の引張衝撃強度が当該関数で規定される引張衝撃強度よりも密度見合いで大きいことを示す。具体的には、実施例及び比較例データに基づき、実施例と密度見合いで引張衝撃強度が不十分な比較例を区別する引張衝撃強度及び密度の値を仮定して、当該引張衝撃強度と密度との間に成立する関係式について、最小二乗法により当該関係式のパラメータを決定したものである。そして、式(2’)は、式(2)により規定される範囲を更に限定するために、式(2)と同様の方法でパラメータを決定したものである。
式(2)及び式(2’)を満足するためには、本発明の組成物の特定の構成成分を適宜選択することにより達成することができる。具体的には、本発明のポリエチレン樹脂組成物の分子量分布を狭くするか、後述するポリエチレン成分(A)の分子量を高く、又は密度を低くすることによりTISを増加させることができ、ポリエチレン成分(A)の配合量を増加、又はポリエチレン成分(C)を減少させることによりTISを増加させることができ、これらの調整により、式(2)や式(2’)を満足させることができる。
本発明のポリエチレン樹脂組成物は、上記の関係式(2)を満足し、且つ、23℃における引張衝撃強度(TIS)が100kJ/m以上であることがより好ましく、120kJ/m以上であることがより好ましく、130kJ/m以上であることがより更に好ましい。
本発明において、ポリエチレン樹脂組成物の23℃における引張衝撃強度(TIS)(単位:kJ/m)は、JIS K6922-2に準拠して、1.5mmの圧縮成形シートを作成し、ASTM D1822に準拠して、S型ダンベルで打ち抜いた試験片を作成し、23℃、50%RHの条件で測定することができる。
特性(6’)
本発明のポリエチレン樹脂組成物は、23℃における引張衝撃強度(TIS)(単位:kJ/m)とHLMFR(単位:g/10分)とが下記式(2-2)で示される関係を満たすことが、流動性と耐衝撃性とのバランスに優れる点から好ましい。
TIS≧-HLMFR+195 ・・・式(2-2)
23℃における引張衝撃強度(TIS)(単位:kJ/m)とHLMFR(単位:g/10分)とが下記式(2-2’)で示される関係を満たすことが、耐衝撃性の点からより好ましい。
TIS≧-HLMFR+205 ・・・式(2-2’)
一般に高流動性を示すポリエチレン樹脂組成物は引張衝撃強度(TIS)が低くなる傾向があるため、高流動性と引張衝撃強度(TIS)を両立したポリエチレン樹脂組成物であることが望まれる。式(2-2)は、本発明のポリエチレン樹脂組成物が、従来のポリエチレン系樹脂に比べて、流動性見合いの耐衝撃性に優れる(引張衝撃強度が大きい)ことを示すものである。即ち、本発明のポリエチレン樹脂組成物と従来のものを区別するために、引張衝撃強度(TIS)は流動性(HLMFR)の増加に対して負の相関がある関数と考えて、当該関数のパラメータを設定し、本発明のポリエチレン樹脂組成物の引張衝撃強度が当該関数で規定される引張衝撃強度よりも流動性見合いで大きいことを示す。具体的には、実施例及び比較例データに基づき、実施例と流動性見合いで引張衝撃強度が不十分な比較例を区別する引張衝撃強度及び流動性の値を仮定して、当該引張衝撃強度と流動性との間に成立する関係式について、最小二乗法により当該関係式のパラメータを決定したものである。そして、式(2-2’)は、式(2-2)により規定される範囲を更に限定するために、式(2-2)と同様の方法でパラメータを決定したものである。
式(2-2)及び式(2-2’)を満足するためには、本発明の組成物の特定の構成成分を適宜選択することにより達成することができる。具体的には、本発明のポリエチレン樹脂組成物の分子量分布を狭くするか、後述するポリエチレン成分(A)の分子量を高く、又は密度を低くすることによりTISを増加させることができ、ポリエチレン成分(A)の配合量を増加、又はポリエチレン成分(C)を減少させることによりTISを増加させることができ、これらの調整により、式(2-2)や式(2-2’)を満足させることができる。
特性(7)
本発明のポリエチレン樹脂組成物は、ISO DIS 16770に準拠して行う全周囲ノッチ式クリープ試験の破断時間(FNCT)(単位:時間)と密度(d)(単位:g/cm)とが下記式(3)で示される関係を満たすことが剛性(密度)と耐環境応力亀裂性のような長期耐久性のバランスに優れる点から好ましい。
FNCT≧1.2×10-3×d-229.8 ・・・式(3)
本発明のポリエチレン樹脂組成物は、前記FNCT(単位:時間)と密度(d)(単位:g/cm)とが更に、下記式(3’)で示される関係を満たすことが、耐衝撃性の点からより好ましい。
FNCT≧1.8×10-3×d-229.8・・・式(3’)
一般に密度(剛性)が高いポリエチレン樹脂組成物は耐久性が低くなる傾向があるため、密度(剛性)と耐環境応力亀裂性のような長期耐久性を両立したポリエチレン樹脂組成物であることが望まれる。式(3)は、本発明のポリエチレン樹脂組成物が、従来のポリエチレン系樹脂に比べて、密度見合いの耐久性に優れる(FNCTが大きい)ことを示すものである。即ち、本発明のポリエチレン樹脂組成物と従来のものを区別するために、全周囲ノッチ式クリープ試験の破断時間(FNCT)は密度(d)の増加に対して負の相関がある関数と考えて、当該関数のパラメータを設定し、本発明のポリエチレン樹脂組成物のFNCTが当該関数で規定されるFNCTよりも密度見合いで大きいことを示す。具体的には、実施例及び比較例データに基づき、実施例と密度見合いで耐環境応力亀裂性が不十分な比較例を区別するFNCT及び密度の値を仮定して、当該FNCTと密度との間に成立する関係式について、最小二乗法により当該関係式のパラメータを決定したものである。そして、式(3’)は、式(3)により規定される範囲を更に限定するために、式(3)と同様の方法でパラメータを決定したものである。
式(3)及び式(3’)を満足するためには、本発明の組成物の特定の構成成分を適宜選択することにより達成することができる。具体的には、本発明のポリエチレン樹脂組成物を構成する、後述するポリエチレン(A)の分子量を高く、又は密度を低くすることによりFNCTを増加させることができ、ポリエチレン成分(A)の配合量を増加させることによりFNCTを増加させることができ、これらの調整により、式(3)や式(3’)を満足させることができる。
本発明のポリエチレン樹脂組成物は、上記の関係式(3)を満足し、且つ、FNCT(時間)が50時間以上であることが好ましく、更に80時間以上であることが好ましい。
本発明において、全周囲ノッチ式クリープ試験は、ISO DIS 16770に準拠して行うことができる。試料は、6mm×6mm×11mmの大きさの角柱の全周囲にカミソリ刃にて1mmのノッチが付けられ、4mm×4mmの大きさの断面を有した試験片を用意し、80℃の純水中で、3.7MPaに相当する引張応力を検体に与え、検体が破断するまでの時間を計測して、FNCTの破断時間とする。
特性(8)
本発明のポリエチレン樹脂組成物は、更に下記の特性(8)を満足することが、相溶性及び成形体の外観などの点から、好ましい。
特性(8):ゲルパーミエーションクロマトグラフィー(GPC)法により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表される分子量分布が5.0以上25.0以下である。
当該分子量分布(Mw/Mn)は、更に上限値が20.0以下であることが好ましく、15.0以下であることがより好ましい。
GPCにより測定される分子量分布(Mw/Mn)は、樹脂組成物における各種物性及び流動性の改良に関わる。
本発明に用いられるポリエチレン樹脂組成物の分子量分布(Mw/Mn)が下限値以上であると、ポリエチレン樹脂組成物を構成する各エチレン系重合体成分の相溶性がより良好になって、本発明のポリエチレン樹脂組成物の耐衝撃性及び耐環境応力亀裂性などの物性の低下を抑制しやすくなり、成形体の外観が良好になる点から好ましい。また、本発明のポリエチレン樹脂組成物の流動性が良好になることにより、押出工程時に樹脂の発熱が抑制されやすくなる点から好ましい。一方、前記分子量分布(Mw/Mn)が上限値以下であると、最終の樹脂組成物の長期耐久性及び耐衝撃性を良好にしやすい。
分子量分布を所定の範囲とするには、分子量分布を制御できる触媒や適当な重合条件を採用することにより達成することができる。また、バイモーダル又はマルチモーダルの重合体の場合は、各成分の分子量を調整することにより制御することができる。
本発明において、ゲルパーミエーションクロマトグラフィー(GPC)による分子量及び分子量分布の測定は、下記の条件により測定することができる。
[測定条件]
使用機種:日本ウォーターズ社製Alliance GPCV2000型
測定温度:145℃
溶媒:オルトジクロロベンゼン(ODCB)
カラム:昭和電工社製Shodex HT-806M×2本+同 HT-G
流速:1.0mL/分
注入量:0.3mL
[試料の調製]
4mLバイアル瓶に試料3mg及びオルトジクロロベンゼン(0.1mg/mLの1,2,4-トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学社製SSC-9300型高温振とう機を用いて2時間溶解を行う。溶解終了後、不溶成分がないことを目視で確認する。
[較正曲線の作成]
4mLガラス瓶を4本用意し、それぞれに下記(1)~(4)の組み合わせの単分散ポリスチレン標準試料又はn-アルカンを0.2mgずつ秤り採り、続いてオルトジクロロベンゼン(0.1mg/mLの1,2,4-トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学社製SSC-9300型高温振とう機を用いて2時間溶解を行う。
(1)Shodex S-1460,同S-66.0,n-エイコサン
(2)Shodex S-1950,同S-152,n-テトラコンタン
(3)Shodex S-3900,同S-565,同S-5.05
(4)Shodex S-7500,同S-1010,同S-28.5
試料溶液が入ったバイアル瓶を装置にセットし、前述の条件にて測定を行い、サンプリング間隔1秒でクロマトグラム(保持時間と示差屈折計検出器の応答のデータセット)を記録する。得られたクロマトグラムから各ポリスチレン標準試料の保持時間(ピーク頂点)を読み取り、分子量の対数値に対してプロットする。ここで、n-エイコサン及びn-テトラコンタンの分子量は、それぞれ600及び1200とする。このプロットに非線形最小自乗法を適用し、得られた4次曲線を較正曲線とする。
[分子量の計算]
前述の条件にて測定を行い、サンプリング間隔1秒でクロマトグラムを記録する。
このクロマトグラムから、森定雄著「サイズ排除クロマトグラフィー」(共立出版)第4章p.51~60に記載の方法で微分分子量分布曲線及び平均分子量値(Mn、Mw及びMz)を算出する。但し、dn/dcの分子量依存性を補正するため、クロマトグラムにおけるベースラインからの高さHを下記の式にて補正する。クロマトグラムの記録(データ取り込み)及び平均分子量計算は、Microsoft社製OS Windows(登録商標)XPをインストールしたPC上で自社製プログラム(Microsoft社製Visual Basic6.0で作成)を用いて行う。
H’=H/[1.032+189.2/M(PE)]
なお、ポリスチレンからポリエチレンへの分子量変換は、下記の式を用いる。
M(PE)=0.468×M(PS)
特性(9)
本発明のポリエチレン樹脂組成物は、更に下記の特性(9)を満足することが、押出工程時に樹脂の発熱が抑制されやすく、効率的に成形サイクルを短縮化できる点から好ましい。
特性(9):スクリュー直径(Ds)が70mm、スクリュー有効長(Ls)とスクリュー直径(Ds)との比(Ls/Ds)が24、圧縮比が3.0のスクリューをシリンダー内に取り付けた押出機に外径14mm、内径10.5mmのダイを取り付けた状態において、シリンダー及びダイの設定温度を185℃として押出量70kg/時間にスクリュー回転数を調整した場合のダイ出口における樹脂の温度を、接触式樹脂温度計で測定した時の樹脂温度が235℃以下である。
スクリュー直径(Ds)が70mm、スクリュー有効長(Ls)とスクリュー直径(Ds)との比(Ls/Ds)が24、圧縮比が3.0のスクリューをシリンダー内に取り付けた押出機に外径14mm、内径10.5mmのダイを取り付けた状態としては、例えば、上記条件を設定した単層ダイレクトブロー成形機(例えばブレンズ社製、商品名BEX70/BLS-5E)を用いることができる。
前記特性(9)を所定の範囲とするには、ポリエチレン樹脂組成物を構成する各エチレン系重合体成分の重合時のそれぞれの水素量及び温度、並びに各成分の配合量により調整することができる。
特性(10)
本発明のポリエチレン樹脂組成物は、更に下記の特性(10)を満足することが、
成形性の点から好ましい。
特性(10):温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測されるポリエチレン樹脂組成物である。
歪硬化に起因する伸長粘度の変曲点の有無は、歪硬化度の測定において観察できるものであり、後述するポリエチレン成分(A)の歪硬化度の測定方法と同様の方法で測定することができる。
ポリエチレン樹脂組成物が、長鎖分岐構造を有するためには、長鎖分岐構造を有するポリエチレン成分を所定量使用することが好ましい。
2.ポリエチレン樹脂組成物の構成
本発明のポリエチレン樹脂組成物は、エチレンの単独重合体及びエチレンと炭素数3~12のα-オレフィンとの共重合体からなる群から選ばれる1種又は2種以上のエチレン系重合体を必須成分とすることにより、前記特性(1)~(6)を同時に満足する。また、本発明のポリエチレン樹脂組成物は、前記特性(1)~(6)を同時に満足する範囲内であれば、当該エチレン系重合体に加えて更に後述する任意成分を含んでいてもよい。
本発明のエチレンと炭素数3~12のα-オレフィンとの共重合体は、炭素数3~12のα-オレフィンから導かれる構成単位を0.001~5mol%、好ましくは0.001~2mol%、より好ましくは0.02~1.5mol%、より更に好ましくは0.02~1.3mol%含むエチレン系重合体である。
ここで、炭素数3~12のα-オレフィン(以下単に「α-オレフィン」ともいう。)としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセンなどが挙げられる。本発明においては、これらのα-オレフィンの中で、1-ヘキセン、4-メチル-1-ペンテン、1-オクテンから選ばれる少なくとも1種を用いることが好ましい。
