JP2017164393A - 内視鏡システム及びその作動方法 - Google Patents

内視鏡システム及びその作動方法 Download PDF

Info

Publication number
JP2017164393A
JP2017164393A JP2016054631A JP2016054631A JP2017164393A JP 2017164393 A JP2017164393 A JP 2017164393A JP 2016054631 A JP2016054631 A JP 2016054631A JP 2016054631 A JP2016054631 A JP 2016054631A JP 2017164393 A JP2017164393 A JP 2017164393A
Authority
JP
Japan
Prior art keywords
image signal
image
timing
illumination light
blur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016054631A
Other languages
English (en)
Other versions
JP6522539B2 (ja
Inventor
睦朗 今井
Mutsuo Imai
睦朗 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2016054631A priority Critical patent/JP6522539B2/ja
Priority to EP17766067.7A priority patent/EP3430969B1/en
Priority to PCT/JP2017/002677 priority patent/WO2017159059A1/ja
Publication of JP2017164393A publication Critical patent/JP2017164393A/ja
Priority to US16/109,797 priority patent/US11039732B2/en
Application granted granted Critical
Publication of JP6522539B2 publication Critical patent/JP6522539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00055Operational features of endoscopes provided with output arrangements for alerting the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/044Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for absorption imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/125Colour sequential image capture, e.g. using a colour wheel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

【課題】ブレ画像が発生した状況下でも、正確に演算を行うことができる内視鏡システム及びその作動方法を提供する【解決手段】画像選択部は、第1タイミングT1のB2画像信号、又は第2タイミングT2〜第NタイミングTNのB2画像信号の中から、画像ブレ量が第1条件を満たすB2画像信号を選択する。演算画像信号生成部は、第1タイミングT1のB1画像信号と、画像選択部で選択された第2画像信号に基づく演算を行うことにより、演算画像信号を生成する。【選択図】図8