前記特性(1)~(6)を同時に満足するポリエチレン樹脂組成物は、MFR、HLMFR、及びメルトフローレート比(HLMFR/MFR)を制御するための重合時の重合温度及び水素濃度を考慮し、密度を制御するためのα-オレフィンの種類及び含有量を考慮し、更に本発明の組成物の特定の構成成分を適宜選択することにより製造される。2種以上のエチレン系重合体を含有する場合、2種以上のエチレン系重合体を連続的に重合したものでもよいし、2種以上のエチレン系重合体をそれぞれ別々に製造した後、それらの重合体を溶融混合したものでもよいし、2種以上のエチレン系重合体を連続的に重合したものと、別に製造した1種又は2種以上のエチレン系重合体を溶融混合してもよい。
本発明のポリエチレン樹脂組成物は、前記特性(1)~(6)を同時に満足すれば、特に重合触媒や製造方法などが制限されるものではない。
中でも、本発明のポリエチレン樹脂組成物は、下記ポリエチレン成分(A)を10質量%以上30質量%以下、下記ポリエチレン成分(B)を5質量%以上50質量%以下、下記ポリエチレン成分(C)を40質量%以上85質量%以下含有することが、前記特性(1)~(6)を同時に満足させやすく、樹脂成分の相溶性が高く成形体の外観に優れやすく、更に前記特性(6’)~(10)を満足させやすい点から好ましい。下記ポリエチレン成分(A)及び(C)に加えて、下記ポリエチレン成分(B)を適切量含むことにより、流動性と溶融張力のバランスが向上して、前記特性(1)~(4)を満足するポリエチレン樹脂組成物が更に特性(5)及び(6)を満足しやすくなる。
ポリエチレン成分(A);特性(a1):HLMFRが0.5g/10分以上、5.0g/10分以下であり、特性(a2):密度が0.915g/cm以上0.940g/cm以下であるエチレン系重合体。
ポリエチレン成分(B);特性(b1):HLMFRが2g/10分以上、100g/10分以下であり、特性(b2):密度が0.930g/cm以上0.970g/cm以下であり、特性(b3):温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測されるエチレン系重合体。
ポリエチレン成分(C);特性(c1):MFRが10g/10分以上、1000g/10分以下であり、特性(c2):密度が0.960g/cm以上0.980g/cm以下であるエチレン系重合体。
本発明のポリエチレン樹脂組成物において、前記ポリエチレン成分(A)、ポリエチレン成分(B)、ポリエチレン成分(C)の組成割合は、前記特性(1)~(6)を同時に満足し、樹脂組成物の相溶性及び成形体の外観の点から、前記ポリエチレン成分(A)を15質量%以上25質量%以下、前記ポリエチレン成分(B)を10質量%以上40質量%以下、前記ポリエチレン成分(C)を45質量%以上70質量%以下含有することがより好ましく、前記ポリエチレン成分(A)を15質量%以上25質量%以下、前記ポリエチレン成分(B)を15質量%以上35質量%以下、前記ポリエチレン成分(C)を45質量%以上65質量%以下含有することが更に好ましく、前記ポリエチレン成分(A)を15質量%以上25質量%以下、前記ポリエチレン成分(B)を15質量%以上35質量%以下、前記ポリエチレン成分(C)を45質量%以上60質量%以下含有することがより更に好ましい。
(1)ポリエチレン成分(A)
特性(a1)
本発明に用いられるポリエチレン成分(A)は、流動性及び長期耐久性の点から、HLMFRが0.5g/10分以上、5.0g/10分以下であるものを選択することが好ましい。ポリエチレン成分(A)のHLMFRの下限値は、好ましくは0.8g/10分以上、更に好ましくは1.1g/10分以上であり、当該HLMFRの上限値は、好ましくは4.0g/10分以下、更に好ましくは2.0g/10分以下である。
このHLMFRが前記下限値未満であると、最終の樹脂組成物において、HLMFRが規定の範囲内を達成できず、流動性が低下し、押出工程時に樹脂の発熱しやすくなるおそれや、相溶性が低下するため、成形体の外観を損なうおそれがある。一方、このHLMFRが前記上限値を超えると、最終樹脂組成物において、耐環境応力亀裂性が達成できず、成形体の長期耐久性が低下するおそれがある。
HLMFRは、主にポリエチレン成分(A)の重合時の水素量及び重合温度により調整することができる。
特性(a2)
本発明に用いられるポリエチレン成分(A)は、耐衝撃性及びの耐環境応力亀裂性の点から、密度が0.915g/cm以上0.940g/cm以下であるものを選択することが好ましい。ポリエチレン成分(A)の密度の下限値は、好ましくは0.917g/cm以上であり、当該密度の上限値は、好ましくは0.925g/cm以下、更に好ましくは0.923g/cm以下である。
この密度が前記下限値未満であると、最終の樹脂組成物における密度範囲を達成できず、剛性が不足するおそれがある。一方、密度が前記上限値を超えた場合には、最終樹脂組成物において耐衝撃性及び耐環境応力亀裂性能が低下するおそれがある。
密度は、主にポリエチレン成分(A)の重合時のα-オレフィンの量により調整することができる。
特性(a3)
本発明に用いられるポリエチレン成分(A)は、相溶性及び成形体の外観などの点から、更に下記の特性(a3)を満足することが好ましい。
特性(a3):ゲルパーミエーションクロマトグラフィー(GPC)法により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表される分子量分布が2.0以上10.0以下である。
ポリエチレン成分(A)の分子量分布(Mw/Mn)は、更に下限値が2.5以上、3以上であることが好ましく、更に上限値が6.0以下、5.0以下であることが好ましい。
本発明に用いられるポリエチレン成分(A)の分子量分布(Mw/Mn)が下限値以上であると、ポリエチレン樹脂組成物を構成する各エチレン系重合体成分の相溶性がより良好になって、本発明のポリエチレン樹脂組成物の耐衝撃性及び耐環境応力亀裂性などの物性の低下を抑制しやすくなり、成形体の外観が良好になる点から好ましい。また、本発明のポリエチレン樹脂組成物の流動性が良好になることにより、押出工程時に樹脂の発熱が抑制されやすくなる点から好ましい。一方、ポリエチレン成分(A)の分子量分布(Mw/Mn)が上限値以下であると、最終の樹脂組成物の長期耐久性及び耐衝撃性を良好にしやすい。
本発明で用いられるポリエチレン成分(A)は、前記特定の特性を満たせば、製造方法としては特に限定されないが、好ましくは重合触媒として、特定のメタロセン系触媒を使用して、重合することにより製造することができる。
また、長鎖分岐構造を有するポリエチレン成分(A)は、エチレンへの連鎖移動によって末端ビニル基を有するポリエチレン(マクロモノマー)を生成させ、マクロモノマーとエチレンの共重合を経て得ることができる。
メタロセン系触媒の中では、特定構造のメタロセン錯体を有する触媒が好ましく、特にシクロペンタジエニル環及び複素環式芳香族基を有するメタロセン錯体、又はシクロペンタジエニル環及びフルオレニル環を有するメタロセン錯体が好ましい。
ポリエチレン成分(A)は、Ti、Zr又はHfを含有するメタロセン系触媒により重合されることが好ましい。メタロセン系触媒としては、メタロセン錯体と呼ばれる、シクロペンタジエン骨格を有する配位子が遷移金属に配位してなる錯体と助触媒とを組み合わせたものが例示される。具体的なメタロセン系触媒としては、Ti、Zr、Hfなどを含む遷移金属に、メチルシクロペンタジエン、ジメチルシクロペンタジエン、インデン等のシクロペンタジエン骨格を有する配位子が配位してなるメタロセン錯体と、助触媒として、アルミノキサン等の周期表第1族~第3族元素の有機金属化合物とを、組み合わせたものや、これらの錯体触媒をシリカ等の担体に担持させた担持型のものが挙げられる。
本発明で用いられるメタロセン系触媒は、以下の触媒成分(i)及び触媒成分(ii)を含むものであり、必要に応じて触媒成分(iii)と組み合わせてなる触媒である。
触媒成分(i):メタロセン錯体
触媒成分(ii):触媒成分(i)と反応して、カチオン性メタロセン化合物を形成する化合物
触媒成分(iii):微粒子担体
(1)触媒成分(i)
触媒成分(i)は、周期表第4族遷移金属のメタロセン化合物が用いられる。具体的には、下記の一般式(I)~(VII)で表される化合物が使用される。
(C5-a )(C5-b )MXY 一般式(I)
(C4-c )(C4-d )MXY 一般式(II)
(C4-e )ZMXY 一般式(III)
(C5-f )ZMXY 一般式(IV)
(C5-f )MXYW 一般式(V)
(C5-g )(C5-h )MXY 一般式(VI)
(C3-i )(C3-j )MXY 一般式(VII)
ここで、Q、Q、Qは二つの共役五員環配位子を架橋する結合性基を、Qは共役五員環配位子とZ基を架橋する結合性基を、QはRとRを架橋する結合性基を、Mは周期表第3~12族遷移金属を、X、Y及びWはそれぞれ独立して、水素、ハロゲン、炭素数1~20の炭化水素基、炭素数1~20の酸素含有炭化水素基、炭素数1~20の窒素含有炭化水素基、炭素数1~20のリン含有炭化水素基又は炭素数1~20の珪素含有炭化水素基を、Zは酸素、イオウを含む配位子、炭素数1~40の珪素含有炭化水素基、炭素数1~40の窒素含有炭化水素基又は炭素数1~40のリン含有炭化水素基を示す。Mは、好ましくはTi、Zr、Hf等の第4族遷移金属である。
~Rはそれぞれ独立して、炭素数1~20の炭化水素基、ハロゲン基、炭素数1~20のハロゲン含有炭化水素基、アルコキシ基、アリールオキシ基、酸素含有炭化水素基、珪素含有炭化水素基、リン含有炭化水素基、窒素含有炭化水素基又はホウ素含有炭化水素基を示す。これらの中で、R~Rの少なくとも1つが複素環式芳香族基であることが好ましい。複素環式芳香族基の中でも、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基が好ましく、更には、フリル基、ベンゾフリル基が好ましい。これらの複素環式芳香族基は、炭素数1~20の炭化水素基、ハロゲン基、炭素数1~20のハロゲン含有炭化水素基、酸素含有炭化水素基、珪素含有炭化水素基、リン含有炭化水素基、窒素含有炭化水素基又はホウ素含有炭化水素基を有していても良いが、その場合、炭素数1~20の炭化水素基、珪素含有炭化水素基が好ましい。また、隣接する2個のR、2個のR、2個のR、2個のR、2個のR、2個のR、又は2個のRが、それぞれ結合して炭素数4~10個の環を形成していてもよい。a、b、c、d、e、f、g、h、i及びjは、それぞれ0≦a≦5、0≦b≦5、0≦c≦4、0≦d≦4、0≦e≦4、0≦f≦5、0≦g≦5、0≦h≦5、0≦i≦3、0≦j≦3を満足する整数である。
2個の共役五員環配位子の間を架橋する結合性基Q、Q、Q、共役五員環配位子とZ基とを架橋する結合性基Q、及び、RとRを架橋するQは、具体的には下記のようなものが挙げられる。メチレン基、エチレン基のようなアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、フェニルメチリデン基、ジフェニルメチリデン基のようなアルキリデン基、ジメチルシリレン基、ジエチルシリレン基、ジプロピルシリレン基、ジフェニルシリレン基、メチルエチルシリレン基、メチルフェニルシリレン基、メチル-t-ブチルシリレン基、ジシリレン基、テトラメチルジシリレン基のような珪素含有架橋基、ゲルマニウム含有架橋基、アルキルフォスフィン、アミン等である。これらのうち、アルキレン基、アルキリデン基、珪素含有架橋基、及びゲルマニウム含有架橋基が特に好ましく用いられる。
上述の一般式(I)、(II)、(III)、(IV)、(V)、(VI)及び(VII)で表される具体的なZr錯体としては、特開2017-179304号公報の段落0045~0055に記載の化合物を挙げることができ、当該具体例のZrをHf又はTiに置き換えた化合物も同様に使用可能である。また、一般式(I)、(II)、(III)、(IV)、(V)、(VI)及び(VII)で示されるメタロセン錯体は、同一の一般式で示される化合物、又は異なる一般式で示される化合物の二種以上の混合物として用いることができる。
以上において記載した触媒成分(i)の中で、ポリエチレン成分(A)を製造するための好ましいメタロセン錯体としては、一般式(I)又は一般式(II)で表されるメタロセン錯体が好ましく、なかでも、シクロペンタジエニル環及び複素環式芳香族基を有するメタロセン錯体が好ましく、更には、インデニル環骨格を有するメタロセン錯体が好ましい。高分子量のポリマーを生成可能であり、エチレンと他のα-オレフィンとの共重合において共重合性に優れるという観点から、一般式(II)で表されるメタロセン錯体が好ましく、一般式(II)で表されインデニル環骨格を有するメタロセン錯体が最も好ましい。高分子量体を製造可能ということは、後述するような種々のポリマーの分子量の調整手法により、様々な分子量のポリマーの設計が行えるという利点がある。
更に、高分子量でかつ長鎖分岐を有するポリエチレンを製造可能という観点から、一般式(II)で表されるメタロセン錯体の中でも、以下の化合物群が好ましい。
好ましい態様の一例として、化合物群は、R~Rとして、化合物内に少なくとも一つ、複素環式芳香族基を含有している架橋メタロセン錯体である。好ましい複素環式芳香族基としては、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基よりなる群が挙げられる。これらの置換基は、更に珪素含有基等の置換基を有していてもよい。フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基よりなる群から選択される置換基の中で、フリル基、ベンゾフリル基が更に好ましい。更には、これらの置換基が、置換シクロペンタジエニル基又は置換インデニル基の2位に導入されていることが好ましく、少なくとも1つ、他に縮環構造を有しない置換シクロペンタジエニル基を有している化合物であることが特に好ましい。
これらの化合物をメタロセン錯体として用いることにより、更には、特定の重合条件を採用することにより、本発明において好ましいポリエチレン成分(A)を容易に製造することができる。
これらのメタロセン錯体は、後述するような担持触媒として用いることが好ましい。第一の化合物群においては、フリル基やチエニル基に含有されるいわゆるヘテロ原子と担体上の固体酸などの相互作用により、活性点構造に不均一性が生じ、長鎖分岐が生成しやすくなったものと考えている。また、第二の化合物群においても、担持触媒にすることで、活性点まわりの空間が変化するため、長鎖分岐が生成しやすくなったものと考えている。