Description

本発明は、観察対象を撮像して得た画像信号を用いて、観察対象の血管を抽出する演算その他各種の演算を行う内視鏡システム及びその作動方法に関する。
医療分野においては、光源装置、内視鏡システム、及びプロセッサ装置を備える内視鏡システムを用いた診断が広く行われている。内視鏡システムを用いる医療診断においては、内視鏡の挿入部を被検体内に挿入し、その先端部から観察対象に照明光を照射する。そして、照明光で照射中の観察対象を先端部の撮像センサで撮像し、得られた画像信号を用いて観察対象の画像を生成してモニタに表示する。
また、近年では、血管の走行パターンや、生体情報を用いた新しい診断が行われつつある。例えば、特許文献1では、血管の走行パターンの中でも、診断上重要な血管パターンである表層血管や中層血管など異なる深さの血管について記載されている。この特許文献1では、表層血管を抽出するための青色の狭帯域光と、中深層血管を抽出するための緑色の狭帯域光とを、異なるタイミングで観察対象に照射し、撮像を行っている。そして、特許文献1では、注目する深さの血管が強調されるように、青色の狭帯域光に基づく画像と緑色の狭帯域光に基づく画像に対して重み付けして加算する演算を行っている。
また、特許文献2では、生体情報の中でも、癌などの病変部との相関が高い酸素飽和度について記載されている。この特許文献2では、酸素飽和度を測定するための波長帯域の光を含む異なる波長帯域の光を、それぞれ異なるタイミングで観察対象に照射し、撮像を行っている。そして、異なる波長帯域の光に基づく画像を用いる演算を行うことによって、酸素飽和度を算出している。
特許第5393525号(特開2011−167349号公報) 特許第5393554号(特開2011−194151号公報)
内視鏡を用いて観察を行う場合においては、内視鏡スコープを動かすことによるブレや被写体の体動によるブレなど様々なブレによって、内視鏡の動画中の画像にはブレ画像が生ずることがある。このようなブレ画像は、内視鏡の動画の画質を低下させる要因の一つとなる。さらには、上記特許文献1、2に示すように、異なる波長帯域の光を異なるタイミングで照射して得られた複数のタイミングの画像信号に基づいて、重み付け加算演算や酸素飽和度算出演算などの各種演算を行う場合には、複数のタイミングの画像信号のうち一つでもブレの大きいブレ画像が含まれると、正確に演算を行うことができないという問題がある。
以上のように、ブレ画像が発生した場合の演算精度の改善については、特許文献1、2を含むいずれの従来技術文献に記載及び示唆はない。なお、特許文献2には、異なるタイミングで照射と撮像を行うことによる位置ズレを補正することについての記載があるが、ブレが生じたときの演算精度に関する記載や、ブレが生じたときの演算精度の改善方法に関する記載はない。
本発明は、異なる波長帯域の光を異なるタイミングで照射して得られた複数のタイミングの画像信号に基づいて各種演算を行う場合において、ブレ画像が発生した状況下でも、正確に演算を行うことができる内視鏡システム及びその作動方法を提供することを目的とする。
本発明の内視鏡システムは、第1照明光と第2照明光とを順次発生する光源と、第1タイミングT1において第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、第1タイミングT1よりも前の特定のタイミングにおいて第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、特定のタイミングのマルチフレーム画像信号を出力する撮像センサと、第1タイミングT1及び特定のタイミングのマルチフレーム画像信号のうち第2照明光を照明した場合に得られる第2画像信号の中から、画像ブレ量が第1条件を満たす第2画像信号を選択する画像選択部と、第1タイミングT1のマルチフレーム画像信号のうち第1照明光を照明した場合に得られる第1画像信号と、画像選択部で選択された第2画像信号とに基づく演算を行うことにより、演算画像信号を生成する演算画像信号生成部とを備える。
画像選択部は、第1条件を満たす第2画像信号として、画像ブレ量が予め定めた閾値を下回り、且つ第1タイミングT1に最も近いタイミングに撮像された第2画像信号を選択することが好ましい。画像選択部は、第1条件を満たす第2画像信号として、画像ブレ量が最も小さい第2画像信号を選択することが好ましい。
画像選択部は、第1条件を満たす第2画像信号がない場合には、いずれの第2画像信号をも選択せず、演算画像信号生成部は、第1画像信号のみに基づいて、演算画像信号を生成することが好ましい。画像選択部は、演算画像信号生成部は、第1条件を満たす第2画像信号がない場合には、いずれの第2画像信号をも選択せず、演算画像信号生成部は、演算画像信号を生成しないことが好ましい。
第1条件を満たす第2画像信号がない場合に、警告表示する制御を行う警告表示制御部を備えることが好ましい。第1タイミングT1及び特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号に基づく画像と、第1タイミングT1及び特定のタイミングの第2画像信号の画像ブレ量を表示部に表示する制御を行う情報表示制御部を備え、画像選択部は、第1条件を満たす第2画像信号を自動的に選択する自動選択モードと、情報表示制御部が表示制御を行っているときには、表示部に表示された第2画像信号のうち、ユーザーが選択指示した第2画像信号を選択する手動選択モードとを有し、自動選択モードまたは手動選択モードのいずれかで画像選択を行うことが好ましい。
本発明の内視鏡システムは、第1照明光と第2照明光とを順次発生する光源と、第1タイミングT1において第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、第1タイミングT1よりも前の特定のタイミングにおいて第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、特定のタイミングのマルチフレーム画像信号を出力する撮像センサと、第1タイミングT1及び特定のタイミングのマルチフレーム画像信号のうち第1照明光を照明した場合に得られる第1画像信号の画像ブレ量及び第2照明光を照明した場合に得られる第2画像信号の画像ブレ量に基づいて、第1タイミングT1及び特定のタイミングのブレ指標値を算出するブレ指標値算出部と、第1タイミングT1及び特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号のうち、ブレ指標値が第2条件を満たすタイミングの第2画像信号を選択する画像選択部と、第1タイミングT1のマルチフレーム画像信号に含まれる第1画像信号と、画像選択部で選択された第2画像信号とに基づく演算を行うことにより、演算画像信号を生成する演算画像信号生成部とを備える。
ブレ指標値が、第1画像信号の画像ブレ量と第2画像信号の画像ブレ量との差分を示すブレ差分である場合には、画像選択部は、第2条件を満たすタイミングの第2画像信号として、ブレ差分が第1特定範囲内にあるタイミングの第2画像信号を選択し、ブレ指標値が、第1画像信号の画像ブレ量と第2画像信号の画像ブレ量との比を示すブレ比である場合には、画像選択部は、第2条件を満たすタイミングの第2画像信号として、ブレ比が第2特定範囲内にあるタイミングの第2画像信号を選択するが好ましい。
画像選択部は、いずれのタイミングのブレ指標値も第2条件を満たさない場合は、いずれの第2画像信号をも選択せず、演算画像信号生成部は、第1画像信号のみに基づいて、演算画像信号を生成することが好ましい。画像選択部は、いずれのタイミングのブレ指標値も第2条件を満たさない場合は、いずれの第2画像信号をも選択せず、演算画像信号生成部は、演算画像信号を生成しないことが好ましい。
いずれのタイミングのブレ指標値も第2条件を満たさない場合に、警告表示する制御を行う警告表示制御部を備えることが好ましい。第1タイミングT1及び特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号に基づく画像と、第1タイミングT1及び特定のタイミングのブレ指標値を表示部に表示する制御を行う情報表示制御部を備え、画像選択部は、第2条件を満たす第2画像信号を自動的に選択する自動選択モードと、情報表示制御部が表示制御を行っているときには、表示部に表示された第2画像信号のうち、ユーザーが選択指示した第2画像信号を選択する手動選択モードとを有し、自動選択モードまたは手動選択モードのいずれかで画像選択を行うことが好ましい
画像ブレ量は、第1画像信号または第2画像信号内の血管構造または粘膜構造に基づいて算出することが好ましい。画像ブレ量は、第1画像信号または第2画像信号内の中央領域に基づいて算出することが好ましい。特定のタイミングには、第2タイミングT2〜第NタイミングTNの複数のタイミングが含まれることが好ましい。第1照明光と第2照明光とはそれぞれ波長帯域が異なっていることが好ましい。
本発明の内視鏡システムの作動方法は、光源が、第1照明光と第2照明光とを順次発生するステップと、撮像センサが、第1タイミングT1において第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、第1タイミングT1よりも前の特定のタイミングにおいて第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、特定のタイミングのマルチフレーム画像信号を出力するステップと、画像選択部が、第1タイミングT1及び特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号の中から、画像ブレ量が第1条件を満たす第2画像信号を選択するステップと、演算画像信号生成部が、第1タイミングT1のマルチフレーム画像信号に含まれる第1画像信号と、画像選択部で選択された第2画像信号とに基づく演算を行うことにより、演算画像信号を生成するステップとを有する。
本発明の内視鏡システムの作動方法は、光源が、第1照明光と第2照明光とを順次発生するステップと、撮像センサが、第1タイミングT1において第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、第1タイミングT1よりも前の特定のタイミングにおいて第1照明光と第2照明光が順次照明された観察対象を順次撮像することにより、特定のタイミングのマルチフレーム画像信号を出力するステップと、ブレ指標値算出部が、第1タイミングT1及び特定のタイミングのマルチフレーム画像信号における第1画像信号の画像ブレ量及び第2画像信号の画像ブレ量に基づいて、第1タイミングT1及び特定のタイミングのブレ指標値を算出するステップと、画像選択部が、第1タイミングT1及び特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号のうち、ブレ指標値が第2条件を満たすタイミングの第2画像信号を選択するステップと、演算画像信号生成部が、第1タイミングT1のマルチフレーム画像信号に含まれる第1画像信号と、画像選択部で選択されたマルチフレーム画像信号に含まれる第2画像信号とに基づく演算を行うことにより、演算画像信号を生成するステップとを有する。
本発明によれば、異なる波長帯域の光を異なるタイミングで照射して得られた複数のタイミングの画像信号に基づいて各種演算を行う場合において、ブレ画像が発生した状況下でも、正確に演算を行うことができる。
内視鏡システムの外観図である。 内視鏡システムの機能を示すブロック図である。 紫色光、青色光、緑色光、及び赤色光の分光スペクトルを示すグラフである。 観察対象の散乱係数を示すグラフである。 ヘモグロビンの吸光係数を示すグラフである。 カラーフィルタの分光特性を示すグラフである。 第1実施形態の特殊画像処理部の機能を示すブロック図である。 第1タイミングT1〜第NタイミングTNにおいてそれぞれ紫色光Vと青色光Bの発光を行ったときに得られるB1画像信号及びB2画像信号を示す説明図である。 血管の深さと血管のコントラストの関係を模式的に表すグラフである。 特定深さ血管強調画像の生成方法を示す説明図である。 特殊観察モード時のフローチャートである。 B1画像信号の模式図である。 B2画像信号の模式図である。 演算画像信号の模式図である。 低解像度化処理後の演算画像信号の模式図である。 特定深さ血管強調画像の模式図である。 変形例の特定深さ血管強調画像の生成方法を示す説明図である。 位置合わせ処理部と低解像度化処理部の連携関係、及び画像選択部72と低解像化処理部の連携関係を示すブロック図である。 カプセル内視鏡の概略図である。 第3実施形態の特殊画像処理部の機能を示すブロック図である。 画像ブレ量の一覧表示制御機能を備えた第5実施形態の特殊画像処理部の機能を示すブロック図である。 各タイミングのB2画像信号に基づく画像と、各タイミングの画像ブレ量とを一覧表示するモニタの画像図である。 ブレ指標値の一覧表示制御機能を備えた第5実施形態の特殊画像処理部の機能を示すブロック図である。
[第1実施形態]
図1に示すように、第1実施形態の内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16と、モニタ18(表示部)と、コンソール19とを有する。内視鏡12は、光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられた湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作によって、先端部が所望の方向に向けられる。
また、操作部12bには、アングルノブ12eの他、モード切り替えスイッチ13a、ズーム操作部13b、静止画取得指示部(図示しない)等が設けられている。モード切り替えスイッチ13aは、観察モードの切り替え操作に用いられる。内視鏡システム10は、観察モードとして通常観察モードと特殊観察モードとを有している。通常観察モードは、照明光に白色光を用いて観察対象を撮像して得た自然な色合いの画像(以下、通常画像という)をモニタ18に表示する。特殊観察モードでは、観察対象を撮像して得た画像信号を用いて、観察対象に含まれる血管のうち、特定深さにある血管を抽出した特定深さ血管強調画像を表示する。
プロセッサ装置16は、モニタ18及びコンソール19と電気的に接続される。モニタ18は、観察対象の画像や、観察対象の画像に付帯する情報等を出力表示する。コンソール19は、機能設定等の入力操作を受け付けるユーザインタフェースとして機能する。なお、プロセッサ装置16には、画像や画像情報等を記録する外付けの記録部(図示省略)を接続しても良い。
図2に示すように、光源装置14は、光源20と、光源20を制御する光源制御部22と、を備えている。光源20は、例えば複数の半導体光源を有し、これらをそれぞれ点灯または消灯し、点灯する場合には各半導体光源の発光量を制御することにより、観察対象に照射する照明光を発生する。本実施形態では、光源20は、V−LED(Violet Light Emitting Diode)23a、B−LED(Blue Light Emitting Diode)23b、G−LED(Green Light Emitting Diode)23c、及びR−LED(Red Light Emitting Diode)23dの四色のLEDを有する。
図3に示すように、V−LED23aは、中心波長405nm、波長帯域380〜420nmの紫色光Vを発光する紫色光源である。B−LED23bは、中心波長460nm、波長帯域420〜500nmの青色光Bを発する青色半導体光源である。G−LED23cは、波長帯域が480〜600nmに及ぶ緑色光Gを発する緑色半導体光源である。R−LED23dは、中心波長620〜630nmで、波長帯域が600〜650nmに及ぶ赤色光Rを発光する赤色半導体光源である。なお、V−LED23aとB−LED23bの中心波長は±5nmから±10nm程度の幅を有する。また、各LED23a〜23dにおいて、中心波長とピーク波長とは異なってもよく同じであってもよい。
これらの各LED23a〜23dの点灯や消灯、点灯時の発光量等は、光源制御部22が各々に独立した制御信号を入力するによって各々に制御することができる。通常観察モードの場合、光源制御部22は、V−LED23a、B−LED23b、G−LED23c、及びR−LED23dを全て点灯させる。このため、通常観察モードでは、紫色光V、青色光B、緑色光G、及び赤色光Rを含む白色光が照明光として用いられる。
一方、特殊観察モードの場合、光源制御部22は、V−LED23aだけを点灯し、B−LED23b等の他のLEDを消灯する第1発光モードと、V−LED23aを消灯し、B−LED23bを点灯し、V−LED23a等の他のLEDを消灯する第2発光モードとを交互に行うように、光源20を制御する。すなわち、特殊観察モードでは、第1発光モードと第2発光モードを行うことにより、紫色光Vと青色光Bとを順次発生する。なお、紫色光Vが本発明の「第1照明光」に対応し、青色光Bが、第1照明光とは波長帯域が異なる「第2照明光」に対応する。
本実施形態では、上記のように、特殊観察モードにおいて、V−LED23aが発する紫色光Vと、B−LED23aが発する青色光Bとを、第1照明光及び第2照明光としてそのまま用いているが、光源20に波長帯域を制限する光学フィルタ等を設けることによって、紫色光Vと青色光Bとはそれぞれさらに波長帯域を制限してから、特殊観察モードの照明光として利用することが好ましい。
これは第1照明光と第2照明光とが、観察対象の散乱係数が互いに異なり、かつ、ヘモグロビンの吸光係数がほぼ等しい二つの波長帯域の光であると、特定深さの血管の抽出を特に鮮明に抽出することができるからである。例えば、各照明光の波長帯域における観察対象の散乱係数は、観察対象への深達度、すなわち、その波長帯域で観察可能な血管の粘膜下の深さに関連する。一方、ヘモグロビンの吸光係数は、各照明光で観察可能な血管のコントラストに関連する。したがって、特殊観察モード時に用いる第1照明光と第2照明光に要求する、観察対象の散乱係数が異なり、かつ、ヘモグロビンの吸光係数がほぼ等しいという条件は、観察可能な血管の粘膜下の深さがそれぞれ異なり、かつ、粘膜下での深さが異なる血管が同程度のコントラストに観察可能である二つの波長帯域の光を選択して用いるという条件である。
光源20に用いるLED等の特性(中心波長)等によっては、上記条件を完全には満たせない場合があるが、このような場合には、少なくとも観察対象の散乱係数が異なる範囲内で、できる限りヘモグロビンの吸光係数が近い二つの波長帯域の光を第1照明光及び第2照明光とすれば良い。なお、第1照明光が第2照明光よりも短波長帯域の光であるとすると、観察対象の散乱係数が異なるとは、第1照明光の散乱係数に対する第2照明光の散乱係数の比が0.8以下であることを言う。また、第1照明光と第2照明光の散乱係数の差は70cm-1以上あると良い。
特殊観察モード時に照明光として用いる紫色光Vと青色光Bとでは、図4に示すように、紫色光Vの散乱係数に対する青色光Bの散乱係数の比は0.75あり、図5に示すように、ヘモグロビンの吸光係数(酸化ヘモグロビンの吸光係数:還元ヘモグロビンの吸光係数=3:7)は概ね同程度である。
図2に示すように、各LED23a〜23dが発する各色の光は、ミラーやレンズ等で形成される光路結合部(図示しない)を介して、挿入部12a内に挿通されたライトガイド41に入射される。ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と、光源装置14及びプロセッサ装置16を接続するコード)に内蔵されている。ライトガイド41は、光源20が発生した照明光を、内視鏡12の先端部12dまで伝搬する。
内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、ライトガイド41によって伝搬された照明光は照明レンズ45を介して観察対象に照射される。撮像光学系30bは、対物レンズ46、ズームレンズ47、撮像センサ48を有している。照明光を照射したことによる観察対象からの反射光、散乱光、及び蛍光等の各種の光は、対物レンズ46及びズームレンズ47を介して撮像センサ48に入射する。これにより、撮像センサ48に観察対象の像が結像される。なお、ズームレンズ47は、ズーム操作部13bを操作することでテレ端とワイド端との間で自在に移動され、撮像センサ48に結像する観察対象の反射像を拡大または縮小する。
撮像センサ48はカラー撮像センサであり、この撮像センサ48は、R(赤色)カラーフィルタが設けられたR画素(青色画素)、G(緑色)カラーフィルタが設けられたG画素(緑色画素)、B(青色)カラーフィルタが設けられたB画素(青色画素)を備えている。図6に示すように、Rカラーフィルタは580〜770nmの光を透過させ、Gカラーフィルタは450〜630nmの光を透過させ、Bカラーフィルタは380〜560nmの光を透過させる。
撮像センサ48は、照明光の発光に合わせて、各色の画素から、RGB各色の画像信号を出力する。通常観察モードでは、撮像センサ48は、白色光で照明された観察対象を撮像することで、R画素からRc画像信号を出力し、G画素からGc画像信号を出力し、B画素からBc画像信号を出力する。特殊観察モードでは、第1発光モードにおいて紫色光Vを発光した場合、撮像センサ48は、紫色光Vが照明された観察対象を撮像することによって、R画素からR1画像信号を出力し、G画素からG1画像信号を出力し、B画素からB1画像信号を出力する。B1画像信号(本発明の「第1画像信号」に対応する)には、紫色光Vに対応する波長成分の信号が含まれている。
また、第2発光モードにおいて青色光Bを発光した場合、撮像センサ48は、青色光Bが照明された観察対象を撮像することによって、R画素からR2画像信号を出力し、G画素からG2画像信号を出力し、B画素からB2画像信号を出力する。B2画像信号(本発明の「第2画像信号」に対応する)には、青色光Bに対応する波長成分の信号が含まれている。以上のように第1発光モードと第2発光モードを行うことにより得られるB1画像信号とB2画像信号を含む複数の画像信号を、以下、マルチフレーム画像信号という。
撮像センサ48としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。また、原色の撮像センサ48の代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(緑)の補色フィルタを備えた補色撮像センサを用いても良い。補色撮像センサを用いる場合には、CMYGの四色の画像信号が出力されるので、補色−原色色変換によって、CMYGの四色の画像信号をRGBの三色の画像信号に変換することにより、撮像センサ48と同様のRGB画像信号を得ることができる。また、撮像センサ48の代わりに、カラーフィルタを設けていないモノクロセンサを用いても良い。
CDS/AGC回路51は、撮像センサ48から得られるアナログの画像信号に相関二重サンプリング(CDS;Correlated Double Sampling)や自動利得制御(AGC;Automatic Gain Control)を行う。CDS/AGC回路51を経た画像信号は、A/D(Analog to Digital)コンバータ52により、デジタル画像信号に変換される。A/D変換後のデジタル画像信号がプロセッサ装置16に入力される。
図2に示すように、プロセッサ装置16は、画像信号取得部53と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、画像処理切替部61と、通常画像処理部66と、特殊画像処理部67と、映像信号生成部68と、を備えている。画像信号取得部53は、CDS/AGC回路51及びA/Dコンバータ52を介して、撮像センサ48からデジタルの画像信号を取得する。
DSP56は、取得した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、デモザイク処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施された画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理では、オフセット処理後の画像信号に特定のゲインを乗じることにより信号レベルが整えられる。
ゲイン補正処理後の画像信号には、色再現性を高めるためのリニアマトリクス処理が施される。その後、ガンマ変換処理によって明るさや彩度が整えられる。ガンマ変換処理後の画像信号には、デモザイク処理(等方化処理、または同時化処理とも言う)が施され、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。ノイズ除去部58は、DSP56でデモザイク処理等が施された画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等による)を施すことによってノイズを除去する。ノイズが除去された画像信号は、画像処理切替部61に送信される。モード切り替えスイッチ13aの操作によって通常観察モードにセットされている場合、画像処理切替部61は、受信した画像信号を通常画像処理部66に送信し、特殊観察モードにセットされている場合には、受信した画像信号を特殊画像処理部67に送信する。
通常画像処理部66は、通常観察モードに設定されている場合に作動し、受信した画像信号に対して、色変換処理、色彩強調処理、及び構造強調処理を行い、通常画像信号を生成する。色変換処理では、RGB画像信号に対して3×3のマトリックス処理、階調変換処理、及び3次元LUT(ルックアップテーブル)処理などにより色変換処理を行う。色彩強調処理は、色変換処理済みの画像信号に対して行われる。構造強調処理は、例えば表層血管やピットパターン等の観察対象の構造を強調する処理であり、色彩強調処理後の画像信号に対して行われる。上記のように、構造強調処理まで各種画像処理等を施した通常画像信号を用いたカラー画像が通常画像である。
特殊画像処理部67は、特殊観察モードに設定されている場合に作動する画像処理部であり、B1画像信号とB2画像信号を含むマルチフレーム画像信号を用いて特定深さの血管を抽出し、他の血管に対して抽出した血管を色の違いで表す画像を生成する。特殊画像処理部67は、図7に示すように、画像ブレ検出部70と、画像信号記憶部71と、画像選択部72と、位置合わせ処理部73と、明るさ補正処理部74と、演算画像信号生成部76と、低解像度化処理部77と、画像生成部78と、警告表示制御部79とを備えている。画像処理切替部61から入力されるマルチフレーム画像信号のうち、B1画像信号は位置合わせ処理部73に入力され、B2画像信号は画像ブレ検出部70に入力される。
画像ブレ検出部70は、入力されたB2画像信号の画像ブレ量を検出する。画像ブレ量は、画像のブレの方向及び大きさを持つベクトル量であることが好ましい。検出した画像ブレ量は、B2画像信号と関連付けられて画像信号記憶部71に記憶される。また、画像ブレ量と関連付けられたB2画像信号は、画像選択部72に送信される。ここで、画像ブレ量としては、B2画像信号において注目する構造物の画像ブレ量を検出することが好ましい。例えば、注目する構造物としては血管構造や粘膜構造がある。本実施形態では、注目する構造物は血管であるので、血管構造に基づいて、画像ブレ量を求めることが好ましい。例えば、血管構造を抽出する画像フィルタによって血管位置を特定し、この特定した血管位置にある血管の画像ブレ量を、画像全体の画像ブレ量の代表値、即ち、画像ブレ検出部70で採用する画像ブレ量とすることが好ましい。
また、画像ブレ量は、B2画像信号の画像中央領域に基づいて求めることが好ましい。画像中央領域については、「画像を縦横共に3分割した真ん中」や「画像の中心点から半径Rdピクセル内の領域」など任意に決めることが好ましい。なお、このように画像中央領域の画像ブレ量を採用するのは、ユーザーは、注目する領域が画像の中心に位置するように、内視鏡12を操作しているためである。
なお、画像ブレ量の検出方法としては、主として、画像解析に基づく方法と撮像センサ48に基づく方法がある。画像解析に基づく方法としては、画像における複数の領域のそれぞれについて点拡がり関数(PSF(Point Spread Function))を推定し、その点拡がり関数から画像ブレの方向及び大きさを高精度に推定する方法がある(特許5499050号公報参照)。また、画像ブレの中でも、内視鏡12を直線的に操作したときに生ずる手ぶれ画像については、周波数空間上でシンク関数を畳み込んだパワースペクトルとして表れることが知られている。このような手ぶれ画像が多く発生するような状況下では、画像信号を周波数領域の画像に変換し、その周波数領域の画像において手ぶれ方向に表れるシンク関数の影響の度合いに基づいて画像ブレ量を検出することが好ましい(特開2009−230598号公報参照)。また、画像信号から移動ベクトルを検出し、移動ベクトルを元に画像ブレ量を検出する方法がある(特開平3−16470号公報参照)。
一方、撮像センサ48に基づく方法としては、内視鏡12の湾曲部12cに設けた移動量検出手段により角速度と移動方向を検出し、それら角速度や移動方向から画像ブレ量を検出する方法がある(特開平5−16470号公報)。
画像選択部72は、画像ブレ検出部70から入力されたB2画像信号、または、画像信号記憶部71に記憶されたB2画像信号の中から、画像ブレの少ないB2画像信号を選択する。選択されたB2画像信号は、位置合わせ処理部73に入力される。この画像選択部72は、具体的には、図8に示すように、第1タイミングT1において紫色光Vと青色光Bの発光が行われたときに得られるマルチフレーム画像信号のうちのB2画像信号と、第1タイミングT1よりも前の複数の第2タイミングT2、・・・、第nタイミング、・・・、第NタイミングTNにおいて紫色光Vと青色光Bの発光が行われたときに得られるマルチフレーム画像信号のうちのB2画像信号の中から選択を行う。
第1タイミングT1のB2画像信号は、画像信号記憶部71を介さずに画像選択部72に入力される信号である。第2タイミングT2、・・・、第nタイミング、・・・、第NタイミングTNのB2画像信号は、画像信号記憶部71を介して画像選択部72に入力される信号である。なお、図8において、「B1」はB1画像信号を、「B2」はB2画像信号を示している。また、本発明では、第1タイミングT1よりも前の1又は複数のタイミングを総称して、「特定のタイミング」という。本実施形態では、第2タイミングT2〜第NタイミングTNが「特定のタイミング」に相当する。
ここで、n、Nは2以上の自然数であり、nは2〜Nにおける任意の自然数である。第2タイミングT2が一番第1タイミングT1に時間的に近く、第nタイミングTnの「n」が大きくなるほど、第1タイミングT1から時間的に離れていき、第NタイミングTNが第1タイミングT1から最も時間的に離れている。また、第1タイミングT1は、第1発光モードで紫色光Vが発光されてB1画像信号が得られたタイミングと、第2発光モードで青色光Bが発光されてB2画像信号が得られたタイミングの両方を含んでいる。第2タイミングT2〜第NタイミングTNについても、第1タイミングと同様、B1画像信号が得られたタイミングとB2画像信号が得られたタイミングの両方を含んでいる。
画像選択部72では、まず、第1タイミングT1のB2画像信号について画像ブレ量が閾値Th1を超えているか否かを判定する。判定の結果、閾値Th1が下回っている場合には、第1タイミングT1のB2画像信号を位置合わせ処理部73に送信する。これに対して、閾値Th1を超えている場合には、第2タイミングT2のB2画像信号について画像ブレ量がTh1を超えているか否かを判定する。判定の結果、閾値Th1を下回っている場合には、第2タイミングT2のB2画像信号を位置合わせ処理部73に送信し、閾値Th1を超えている場合には、第3タイミングT3のB2画像信号について画像ブレ量の判定を行い、位置合わせ処理部73に送信すべきかどうか判定する。画像選択部72は、画像ブレ量が閾値Th1を下回るB2画像信号を検出するまで、上記と同様の判定を行う。なお、本発明の「第1条件」とは、「画像ブレ量が、予め定めた閾値Th1を下回り、且つ第1タイミングT1に最も近いタイミングに撮像されること」に対応している。