(2)触媒成分(ii)
本発明に係るポリエチレン成分(A)の製造方法は、オレフィン重合用触媒の必須成分として、上記触媒成分(i)以外に、触媒成分(i)のメタロセン化合物と反応してカチオン性メタロセン化合物を形成する化合物(触媒成分(ii))、必要に応じて微粒子担体(触媒成分(iii))を含むことが好ましい。
触媒成分(ii)の一つとして、有機アルミニウムオキシ化合物が挙げられる。
上記有機アルミニウムオキシ化合物は、分子中に、Al-O-Al結合を有し、その結合数は通常1~100個、好ましくは1~50個の範囲にある。このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水とを反応させて得られる生成物である。
有機アルミニウムと水との反応は、通常、不活性炭化水素(溶媒)中で行われる。不活性炭化水素としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン等の脂肪族炭化水素、脂環族炭化水素及び芳香族炭化水素が使用できるが、脂肪族炭化水素又は芳香族炭化水素を使用することが好ましい。
有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記の一般式(VIII)で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
AlX 3-t 一般式(VIII)
(一般式(VIII)中、Rは、炭素数1~18、好ましくは1~12のアルキル基、アルケニル基、アリール基、アラルキル基等の炭化水素基を示し、Xは、水素原子又はハロゲン原子を示し、tは、1≦t≦3の整数を示す。)
トリアルキルアルミニウムのアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のいずれでも差し支えないが、メチル基であることが特に好ましい。
上記有機アルミニウム化合物は、2種以上混合して使用することもできる。
水と有機アルミニウム化合物との反応比(水/Alモル比)は、0.25/1~1.2/1、特に、0.5/1~1/1であることが好ましく、反応温度は、通常-70~100℃、好ましくは-20~20℃の範囲にある。反応時間は、通常5分~24時間、好ましくは10分~5時間の範囲で選ばれる。反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物等に含まれる結晶水や反応系中に水が生成しうる成分も利用することもできる。
なお、上記した有機アルミニウムオキシ化合物のうち、アルキルアルミニウムと水とを反応させて得られるものは、通常、アルミノキサンと呼ばれ、特にメチルアルミノキサン(実質的にメチルアルミノキサン(MAO)からなるものを含む)は、有機アルミニウムオキシ化合物として、好適である。
もちろん、有機アルミニウムオキシ化合物として、上記した各有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また、前記有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶液又は分散させた溶液としたものを用いても良い。
また、触媒成分(ii)の他の具体例として、ボラン化合物やボレート化合物が挙げられる。当該ボラン化合物やボレート化合物の具体例としては、特開2017-179304号公報の段落0065~0077に記載の化合物を挙げることができる。
更に特に好ましい触媒成分(ii)としては、有機アルミニウムオキシ化合物である。
これらの化合物を触媒成分(ii)として用いることにより、更には、特定の重合条件を採用することにより、本発明において好ましいポリエチレン成分(A)を容易に製造することができる。
(3)触媒成分(iii)
触媒成分(iii)である微粒子担体としては、無機物担体、粒子状ポリマー担体又はこれらの混合物が挙げられる。無機物担体は、金属、金属酸化物、金属塩化物、金属炭酸塩、炭素質物、又はこれらの混合物が使用可能である。
無機物担体に用いることができる好適な金属としては、例えば、鉄、アルミニウム、ニッケルなどが挙げられる。
また、金属酸化物としては、周期表1~14族の元素の単独酸化物又は複合酸化物が挙げられ、例えば、SiO、Al、MgO、CaO、B、TiO、ZrO、Fe、Al・MgO、Al・CaO、Al・SiO、Al・MgO・CaO、Al・MgO・SiO、Al・CuO、Al・Fe、Al・NiO、SiO・MgOなどの天然又は合成の各種単独酸化物又は複合酸化物を例示することができる。
ここで、上記の式は、分子式ではなく、組成のみを表すものであって、本発明において用いられる複合酸化物の構造及び触媒成分比率は特に限定されるものではない。
また、本発明において用いる金属酸化物は、少量の水分を吸収していても差し支えなく、少量の不純物を含有していても差し支えない。
金属塩化物としては、例えば、アルカリ金属、アルカリ土類金属の塩化物が好ましく、具体的にはMgCl、CaClなどが特に好適である。
金属炭酸塩としては、アルカリ金属、アルカリ土類金属の炭酸塩が好ましく、具体的には、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムなどが挙げられる。
炭素質物としては、例えば、カーボンブラック、活性炭などが挙げられる。
以上の無機物担体は、いずれも本発明に好適に用いることができるが、特に金属酸化物、シリカ、アルミナなどの使用が好ましい。
これら無機物担体は、通常、200~800℃、好ましくは400~600℃で空気中又は窒素、アルゴン等の不活性ガス中で焼成して、表面水酸基の量を0.8~1.5mmol/gに調節して用いるのが好ましい。
これら無機物担体の性状としては、特に制限はないが、通常、平均粒径は5~200μm、好ましくは10~150μm、平均細孔径は20~1000Å、好ましくは50~500Å、比表面積は150~1000m/g、好ましくは200~700m/g、細孔体積は0.3~2.5cm/g、好ましくは0.5~2.0cm/g、見掛け比重は0.10~0.50g/cmを有する無機物担体を用いるのが好ましい。
上記した無機物担体は、もちろんそのまま用いることもできるが、予備処理としてこれらの担体をトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム、ジイソブチルアルミニウムハイドライドなどの有機アルミニウム化合物やAl-O-Al結合を含む有機アルミニウムオキシ化合物に接触させた後、用いることができる。
更に特に好ましい触媒成分(iii)としては、SiO、Al、Al・SiOが挙げられる。
これらの化合物を触媒成分(iii)として用いることにより、更には、特定の重合条件を採用することにより、本発明において好ましいポリエチレン成分(A)を容易に製造することができる。
(4)接触方法等
本発明に係るメタロセン系触媒は、触媒成分(i)と、触媒成分(ii)、及び必要に応じて触媒成分(iii)からなる触媒を得る際の各成分の接触方法は、特に限定されず、例えば、以下の方法が任意に採用可能である。
接触方法(1):触媒成分(i)と、触媒成分(ii)とを接触させた後、触媒成分(iii)を接触させる。
接触方法(2):触媒成分(i)と、触媒成分(iii)とを接触させた後、触媒成分(ii)を接触させる。
接触方法(3):触媒成分(ii)と、触媒成分(iii)とを接触させた後、触媒成分(i)を接触させる。
これらの接触方法の中で接触方法(1)及び(3)が好ましく、更に接触方法(1)が最も好ましい。いずれの接触方法においても、通常は窒素又はアルゴンなどの不活性雰囲気中、一般にベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素(通常炭素数は6~12)、ヘプタン、ヘキサン、デカン、ドデカン、シクロヘキサンなどの脂肪族あるいは脂環族炭化水素(通常炭素数5~12)等の液状不活性炭化水素の存在下、撹拌下又は非撹拌下に各成分を接触させる方法が採用される。
この接触は、通常-100℃~200℃、好ましくは-50℃~100℃、更に好ましくは0℃~50℃の温度にて、5分~50時間、好ましくは30分~24時間、更に好ましくは30分~12時間で行うことが望ましい。
また、触媒成分(i)、触媒成分(ii)と触媒成分(iii)の接触に際しては、上記した通り、ある種の成分が可溶ないしは難溶な芳香族炭化水素溶媒と、ある種の成分が不溶ないしは難溶な脂肪族又は脂環族炭化水素溶媒とがいずれも使用可能である。
各成分同士の接触反応を段階的に行う場合にあっては、前段で用いた溶媒などを除去することなく、これをそのまま後段の接触反応の溶媒に用いてもよい。また、可溶性溶媒を使用した前段の接触反応後、ある種の成分が不溶もしくは難溶な液状不活性炭化水素(例えば、ペンタン、ヘキサン、デカン、ドデカン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの脂肪族炭化水素、脂環族炭化水素あるいは芳香族炭化水素)を添加して、所望生成物を固形物として回収した後に、あるいは一旦可溶性溶媒の一部又は全部を、乾燥等の手段により除去して所望生成物を固形物として取り出した後に、この所望生成物の後段の接触反応を、上記した不活性炭化水素溶媒のいずれかを使用して実施することもできる。本発明では、各成分の接触反応を複数回行うことを妨げない。
本発明において、触媒成分(i)と、触媒成分(ii)と、触媒成分(iii)の使用割合は、特に限定されないが、以下の範囲が好ましい。
触媒成分(ii)として、有機アルミニウムオキシ化合物を用いる場合、触媒成分(i)中の遷移金属(M)に対する有機アルミニウムオキシ化合物のアルミニウムの原子比(Al/M)は、通常、1~100,000、好ましくは5~1,000、更に好ましくは50~200の範囲が望ましく、また、ボラン化合物やボレート化合物を用いる場合、メタロセン化合物中の遷移金属(M)に対する、ホウ素の原子比(B/M)は、通常、0.01~100、好ましくは0.1~50、更に好ましくは0.2~10の範囲で選択することが望ましい。
更に、触媒成分(ii)として、有機アルミニウムオキシ化合物と、ボラン化合物、ボレート化合物との混合物を用いる場合にあっては、混合物における各化合物について、遷移金属(M)に対して上記と同様な使用割合で選択することが望ましい。
触媒成分(iii)の使用量は、触媒成分(i)中の遷移金属0.0001~5mmol当たり、好ましくは0.001~0.5mmol当たり、更に好ましくは0.01~0.1mmol当たり、1gである。
触媒成分(i)と、触媒成分(ii)と、触媒成分(iii)とを、前記接触方法(1)~(3)のいずれかで相互に接触させ、しかる後、溶媒を除去することで、オレフィン重合用触媒を固体触媒として得ることができる。溶媒の除去は、常圧下又は減圧下、0~200℃、好ましくは20~150℃で1分~50時間、好ましくは10分~10時間で行うことが望ましい。
なお、メタロセン系触媒は、以下の方法によっても得ることができる。
接触方法(4):触媒成分(i)と触媒成分(iii)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物又はこれらの混合物と接触させる。
接触方法(5):有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物又はこれらの混合物と触媒成分(iii)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で触媒成分(i)と接触させる。
上記接触方法(4)、(5)の場合も、成分比、接触条件及び溶媒除去条件は、前記と同様の条件が使用できる。
また、本発明に係るポリエチレン成分(A)の製造方法の必須成分である触媒成分(ii)と触媒成分(iii)とを兼ねる成分として、層状珪酸塩を用いることもできる。
層状珪酸塩とは、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造をとる珪酸塩化合物である。
大部分の層状珪酸塩は、天然には主に粘土鉱物の主成分として産出するが、これら、層状珪酸塩は特に天然産のものに限らず、人工合成物であってもよい。
これらの中では、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト、ベントナイト、テニオライト等のスメクタイト族、バーミキュライト族、雲母族が好ましい。
一般に、天然品は、非イオン交換性(非膨潤性)であることが多く、その場合は好ましいイオン交換性(ないし膨潤性)を有するものとするために、イオン交換性(ないし膨潤性)を付与するための処理を行うことが好ましい。そのような処理のうちで特に好ましいものとしては、次のような化学処理が挙げられる。
ここで化学処理とは、表面に付着している不純物を除去する表面処理と層状珪酸塩の結晶構造、化学組成に影響を与える処理のいずれをも用いることができる。
具体的には、(イ)塩酸、硫酸等を用いて行う酸処理、(ロ)NaOH、KOH、NH等を用いて行うアルカリ処理、(ハ)周期表第2族~第14族から選ばれた少なくとも1種の原子を含む陽イオンとハロゲン原子又は無機酸由来の陰イオンからなる群より選ばれた少なくとも1種の陰イオンからなる塩類を用いた塩類処理、(ニ)アルコール、炭化水素化合物、ホルムアミド、アニリン等の有機物処理等が挙げられる。これらの処理は、単独で行ってもよいし、2つ以上の処理を組み合わせてもよい。
前記層状珪酸塩は、全ての工程の前、間、後のいずれの時点においても、粉砕、造粒、分粒、分別等によって、粒子性状を制御することができる。その方法は、合目的的な任意のものであり得る。特に、造粒法について示せば、例えば、噴霧造粒法、転動造粒法、圧縮造粒法、撹拌造粒法、ブリケッティング法、コンパクティング法、押出造粒法、流動層造粒法、乳化造粒法及び液中造粒法等が挙げられる。特に好ましい造粒法は、上記の内、噴霧造粒法、転動造粒法及び圧縮造粒法である。
上記した層状珪酸塩は、もちろんそのまま用いることもできるが、これらの層状珪酸塩をトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム、ジイソブチルアルミニウムハイドライドなどの有機アルミニウム化合物やAl-O-Al結合を含む有機アルミニウムオキシ化合物と組み合わせて用いることができる。
本発明に係るメタロセン系触媒において、触媒成分(i)を、層状珪酸塩に担持するには、触媒成分(i)と層状珪酸塩を相互に接触させる、あるいは触媒成分(i)、有機アルミニウム化合物、層状珪酸塩を相互に接触させてもよい。