なお、画像選択部72では、第1タイミングT1から時間的に離れすぎるタイミングのB2画像信号については、B1画像信号との位置ずれが大きくなることが多いことから、画像ブレ量が閾値Th1を下回り、且つ第1タイミングT1に最も時間的に近いB2画像信号を選択することが好ましい。また、画像選択部72は、第2タイミングT2〜第NタイミングTNのB2画像信号について画像ブレ量が全て閾値Th1を超えている場合には、いずれのタイミングのB2画像信号をも選択しないことが好ましい。
このように、第2タイミングT2〜第NタイミングのB2画像信号について画像ブレ量が全て閾値Th1を超えている場合には、演算画像信号生成部76は、B1画像信号のみに基づいて演算画像信号を生成することが好ましく、又は、演算画像信号を生成しないことが好ましい。また、第2タイミングT2〜第NタイミングのB2画像信号について画像ブレ量が全て閾値Th1を超えている場合には、警告表示制御部79が、警告表示する制御を行うことによって、警告表示をモニタ18上に表示するようにしてもよい。警告表示としては、警告メッセージや、警告マークなどがある。
位置合わせ処理部73は、順次取得されたB1画像信号が表す観察対象とB2画像信号が表す観察対象との位置合わせを行う。位置合わせ処理部73は、B1画像信号、または、B2画像信号のうち少なくとも一方を補正する。
明るさ補正処理部74は、位置合わせ処理部73によって位置合わせされたB1画像信号及びB2画像信号の明るさが特定比になるように、B1画像信号、または、B2画像信号のうち少なくとも一方の明るさを補正する。具体的には、第1発光モードの紫色光Vと第2発光モードの青色光Bの光量比は既知なので、これらの光量比を用いて、それぞれ同等の光量の紫色光V及び青色光Bを観察対象に照射して得る場合の明るさになるように、B1画像信号の明るさを、B2画像信号の明るさに一致させるようにゲイン補正をする。
なお、画像選択部72でいずれのタイミングT1〜TNのB2画像信号も選択されなかった場合には、位置合わせ処理部73において位置合わせは行われず、また、明るさ補正処理部74においても明るさの補正は行われない。即ち、B1画像信号だけが演算画像信号生成部76に送られる。
演算画像信号生成部76は、B1画像信号とB2画像信号とを用いて演算をし、演算画像信号を生成する。具体的には、B1画像信号とB2画像信号の差または比を算出する。本実施形態では、演算画像信号生成部76は、B1画像信号及びB2画像信号を対数変換し、対数変換後のB1画像信号とB2画像信号の差、より具体的にはB2画像信号からB1画像信号を減算した演算画像信号ΔBを生成する。B1画像信号とB2画像信号を対数変換せずにそのまま用いる場合には、B1画像信号とB2画像信号の比を画素毎に演算することにより、演算画像信号を生成する。B1画像信号及びB2画像信号は、各画素が受光量に比例する画素値を有するが、対数変換をすると、濃度に比例する画素値を有することになるので、各画像信号を得たときの照明光の照度によらず、安定した演算結果を得ることができる。
演算画像信号ΔBを算出することは、粘膜下の特定深さにある血管を抽出することに対応する。例えば、図9に示すように、紫色光Vと青色光Bは、これらを照明光として用いると、概ね表層血管(深さAs及び深さAdの全範囲の血管)を観察可能であるが、紫色光Vは青色光Bと比較して波長が短いので、観察対象への深達度が小さく、青色光Bに対して相対的に粘膜下の浅い位置Asにある血管しか写し出せない代わりに、浅い位置Asにある血管のコントラスト(血管からの反射光量に対する周辺の粘膜からの反射光量の比)は青色光Bを用いる場合よりも大きい。
一方、青色光Bは紫色光Vと比較して波長が長いので、観察対象への深達度が大きく、紫色光Vに対して相対的に粘膜下の深い位置Adにある血管まで写し出せる代わりに、浅い位置Asにある血管のコントラストは紫色光Vを用いる場合よりも小さい。このため、青色光Bに対応するB2画像信号から紫色光Vに対応するB1画像信号を減算すれば、特に粘膜下の浅い位置Asにある極表層血管を表す画素の画素値は強調されて、大きい値(白色)になる。逆に、極表層血管よりも深い位置Adにある表層血管を表す画素の画素値は小さい値(黒色)になる。
また、演算画像信号生成部76では、画像選択部72で選択された画像ブレの少ないB2画像信号に基づいて演算を行っているため、観察対象上の血管をほぼ正確に抽出した演算画像信号ΔBを生成することが可能となる。
低解像度化処理部77は、いわゆるローパスフィルタ(以下、LPFという)であり、演算画像信号生成部76が生成した演算画像信号ΔBを低解像度化する。低解像度化処理部77が演算画像信号ΔBに施す低解像度化処理の強度は、LPFのカットオフ周波数で定まる。LPFのカットオフ周波数は予め設定され、少なくとももとの演算画像信号ΔBの解像度よりは低解像度化する。
画像生成部78は、特殊画像処理部67が受信するB1画像信号またはB2画像信号のいずれかと、低解像度化された演算画像信号ΔBとを用いて、複数の出力チャンネルを有する画像を生成する。より具体的には、画像生成部78は、輝度チャンネルYと色差に関する二つの色差チャンネルCb,Crとを有する画像を生成する。画像生成部78は、B1画像信号またはB2画像信号のいずれかを輝度チャンネルYに割り当て、低解像度化された演算画像信号ΔBを二つの色差チャンネルCb,Crに割り当てることにより、特定深さの血管の走行パターンを色で強調した画像(以下、特定深さ血管強調画像という)を生成する。ここで、二つの色差チャンネルCb,Crに割り当てる演算画像信号ΔBは、観察対象上の血管がほぼ正確に抽出された信号であるため、血管が無い部分に、血管に相当する色が表示されるなどのアーチファクトが発生するおそれがない。
なお、本実施形態の場合、輝度チャンネルYにB1画像信号を割り当てるのは、表層血管の中から極表層血管を選り分けて強調するからであり、図10に示すように、B1画像信号とB2画像信号のうち、相対的に短波長帯域の光(紫色光V)に対応し、極表層血管のコントラストが高いB1画像信号を輝度チャンネルYに割り当てる。そして、色差チャンネルCb,Crには演算画像信号ΔBを割り当てる。また、演算画像信号ΔBを色差チャンネルCb,Crに割り当てる際には、それぞれ係数αと係数βを乗じる。これは、表層血管等を強調観察する内視鏡システムが表示する画像と色味を揃えるためである。
具体的には、表層血管を強調観察する従来の内視鏡システムでは、強調観察モードの場合に、狭帯域の青色光を照射して観察対象を撮像してB画像信号を取得し、かつ、狭帯域の緑色光を照射して観察対象を撮像してG画像信号を取得する。そして、B画像信号を表示用の画像のBチャンネル(青色チャンネル)とGチャンネル(緑色チャンネル)に割り当て、G画像信号をRチャンネル(赤色チャンネル)に割り当てることにより、粘膜下の深い位置にある中深層血管を緑色系(シアン系)の色にし、粘膜下の浅い位置にある表層血管を赤色系(マゼンタ系)の色にして強調表示する。ITU−R.601では、RGB各画像信号と輝度チャンネルY及び色差チャンネルCb,Crの関係は、下記式(1),(2),及び(3)で表される。
Y=0.299R+0.587G+0.114B ・・・(1)
Cb=−0.169−0.331G+0.5G ・・・(2)
Cr=0.5R−0.419G−0.081B ・・・(3)
そして、色差チャンネルCb,Crの式(2)及び式(3)において、RにGを代入し、GにBを代入すると、式(4)及び式(5)に示すように色差チャンネルCb,Crを(G−B)で表すことができる。
Cb=−0.169G+0.169B=0.169(G−B) ・・・(4)
Cr=0.5G−0.5B=0.5(G−B) ・・・(5)
本実施形態では、極表層血管を抽出及び表示するので、この(G−B)信号に代えて、演算画像信号ΔBを用いる。すなわち、係数α=0.169を乗じて演算画像信号ΔBを色差信号Cbに割り当て、係数β=0.5を乗じて演算画像信号ΔBを色差信号Crに割り当てる。これにより、内視鏡システム10では、従来の内視鏡システムとほぼ同配色の画像を表示する。但し、極表層血管と、比較的深い位置にある表層血管との色の違いを強調するために、設定等に応じて、上記係数α及び係数βにさらに係数を乗じる場合がある。
なお、輝度チャンネルY及び色差チャンネルCb,CrからRGBの特定深さ血管強調画像を生成するには、ITU−R.601の逆変換にしたがって、
R=Y+1.402Cr ・・・(7)
G=Y−0.344Cb−0.714Cr ・・・(8)
B=Y+1.772Cb ・・・(9)
によって行う。
通常画像処理部66が生成する通常画像、及び、特殊画像処理部67が生成する特定深さ血管強調画像は、映像信号生成部68に入力される。映像信号生成部68は通常画像や特定深さ血管強調画像をモニタ18で表示可能な画像として表示するための映像信号に変換する。この映像信号を用いて、モニタ18は、通常画像や特定深さ血管強調画像を表示する。
次に、特殊観察モードにおける画像処理の一連の流れを図11に沿って説明する。この図11に示す画像処理の一連の流れの最初の段階において、画像信号記憶部71には、既に、第2タイミングT2〜第NタイミングTNのB2画像信号とそれに対応する画像ブレ量とが記憶されていることが前提となっている。
まず、第1タイミングT1において、第1発光モードと第2発光モードを行う。第1発光モードでは、光源20が紫色光Vを発生し、発生した紫色光Vを観察対象に照射する(S11)。撮像センサ48は、紫色光Vが照射された観察対象を撮像し(S12)、画像信号取得部53は、紫色光Vに対応するB1画像信号を取得する(S13)。図12に示すように、B1画像信号110は、紫色光Vによって観察対象を撮像して得た画像信号なので、観察対象の起伏等の形状112の他、極表層血管124が観察可能である。また、極表層血管124よりも粘膜下の深い位置にある表層血管123も、B1画像信号110によって観察可能である。以上の第1タイミングのB1画像信号は、各種処理部を介して、位置合わせ処理部73に送信される。
次に、第2発光モードでは、光源20が青色光Bを発生し、発生した青色光Bを観察対象に照射し(S14)、撮像センサ48は青色光Bが照射された観察対象を撮像する(S15)。そして、画像信号取得部53は、青色光Bに対応するB2画像信号を取得する(S16)。図13に示すように、B2画像信号120は、青色光Bによって観察対象を撮像して得た画像信号なので、観察対象の形状112の他、比較的深い位置にある表層血管123が観察可能である。また、極表層血管124もB2画像信号120によって観察可能である。第1タイミングT1のB2画像信号は、各種の処理部を介して、画像ブレ検出部70に送信される。
なお、B1画像信号110とB2画像信号120を比較すると、B1画像信号110の方が極表層血管124のコントラストが高く、B2画像信号120の方が極表層血管124に比べて比較的深い位置にある表層血管123のコントラストが高くなっている。
次に、画像ブレ検出部70は、第1タイミングT1のB2画像信号について画像ブレ量を検出する(S17)。この画像ブレ量が検出されたB2画像信号は、画像選択部72に送信される。画像選択部72では、演算画像信号ΔBの生成に用いる画像ブレの少ないB2画像信号を選択する(S18)。画像選択部72では、まず、第1タイミングT1のB2画像信号について画像ブレ量が閾値Th1を下回るか否かを判定する。判定の結果、閾値Th1が下回っている場合には、画像選択部72は、第1タイミングT1のB2画像信号を選択する。選択された第1タイミングT1のB2画像信号は、位置合わせ処理部73に送信される。一方、閾値Th1を上回っている場合には、画像選択部72は、画像信号記憶部71に記憶された第2タイミングT2〜第NタイミングTNのB2画像信号の中から、第1タイミングT1に最も時間的に近く、且つ画像ブレ量が閾値Th1を下回るB2画像信号を選択する。選択されたB2画像信号は、位置合わせ処理部73に送信される。
位置合わせ処理部73では、B1画像信号とB2画像信号の位置合わせが行われる(S19)。そして、明るさ補正処理部74によって明るさ補正処理が施された後(S20)、演算画像信号生成部76に入力される。演算画像信号生成部76では、演算画像信号ΔBを生成する(S21)。演算画像信号ΔBは、元の画像信号(例えば図12のB1画像信号や図13のB2画像信号)に対して、比較的深い位置にある表層血管123の画素値は小さく、かつ、極表層血管124の画素値は大きくなる。このため、図14に示すように、演算画像信号ΔBでは、極表層血管124と比較的深い位置にある表層血管123の違いが元の画像信号よりも顕著になる。演算画像信号生成部76では、演算画像信号ΔBを生成すると、さらに低解像度化処理部77によって演算画像信号ΔBを低解像度化する(S22)。図15に示すように、低解像度化処理部77を経た演算画像信号ΔBでは、表層血管123や極表層血管124はぼやけた状態になる。
その後、特殊画像処理部67は、画像生成部78によって、極表層血管124のコントラストが高いB1画像信号を輝度チャンネルYに割り当て、低解像度化された演算画像信号ΔBを色差チャンネルCr,Cbを割り当てることにより、特定深さ血管強調画像を生成する(S23)。図16に示すように、特定深さ血管強調画像130では、表層血管123はシアン系の色に着色して表示され、極表層血管124がマゼンタ系に着色して表示される。このため、特定深さ血管強調画像130では、表層血管123と極表層血管124を色で識別可能であり、実質的に極表層血管124が観察しやすい強調画像として表示される。
上記のように、内視鏡システム10は、紫色光Vに対応するB1画像信号と青色光Bに対応するB2画像信号との差(または比)によって演算画像信号ΔBを算出し、輝度チャンネルYに強調したい血管のコントラストが高い画像信号を割り当て、かつ、色差チャンネルCb,Crに演算画像信号ΔBを割り当てる。これにより、従来では識別が難しかった極表層血管124と、極表層血管124に対して比較的深い位置にある表層血管123とを、色の違いで可視化し、強調表示することができる。
また、B1画像信号とB2画像信号の取得タイミングの違いによって、輝度チャンネルYに割り当てるB1画像信号と演算画像信号ΔBと間に齟齬が生じ、結果として、特定深さ血管強調画像130に色ずれが表れることがある。このため、内視鏡システム10では、演算画像信号ΔBを色差チャンネルCb,Crに割り当てるときに、低解像度化処理部77によって低解像度化してから演算画像信号ΔBを色差チャンネルCb,Crに割り当てるので色ずれは低減されている。
また、B2画像信号の画像ブレ量が大きくなりすぎると、特定深さ血管強調画像上でアーチファクトが発生することがある。このため、内視鏡システム10では、画像選択部72で選択した画像ブレの少ないB2画像信号を用いて演算画像信号ΔBを生成し、この演算画像信号ΔBに基づいて特定深さ血管強調画像130を生成している。これにより、特定深さ血管強調画像130においては、アーチファクトの発生が抑えられている。
なお、上記実施形態では、画像生成部78は、B1画像信号とB2画像信号のうち相対的に極表層血管124のコントラストが高いB1画像信号を輝度チャンネルYに割り当て、かつ、演算画像信号ΔBを色差チャンネルCb,Crに割り当てることで、極表層血管124を選択的に強調する特定深さ血管強調画像130を生成しているが、画像生成部78は、比較的深い位置にある表層血管123を強調した特定深さ血管画像を生成しても良い。