各成分の接触方法は、特に限定されず、例えば、以下の方法が任意に採用可能である。
接触方法(6):触媒成分(i)と有機アルミニウム化合物を接触させた後、層状珪酸塩担体と接触させる。
接触方法(7):触媒成分(i)と層状珪酸塩担体を接触させた後、有機アルミニウム化合物と接触させる。
接触方法(8):有機アルミニウム化合物と層状珪酸塩担体を接触させた後、触媒成分(i)と接触させる。
これらの接触方法の中で接触方法(6)と(8)が好ましい。いずれの接触方法においても、通常は窒素又はアルゴンなどの不活性雰囲気中、一般にベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素(通常炭素数は6~12)、ヘプタン、ヘキサン、デカン、ドデカン、シクロヘキサンなどの脂肪族あるいは脂環族炭化水素(通常炭素数5~12)等の液状不活性炭化水素の存在下、撹拌下又は非撹拌下に各成分を接触させる方法が採用される。
触媒成分(i)と、有機アルミニウム化合物、層状珪酸塩担体の使用割合は、特に限定されないが、以下の範囲が好ましい。
触媒成分(i)の担持量は、層状珪酸塩担体1gあたり、0.0001~5mmol、好ましくは0.001~0.5mmol、更に好ましくは0.01~0.1mmolである。
また、有機アルミニウム化合物を用いる場合のAl担持量は、0.01~100mol、好ましくは0.1~50mol、更に好ましくは0.2~10molの範囲であることが望ましい。
担持及び溶媒除去の方法は、前記の無機物担体と同様の条件が使用できる。
触媒成分(ii)と触媒成分(iii)とを兼ねる成分として、層状珪酸塩を用いると、重合活性が高く、長鎖分岐を有するエチレン系重合体の生産性が向上する。
こうして得られるオレフィン重合用触媒は、必要に応じてモノマーの予備重合を行った後に使用しても差し支えない。
メタロセン系触媒の製造例として、例えば、特表2002-535339号公報や特開2004-189869号公報に記載の「触媒」及び「原料の配合比や条件」を参酌することにより、製造することができる。また、重合体のインデックスは、各種重合条件により制御することができ、例えば、特開平2-269705号公報や特開平3-21607号公報記載の方法により制御することができる。
ポリエチレン成分(A)は、エチレンの単独重合体又はエチレンと炭素数3~12のα-オレフィン、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン等との共重合により得られる。また、改質を目的とする場合のジエンとの共重合も可能である。このとき使用されるジエン化合物の例としては、ブタジエン、1,4-ヘキサジエン、エチリデンノルボルネン、ジシクロペンタジエン等を挙げることができる。なお、重合の際のコモノマー含有率は、任意に選択することができるが、例えば、エチレンと炭素数3~12のα-オレフィンとの共重合の場合には、エチレン・α-オレフィン共重合体中のα-オレフィン含有量は、0.001~40mol%、好ましくは0.001~30mol%である。
なお、本発明に用いられる各ポリエチレン成分に使用されるエチレンは、通常の化石原料由来の原油から製造されるエチレンであってもよいし、植物由来のエチレンであってもよい。植物由来のエチレン及びポリエチレンとしては、例えば、特表2010-511634号公報に記載のエチレンやそのポリマーが挙げられる。植物由来のエチレンやそのポリマーは、カーボンニュートラル(化石原料を使わず大気中の二酸化炭素の増加につながらない)の性質を持ち、環境に配慮した製品の提供が可能である。
生成重合体の分子量は、重合温度、触媒のモル比等の重合条件を変えることによってもある程度調節可能であるが、重合反応系に水素を添加することで、より効果的に分子量調節を行うことができる。
また、重合系中に、水分除去を目的とした成分、いわゆるスカベンジャーを加えても何ら支障なく実施することができる。
なお、かかるスカベンジャーとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどの有機アルミニウム化合物、前記有機アルミニウムオキシ化合物、分岐アルキルを含有する変性有機アルミニウム化合物、ジエチル亜鉛、ジブチル亜鉛などの有機亜鉛化合物、ジエチルマグネシウム、ジブチルマグネシウム、エチルブチルマグネシウムなどの有機マグネシウム化合物、エチルマグネシウムクロリド、ブチルマグネシウムクロリドなどのグリニヤ化合物などが使用される。これらのなかでは、トリエチルアルミニウム、トリイソブチルアルミニウム、エチルブチルマグネシウムが好ましく、トリエチルアルミニウムが特に好ましい。
水素濃度、モノマー量、重合圧力、重合温度等の重合条件が互いに異なる2段階以上の多段階重合方式にも、支障なく適用することができる。
ポリエチレン成分(A)は、気相重合法、溶液重合法、スラリー重合法などの製造プロセスにより製造することができ、好ましくはスラリー重合法が望ましい。ポリエチレン成分(A)の重合条件のうち重合温度としては、0~200℃の範囲から選択することができる。スラリー重合においては、生成ポリマーの融点より低い温度で重合を行う。重合圧力は、大気圧~約10MPaの範囲から選択することができる。実質的に酸素、水等を断った状態で、ヘキサン、ヘプタン、イソブタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素等から選ばれる不活性炭化水素溶媒の存在下でエチレン及びα-オレフィンのスラリー重合を行うことにより製造することができる。
ポリエチレン成分(A)は、本発明で規定の範囲を満たせば、単一の重合器、直列もしくは並列に接続した複数の反応器で順次連続して重合、及び複数のエチレン重合体を別々に重合した後に混合したものでもよい。
(2)ポリエチレン成分(B)
特性(b1)
本発明に用いられるポリエチレン成分(B)は、流動性の点から、特性(b1):HLMFRが2g/10分以上、100g/10分以下であるものを選択することが好ましい。ポリエチレン成分(B)のHLMFRの下限値は、好ましくは3g/10分以上、更に好ましくは5g/10分以上であり、当該HLMFRの上限値は、好ましくは90g/10分以下、更に好ましくは70g/10分以下である。
このHLMFRが前記下限値以上であることにより、ポリエチレン成分(B)の流動性が最終樹脂組成物の流動性に近づき、ポリエチレン成分(B)の配合量を任意に調整しやすくなるため、成形体の形状等に応じて成形性を制御しやすく、また、押出工程時に樹脂の発熱が抑制されやすい点から好ましい。
一方、このHLMFRが前記上限値以上であると、低分子量の成分量が増加する影響により、耐衝撃性が確保できなくなるおそれがある。また、最終樹脂組成物において、耐環境応力亀裂性が達成できず、成形体の長期耐久性が低下するおそれがある。
HLMFRは、主にポリエチレン成分(B)の重合時の水素量及び重合温度により調整することができる。
特性(b2)
本発明に用いられるポリエチレン成分(B)は、耐衝撃性及び耐環境応力亀裂性の点から、密度が0.930g/cm以上0.970g/cm以下であるものを選択することが好ましい。ポリエチレン成分(B)の密度の下限値は、好ましくは0.940g/cm以上、更に好ましくは0.943g/cm以上であり、当該密度の上限値は、好ましくは0.965g/cm以下である。
ポリエチレン成分(B)の密度が前記下限値未満であると、最終の樹脂組成物における密度範囲を達成できず、剛性が不足するおそれがある。一方、密度が前記上限値を超えた場合には、最終樹脂組成物において耐衝撃性及び耐環境応力亀裂性が低下するおそれがあり、容器の耐衝撃性及び長期耐久性が劣るおそれがある。
密度は、主にポリエチレン成分(B)の重合時のα-オレフィンの量により調整することができる。
特性(b3)
本発明に用いられるポリエチレン成分(B)は、成形性の点から、温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測されるエチレン系重合体を選択することが好ましい。
前記ポリエチレン成分(B)が、長鎖分岐構造を有するためには、適当な重合触媒を適用して重合することが好ましく、後述するようなクロム系触媒を使用することが好ましい。
本明細書において、歪硬化に起因する伸長粘度の変曲点の有無は、歪硬化度の測定において観察できるものである。
上記歪硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも原理的に同一の値が得られ、例えば、公知文献:Polymer 42(2001)8663に測定方法及び測定機器の詳細が記載されている。
本発明に係るポリエチレンの測定に当り、好ましい測定方法及び測定機器として、以下を挙げることができる。
測定方法:
・装置:Rheometrics社製Ares
・冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
・測定温度:170℃
・歪み速度:0.1/秒
・試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
算出方法:
170℃、歪み速度0.1/秒における伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度η(t)(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で、歪硬化後、歪量が4.0となるまでの最大伸長粘度をηMax(t1)(t1は最大伸長粘度を示す時の時間)とし、歪硬化前の伸長粘度の近似直線をηLinear(t)としたとき、ηMax(t1)/ηLinear(t1)として算出される値を歪硬化度(λmax)と定義する。なお、歪硬化の有無は、時間の経過と共に伸長粘度が上に凸の曲線から下に凸の曲線へと変わる変曲点を有するか、否かによって、判断される。
図1、図2は典型的な伸長粘度のプロット図である。図1は伸長粘度の変曲点が観測される場合であり、図中にηMax(t1)、ηLinear(t1)を示した。図2は伸長粘度の変曲点が観測されない場合である。
特性(b4)
本発明に用いられるポリエチレン成分(B)は、成形性及び相溶性の点から、更に下記の特性(b4)を満足することが好ましい。
特性(b4):ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布(Mw/Mn)が6.0以上20.0以下である。
本発明に用いられるポリエチレン成分(B)において、前記分子量分布(Mw/Mn)の下限値は、7.0以上であることがより好ましく、上限値は、12.0以下、更に11.0以下であることがより好ましい。
GPCにより測定される分子量分布(Mw/Mn)は、重合体の各種物性、成形性の改良に関わり、成形体の外観等の改良にも関係する。
本発明に用いられるポリエチレン成分(B)の分子量分布(Mw/Mn)が前記範囲内にあると、より優れた中空成形加工性を発揮することができる。また、前記分子量分布(Mw/Mn)が前記下限値以上であると、流動性見合いの溶融張力に優れ、ポリエチレン成分(A)及びポリエチレン成分(C)との相溶性がより良好になって製品外観が優れる点、押出成形時の樹脂圧力が適切になって、メルトフラクチャーなどの流動不安定現象を生じ難くなり、外観不良を抑制しやすい点から好ましい。一方、前記分子量分布(Mw/Mn)が前記上限値以下であると、成形体のピンチオフ形状が悪化することを抑制し易く、中空成形品としての衝撃強度を良好にしやすい。
分子量分布を所定の範囲とするには、分子量分布を制御できる触媒や適当な重合条件を採用することにより達成することができる。また、バイモーダル又はマルチモーダルの重合体の場合は、各成分の分子量を調整することにより制御することができる。
本発明に用いられるポリエチレン成分(B)は、クロム系触媒で重合されたエチレン系重合体であることが好ましい。
クロム系触媒の好ましい例としては、クロム化合物を無機酸化物担体に担持し、非還元性雰囲気で焼成活性化することにより少なくとも一部のクロム原子が6価となるクロム系触媒であり、一般にフィリップス触媒として知られており公知である。この触媒の概要は、M.P.McDaniel著,Advances in Catalysis,Volume 33,47頁,1985年,Academic Press Inc.、M.P.McDaniel著,Handbook of Heterogeneous Catalysis,2400頁,1997年,VCH、M.B.Welchら著,Handbook of Polyolefins:Synthesis and Properties,21頁,1993年,Marcel Dekker等の文献に記載されている。
前記無機酸化物担体としては、周期表第2、4、13又は14族の金属の酸化物が好ましい。具体的にはマグネシア、チタニア、ジルコニア、アルミナ、シリカ、トリア、シリカ-チタニア、シリカ-ジルコニア、シリカ-アルミナ又はこれらの混合物が挙げられる。なかでもシリカ、シリカ-チタニア、シリカ-ジルコニア、シリカ-アルミナが好ましい。シリカ-チタニア、シリカ-ジルコニア、シリカ-アルミナの場合、シリカ以外の金属成分としてチタン、ジルコニウム又はアルミニウム原子が0.2~10質量%、好ましくは0.5~7質量%、更に好ましくは1~5質量%含有されたものが用いられる。
これらのクロム系触媒に適する担体の製法、物理的性質及び特徴は、C.E.Marsden著,Preparation of Catalysts,Volume V,215頁,1991年,Elsevier Science Publishers、C.E.Marsden著,Plastics,Rubber and Composites Processing and Applications,Volume 21,193頁,1994年等の文献に記載されている。
焼成活性化前のクロム系触媒の担体の比表面積としては、250~1000m/g、好ましくは300~900m/g、更に好ましくは400~800m/gとなるように無機酸化物担体を選択することが好ましい。比表面積が250m/g未満の場合は、分子量分布が狭くかつ長鎖分岐が多くなることと関係すると考えられるが、耐久性、耐衝撃性がともに低下するおそれがある。また、比表面積が1000m/gを超える担体は、製造が難しくなるおそれがある。
無機酸化物担体の細孔体積としては、一般的なクロム系触媒に用いられる担体の場合と同様に、0.5~3.0cm/g、好ましくは1.0~2.0cm/g、更に好ましくは1.2~1.8cm/gの範囲のものが用いられる。細孔体積が0.5未満の場合は、重合時に重合ポリマーによって細孔が小さくなり、モノマーが拡散できなくなってしまい活性が低下するおそれがある。細孔体積が3.0cm/gを超える担体は、製造が難しくなるおそれがある。
また、無機酸化物担体の平均粒径としては、一般的なクロム系触媒に用いられる担体と同様10~200μm、好ましくは20~150μm、更に好ましくは30~100μmの範囲のものが用いられる。
上記無機酸化物担体にクロム化合物を担持させる。クロム化合物としては、担持後に非還元性雰囲気で焼成活性化することにより少なくとも一部のクロム原子が6価となる化合物であればよく、酸化クロム、クロムのハロゲン化物、オキシハロゲン化物、クロム酸塩、重クロム酸塩、硝酸塩、カルボン酸塩、硫酸塩、クロム-1,3-ジケト化合物、クロム酸エステル等が挙げられる。具体的には三酸化クロム、三塩化クロム、塩化クロミル、クロム酸カリウム、クロム酸アンモニウム、重クロム酸カリウム、硝酸クロム、硫酸クロム、酢酸クロム、トリス(2-エチルヘキサノエート)クロム、クロムアセチルアセトネート、ビス(tert-ブチル)クロメート等が挙げられる。なかでも三酸化クロム、酢酸クロム、クロムアセチルアセトネートが好ましい。酢酸クロム、クロムアセチルアセトネートのような有機基を有するクロム化合物を用いた場合でも、後に述べる非還元性雰囲気での焼成活性化によって有機基部分は燃焼し、最終的には三酸化クロムを用いた場合と同様に無機酸化物担体表面の水酸基と反応し、少なくとも一部のクロム原子は6価となってクロム酸エステルの構造で固定化されることが知られている(V.J.Ruddickら著,J.Phys.Chem.,Volume100,11062頁,1996年、S.M.Augustineら著,J.Catal.,Volume 161,641頁,1996年)。
無機酸化物担体へのクロム化合物の担持は、含浸、溶媒留去、昇華等の公知の方法によって行うことができ、使用するクロム化合物の種類によって適当な方法を用いればよい。担持するクロム化合物の量は、クロム原子として担体に対して0.2~2.0質量%、好ましくは0.3~1.7質量%、更に好ましくは0.5~1.5質量%である。
クロム化合物の担持後に焼成して活性化処理を行う。焼成活性化は水分を実質的に含まない非還元性雰囲気、例えば酸素又は空気下で行うことができる。この際、不活性ガスを共存させてもよい。好ましくは、モレキュラーシーブス等を流通させ十分に乾燥した空気を用い、流動状態下で行う。焼成活性化は350~900℃、好ましくは420~850℃、更に好ましくは450~800℃にて、30分~48時間、好ましくは1時間~36時間、更に好ましくは2時間~24時間行う。この焼成活性化により、無機酸化物担体に担持されたクロム化合物のクロム原子が少なくとも一部は6価に酸化されて担体上に化学的に固定される。350℃未満で行うと、重合活性はなくなるおそれがある。一方、900℃を超える温度で焼成活性化を行うと、シンタリングが起こり、活性が低下するおそれがある。
このようにして得られた、クロム系触媒を使用することにより、ポリエチレン成分(B)に好適なエチレン系重合体を製造することができる。
そして、HLMFRは、主に重合温度により調整され、密度は主としてα-オレフィンの量により調整され、本発明に係るエチレン系重合体に適用することができる。
該エチレン系重合体は、エチレンの単独重合体が望ましいが、エチレンと炭素数3~12のα-オレフィン、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン等との共重合により得られる。また、改質を目的とする場合のジエンとの共重合も可能である。このとき使用されるジエン化合物の例としては、ブタジエン、1,4-ヘキサジエン、エチリデンノルボルネン、ジシクロペンタジエン等を挙げることができる。
なお、重合の際のコモノマー含有率は、任意に選択することができるが、例えば、エチレンと炭素数3~12のα-オレフィンとの共重合の場合には、エチレン・α-オレフィン共重合体中のα-オレフィン含有量は、0.001~1mol%、好ましくは0.001~0.1mol%、更に好ましくは0.001~0.01mol%である。
該エチレン系重合体は、スラリー重合、溶液重合のような液相重合法あるいは気相重合法など、いずれの方法を採用することができるが、特にスラリー重合法が好ましく、パイプループ型反応器を用いるスラリー重合法、オートクレーブ型反応器を用いるスラリー重合法、いずれも用いることができる。なかでもパイプループ型反応器を用いるスラリー重合法が好ましい(パイプループ型反応器とこれを用いるスラリー重合の詳細は、松浦一雄・三上尚孝編著、「ポリエチレン技術読本」、148頁、2001年、工業調査会に記載されている)。
液相重合法は通常炭化水素溶媒中で行う。炭化水素溶媒としてはプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの不活性炭化水素の単独又は混合物が用いられる。気相重合法は、不活性ガス共存下にて、流動床、撹拌床等の通常知られる重合法を採用でき、場合により重合熱除去の媒体を共存させる、いわゆるコンデンシングモードを採用することもできる。
液相重合法における重合温度は、一般的には0~300℃であり、実用的には20~200℃、好ましくは50~180℃、更に好ましくは70~150℃である。反応器中の触媒濃度及びエチレン濃度は重合を進行させるのに十分な任意の濃度でよい。例えば、触媒濃度は、液相重合の場合反応器内容物の質量を基準にして約0.0001~約5質量%の範囲とすることができる。同様にエチレン濃度は、液相重合の場合反応器内容物の質量を基準にして約1%~約10%の範囲とすることができる。
重合方法としては、反応器を一つ用いてポリエチレンを製造する単段重合だけでなく、生産量を向上させるため、少なくとも二つの反応器を連結させて多段重合を行うこともできる。多段重合の場合、二つの反応器を連結させ、第一段の反応器で重合して得られた反応混合物を続いて第二段の反応器に連続して供給する二段重合が好ましい。
(3)ポリエチレン成分(C)
特性(c1)
本発明に用いられるポリエチレン成分(C)は、流動性及び耐衝撃性の点から、MFRが10g/10分以上、1000g/10分以下であるものを選択することが好ましい。ポリエチレン成分(C)のMFRの下限値は、好ましくは15g/10分以上、更に好ましくは20g/10分以上であり、当該MFRの上限値は、好ましくは300g/10分以下、より好ましくは200g/10分以下、更に好ましくは100g/10分以下である。
このMFRが前記下限値未満であると、分子量が増大し、流動性及び成形性が確保できなくなるおそれがある。また、最終の樹脂組成物において、HLMFRが規定の範囲内を達成できず、流動性が低下することにより、押出工程時に樹脂の発熱が生じやすくなったり、シャークスキンやメルトフラクチャーなどの流動不安定現象が発生しやすくなるため、成形体の外観を損なうおそれがある。
一方、このMFRが前記上限値を超えると、低分子量の成分量が増加する影響により、耐衝撃性が確保できなくなるおそれがある。また、最終樹脂組成物において、耐衝撃性が達成できず、成形体の落下衝撃耐性が低下するおそれがある。
MFRは、主にポリエチレン成分(C)の重合時の水素量及び重合温度により調整することができる。
特性(c2)
本発明に用いられるポリエチレン成分(C)は、耐衝撃性及び耐環境応力亀裂性の点から、密度が0.960g/cm以上0.980g/cm以下であるものを選択することが好ましい。ポリエチレン成分(C)の密度の下限値は、好ましくは0.962g/cm以上であり、当該密度の上限値は、好ましくは0.975g/cm以下、更に好ましくは0.970g/cm以下である。
ポリエチレン成分(C)の密度が前記下限値未満であると、最終の樹脂組成物における密度範囲を達成できず、剛性が不足するおそれがある。一方、密度が前記上限値を超えた場合には、最終樹脂組成物において耐衝撃性及び耐環境応力亀裂性が低下するおそれがあり、容器の落下衝撃耐性及び長期耐久性が劣るおそれがある。
密度は、主にポリエチレン成分(C)の重合時のα-オレフィンの量により調整することができる。
特性(c3)
ポリエチレン成分(C)は、更に、相溶性及び成形体の外観などの点から、下記の特性(c3)を満足することが好ましい。
特性(c3):ゲルパーミエーションクロマトグラフィー(GPC)法により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表される分子量分布が2.0以上10.0以下である。
ポリエチレン成分(C)の分子量分布(Mw/Mn)は、更に下限値が3.0以上、5.0以上であることが好ましく、更に上限値が8.0以下、7.5以下であることが好ましい。
本発明に用いられるポリエチレン成分(C)の分子量分布(Mw/Mn)が下限値以上であると、ポリエチレン樹脂組成物を構成する各エチレン系重合体成分の相溶性がより良好になって、本発明のポリエチレン樹脂組成物の耐衝撃性及び耐環境応力亀裂性などの物性の低下を抑制しやすくなり、成形体の外観が良好になる点から好ましい。また、本発明のポリエチレン樹脂組成物の流動性が良好になることにより、押出工程時に樹脂の発熱が抑制されやすくなる点から好ましい。一方、ポリエチレン成分(C)の分子量分布(Mw/Mn)が上限値以下であると、最終の樹脂組成物の長期耐久性及び耐衝撃性を良好にしやすい。
本発明に用いられるポリエチレン成分(C)は、エチレン単独重合体又はエチレン-α-オレフィン共重合体であり、上記の特定を満たすことができれば、各種の重合触媒を用いて重合することができる。本発明に用いられるポリエチレン成分(C)は、チーグラーナッタ系触媒やメタロセン系触媒を使用して重合することにより製造することができ、好ましくはチーグラーナッタ系触媒由来のエチレン系重合体であり、ポリエチレン成分(A)又はポリエチレン成分(B)の重合方法に準じて製造することができる。チーグラーナッタ系触媒としては、従来公知の触媒を適宜選択して用いることができる。
本発明のポリエチレン樹脂組成物は、前記特性(1)~(6)を同時に満たすポリエチレン樹脂組成物であるため、成形性に優れ、且つ押出工程時に樹脂の発熱が抑制され、剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れる成形体とすることが可能である。
更に、好ましくは、上記特性(1)~(6)に加え、上記特性(6’)~(10)のうち一つ以上を備えたポリエチレン樹脂組成物は、上記効果を更に良く奏するものとなる。
中でも、前記ポリエチレン成分(A)を10質量%以上30質量%以下、前記ポリエチレン成分(B)を5質量%以上50質量%以下、前記ポリエチレン成分(C)を40質量%以上85質量%以下含有する場合には、樹脂成分の相溶性が高くなり、成形体の外観にも優れるようになる。
本発明のポリエチレン樹脂組成物が奏する効果について、以下に更に説明する。
一般に、ポリエチレンは、射出成形、フィルム成形、ブロー成形、発泡成形等の溶融状態を経由する附型方法により工業製品へと加工されるが、近年、成形品の生産コスト削減のため、成形サイクルを短縮化する取り組みが行われている。多くの成形方法では、溶融状態にあるポリエチレンを附型した後の冷却・固化工程を短縮することが、成形サイクルの短縮化に効果的である。このため、成形時の樹脂のせん断発熱を可能な限り抑制することが望ましい。更に、冷却サイクルに掛ける時間を削減することで、電力コストが削減されるほか、ポリエチレンの酸化劣化や揮発成分に由来する異物の発生が抑制されるため、より低温での成形がますます望まれている。しかし、溶融樹脂温度を低下させた場合、材料の溶融粘度が増大し、ショートショットのような金型内充填不足現象、ポリマーの分子配向による製品内残留応力の発生、それに伴うクラックの発生や製品寸法安定性の低下等の成形不良現象が発生しやすくなる。そのため、溶融樹脂温度を低下させても流動性が良好で、押出工程時に樹脂の発熱が抑制されるポリエチレン樹脂組成物が望まれている。
しかしながら、成形サイクルの短縮化の達成と同時に、成形品としての機能の維持も求められるため、成形用ポリエチレン樹脂組成物には、流動性と、剛性と耐環境応力亀裂性及び耐衝撃性などの高度なバランスが求められる。即ち、優れた、剛性と耐環境応力亀裂性及び耐衝撃性のバランスを達成するために、より強度に優れる高分子量の共重合成分を含むことが求められるが、高分子量成分の粘度が高すぎると分散不良により、かえって、成形体の衝撃強度の低下が生じたり、押出工程時に樹脂の発熱が生じる等の不都合が発生する。また、より強度に優れる高分子量の共重合成分を含むことは、押出工程時に樹脂の発熱が生じやすい。
それに対して、本発明では、特定のMFRと、特定のHLMFRと、特定のHLMFR/MFR比と、特定の密度とを満たし、且つ、溶融張力とHLMFRとが特定の関係を満たすポリエチレン樹脂組成物としたことにより、流動性見合いにおける成形体の剛性、耐環境応力亀裂性、耐衝撃性などのバランスを向上させ、成形性に優れながら、高流動かつ押出工程時に樹脂の発熱が抑制されるポリエチレン樹脂組成物を達成した。
中でも、前記特定の物性バランスを満足するポリエチレン成分(A)、ポリエチレン成分(B)、及びポリエチレン成分(C)を特定量で混合して用いる場合には、前記特定の物性バランスを満足するポリエチレン成分(B)が、高分子量成分であるポリエチレン成分(A)と低分子量成分であるポリエチレン成分(C)の相溶化剤として機能し、樹脂組成物中の各樹脂成分は相溶性に優れ、表面性状が平滑になりやすく、成形体の外観に優れるポリエチレン樹脂組成物となる。
3.ポリエチレン樹脂組成物の製造方法
本発明のポリエチレン樹脂組成物は、エチレンの単独重合体及びエチレンと炭素数3~12のα-オレフィンとの共重合体からなる群から選ばれる1種又は2種以上のエチレン系重合体を必須成分として含み、前記特性(1)~(6)を満足するポリエチレン樹脂組成物を製造することができれば、その製造方法は特に限定されるものではない。
本発明のポリエチレン樹脂組成物は、中でも、前記特性(1)~(6)を満足する樹脂組成物を製造しやすく、且つ、各樹脂成分は相溶性に優れ、成形体の外観に優れる点から、前記ポリエチレン成分(A)を前記ポリエチレン成分(B)及び前記ポリエチレン成分(C)を所定の配合割合で溶融混合することにより、また必要に応じて他の成分を添加して溶融混合することにより製造することが好ましい。
本発明におけるポリエチレン樹脂組成物は、前記ポリエチレン成分(A)、前記ポリエチレン成分(B)及び前記ポリエチレン成分(C)以外に、本発明の目的を損なわない範囲で、下記物質を任意成分として配合することができる。