この場合、演算画像信号生成部76は、上記実施形態とは逆に、対数変換後のB1画像信号からB2画像信号を減算して演算画像信号ΔBを生成する。そして、画像生成部78は、B1画像信号とB2画像信号のうち比較的深い位置にある表層血管123のコントラストが高いB2画像信号を輝度チャンネルYに割り当て、かつ、B1画像信号からB2画像信号を減算して生成された演算画像信号ΔBを色差チャンネルCb,Crに割り当てて、特定深さ血管強調画像を生成する。
上記実施形態の特定深さ血管強調画像130が極表層血管124を強調することができるのは、演算画像信号ΔBをB2画像信号からB1画像信号を減算して生成した演算画像信号を用いているからである。このため、上記実施形態では、画像生成部78は、極表層血管124を強調する特定深さ血管強調画像130を生成するときに、B1画像信号とB2画像信号のうち極表層血管124のコントラストが高いB1画像信号を輝度チャンネルYに割り当てているが、B2画像信号を輝度チャンネルYに割り当てた場合でも、極表層血管124を強調する特定深さ血管強調画像を生成することができる。
画像生成部78が、特定深さ血管強調画像を生成するときに、B1画像信号とB2画像信号のうちどちらを輝度チャンネルYに割り当てるかを選択できるようにすることが好ましい。例えば、画像生成部78の動作モードに、B1画像信号を輝度チャンネルYに割り当てる第1割り当てモードと、B2画像信号を輝度チャンネルYに割り当てる第2割り当てモードとを用意しておき、第1割り当てモードと第2割り当てモードうち選択されたモードで画像を生成するようにしておくことができる。
また、輝度チャンネルYに割り当てる画像信号を選択可能にする場合には、画像生成部78が輝度チャンネルYに割り当てる画像信号を自動的に選択しても良い。例えば、B1画像信号とB2画像信号とを比較し、画像信号全体または指定された関心領域内のノイズが少ない方の画像信号を自動的に輝度チャンネルYに自動的に割り当てても良いし、画像信号全体または指定された関心領域内のコントラストが高い方の画像信号を輝度チャンネルYに自動的に割り当てても良い。
また、上記実施形態では、画像生成部78は、B1画像信号を輝度チャンネルYに割り当て、かつ、演算画像信号ΔBを色差チャンネルCb,Crに割り当てて、YCbCr形式の特定深さ血管強調画像130を生成しているが、RチャンネルとGチャンネルとBチャンネルを有するRGB形式の画像を生成しても良い。この場合、画像生成部78は、図17に示すように、輝度に最も寄与するGチャンネルにB1画像信号を割り当て、残りのBチャンネル及びRチャンネルに演算画像信号ΔBを割り当てる。
上記実施形態では、低解像度化処理部77で用いるLPFのカットオフ周波数は予め設定されているが、LPFのカットオフ周波数を可変にし、LPFのカットオフ周波数を動的に設定することが好ましい。例えば、図18に示すように、低解像度化処理部77に、位置合わせ処理部73からB1画像信号とB2画像信号の位置合わせ精度が入力されるようにする。そして、低解像度化処理部77は、B1画像信号とB2画像信号の位置合わせ精度に応じてLPFのカットオフ周波数(低解像度化処理の強度)を変更する。
具体的には、B1画像信号とB2画像信号の位置合わせ精度が高いほど、LPFのカットオフ周波数を高周波数に設定して低解像度化処理の強度を小さくし、B1画像信号とB2の位置合わせ精度が低いほど、LPFのカットオフ周波数を低周波数に設定して低解像度化処理の強度を大きくすると良い。こうすると、低解像度化処理部77による演算画像信号ΔBの低解像度化の程度が最適化され、特定深さの血管(例えば、極表層血管124)を適切に強調表示することができる。
また、低解像度化処理部77に、画像ブレ検出部70で検出した画像ブレ量のうち画像選択部72で選択されたB2画像信号の画像ブレ量を入力し、その入力された画像ブレ量に応じてLPFのカットオフ周波数(低解像度化処理の強度)を変更するようにしてもよい。具体的には、画像ブレ量が小さいほど、LPFのカットオフ周波数を高周波数に設定して低解像度化処理の強度を小さくし、画像ブレ量が大きいほど、LPFのカットオフ周波数を低周波数に設定して低解像度化処理の強度を大きくすると良い。これにより、低解像度化処理部77による演算画像信号ΔBの低解像度化の程度が最適化されるため、よりアーチファクトの少ない特定深さ血管強調画像を表示することができる。
なお、特定深さ血管強調画像を静止画として表示または保存する場合、LFPのカットオフ周波数は、生成する特定深さ血管強調画像の解像度を基準として、少なくともナイキスト周波数の1/8以下の周波数を残す範囲内で設定することが好ましい。
上記変形例では、位置合わせ処理部73の位置合わせ処理の精度に応じて、低解像度化処理部77が低解像度化処理の強度を調節しているが、これとは逆に、低解像度化処理部77が行う低解像度化処理の強度に応じて、位置合わせ処理部73が位置合わせ処理の精度を調節しても良い。この場合、位置合わせ処理部73は、LPFのカットオフ周波数が大きく、低解像度化処理の強度が小さく設定されているほど、B1画像信号とB2画像信号の位置合わせ精度を高く設定する。
位置合わせ処理部73が行うB1画像信号とB2画像信号との位置合わせ処理の精度は可変にし、特定深さ血管強調画像の静止画を表示または保存する場合と、特定深さ血管強調画像の動画を表示する場合とで位置合わせ処理の精度を変えることが好ましい。例えば、モニタ18に特定深さ血管画像で構成される動画を表示する場合には、位置合わせ処理部73は、特定深さ血管画像の静止画をモニタ18に表示する(あるいは保存する)場合よりも低い第1精度で、B1画像信号とB2画像信号との位置合わせをする。これとは逆に、特定深さ血管画像の静止画をモニタ18に表示する場合、位置合わせ処理部73は、特定深さ血管画像の動画をモニタ18に表示する場合よりも高い第2精度で、B1画像信号とB2画像信号の位置合わせをする。こうすると、動画表示時には、色ずれが目立たない範囲内で高速に特定深さ血管強調画像を生成することができ、かつ、色ずれが目立ちやすい静止画の取得時には、色ずれがない特定深さ血管強調画像を生成することができる。
また、位置合わせ処理部73は、生成する特定深さ血管画像の大きさによって、B1画像信号とB2画像信号との位置合わせ精度を変更しても良い。例えば、生成する特定深さ血管画像が大きい場合には、僅かな位置ずれも目立つので、位置合わせ処理部73は高精度にB1画像信号とB2画像信号の位置合わせをし、生成する特定深さ血管画像が小さい場合には、位置ずれは目立ち難いので、低精度でB1画像信号とB2画像信号の位置合わせをする。また、これとは逆に、位置合わせ処理部73は、生成する特定深さ血管画像が大きい場合に低精度でB1画像信号とB2画像信号の位置合わせをし、生成する特定深さ血管画像が小さい場合には高精度でB1画像信号とB2画像信号の位置合わせをしても良い。こうすると、プロセッサ装置16の処理負担を最適化することができる。
上記のように、位置合わせ処理部73が動画表示時と静止画取得時とで位置合わせ処理の精度を変更する場合や特定深さ血管画像の大きさに応じて位置合わせ精度を変更する場合に、低解像度化処理部77は位置合わせ精度によってLPFのカットオフ周波数を変更することが好ましい。例えば、動画表示時には、位置合わせ処理部73はB1画像信号とB2画像信号の位置合わせ精度を低下させ、その代わりに、低解像度化処理部77ではLPFのカットオフ周波数を低周波数側にシフトさせると良い。また、静止画取得時には、位置合わせ処理部73は、B1画像信号とB2画像信号の位置合わせ精度を上げ、その代わりに、低解像度化処理部77ではLFPのカットオフ周波数を高周波側にシフトさせると良い。すなわち、動画表示時にはプロセッサ装置16の処理負担が小さい低解像度化処理部77のLPFを優先し、静止画取得時には位置合わせ処理部73による正確な位置合わせを優先すると良い。
また、位置合わせ処理部73は、画像選択部72で選択されたB2画像信号の画像ブレ量に応じて、B1画像信号とB2画像信号との位置合わせ精度を変更しても良い。例えば、画像ブレ量が大きい場合には、B1画像信号とB2画像信号を位置合わせし難くなるため、位置合わせ処理部73は高精度にB1画像信号とB2画像信号の位置合わせを行うことが好ましい。これに対して、画像ブレ量が小さい場合には、B1画像信号とB2画像信号とを位置合わせし易いため、低精度でB1画像信号とB2画像信号の位置合わせをする。以上にようじ画像ブレ量に応じた位置合わせ精度の変更を行うことによって、プロセッサ装置16の処理負担を最適化することができる。
なお、位置合わせ処理部73は、動画表示時にはB1画像信号とB2画像信号との位置合わせを行わず、静止画取得時にだけB1画像信号とB2画像信号との位置合わせを行っても良い。
上記実施形態では、低解像度化処理部77は、LPFによって演算画像信号ΔBを低解像度化しているが、LPFの代わりに、演算画像信号ΔBを縮小し、その後元の大きさにまで拡大することでも低解像度化することができる。このように、演算画像信号ΔBを縮小及び拡大して低解像度課する場合、演算画像信号ΔBの縮小時には、エリアジングの少ない縮小方法を採用することが好ましい。例えば、面積平均法によって縮小した後、キュービックスプライン補間によって拡大して、演算画像信号ΔBを低解像度化することができる。
上記実施形態では、第1発光モードでは紫色光Vを照明光として用い、第2発光モードでは青色光Bを照明光として用いているが、特殊観察モード時に用いる互いに波長帯域が異なる二つの照明光は、他の波長帯域の光でも良い。波長帯域を変えることにより、強調する血管の深さを任意に変更した特定深さ血管画像を得ることができる。
また、撮像センサ48のBカラーフィルタは緑色光Gにも感度がある(図6参照)。そして、緑色光Gの反射光等のうちB画素で受光可能な波長帯域の光と、緑色光Gの反射光等のうちG画素で受光可能な波長帯域の光は、観察対象の散乱係数に差があり、かつ、ヘモグロビンの吸光係数がほぼ等しい。このため、例えば、緑色光Gだけを照明光として使用し、緑色光Gが照射された観察対象をB画素が撮像して出力するBG画像信号と、緑色光Gが照射された観察対象をG画素が撮像して出力するGG画像信号とを、上記実施形態のB1画像信号及びB2画像信号の代わりに用いることができる。このように、BG画像信号とGG画像信号とを用いる場合、例えば、中深層血管のうち比較的浅い位置にある中深層血管、または、中深層血管のうち比較的深い位置にある中深層血管を、中深層血管の中から選り分けて強調表示することができる。
同様に、撮像センサ48のRカラーフィルタは緑色光Gにも感度があり(図6)、緑色光Gの反射光等のうちG画素で受光可能な波長帯域の光と、緑色光Gの反射光等のうちR画素で受光可能な波長帯域の光は、観察対象の散乱係数に差があり、かつ、ヘモグロビンの吸光係数がほぼ等しい。このため、光源20は特殊観察モードで使用する第1照明光と第2照明光とを含む広帯域の緑色光Gを照明光として使用し、緑色光Gが照射された観察対象をG画素が撮像して出力するGG画像信号(第1画像信号)と、緑色光Gが照射された観察対象をR画素が撮像して出力するRG画像信号(第2画像信号)とを、上記実施形態のB1画像信号及びB2画像信号の代わりに用いることができる。すなわち、光源20が緑色光Gのように第1照明光と第2照明光を含む広帯域の照明光を発生する場合、画像信号取得部53は、第1画像信号をB画素またはG画素から取得し、第2画像信号をG画素またはR画素から取得することができる。
また、撮像センサ48のGカラーフィルタが紫色光Vや青色光Bにも感度があることを利用して、撮像センサ48が受光する紫色光Vや青色光Bに対応する信号を補っても良い。例えば、紫色光Vを照射したときに、B画素から得られる信号値に、G画素から得られる信号値を加算することで、紫色光Vに対応する信号値を増大させることができる。同様に、青色光Bを照射したときに、G画素から得られる信号値を加算することで、青色光Bに対応する信号値を増大させることができる。
上記実施形態のように、極表層血管124を表層血管123と峻別して強調表示する場合には、第1照明光及び第2照明光の波長帯域は、ともに波長500nm以下の範囲内であることが好ましい。具体的には、上記実施形態の通り、405±10nmに中心波長を有する紫色光Vと、460±10nmに中心波長を有する青色光Bとを、第1照明光及び第2照明光として用いることが好ましい。405±10nmに中心波長を有する紫色光と445±10nmに中心波長を有する青色光を第1照明光及び第2照明光として用いることがさらに好ましい。445±10nmに中心波長を有する青色光は、例えば、B−LED23bの長波長側をカットする光学フィルタをB−LED23bの光路中に用いることで、上記青色光Bから生成することができる。また、B−LED23bを445±10nmに中心波長を有する青色光を発する別のLEDに替えても良い。
中深層血管を、比較的浅い位置にある中深層血管と比較的深い位置にある中深層血管とに分けて強調表示をする場合には、第1照明光及び第2照明光の波長帯域は、ともに500nm以上であることが好ましい。具体的には、波長が約500nmの光と、波長が約600nmの光とを、第1照明光及び第2照明光として用いることが好ましい。
なお、上記実施形態では、演算画像信号生成部76は、粘膜下の特定深さにある極表層血管124の走行パターンを表す演算画像信号ΔBを生成しているが、代わりに、血管密度を表す演算画像信号Dや血管等に含まれるヘモグロビンの酸素飽和度(以下、血管の酸素飽和度という)を表す演算画像信号Sを生成しても良い。
血管密度を表す演算画像信号Dは、上記実施形態の演算画像信号ΔBを用いて算出することができる。例えば、上記実施形態の演算画像信号ΔBは、極表層血管124を抽出した画像信号になっているので(図14参照)、演算画像信号ΔBを用いて単位面積中の極表層血管124の面積の割合を各画素について算出することにより、極表層血管124の血管密度を表す演算画像信号Dを生成することができる。このように演算画像信号Dを生成する場合、画像生成部78は、輝度チャンネルYにB1画像信号を割り当て、かつ、演算画像信号Dを色差チャンネルCb,Crに割り当てることにより、極表層血管124の血管密度を表す血管密度画像を生成する。血管密度画像は、バレット腺癌のステージ判別等の診断に直接的な示唆を与えることができる。
血管の酸素飽和度を表す演算画像信号Sを生成する場合は、例えば、中心波長445±10nmの第1青色光と緑色光Gと赤色光Rとを照射して観察対象を撮像し、かつ、中心波長473±10nmの第2青色光と緑色光Gと赤色光Rとを照射して観察対象を撮像する。第1青色光(第1照明光)は、上記中心波長445±10nmになるようにB−LED23bが発する青色光Bの波長帯域を制限する第1光学フィルタ(例えば、青色光Bの長波長側をカットする光学フィルタ)を用いることで、青色光Bから生成することができる。同様に、第2青色光(第2照明光)は、上記中心波長473±10nmとなるようにB−LED23bが発する青色光Bの波長帯域を制限する第2光学フィルタ(例えば、青色光Bの短波長側をカットする光学フィルタ)を用いることで、青色光Bから生成することができる。
上記第1青色光は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数に差が殆どない波長帯域(等吸収波長)を有する。一方、上記第2青色光は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数に差がある波長帯域(異吸収波長)を有する。第1青色光が照射された観察対象をB画素が撮像して得られる等吸収波長の画像信号(第1画像信号)と、第2青色光が照射された観察対象をB画素が撮像して得られる異吸収波長の画像信号(第2画像信号)との比または差は、酸素飽和度と相関がある。
したがって、等吸収波長の画像信号と異吸収波長の画像信号との比または差を、酸素飽和度に対応付ける相関関係を実験等により予め求め、演算画像信号生成部76はこの相関関係を予め保持しておく。そして、演算画像信号生成部76は、等吸収波長の画像信号と異吸収波長の画像信号との比または差を算出して上記相関関係と照らし合わせることで、各画素が観察対象の酸素飽和度の値を表す演算画像信号Sを生成する。画像生成部78は、通常画像処理部66と同様にして、第1青色光と緑色光Gと赤色光とを照射して観察対象を撮像して得た各画像信号を用いて通常画像信号を生成する。そして、輝度チャンネルYに通常画像信号を割り当て、かつ、酸素飽和度を表す演算画像信号Sを色差チャンネルCb,Crに割り当てることにより、観察対象の酸素飽和度を表す酸素飽和度画像を生成する。こうして生成される酸素飽和度画像は、酸素飽和度という診断に有益な情報を表示することができる。
なお、演算画像信号Sを用いて酸素飽和度画像を生成する場合には、等吸収波長の画像信号と異吸収波長の画像信号のうちいずれかの画像信号について画像ブレ量を検出し、画像ブレ量が閾値Th1を下回る画像信号を選択することが好ましい。例えば、異吸収波長の画像信号の選択を行う場合には、画像ブレ検出部70では、第1タイミングの異吸収波長の画像信号について画像ブレ量を検出する。そして、画像選択部72では、第1タイミングT1の異吸収波長の画像信号、及び画像信号記憶部71に記憶した第2タイミングT2〜第NタイミングTNの異吸収波長の画像信号の中から、閾値Th1を下回る異吸収波長の画像信号を選択する。
そして、演算画像信号生成部76では、等吸収波長の画像信号と選択された異吸収波長の画像信号とに基づいて、演算画像信号Sを生成する。この演算画像信号Sは、画像ブレの少ない異吸収波長の画像信号に基づく演算により得られたものであるため、酸素飽和度に関する情報を正確に表している。したがって、以上の演算画像信号Sに基づいて生成される酸素飽和度画像は、酸素飽和度に応じて正確に色付けされたアーチファクトの少ない画像となっている。
なお、上記実施形態では、撮像センサ48が設けられた内視鏡12を被検体内に挿入して観察を行う内視鏡システム10によって本発明を実施しているが、カプセル内視鏡システムにも本発明は好適である。例えば、図19に示すように、カプセル内視鏡システムでは、カプセル内視鏡400と、プロセッサ装置(図示しない)とを少なくとも有する。
カプセル内視鏡400は、光源402と光源制御部403と、撮像センサ404と、信号処理部406と、送受信アンテナ408とを備えている。光源402は、上記各実施形態の光源20と同様に構成される。光源制御部403は、上記各実施形態の光源制御部22と同様にして光源402の駆動を制御する。また、光源制御部403は、送受信アンテナ408によって、カプセル内視鏡システムのプロセッサ装置と無線で通信可能である。カプセル内視鏡システムのプロセッサ装置は、上記各実施形態のプロセッサ装置16とほぼ同様であるが、信号処理部406は、通常画像処理部66及び特殊画像処理部67の機能を有している。信号処理部406が生成した血管強調画像信号等は、送受信アンテナ408を介してプロセッサ装置に送信される。撮像センサ404は上記各実施形態の撮像センサ48と同様に構成される。
[第2実施形態]
第2実施形態では、画像選択部72における画像選択方法が第1実施形態と異なっている。それ以外については、第1実施形態とほぼ同様である。第2実施形態では、画像選択部72において、第1タイミングT1のB2画像信号の画像ブレ量と、画像信号記憶部71に記憶された第2タイミングT2のB2画像信号の画像ブレ量とを比較し、画像ブレ量が小さい方のB2画像信号を選択する。または、画像選択部72は、第1タイミングT1のB2画像信号、第2タイミングT2のB2画像信号、・・・、第nタイミングのB2画像信号、・・・、第NタイミングTNのB2画像信号の中から、画像ブレ量が最も小さいB2画像信号を選択する。
なお、第1タイミングT1のB2画像信号〜第NタイミングTNのB2画像信号の中で、画像ブレ量が最も小さいB2画像信号であっても、その画像ブレ量が予め設定した閾値Th2(第1実施形態のTh1と同じでも異なってもよい)を超えている場合には、画像選択部72は、いずれのタイミングのB2画像信号をも選択しないことが好ましい。この場合には、演算画像信号生成部76は、B1画像信号のみに基づいて演算画像信号を生成することが好ましく、又は、演算画像信号を生成しないことが好ましい。また、警告表示制御部79が、警告表示する制御を行うようにしてもよい。
[第3実施形態]
第3実施形態では、画像選択部72における画像選択方法が第1及び第2実施形態と異なっている。それ以外については、第1実施形態とほぼ同様である。第3実施形態では、特殊観察モードに設定されている場合に、図20に示すように、画像処理切替部61から出力される画像信号のうち、B1画像信号及びB2画像信号が画像ブレ検出部70に送信され、B1画像信号は位置合わせ処理部73に送信される。
画像ブレ検出部70において、第1タイミングT1から第NタイミングTNの全てのタイミングにおいて、B2画像信号の画像ブレ量Blur2だけでなく、B1画像信号の画像ブレ量Blur1も検出する。そして、ブレ指標値算出部200は、第1タイミングT1から第NタイミングTNの全てのタイミングにおいて、B1画像信号の画像ブレ量Blur1とB2画像信号の画像ブレ量Blur2との差分(|Blur1-Blur2|)(以下「ブレ差分」という))又は比(Blur1/Blur2)(以下「ブレ比」という)を、ブレ指標値として算出する。なお、ブレ指標値において、ブレ差分については「0」に近いほど両者の画像ブレ量Blur1、Blur2が時間的に近いことを示している。また、ブレ比については「1」に近いほど両者の画像ブレ量Blur1、Blur2が時間的に近いことを示している。
ここで、第1タイミングT1のB2画像信号については、第1タイミングT1のブレ指標値と関連付けられたものが画像選択部72に送信される。また、第2タイミングT2〜第NタイミングTNのB2画像信号は、第2タイミングT2〜第NタイミングTNのブレ指標値と関連付けられて画像信号記憶部71に記憶される。そして、画像選択部72では、第1タイミングT1のブレ指標値が予め定めた基準STを満たしているか否かを判定する。判定の結果、基準STを満たしている場合には、第1タイミングT1のB2画像信号を選択し、位置合わせ処理部73に送信する。なお、本発明の「第2条件」とは、「あるタイミングのブレ指標値が基準STを満たしている場合のこと」に対応する。
ここで、基準STとしては、例えば、ブレ指標値がブレ差分である場合には「0」もしくは「0」に近い値の範囲(本発明の「第1特定範囲」に対応する)内とすることが好ましく、ブレ指標値がブレ比である場合には「1」もしくは「1」に近い値の範囲(本発明の「第2特定範囲」に対応する)内とすることが好ましい。例えば、B1画像信号とB2画像信号のうちいずれかの画像ブレ量が大きい場合には、特定深さ血管強調画像上でアーチファクトが発生し易くなる。この場合には、ブレ差分は第1特定範囲から外れ、また、ブレ比も第2特定範囲から外れることになるため、ブレ差分やブレ比からアーチファクトの発生を検出できる。一方、B1画像信号とB2画像信号の両方とも画像ブレ量が大きい場合には、ブレが発生しているにもかかわらず、特定深さ血管強調画像上ではアーチファクトになりにくい。この場合には、ブレ差分は第1特定範囲内に収まり、またブレ比も第2特定範囲に収まるため、ブレが生じたとしても、特定深さ血管強調画像では、演算に大きく影響を与えるアーチファクトの発生していないことを、ブレ差分やブレ比から検出することができる。
これに対して、第1タイミングT1のブレ指標値が基準STを満たしていない場合には、第2タイミングT2のブレ指標値が基準STを満たしているか否かを判定する。判定の結果、基準STを満たしている場合には、第2タイミングT2のB2画像信号を位置合わせ処理部73に送信し、基準を満たしていない場合には、第3タイミングT3のB2画像信号について同様のブレ指標値に基づく判定を行い、位置合わせ処理部73に送信すべきかどうか判定する。画像選択部72は、ブレ指標値が基準を満たすB2画像信号を検出するまで、上記と同様の判定を行う。
なお、画像選択部72では、第1タイミングT1から時間的に離れすぎるタイミングのB2画像信号については、B1画像信号との位置ずれが大きくなることが多いことから、ブレ指標値が基準STを満たし、且つ第1タイミングT1に最も時間的に近いB2画像信号を選択することが好ましい。また、画像選択部72は、第2タイミングT2〜第NタイミングTNのB2画像信号の全てについて、ブレ指標値が基準STを満たさない場合には、いずれのタイミングのB2画像信号をも選択しないことが好ましい。
このように、第2タイミングT2〜第NタイミングのB2画像信号の全てについて、ブレ指標値が基準STを満たさない場合には、演算画像信号生成部76は、B1画像信号のみに基づいて演算画像信号ΔBを生成することが好ましく、又は、演算画像信号ΔBを生成しないことが好ましい。また、第2タイミングT2〜第NタイミングのB2画像信号の全てについて、ブレ指標値が基準STを満たさない場合には、警告表示制御部79により警告表示する制御を行うようにしてもよい。
なお、第3実施形態では、低解像度化処理部77において、画像選択部72で選択されたB2画像信号に関連付けられたブレ指標値に応じて、LPFのカットオフ周波数を変更するようにしてもよい。例えば、ブレ指標値がブレ差分である場合には、ブレ差分が「0」に近いほど、LPFのカットオフ周波数を高周波数に設定して低解像度化処理の強度を小さくし、ブレ差分が「0」から離れているほど、LPFのカットオフ周波数を低周波数に設定して低解像度化処理の強度を大きくすると良い。
また、位置合わせ処理部73は、画像選択部72で選択されたB2画像信号に関連付けられたブレ指標値に応じて、B1画像信号とB2画像信号との位置合わせ精度を変更しても良い。例えば、ブレ指標値がブレ差分である場合には、ブレ差分が「0」から離れている場合には、位置合わせ処理部73は高精度にB1画像信号とB2画像信号の位置合わせを行うことが好ましい。これに対して、ブレ差分が「0」に近い場合には、低精度でB1画像信号とB2画像信号の位置合わせをすることが好ましい。
[第4実施形態]
第4実施形態では、画像選択部72における画像選択方法が第1〜第3実施形態と異なっている。それ以外については、第3実施形態とほぼ同様である。第3実施形態では、画像選択部72において、第1タイミングT1のB2画像信号に関連付けられたブレ指標値と、画像信号記憶部71に記憶中の第2タイミングT2のB2画像信号に関連付けられたブレ指標値とを比較し、ブレ指標値が小さい方のB2画像信号を選択する。または、画像選択部72は、第1タイミングT1のB2画像信号、第2タイミングT2のB2画像信号、・・・、第nタイミングのB2画像信号、・・・、第NタイミングTNのB2画像信号の中から、ブレ指標値が最も小さいB2画像信号を選択する。
なお、第1タイミングT1のB2画像信号〜第NタイミングTNのB2画像信号の中で、ブレ指標値が最も小さいB2画像信号であっても、そのブレ指標値が予め設定した基準ST(第3実施形態の「ST」と同じであっても異なってもよい)を満たさない場合には、画像選択部72は、いずれのタイミングのB2画像信号をも選択しないことが好ましい。この場合には、演算画像信号生成部76は、B1画像信号のみに基づいて演算画像信号を生成することが好ましく、又は、演算画像信号を生成しないことが好ましい。また、警告表示制御部79が、警告表示する制御を行うようにしてもよい。
[第5実施形態]
第5実施形態では、画像選択部72が、画像ブレ量に基づいてB2画像信号を自動的に選択する自動選択モードに加えて、ユーザーがモニタ18に表示された第1タイミングT1〜第NタイミングTNのB2画像信号に基づく画像とその画像ブレ量を見て、B2画像信号を手動で選択する手動選択モードを備えており、いずれ設定された選択モードでB2画像信号の選択を行う。ここで、自動選択モードによる画像選択方法については、第1及び第2実施形態に示した画像選択方法と同様である。
一方、第5実施形態では、図21に示すように、第1及び第2実施形態で示した特殊画像処理部67内に、画像ブレ量に関する情報を表示する制御を行う情報表示制御部300が設けられている。手動選択モードに設定されている場合には、情報表示制御部300では、画像信号記憶部71に入力された第1タイミングT1〜第NタイミングのB2画像信号と、これらに関連付けられた第1タイミングT1〜第NタイミングのB2画像信号の画像ブレ量とに基づいて、各タイミングのB2画像信号に基づく画像(図2では「B2画像」と表示)と、そのタイミングにおける画像ブレ量とを合わせてモニタ18に一覧表示する制御を行う。
ユーザーは、図22に示すように、モニタ18に表示された各タイミングのB2画像信号に基づく画像と画像ブレ量を見て、特定深さ血管強調画像を生成するのに適した最適なB2画像信号を選択する。選択はコンソール19により行うことが好ましい。選択されたB2画像信号は、第1及び第2実施形態と同様に、位置合わせ処理部73に送信される。以上のようなユーザーによる画像選択については、ユーザーが画像ブレ量を元に画像選択を行う場合には、第1実施形態と第2実施形態で示した画像選択部72による画像選択の考え方と同じようにして選択することになる。一方、B2画像信号に基づく画像を元に画像選択を行う場合には、ユーザーが持つ経験則に基づく主観的な画像選択が可能となる。
なお、画像選択部72で設定される手動選択モードにおいて、モニタ18に表示する情報として、画像ブレ量に代えて、ブレ指標値を表示するようにしてもよい。この場合には、図23に示すように、第3及び第4実施形態で示した特殊画像処理部67内に、ブレ指標値を表示する制御を行う情報表示制御部300が設けられている。
そして、手動選択モードに設定されている場合には、情報表示制御部300では、画像信号記憶部71に入力された第1タイミングT1〜第NタイミングのB2画像信号と、これらに関連付けられた第1タイミングT1〜第Nタイミングのブレ指標値とに基づいて、各タイミングのB2画像信号に基づく画像と、そのタイミングにおけるブレ指標値とを合わせてモニタ18に一覧表示する制御を行う。なお、ブレ指標値を含む一覧表示は、画像ブレ量を表示する一覧表示(図22参照)と同様に表示される。また、ユーザーによる画像選択方法についても、画像ブレ量に基づく画像選択方法と同様にして行われる。
なお、上記第1〜第5実施形態では、波長帯域がそれぞれ異なる紫色光Vと青色光Bを順次照射しているが、波長帯域がそれぞれ同じ第1照明光と第2照明光を順次照射してもよい。この場合には、演算画像信号生成部76において、第1照明光を照射した場合に得られる第1画像信号と、第2照明光を照射した場合に得られる第2画像信号のうち画像選択部72で選択された第2画像信号とを加算平均処理する演算を行うことで、加算平均処理後の画像のノイズを低減することが可能となる。なお、加算平均処理を行う場合には、第1画像信号と第2画像信号は、それぞれ画像ブレ量が小さいものであることが好ましい。
10 内視鏡システム
12 内視鏡
12a 挿入部
12b 操作部
12c 湾曲部
12d 先端部
12e アングルノブ
13a モード切り替えスイッチ
13b ズーム操作部
14 光源装置
16 プロセッサ装置
18 モニタ
19 コンソール
20 光源
22 光源制御部
23a V-LED
23b B-LED
23c G-LED
23d R-LED
30a 照明光学系
30b 撮像光学系
41 ライトガイド
45 照明レンズ
46 対物レンズ
47 ズームレンズ
48 撮像センサ
51 CDS/AGC回路
52 A/Dコンバータ
53 画像信号取得部
56 DSP
58 ノイズ除去部
61 画像処理切替部
66 通常画像処理部
67 特殊画像処理部
68 映像信号生成部
70 画像ブレ検出部
71 画像信号記憶部
72 画像選択部
73 位置合わせ処理部
74 明るさ補正処理部
76 演算画像信号生成部
77 低解像度化処理部
78 画像生成部
79 警告表示制御部
110 画像信号
200 ブレ指標値算出部
300 情報表示制御部
400 カプセル内視鏡
402 光源
403 光源制御部
404 撮像センサ
406 信号処理部
408 送受信アンテナ