例えば、高密度ポリエチレン、低密度ポリエチレン、高圧法ポリエチレン、極性モノマーグラフト変性ポリエチレン、エチレン系ワックス、超高分子量ポリエチレン、エチレン系エラストマー等の各種エチレン系重合体及びその変性体を使用できる。高密度ポリエチレンの添加は、剛性、耐熱性、衝撃強度等を向上するのに好ましい。低密度ポリエチレンの添加は、柔軟性、衝撃強度、易接着性、透明性、低温強度等を向上するのに好ましい。高圧法ポリエチレンの添加は、柔軟性、易接着性、透明性、低温強度、成形加工性等を向上するのに好ましい。マレイン酸変性ポリエチレンやエチレン・アクリル酸誘導体共重合体、エチレン・酢酸ビニル共重合体等の極性モノマーグラフト変性ポリエチレンの添加は、柔軟性、易接着性、着色性、各種材料親和性、ガスバリア性等を向上するのに好ましい。エチレン系ワックスの添加は、着色性、各種材料親和性、成形加工性等を向上するのに好ましい。超高分子量ポリエチレンの添加は、機械的強度、耐摩耗性等を向上するのに好ましい。エチレン系エラストマーの添加は、柔軟性、機械的強度、衝撃強度等を向上するのに好ましい。
また、上記の重合体以外に、各種樹脂を使用できる。具体的には、各種ナイロン樹脂、各種ポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、各種ポリエステル、ポリカーボネート樹脂、EVOH、EVA、PMMA、PMA、各種エンジニアリングプラスチック、ポリ乳酸等、セルロース類、天然ゴム類、ポリウレタン、塩ビ、テフロン(登録商標)等のフッ素系樹脂、シリコン樹脂等の無機系重合体等である。
本発明のポリエチレン樹脂組成物は、常法に従い、ペレタイザーやホモジナイザー等による機械的な溶融混合によりペレット化した後、各種成形機により成形を行って所望の成形体とすることができる。
また、上記の方法により得られるポリエチレン樹脂組成物には、常法に従い、他のオレフィン系重合体やゴム等のほか、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、帯電防止剤、防曇剤、ブロッキング防止剤、加工助剤、着色顔料、架橋剤、発泡剤、無機又は有機充填剤、難燃剤等の公知の添加剤を配合することができる。
添加剤として、例えば、酸化防止剤(フェノール系、リン系、イオウ系)、滑剤、帯電防止剤、光安定剤、紫外線吸収剤等を1種又は2種以上、適宜併用することができる。充填材としては、炭酸カルシウム、タルク、金属粉(アルミニウム、銅、鉄、鉛など)、珪石、珪藻土、アルミナ、石膏、マイカ、クレー、アスベスト、グラファイト、カーボンブラック、酸化チタン等が使用可能であり、なかでも炭酸カルシウム、タルク及びマイカ等を用いるのが好ましい。いずれの場合でも、上記ポリエチレン樹脂組成物に、必要に応じ各種添加剤を配合し、混練押出機、バンバリーミキサー等にて混練し、成形用材料とすることができる。
また、本発明において、ポリエチレン樹脂組成物の結晶化速度を促進するために、核剤を用いてもよい。
該核剤としては、一般に知られているものを使用することができ、一般的な有機系又は無機系の造核剤を用いることができる。例えば、ジベンジリデンソルビトールもしくはその誘導体、有機リン酸化合物もしくはその金属塩、芳香族スルホン酸塩もしくはその金属塩、有機カルボン酸もしくはその金属塩、ロジン酸部分金属塩、タルク等の無機微粒子、イミド類、アミド類、キナクリドンキノン類、又はこれらの混合物が挙げられる。
中でもジベンジリデンソルビトール誘導体、有機リン酸金属塩、有機カルボン酸金属塩等は、透明性に優れるなど好適である。
ジベンジリデンソルビトール誘導体の具体例としては、1,3:2,4-ビス(o-3,4-ジメチルベンジリデン)ソルビトール、1,3:2,4-ビス(o-2,4-ジメチルベンジリデン)ソルビトール、1,3:2,4-ビス(o-4-エチルベンジリデン)ソルビトール、1,3:2,4-ビス(o-4-クロロベンジリデン)ソルビトール、1,3:2,4-ジベンジリデンソルビトールが挙げられ、安息香酸金属塩の具体例としては、ヒドロキシ-ジ(t-ブチル安息香酸)アルミニウム等が挙げられる。
本発明のポリエチレン樹脂組成物に核剤を配合する場合、核剤の配合量は、該組成物100質量部に対して、0.01~5質量部が好ましく、より好ましくは0.01~3質量部、更に好ましくは0.01~1質量部、特に好ましくは0.01~0.5質量部である。核剤が0.01質量部未満では、高速成形性の改良効果が十分でなく、一方、5質量部を超えると、核剤が凝集してブツになり易いといった問題が生じる。
4.ポリエチレン樹脂組成物の用途
本発明のポリエチレン樹脂組成物は、成形体の剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れ、且つ押出工程時に樹脂の発熱が抑制されることから、各種成形法により各種成形体を製造することができる。本発明のポリエチレン樹脂組成物は、耐ドローダウン性等の中空成形性に優れることから、好ましくは、主に中空成形法等により成形され、好適には中空容器などの各種成形品を得ることができる。
5.成形体、及び容器
本発明の成形体は、前記本発明に係るポリエチレン樹脂組成物を含む成形体である。
本発明の成形体は、本発明のポリエチレン樹脂組成物を原料として、各種成形法により製造することができる。本発明の成形体は、好ましくは、主に中空成形法等により成形され、好適には中空容器などの各種中空成形品が挙げられる。
本発明のポリエチレン樹脂組成物を含む中空成形体は、特に限定されるものではないが、従来公知の中空成形機や多層中空成形機を用いて押出ブロー成形法により製造することができる。例えば、複数の押出機で各層の構成樹脂を加熱溶融させた後、多層のダイにより溶融パリソンを押出し、次いでこのパリソンを金型で挟み、パリソンの内部に空気を吹き込むことにより、多層の中空プラスチック成形体が製造される。
本発明の容器は、前記本発明に係るポリエチレン樹脂組成物を含む層を有する容器である。
本発明の容器において、前記本発明に係るポリエチレン樹脂組成物を含む層には、例えば顔料マスターバッチ等の着色剤含有樹脂組成物を更に含んでいても良い。
本発明の容器は、前記本発明のポリエチレン樹脂組成物を含む層の単層構造であってもよいし、前記本発明に係るポリエチレン樹脂組成物を含む層を少なくとも1層有すれば、多層構造であってもよい。本発明の容器が多層構造の場合、例えば浸透低減遮断層を有してもよく、浸透低減遮断層には、通常バリアー層が用いられる。
本発明の容器は、従来公知の製造方法を適宜選択して製造することができる。
本発明のポリエチレン樹脂組成物は、上記特性を満足するものであるので、これを用いた本発明の成形体は、剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れる上に、優れた外観にしやすく、押出工程時に樹脂の発熱が抑制されるため、成形サイクルの短縮化を達成でき、優れた生産効率で製造することができる。
従って、このような特性を必要とする容器などの用途に適し、化粧品容器、洗剤、シャンプー及びリンス用容器、或いは食用油等の食品用容器等の用途に好適に用いることができる。
本発明のポリエチレン樹脂組成物は上記特性を満足するものであるので、中でも、取っ手付きの前記各種容器本発明のポリエチレン樹脂組成物を用いた容器に好適に用いることができる。
特に、本発明のポリエチレン樹脂組成物を用いた成形体である容器は、高速成形化、ハイサイクル化が可能であり、製品特性が優れる上に、経済的に有利な、洗剤、シャンプー及びリンス等の容器として好適である。
以下に、実施例を挙げて、本発明を更に具体的に説明するが、本発明は、その要旨を越えない限り、これらの実施例に制約されるものではない。
1.測定方法
実施例で用いた測定方法は以下の通りである。
(1)温度190℃、荷重2.16kgにおけるメルトフローレート(MFR):
JIS K6922-2:1997に準拠して測定した。
(2)温度190℃、荷重21.6kgにおけるメルトフローレート(HLMFR):
JIS K6922-2:1997に準拠して測定した。
(3)密度:
JIS K6922-1,2:1997に準拠して測定した。
(4)ゲルパーミエーションクロマトグラフィー(GPC)による分子量及び分子量分布の測定:
下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定した。
[測定条件]
使用機種:日本ウォーターズ社製Alliance GPCV2000型
測定温度:145℃
溶媒:オルトジクロロベンゼン(ODCB)
カラム:昭和電工社製Shodex HT-806M×2本+同 HT-G
流速:1.0mL/分
注入量:0.3mL
[試料の調製]
4mLバイアル瓶に試料3mg及びオルトジクロロベンゼン(0.1mg/mLの1,2,4-トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学社製SSC-9300型高温振とう機を用いて2時間溶解を行った。溶解終了後、不溶成分がないことを目視で確認した。
[較正曲線の作成]
4mLガラス瓶を4本用意し、それぞれに下記(a)~(d)の組み合わせの単分散ポリスチレン標準試料又はn-アルカンを0.2mgずつ秤り採り、続いてオルトジクロロベンゼン(0.1mg/mLの1,2,4-トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学社製SSC-9300型高温振とう機を用いて2時間溶解を行った。
(a)Shodex S-1460,同S-66.0,n-エイコサン
(b)Shodex S-1950,同S-152,n-テトラコンタン
(c)Shodex S-3900,同S-565,同S-5.05
(d)Shodex S-7500,同S-1010,同S-28.5
試料溶液が入ったバイアル瓶を装置にセットし、前述の条件にて測定を行い、サンプリング間隔1sでクロマトグラム(保持時間とび示差屈折計検出器の応答のデータセット)を記録した。得られたクロマトグラムから各ポリスチレン標準試料の保持時間(ピーク頂点)を読み取り、分子量の対数値に対してプロットした。ここで、n-エイコサン及びn-テトラコンタンの分子量は、それぞれ600及び1200とした。このプロットに非線形最小自乗法を適用し、得られた4次曲線を較正曲線とした。
[分子量の計算]
前述の条件にて測定を行い、サンプリング間隔1sでクロマトグラムを記録した。このクロマトグラムから、森定雄著「サイズ排除クロマトグラフィー」(共立出版)第4章p.51~60に記載の方法で微分分子量分布曲線及び平均分子量値(Mn、Mw及びMz)を算出した。ただし、dn/dcの分子量依存性を補正するため、クロマトグラムにおけるベースラインからの高さHを下記の式にて補正した。クロマトグラムの記録(データ取り込み)及び平均分子量計算は、Microsoft社製OS Windows(登録商標)XPをインストールしたPC上で自社製プログラム(Microsoft社製Visual Basic6.0で作成)を用いて行った。
H’=H/[1.032+189.2/M(PE)]
なお、ポリスチレンからポリエチレンへの分子量変換は、下記の式を用いた。
M(PE)=0.468×M(PS)
(5)伸長粘度の変曲点(長鎖分岐構造)の有無:
試料をプレス成形して18mm×10mm、厚さ0.7mmのシートを作成した試験片を用い、レオメータ(Rheometrics社製Ares)を用い、170℃、歪み速度0.1/秒における伸長粘度の測定を行い、歪硬化の有無(伸長粘度の立ち上がりの有無)により、長鎖分岐構造の有無の確認を行った。
[測定条件]
装置:Rheometrics社製Ares
冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
測定温度:170℃
歪み速度:0.1/秒
試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成した。
[算出方法]
170℃、歪み速度0.1/秒における伸長粘度を、横軸に時間t(単位:秒)、縦軸に伸長粘度η(t)(単位:Pa・秒)を両対数グラフでプロットした。その両対数グラフ上で、歪硬化後、歪量が4.0となるまでの最大伸長粘度をηMax(t1)(t1は最大伸長粘度を示す時の時間)とし、歪硬化前の伸長粘度の近似直線をηLinear(t)としたとき、ηMax(t1)/ηLinear(t1)として算出される値を歪硬化度(λmax)と定義した。なお、歪硬化の有無は、時間の経過と共に伸長粘度が上に凸の曲線から下に凸の曲線へと変わる変曲点を有するか、否かによって、判断した。
図1、図2は典型的な伸長粘度のプロット図である。図1は伸長粘度の変曲点が観測される場合であり、図中にηMax(t1)、ηLinear(t1)を示した。図2は伸長粘度の変曲点が観測されない場合である。
(6)溶融張力(MT):
溶融張力は、溶融させたポリエチレン樹脂組成物を一定速度で延伸したときの応力を測定することにより決定され、下記条件により測定した。
[測定条件]
使用機種:東洋精機製作所社製、キャピログラフ1B
ノズル径:2.095mm
ノズル長さ:8.0mm
流入角度:180°(flat)
押出速度:15mm/分
引き取り速度:6.5m/分
測定温度:190℃
(7)引張衝撃強度(TIS):
JIS K6922-2に準拠して、1.5mmの圧縮成形シートを作成し、ASTM D1822に準拠して、S型ダンベルで打ち抜いた試験片を作成し、23℃、50%RHの条件で測定を行った。
(8)耐環境応力亀裂性(FNCT):
全周囲ノッチ式クリープ試験を、ISO DIS 16770に準拠して行った。試料は、6mm×6mm×11mmの大きさの角柱の全周囲にカミソリ刃にて1mmのノッチが付けられ、4mm×4mmの大きさの断面を有した試験片を用意し、80℃の純水中で、3.7MPaに相当する引張応力を検体に与え、検体が破断するまでの時間を計測して、FNCTの破断時間とした。
(9)押出工程時樹脂温度
スクリュー直径(Ds)が70mm、スクリュー有効長(Ls)とスクリュー直径(Ds)との比(Ls/Ds)が24、圧縮比が3.0のスクリューをシリンダー内に取り付けた押出機に外径14mm、内径10.5mmの中空成形用ダイが取り付けられている、単層ダイレクトブロー成形機(ブレンズ社製、BEX70/BLS-5E)において、シリンダー及びダイの設定温度を185℃とし、押出量70kg/時間にスクリュー回転数を調整した場合のダイ出口における樹脂の温度を、接触式樹脂温度計(理化工業社製、DP-350)で測定した。
(10)中空成形性
単層ダイレクトブロー成形機(ブレンズ社製、BEX70/BLS-5E、スクリュー直径(Ds)が70mm、スクリュー有効長(Ls)とスクリュー直径(Ds)との比(Ls/Ds)が24、圧縮比が3.0)にて、一定のピンチオフ幅になる様に任意のダイコア径のストレートダイを使用し、スクリュー回転数10rpmの条件で成形樹脂温度を約210℃に調整し、パリソンを押出し約400mlの偏平容器形状(縦約19cm、幅約7cm、最大奥行き約5cmであって、外径約2cm、高さ約2cmのネジ形状口部を有する容器)のブロー金型(キャビティー面ブラスト仕上げ、キャビティー面粗さRa値0.7μmの金型)、金型温度20℃、ブロー圧力6kg/cm、容器重量約30g、成形サイクルおよそ10~12秒の範囲でブロー成形を行なった。上記条件内の容器の成形ができたものを中空成形性「良好(○)」、ブローアップ時に融着界面などに穴が開いたり、著しいドローダウン等により均一な肉厚分布の成形体取得が困難だったものを「不良(×)」とした。
(11)耐衝撃性
引張衝撃強度(TIS)が100kJ/m以上であるものを「○」、それ以外を「×」とした。
(12)耐環境応力亀裂性
耐環境応力亀裂性(FNCT)の破断時間が50時間以上であるものを「○」、それ以外を「×」とした。
(13)成形サイクルの短縮化
前記押出工程時樹脂温度が235℃以下のものを「○」、それ以外を「×」とした。
(14)成形体外観の目視確認:
以下の混ざり性評価法によってフィッシュアイの面積率を測定し、これを以って成形体外観の評価とした。
[混ざり性評価法]
測定するサンプルを、厚さ0.35mmのモールドと、圧縮加工用及び冷却用の2つのプレス成形機により、第1の工程で180℃の温度、100kgf/cmの圧力にて圧縮加工し、第2の工程で30℃の温度、50kgf/cmの圧力で冷却して厚さ0.4mmのプレスシートを成形する。このプレスシートをカットし、50×50×0.4mmの試験片とした。
次に、当該試験片を、二軸延伸装置で延伸した。二軸延伸装置は、柴山科学器械製作所社製二軸延伸装置SS-60型を使用し、温度150℃、延伸速度60mm/分にて当該試験片を2倍に延伸した。延伸の手順は、当該試験片の端四方1cm部分を二軸延伸装置の4点のチャック部でチャックし、プレスシートのチャックしていない中央部分が30×30mmの正方形となるようにセットした。その後、この試験片を130~170℃の温度に加熱し、対角し合うチャック間の距離が60mmとなるまで二軸延伸し、チャックをしていない中央部が約2倍に延伸したシートを作成した。
二軸延伸されたシートのほぼ中央に位置する30×30mmの正方形の範囲の表面を、反射式の3D顕微鏡を用いて画像撮影を行なった。3D顕微鏡の倍率は、10倍であり、撮影されるシートの範囲(一視野)は、10×10mmである。測定の信頼性を高めるため、当該測定は、1つのサンプルに対し、上記シート中央に位置する30×30mmの正方形の範囲で、各撮影視野が重ならないように、4回撮影を行なった。撮影された画像をフィッシュアイ部分、及び非フィッシュアイ部分(均一なマトリックス部分)に2値化処理した。2値化処理の条件は、測定者が設定し、その条件を全ての測定に用いた。
2値化処理された画像をスキャナーで読み込んでデジタル化し、画像データとした。
スキャナーの解像度は、600dpi以上であり、好ましくは900dpi以上である。スキャナーは、スキャナーGT-F670(EPSON社製、解像度:4800dpi)を用いた。
画像データの解析は、パーソナルコンピュータとその上で実行されるソフトウェアプログラムにより実現され、画像データは、パーソナルコンピュータで処理することにより、粒子個々の面積、周囲長、長短径比、粒径、円形度などの特徴パラメータの算出を行った。この場合の特徴パラメータの算出は、一般に市販されている画像処理ソフトウェアなどを利用でき、市販の画像解析ソフトウェアとして、三谷商事社製のWinROOF等を用いた。
画像データは、画像の黒色部分及び白色部分の配色のしきい値を定め、ある適当なレベルで2値化され処理される。2値化処理の条件は、測定者が設定し、その条件を全ての測定に用いた。
画像解析は、公知の手段により、各粒子の面積、周囲長、最大長、最大長垂直長(最大長に垂直な方向における長さ)などを算出し、それらから粒子の各種のパラメータを粒子ごとに算出することができ、算出されるパラメータには、粒子の円相当径(粒子の画像の面積に等しい面積の円の直径)、円形度(粒子の画像の面積に等しい面積の円の周囲長と画像の周囲長の比)、アスペクト比(粒子の画像の最大長と最大長垂直長の比)などとした。
なお、円相当径は、円相当径=(粒子の画像の面積値/π)1/2×2、円形度は、円形度=(粒子の画像の面積値を持つ円の周囲長)/(粒子の画像の周囲長)、アスペクト比は、(粒子の画像の最大長)/(粒子の画像の最大長垂直長)により算出される。
本発明においては、フィッシュアイの測定として、画像中に占めるフィッシュアイの面積率を求めた。1サンプルのフィッシュアイの面積率は、1つの試験片上で撮影された4視野で、それぞれ得られた測定値の平均値を算出した。
そして、画像中に占めるフィッシュアイの面積率が0.2%以下の場合を「1」、0.2超~0.5%の場合を「2」、0.5超~3.0%の場合を「3」、3.0超~5.0%の場合を「4」、5%超の場合を「5」として、評価した。
前記「1」又は「2」であった場合を「○」、それ以外を「×」とした。
(15)総合評価:
ポリエチレン樹脂組成物としての適性を評価し、前記中空成形性、耐環境応力亀裂性、耐衝撃性、及び成形サイクルの短縮化のいずれの項目も良好なものを「○」、それ以外のものを「×」とした。
2.実施例及び比較例
<メタロセン系触媒の合成>
十分に窒素置換した、誘導撹拌機を装着した円筒状フラスコに、平均粒径11μmのシリカ(平均粒径11μm、表面積313m/g、細孔体積1.6cm/g)を3g充填し、トルエンを75ml添加し、オイルバスにより75℃に加熱した。別のフラスコにメチルアルミノキサンのトルエン溶液(アルベマール社製、3.0mol-Al/L)を8.0ml分取した。ジメチルシリレンビス[1,1’-{2-(2-(5-メチル)フリル)-4-(p-イソプロピルフェニル)-インデニル}]ジルコニウムジクロリド(63.4mg、75μmol)のトルエン溶液(15ml)をメチルアルモキサンのトルエン溶液に室温で添加し、75℃に昇温した後、1時間撹拌した。次いで、75℃に加熱したシリカのトルエンスラリーに、このトルエン溶液を、撹拌しながら添加し1時間保持した。その後、23℃において撹拌しながらn-ヘキサンを175ml添加し、10分後、撹拌を停止し静置した。触媒を十分沈降させた後、上澄みを除去し、n-ヘキサンを200ml添加した。一旦撹拌した後、再度、静置し上澄みを除去した。この操作を3回繰り返して、n-ヘキサンに遊離してくる成分を除去した。更に、40℃加熱した状態で、減圧により溶媒を留去した。減圧度が0.8mmHg以下となってから、更に15分間減圧乾燥を継続しメタロセン系触媒(i)を得た。
<ファウリング防止成分の製造>
100mLのキシレンに、ポリエチレンイミン(分子量10,000)から誘導されたn-オクチル化ポリエチレンイミン(ポリエチレンイミンのモノマー単位当たり0.5個のn-オクチル基が導入されたもの)3gとリン酸エステル化合物であるフィチン酸1gを室温で混合、撹拌し、塩を形成させた。その後、ジオクチルスルホコハク酸エステルマグネシウム塩6gを混合し、ファウリング防止成分を得た。
<ポリエチレン成分(A1)の製造>
上記メタロセン系触媒によるエチレン・1-ヘキセン共重合を行なうことにより、ポリエチレン成分(A1)を製造した。即ち、内容積290Lのループ型スラリー反応器に、脱水精製イソブタン115L/h、トリイソブチルアルミニウムを0.13mol/h、ファウリング防止成分Bを6ml/h供給し、反応器内の温度を80℃として、圧力を4.2MPaGに保つように反応器から間欠的に排出しながら、エチレン、1-ヘキセン、水素を供給して、重合中の液中の1-ヘキセンとエチレンのモル比(C6/C2)が0.010、水素とエチレンのモル比(H2/C2)が3.4×10-4になるように調節した。次に、ヘキサンで0.3g/Lに希釈した触媒Aのヘキサンスラリーを3L/hで反応器に供給して重合を開始し、反応器内のエチレン濃度が10vol%になるようにエチレンを供給した。生成したポリエチレンはイソブタンとともに間欠的に排出され、フラッシュさせた後、製品サイロに送った。
この時得られたポリエチレン成分(A1)のHLMFRは1.4g/10分であり、密度は0.919g/cm、Mw/Mnは3.6であった。
<ポリエチレン成分(A2)の製造>
後述するポリエチレン成分(C1)の製造方法に準じて、チーグラーナッタ系触媒により重合されたエチレン重合体を使用した。当該重合体のMFRは1.0g/10分、密度は0.924g/cm、Mw/Mnは5.3であった。
<ポリエチレン成分(A3)の製造>
後述するポリエチレン成分(C1)の製造方法に準じて、チーグラーナッタ系触媒により重合されたエチレン重合体を使用した。当該重合体のMFRは2.0g/10分、密度は0.937g/cm、Mw/Mnは5.4であった。
<ポリエチレン成分(A4)の製造>
前記ポリエチレン成分(A1)の製造方法に準じて、メタロセン系触媒により重合されたエチレン系重合体を使用した。当該重合体のHLMFRは0.8g/10分、密度は0.928g/cm、Mw/Mnは13.4であった。
<ポリエチレン成分(A5)の製造>
前記ポリエチレン成分(A1)の製造方法に準じて、メタロセン系触媒により重合されたエチレン系重合体を使用した。当該重合体のHLMFRは0.7g/10分、密度は0.923g/cm、Mw/Mnは3.0であった。
<ポリエチレン成分(B1)>
市販されているクロム系触媒により重合されたポリエチレングレードを使用した。当該エチレン系重合体のHLMFRは50g/10分、密度は0.960g/cm、Mw/Mnは8.8であり、伸長粘度の変曲点が観測された。
<ポリエチレン成分(B2)>
市販されているクロム系触媒により重合されたポリエチレングレードを使用した。当該エチレン系重合体のHLMFRは6.0g/10分、密度は0.945g/cm、Mw/Mnは10.1であり、伸長粘度の変曲点が観測された。
<ポリエチレン成分(B3)>
市販されているクロム系触媒により重合されたポリエチレングレードを使用した。当該エチレン系重合体のHLMFRは5.0g/10分、密度は0.957g/cm、Mw/Mnは19.3であり、伸長粘度の変曲点が観測された。
<ポリエチレン成分(B4)>
市販されているクロム系触媒により重合されたポリエチレングレードを使用した。当該エチレン系重合体のHLMFRは5.0g/10分、密度は0.941g/cm、Mw/Mnは6.7であり、伸長粘度の変曲点が観測された。
<ポリエチレン成分(B5)>
市販されているクロム系触媒により重合されたポリエチレングレードを使用した。当該エチレン系重合体のHLMFRは6.0g/10分、密度は0.956g/cm、Mw/Mnは17.4であり、伸長粘度の変曲点が観測された。
<チーグラーナッタ系触媒の合成>
直径が10mmの磁性ボール約700個を入れた内容積が1Lのポット(粉砕用容器)に窒素雰囲気で市販のマグネシウムエチラート(平均粒径860μm)20g(17.8mmol)、粒状の三塩化アルミニウム1.64g(12.3mmol)及びジフェニルジエトキシシラン2.40g(8.81mmol)を入れた。次いで、振動ボールミルを用い、振幅が6mm及び振動数が30Hzの条件で3時間共粉砕を行なった。共粉砕後、内容物を窒素雰囲気下で磁性ボールと分離した。
以上のようにして得られた共粉砕生成物10.0g及び40mlのヘプタンを200mlの三つ口フラスコに加えた。撹拌しながら室温において10.0g(52.7mmol)の四塩化チタンを滴下し、90℃まで昇温し、90分間撹拌を続けた。次いで、反応系を冷却した後、上澄み液を抜き取り、ヘキサンを加えた。この操作を3回繰り返した。得られた淡黄色の固体を50℃にて減圧下で6時間乾燥を行なって、固体触媒15.6gを得た。
この固体触媒のヘキサンスラリー溶液を誘導撹拌装置付き重合反応器に入れ、温度を40℃に維持し、0.27mmolのトリイソブチルアルミニウムを加えて水素分圧0.074MPa、エチレン分圧0.20MPaにて予備重合を実施し、固体触媒1gあたりポリマー生成量0.46gの予備重合チーグラーナッタ系触媒を得た。
<ポリエチレン成分(C1)>
2つの重合液体充填ループ型反応器が直列に連結された二槽連続重合装置に、脱水精製イソブタン、トリイソブチルアルミニウム、上記チーグラーナッタ系触媒の合成で得られた予備重合チーグラーナッタ系触媒、及びエチレンを連続的に供給して95℃でエチレンを重合することにより、成分(C1)の製造を実施した。なお成分(C1)のHLMFRの調節は水素を適量供給することにより実施した。
当該重合体のMFRは50g/10分、密度は0.966g/cm、Mw/Mnは7.4であった。
<ポリエチレン成分(C2)>
前記ポリエチレン成分(C1)の製造方法に準じて、チーグラーナッタ系触媒により重合されたエチレン系重合体を使用した。当該エチレン系重合体のMFRは20g/10分、密度は0.963g/cm、Mw/Mnは6.0であった。
<ポリエチレン成分(C3)>
前記ポリエチレン成分(C1)の製造方法に準じて、チーグラーナッタ系触媒により重合されたエチレン系重合体を使用した。当該エチレン系重合体のMFRは200g/10分、密度は0.967g/cm、Mw/Mnは4.7であった。
<ポリエチレン成分(C4)>
前記ポリエチレン成分(C1)の製造方法に準じて、チーグラーナッタ系触媒により重合されたエチレン系重合体を使用した。当該エチレン系重合体のMFRは100g/10分、密度は0.967g/cm、Mw/Mnは4.8であった。
<ポリエチレン成分(C5)>
前記ポリエチレン成分(C1)の製造方法に準じて、チーグラーナッタ系触媒により重合されたエチレン系重合体を使用した。当該エチレン系重合体のMFRは200g/10分、密度は0.969g/cm、Mw/Mnは4.7であった。
<ポリエチレン成分(C6)>
前記ポリエチレン成分(C1)の製造方法に準じて、チーグラーナッタ系触媒により重合されたエチレン系重合体を使用した。当該エチレン系重合体のMFRは200g/10分、密度は0.959g/cm、Mw/Mnは13.4であった。
[実施例1]
<ポリエチレン樹脂組成物の製造>
表1の実施例1に記載の組成割合の組成物に、添加剤として、BASFジャパン社製IRGANOX B225を1,000ppm、及び淡南化学工業社製ステアリン酸カルシウムを500ppm配合し、東芝機械社製TEM26SX(スクリュー径:26mm、L/D=64)を用い、設定温度:200℃、スクリュー回転数:200rpm、吐出量:15kg/hrの条件でペレット化を行った。