Claims (20)

  1. 第1照明光と第2照明光とを順次発生する光源と、
    第1タイミングT1において前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、前記第1タイミングT1よりも前の特定のタイミングにおいて前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、前記特定のタイミングのマルチフレーム画像信号を出力する撮像センサと、
    前記第1タイミングT1及び前記特定のタイミングのマルチフレーム画像信号のうち前記第2照明光を照明した場合に得られる第2画像信号の中から、画像ブレ量が第1条件を満たす第2画像信号を選択する画像選択部と、
    前記第1タイミングT1のマルチフレーム画像信号のうち前記第1照明光を照明した場合に得られる第1画像信号と、前記画像選択部で選択された第2画像信号とに基づく演算を行うことにより、演算画像信号を生成する演算画像信号生成部とを備える内視鏡システム。
  2. 前記画像選択部は、前記第1条件を満たす第2画像信号として、前記画像ブレ量が予め定めた閾値を下回り、且つ前記第1タイミングT1に最も近いタイミングに撮像された第2画像信号を選択する請求項1記載の内視鏡システム。
  3. 前記画像選択部は、前記第1条件を満たす第2画像信号として、前記画像ブレ量が最も小さい第2画像信号を選択する請求項1記載の内視鏡システム。
  4. 前記画像選択部は、前記第1条件を満たす第2画像信号がない場合には、いずれの第2画像信号をも選択せず、
    前記演算画像信号生成部は、前記第1画像信号のみに基づいて、前記演算画像信号を生成する請求項1ないし3いずれか1項記載の内視鏡システム。
  5. 前記画像選択部は、
    前記演算画像信号生成部は、前記第1条件を満たす第2画像信号がない場合には、いずれの第2画像信号をも選択せず、
    前記演算画像信号生成部は、前記演算画像信号を生成しない請求項1ないし3いずれか1項記載の内視鏡システム。
  6. 前記第1条件を満たす第2画像信号がない場合に、警告表示する制御を行う警告表示制御部を備える請求項1ないし5いずれか1項記載の内視鏡システム。
  7. 前記第1タイミングT1及び特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号に基づく画像と、前記第1タイミングT1及び特定のタイミングの第2画像信号の画像ブレ量を表示部に表示する制御を行う情報表示制御部を備え、
    前記画像選択部は、前記第1条件を満たす第2画像信号を自動的に選択する自動選択モードと、前記情報表示制御部が表示制御を行っているときには、前記表示部に表示された第2画像信号のうち、ユーザーが選択指示した第2画像信号を選択する手動選択モードとを有し、前記自動選択モードまたは前記手動選択モードのいずれかで画像選択を行う請求項1ないし6いずれか1項記載の内視鏡システム。
  8. 第1照明光と第2照明光とを順次発生する光源と、
    第1タイミングT1において前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、前記第1タイミングT1よりも前の特定のタイミングにおいて前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、前記特定のタイミングのマルチフレーム画像信号を出力する撮像センサと、
    前記第1タイミングT1及び特定のタイミングのマルチフレーム画像信号のうち前記第1照明光を照明した場合に得られる第1画像信号の画像ブレ量及び前記第2照明光を照明した場合に得られる第2画像信号の画像ブレ量に基づいて、前記第1タイミングT1及び特定のタイミングのブレ指標値を算出するブレ指標値算出部と、
    前記第1タイミングT1及び前記特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号のうち、前記ブレ指標値が第2条件を満たすタイミングの第2画像信号を選択する画像選択部と、
    前記第1タイミングT1のマルチフレーム画像信号に含まれる第1画像信号と、前記画像選択部で選択された第2画像信号とに基づく演算を行うことにより、演算画像信号を生成する演算画像信号生成部とを備える内視鏡システム。
  9. 前記ブレ指標値が、前記第1画像信号の画像ブレ量と前記第2画像信号の画像ブレ量との差分を示すブレ差分である場合には、前記画像選択部は、前記第2条件を満たすタイミングの第2画像信号として、ブレ差分が第1特定範囲内にあるタイミングの第2画像信号を選択し、
    前記ブレ指標値が、前記第1画像信号の画像ブレ量と前記第2画像信号の画像ブレ量との比を示すブレ比である場合には、前記画像選択部は、前記第2条件を満たすタイミングの第2画像信号として、ブレ比が第2特定範囲内にあるタイミングの第2画像信号を選択する請求項8記載の内視鏡システム。
  10. 前記画像選択部は、いずれのタイミングのブレ指標値も前記第2条件を満たさない場合は、いずれの第2画像信号をも選択せず、
    前記演算画像信号生成部は、前記第1画像信号のみに基づいて、前記演算画像信号を生成する請求項8または9記載の内視鏡システム。
  11. 前記画像選択部は、いずれのタイミングのブレ指標値も前記第2条件を満たさない場合は、いずれの第2画像信号をも選択せず、
    前記演算画像信号生成部は、前記演算画像信号を生成しない請求項8または9記載の内視鏡システム。
  12. いずれのタイミングのブレ指標値も前記第2条件を満たさない場合に、警告表示する制御を行う警告表示制御部を備える請求項8ないし11いずれか1項記載の内視鏡システム。
  13. 前記第1タイミングT1及び特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号に基づく画像と、前記第1タイミングT1及び特定のタイミングのブレ指標値を表示部に表示する制御を行う情報表示制御部を備え、
    前記画像選択部は、前記第2条件を満たすマルチフレーム画像信号を自動的に選択する自動選択モードと、前記情報表示制御部が表示制御を行っているときには、前記表示部に表示された第2画像信号のうち、ユーザーが選択指示した第2画像信号を選択する手動選択モードとを有し、前記自動選択モードまたは前記手動選択モードのいずれかで画像選択を行う請求項8ないし12いずれか1項記載の内視鏡システム。
  14. 前記画像ブレ量は、前記第1画像信号または第2画像信号内の血管構造または粘膜構造に基づいて算出する請求項1ないし13いずれか1項記載の内視鏡システム。
  15. 前記画像ブレ量は、前記第1画像信号または第2画像信号内の中央領域に基づいて算出する請求項1ないし14いずれか1項記載の内視鏡システム。
  16. 前記特定のタイミングには、第2タイミングT2〜第NタイミングTNの複数のタイミングが含まれる請求項1ないし15いずれか1項記載の内視鏡システム。
  17. 前記第1照明光と前記第2照明光とはそれぞれ波長帯域が異なっている請求項1ないし16いずれか1項記載の内視鏡システム。
  18. 光源が、第1照明光と第2照明光とを順次発生するステップと、
    撮像センサが、第1タイミングT1において前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、前記第1タイミングT1よりも前の特定のタイミングにおいて前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、前記特定のタイミングのマルチフレーム画像信号を出力するステップと、
    画像選択部が、前記第1タイミングT1及び前記特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号の中から、画像ブレ量が第1条件を満たす第2画像信号を選択するステップと、
    演算画像信号生成部が、前記第1タイミングT1のマルチフレーム画像信号に含まれる第1画像信号と、前記画像選択部で選択された第2画像信号とに基づく演算を行うことにより、演算画像信号を生成するステップとを有する内視鏡システムの作動方法。
  19. 光源が、第1照明光と第2照明光とを順次発生するステップと、
    撮像センサが、第1タイミングT1において前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、第1タイミングT1のマルチフレーム画像信号を出力し、前記第1タイミングT1よりも前の特定のタイミングにおいて前記第1照明光と前記第2照明光が順次照明された観察対象を順次撮像することにより、前記特定のタイミングのマルチフレーム画像信号を出力するステップと、
    ブレ指標値算出部が、前記第1タイミングT1及び特定のタイミングのマルチフレーム画像信号における第1画像信号の画像ブレ量及び第2画像信号の画像ブレ量に基づいて、前記第1タイミングT1及び特定のタイミングのブレ指標値を算出するステップと、
    画像選択部が、前記第1タイミングT1及び前記特定のタイミングのマルチフレーム画像信号に含まれる第2画像信号のうち、前記ブレ指標値が第2条件を満たすタイミングの第2画像信号を選択するステップと、
    演算画像信号生成部が、前記第1タイミングT1のマルチフレーム画像信号に含まれる第1画像信号と、前記画像選択部で選択されたマルチフレーム画像信号に含まれる第2画像信号とに基づく演算を行うことにより、演算画像信号を生成するステップとを有する内視鏡システムの作動方法。
  20. 前記第1照明光と前記第2照明光とはそれぞれ波長帯域が異なっている請求項18または19記載の内視鏡システムの作動方法。
JP2016054631A 2016-03-18 2016-03-18 内視鏡システム及びその作動方法 Active JP6522539B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016054631A JP6522539B2 (ja) 2016-03-18 2016-03-18 内視鏡システム及びその作動方法
EP17766067.7A EP3430969B1 (en) 2016-03-18 2017-01-26 Endoscopic system and operation method thereof
PCT/JP2017/002677 WO2017159059A1 (ja) 2016-03-18 2017-01-26 内視鏡システム及びその作動方法
US16/109,797 US11039732B2 (en) 2016-03-18 2018-08-23 Endoscopic system and method of operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054631A JP6522539B2 (ja) 2016-03-18 2016-03-18 内視鏡システム及びその作動方法

Publications (2)

Publication Number Publication Date
JP2017164393A true JP2017164393A (ja) 2017-09-21
JP6522539B2 JP6522539B2 (ja) 2019-05-29

Family

ID=59851625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054631A Active JP6522539B2 (ja) 2016-03-18 2016-03-18 内視鏡システム及びその作動方法

Country Status (4)

Country Link
US (1) US11039732B2 (ja)
EP (1) EP3430969B1 (ja)
JP (1) JP6522539B2 (ja)
WO (1) WO2017159059A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019171615A1 (ja) * 2018-03-05 2021-01-07 オリンパス株式会社 内視鏡システム、画像処理装置、画像処理方法及びプログラム
CN112334056A (zh) * 2018-06-27 2021-02-05 奥林巴斯株式会社 图像显示装置和图像显示方法
WO2021149357A1 (ja) * 2020-01-23 2021-07-29 富士フイルム株式会社 内視鏡システム及びその作動方法
WO2021172131A1 (ja) * 2020-02-28 2021-09-02 富士フイルム株式会社 内視鏡システム、及び内視鏡システムの作動方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381806B (zh) * 2017-03-31 2021-12-10 Hoya株式会社 电子内窥镜系统
US11722771B2 (en) * 2018-12-28 2023-08-08 Canon Kabushiki Kaisha Information processing apparatus, imaging apparatus, and information processing method each of which issues a notification of blur of an object, and control method for the imaging apparatus
CN113473899A (zh) * 2019-02-26 2021-10-01 奥林巴斯株式会社 内窥镜装置以及程序
JP7116251B2 (ja) 2019-04-10 2022-08-09 富士フイルム株式会社 内視鏡システム
JP7373335B2 (ja) * 2019-09-18 2023-11-02 富士フイルム株式会社 医用画像処理装置、プロセッサ装置、内視鏡システム、医用画像処理装置の作動方法、及びプログラム
KR20210087809A (ko) * 2020-01-03 2021-07-13 삼성전자주식회사 이미지 센서를 포함하는 전자 장치 및 그의 동작 방법
DE102022114606A1 (de) * 2022-06-10 2023-12-21 Karl Storz Se & Co. Kg Medizinische Bildgebungsvorrichtung, Verfahren zum Betrieb einer solchen und Verfahren zur medizinischen Bildgebung
CN115731205B (zh) * 2022-11-28 2024-04-26 北京大学 内窥镜的图像处理装置、方法、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167349A (ja) * 2010-02-18 2011-09-01 Olympus Medical Systems Corp 画像処理装置及び画像処理方法
JP2011194151A (ja) * 2010-03-23 2011-10-06 Fujifilm Corp 電子内視鏡システム
JP2012239757A (ja) * 2011-05-23 2012-12-10 Olympus Medical Systems Corp 医療機器及び医療用プロセッサ
JP2015047402A (ja) * 2013-09-03 2015-03-16 富士フイルム株式会社 内視鏡システム及びその作動方法
JP2015146924A (ja) * 2014-02-06 2015-08-20 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622788A (ja) * 1985-06-28 1987-01-08 Toshiba Corp 内視鏡装置
US4901143A (en) * 1988-02-16 1990-02-13 Olympus Optical Co., Ltd. Electronic endoscope system provided with a means of imaging frozen pictures having few picture image smears
US4933757A (en) * 1988-08-20 1990-06-12 Olympus Optical Co., Ltd. Electronic endoscope apparatus provided with a movement detecting means
US5032913A (en) * 1989-02-28 1991-07-16 Olympus Optical Co., Ltd. Electronic endoscope system equipped with color smear reducing means
JPH03147488A (ja) * 1989-11-01 1991-06-24 Olympus Optical Co Ltd 画像フリーズ用信号処理装置
JP4533119B2 (ja) * 2004-12-13 2010-09-01 キヤノン株式会社 撮像装置及び撮像装置の画像表示方法
JP4766334B2 (ja) * 2004-12-21 2011-09-07 ソニー株式会社 画像処理装置と画像処理方法および画像処理プログラム
JP2006345472A (ja) * 2005-05-13 2006-12-21 Sanyo Electric Co Ltd 画像信号処理装置、それを備えた撮像装置及び画像信号処理方法
WO2007032082A1 (ja) * 2005-09-16 2007-03-22 Fujitsu Limited 画像処理方法及び画像処理装置
JP2007195586A (ja) * 2006-01-23 2007-08-09 Olympus Medical Systems Corp カプセル型医療装置、医療用制御装置、医療用画像処理装置及びプログラム
JP4735978B2 (ja) * 2006-07-21 2011-07-27 ソニー株式会社 画像処理装置、画像処理方法、及びプログラム
US7805020B2 (en) * 2006-07-25 2010-09-28 Itt Manufacturing Enterprises, Inc. Motion compensated image registration for overlaid/fused video
JP4762089B2 (ja) * 2006-08-31 2011-08-31 三洋電機株式会社 画像合成装置及び方法並びに撮像装置
JP4315971B2 (ja) * 2006-11-09 2009-08-19 三洋電機株式会社 撮像装置
US20080143840A1 (en) * 2006-12-19 2008-06-19 Texas Instruments Incorporated Image Stabilization System and Method for a Digital Camera
JP2008164758A (ja) * 2006-12-27 2008-07-17 Eastman Kodak Co 画像復元装置
EP1944732A3 (en) * 2007-01-12 2010-01-27 Sanyo Electric Co., Ltd. Apparatus and method for blur detection, and apparatus and method for blur correction
RU2510235C2 (ru) * 2008-03-18 2014-03-27 Новадак Текнолоджиз Инк. Система визуализации для получения комбинированного изображения из полноцветного изображения в отраженном свете и изображение в ближней инфракрасной области
JP5199736B2 (ja) * 2008-06-06 2013-05-15 シャープ株式会社 画像撮像装置
EP2579570B1 (en) * 2010-06-07 2017-01-04 Olympus Corporation Signal processing device and still image generation method
JP5603676B2 (ja) * 2010-06-29 2014-10-08 オリンパス株式会社 画像処理装置及びプログラム
KR101125765B1 (ko) * 2011-01-24 2012-03-27 중앙대학교 산학협력단 다중 컬러 필터 조리개를 구비한 촬상 장치에 의해 촬영된 영상의 깊이 정보를 기반으로 한 컬러 채널 정렬장치 및 방법
EP2664268B1 (en) * 2011-06-21 2016-04-27 Olympus Corporation Medical instrument
JP5909975B2 (ja) * 2011-10-06 2016-04-27 ソニー株式会社 撮像装置および電子機器
WO2014018836A1 (en) * 2012-07-26 2014-01-30 Leap Motion, Inc. Object detection and tracking
US9672608B2 (en) * 2013-08-22 2017-06-06 Olympus Corporation Image processing device, endoscope apparatus, image processing method, and program
JP6230333B2 (ja) * 2013-08-22 2017-11-15 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
US10039439B2 (en) * 2014-09-30 2018-08-07 Fujifilm Corporation Endoscope system and method for operating the same
JP6660707B2 (ja) * 2015-10-23 2020-03-11 Hoya株式会社 内視鏡システム
JP6894894B2 (ja) * 2016-06-22 2021-06-30 オリンパス株式会社 画像処理装置、画像処理装置の作動方法及び画像処理装置の作動プログラム
US10805553B2 (en) * 2017-04-14 2020-10-13 Canon Kabushiki Kaisha Imaging apparatus and imaging method
JP6907324B2 (ja) * 2017-08-25 2021-07-21 富士フイルム株式会社 診断支援システム、内視鏡システム及び診断支援方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167349A (ja) * 2010-02-18 2011-09-01 Olympus Medical Systems Corp 画像処理装置及び画像処理方法
JP2011194151A (ja) * 2010-03-23 2011-10-06 Fujifilm Corp 電子内視鏡システム
JP2012239757A (ja) * 2011-05-23 2012-12-10 Olympus Medical Systems Corp 医療機器及び医療用プロセッサ
JP2015047402A (ja) * 2013-09-03 2015-03-16 富士フイルム株式会社 内視鏡システム及びその作動方法
JP2015146924A (ja) * 2014-02-06 2015-08-20 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、内視鏡システムの作動方法、プロセッサ装置の作動方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019171615A1 (ja) * 2018-03-05 2021-01-07 オリンパス株式会社 内視鏡システム、画像処理装置、画像処理方法及びプログラム
JP7059353B2 (ja) 2018-03-05 2022-04-25 オリンパス株式会社 内視鏡システム
CN112334056A (zh) * 2018-06-27 2021-02-05 奥林巴斯株式会社 图像显示装置和图像显示方法
CN112334056B (zh) * 2018-06-27 2024-05-14 奥林巴斯株式会社 图像显示装置和图像显示方法
WO2021149357A1 (ja) * 2020-01-23 2021-07-29 富士フイルム株式会社 内視鏡システム及びその作動方法
JPWO2021149357A1 (ja) * 2020-01-23 2021-07-29
JP7386266B2 (ja) 2020-01-23 2023-11-24 富士フイルム株式会社 内視鏡システム及びその作動方法
WO2021172131A1 (ja) * 2020-02-28 2021-09-02 富士フイルム株式会社 内視鏡システム、及び内視鏡システムの作動方法
JPWO2021172131A1 (ja) * 2020-02-28 2021-09-02
JP7390465B2 (ja) 2020-02-28 2023-12-01 富士フイルム株式会社 内視鏡システム、及び内視鏡システムの作動方法

Also Published As

Publication number Publication date
EP3430969B1 (en) 2020-05-13
EP3430969A4 (en) 2019-03-27
EP3430969A1 (en) 2019-01-23
WO2017159059A1 (ja) 2017-09-21
US11039732B2 (en) 2021-06-22
US20190008361A1 (en) 2019-01-10
JP6522539B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6522539B2 (ja) 内視鏡システム及びその作動方法
JP6234350B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6367683B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
US10039439B2 (en) Endoscope system and method for operating the same
US10709310B2 (en) Endoscope system, processor device, and method for operating endoscope system
JP6039606B2 (ja) 内視鏡システム、光源装置、内視鏡システムの作動方法、及び光源装置の作動方法
JP6196598B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6525918B2 (ja) 内視鏡システム、画像処理装置、及び画像処理装置の作動方法
JP6654038B2 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP6562554B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの信号処理方法
WO2017183324A1 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP6576895B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
EP3673787A1 (en) Light source device and endoscope system
JP2016192985A (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP6218709B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
WO2019093356A1 (ja) 内視鏡システム及びその作動方法
JP6153913B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6153912B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6615950B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250