当該ポリエチレン樹脂組成物の物性及び評価結果を表1に示した。得られた組成物は、各成分の相溶性が良好で、適切な流動性と高い溶融張力により、中空成形性にも優れ、なおかつ破断時間が長く、引張衝撃強度が高く、成形体の外観が良好であった。
[実施例2~6、比較例1~4]
表1に示す組成物となるように条件設定した以外は、実施例1と同様にポリエチレン樹脂組成物を製造した。得られたポリエチレン樹脂組成物の物性及び評価結果を表1に示した。
[比較例5]
市販のポリエチレン樹脂組成物(商品名:ハイゼックス3000B、三井化学社製)について、ポリエチレン樹脂組成物の物性及び評価結果を表1に示した。
図3は、実施例と比較例のポリエチレン樹脂組成物のHLMFRと溶融張力(MT)の関係を示す図である。
図4は実施例と比較例のポリエチレン樹脂組成物の密度(d)と引張衝撃強度(TIS)との関係を示す図である。
図5は実施例と比較例のポリエチレン樹脂組成物のHLMFRと引張衝撃強度(TIS)との関係を示す図である。
図6は実施例と比較例のポリエチレン樹脂組成物の密度(d)と全周囲ノッチ式クリープ試験の破断時間(FNCT)との関係を示す図である。
実施例1~6のポリエチレン樹脂組成物は、中空成形性、成形体の剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れ、且つ押出工程時に樹脂の発熱が抑制されたものであり成形サイクルの短縮化を実現できるものであった。
一方、特性(3)を満足しない比較例1のポリエチレン樹脂組成物は、押出工程時に樹脂発熱が抑制されたものであったが、成形体の耐環境応力亀裂性及び耐衝撃性が劣るものであった。
特性(1)、(2)、及び(3)を満足しない比較例2のポリエチレン樹脂組成物は、成形体の耐環境応力亀裂性が劣り、且つ、押出工程時に樹脂発熱が生じやすいものであった。
特性(5)を満足しない比較例3のポリエチレン樹脂組成物は、押出工程時に樹脂発熱が抑制されたものであったが、中空成形性、成形体の耐環境応力亀裂性及び耐衝撃性が劣るものであった。
特性(2)を満足しない比較例4のポリエチレン樹脂組成物は、押出工程時に樹脂発熱が生じやすいものであった。
特性(6)を満足しない比較例5のポリエチレン樹脂組成物は、押出工程時に樹脂発熱が抑制されたものであったが、成形体の耐環境応力亀裂性及び耐衝撃性が劣るものであった。
本発明によれば、成形性、成形体の剛性と耐環境応力亀裂性及び耐衝撃性のバランスに優れ、且つ押出工程時に樹脂の発熱が抑制されるポリエチレン樹脂組成物及びそれを用いた成形体を提供できる。
更に、本発明のポリエチレン樹脂組成物は、成形時の高流動性に優れ、本発明の成形体は、剛性、耐環境応力亀裂性及び耐衝撃性などにも優れる。
従って、本発明のポリエチレン樹脂組成物及びその成形体は、このような特性を必要とする容器などの用途に適し、特に、外観に優れる化粧品容器、洗剤、シャンプー及びリンス用容器、或いは食用油等の食品用容器等の用途に好適に用いることができる。
更に、本発明のポリエチレン樹脂組成物を用いた容器は、製造時に成形サイクルの短縮化を実現可能であり、製品特性が優れる上に、経済的に有利な、化粧品容器、洗剤、シャンプー及びリンス等の容器として好適である。
また、本発明のポリエチレン樹脂組成物は、上記のように、性能が優れているので、上記容器以外に、このような特性を必要とする灯油缶、薬品容器等にも、好適に用いることができるため、産業上大いに有用である。

Claims (7)

  1. エチレンの単独重合体及びエチレンと炭素数3~12のα-オレフィンとの共重合体からなる群から選ばれる1種又は2種以上のエチレン系重合体を必須成分として含み、下記の特性(1)~(6)を満足するポリエチレン樹脂組成物。
    特性(1):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.5g/10分以上、5.0g/10分以下である。
    特性(2):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が50g/10分を超えて、100g/10分以下である。
    特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上100以下である。
    特性(4):密度が0.950g/cm以上0.970g/cm以下である。
    特性(5):190℃で測定される溶融張力(MT)(単位:mN)とHLMFR(単位:g/10分)とが下記式(1)で示される関係を満たす。
    MT≧876.94×HLMFR-0.844 ・・・式(1)
    特性(6):23℃における引張衝撃強度(TIS)(単位:kJ/m)と密度(d)(単位:g/cm)とが下記式(2)で示される関係を満たす。
    TIS≧-7000×d+6800 ・・・式(2)
  2. 更に下記特性(7)を満足する、請求項1に記載のポリエチレン樹脂組成物。
    特性(7):ISO DIS 16770に準拠して行う全周囲ノッチ式クリープ試験の破断時間(FNCT)(単位:時間)と密度(d)(単位:g/cm)とが下記式(3)で示される関係を満たす。
    FNCT≧1.2×10-3×d-229.8 ・・・式(3)
  3. 下記ポリエチレン成分(A)を10質量%以上30質量%以下、下記ポリエチレン成分(B)を5質量%以上50質量%以下、下記ポリエチレン成分(C)を40質量%以上85質量%以下含有する、請求項1又は2に記載のポリエチレン樹脂組成物。
    ポリエチレン成分(A);特性(a1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFRが0.5g/10分以上、5.0g/10分以下であり、特性(a2):密度が0.915g/cm以上0.940g/cm以下であるエチレン系重合体。
    ポリエチレン成分(B);特性(b1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFRが2g/10分以上、100g/10分以下であり、特性(b2):密度が0.930g/cm以上0.970g/cm以下であり、特性(b3):温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測されるエチレン系重合体。
    ポリエチレン成分(C);特性(c1):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFRが10g/10分以上、1000g/10分以下であり、特性(c2):密度が0.960g/cm以上0.980g/cm以下であるエチレン系重合体。
  4. ゲルパーミエーションクロマトグラフィー(GPC)法により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表される分子量分布が5.0以上25.0以下である、請求項1~3のいずれか一項に記載のポリエチレン樹脂組成物。
  5. スクリュー直径(Ds)が70mm、スクリュー有効長(Ls)とスクリュー直径(Ds)との比(Ls/Ds)が24、圧縮比が3.0のスクリューをシリンダー内に取り付けた押出機に外径14mm、内径10.5mmのダイを取り付けた状態において、シリンダー及びダイの設定温度を185℃として押出量70kg/時間にスクリュー回転数を調整した場合のダイ出口における樹脂の温度を、接触式樹脂温度計で測定した時の樹脂温度が235℃以下である、請求項1~4のいずれか一項に記載のポリエチレン樹脂組成物。
  6. 請求項1~5のいずれか一項に記載のポリエチレン樹脂組成物を含む成形体。
  7. 請求項1~5のいずれか一項に記載のポリエチレン樹脂組成物を含む層を有する容器。
JP2020043137A 2019-03-29 2020-03-12 ポリエチレン樹脂組成物、成形体及び容器 Active JP7456208B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068355 2019-03-29
JP2019068355 2019-03-29

Publications (2)

Publication Number Publication Date
JP2020164813A JP2020164813A (ja) 2020-10-08
JP7456208B2 true JP7456208B2 (ja) 2024-03-27

Family

ID=72714334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020043137A Active JP7456208B2 (ja) 2019-03-29 2020-03-12 ポリエチレン樹脂組成物、成形体及び容器

Country Status (1)

Country Link
JP (1) JP7456208B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016055871A (ja) 2014-09-05 2016-04-21 日本ポリエチレン株式会社 薄肉容器用エチレン系重合体組成物及びそれよりなる成形体
JP2017179256A (ja) 2016-03-31 2017-10-05 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2017179294A (ja) 2016-03-31 2017-10-05 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2017179300A (ja) 2016-03-31 2017-10-05 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2017186515A (ja) 2016-03-31 2017-10-12 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016055871A (ja) 2014-09-05 2016-04-21 日本ポリエチレン株式会社 薄肉容器用エチレン系重合体組成物及びそれよりなる成形体
JP2017179256A (ja) 2016-03-31 2017-10-05 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2017179294A (ja) 2016-03-31 2017-10-05 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2017179300A (ja) 2016-03-31 2017-10-05 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2017186515A (ja) 2016-03-31 2017-10-12 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、並びにその成形体及び容器

Also Published As

Publication number Publication date
JP2020164813A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6065797B2 (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP6065796B2 (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP6187332B2 (ja) パイプ及び継手用ポリエチレン並びにその成形体
JP6743455B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP5776602B2 (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2016183334A (ja) ポリエチレン系樹脂組成物
JP2012092254A (ja) 容器蓋用ポリエチレン樹脂組成物
JP6699536B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP6607125B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
CN108884282B (zh) 聚乙烯及其成形体
JP2017179305A (ja) ポリエチレン樹脂用改質材、ポリエチレン樹脂組成物の製造方法、及び成形体の製造方法
JP7456208B2 (ja) ポリエチレン樹脂組成物、成形体及び容器
JP2015227459A (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2013204028A (ja) ポリエチレン系樹脂組成物およびその成形体
US10377886B2 (en) Polyethylene for pipe and joint, and molded body thereof
JP2017179304A (ja) ポリエチレン樹脂用改質材、並びに、それを用いたポリエチレン樹脂組成物の製造方法、及び、成形体の製造方法
JP7205350B2 (ja) ポリエチレン樹脂組成物、成形体及び容器
JP2017179300A (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP6900922B2 (ja) ポリエチレン樹脂用改質材、並びにそれを用いたポリエチレン樹脂組成物及び成形体
JP6878942B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2014019806A (ja) ポリエチレン樹脂組成物
JP2020033574A (ja) ポリエチレン及びその成形体
JP7452079B2 (ja) ポリエチレン樹脂組成物、及び、成形体
JP6794867B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP2022016268A (ja) ポリエチレン樹脂組成物、成形体及び容器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7456208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150