JP6196598B2 - 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法 - Google Patents

内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法 Download PDF

Info

Publication number
JP6196598B2
JP6196598B2 JP2014202652A JP2014202652A JP6196598B2 JP 6196598 B2 JP6196598 B2 JP 6196598B2 JP 2014202652 A JP2014202652 A JP 2014202652A JP 2014202652 A JP2014202652 A JP 2014202652A JP 6196598 B2 JP6196598 B2 JP 6196598B2
Authority
JP
Japan
Prior art keywords
image signal
image
blood vessel
illumination light
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014202652A
Other languages
English (en)
Other versions
JP2016067780A (ja
Inventor
青山 達也
達也 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014202652A priority Critical patent/JP6196598B2/ja
Publication of JP2016067780A publication Critical patent/JP2016067780A/ja
Application granted granted Critical
Publication of JP6196598B2 publication Critical patent/JP6196598B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Description

本発明は、観察対象を撮像して得た画像信号を用いて、観察対象の血管を抽出する内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法に関する。
医療分野においては、光源装置、内視鏡システム、及びプロセッサ装置を備える内視鏡システムを用いた診断が広く行われている。内視鏡システムを用いる医療診断においては、内視鏡の挿入部を被検体内に挿入し、その先端部から観察対象に照明光を照射する。そして、照明光で照射中の観察対象を先端部の撮像センサで撮像し、得られた画像信号を用いて観察対象の画像を生成してモニタに表示する。
また、内視鏡システムを用いた診断では、血管の形状や分布等が重要であるため、近年では、様々な方法で血管を抽出する内視鏡システムが知られている。例えば、パターンマッチングによって血管を抽出する内視鏡システムが知られている(特許文献1,2)。この他にも、画像信号から血管を抽出する方法としては、ガボールフィルタやニューラルネットワーク等を用いる方法も知られている(非特許文献1)。また、青色の狭帯域光と緑色の狭帯域光を用いて得た各画像に重み付けをすることで、表層と呼ばれる粘膜下の比較的浅い位置にある血管(以下、表層血管という)を抽出し、かつ、中層や深層と呼ばれる粘膜下の深い位置にある血管(以下、中深層血管という)を抽出する内視鏡システムも知られている(特許文献3)。
特許第05435746号 特開2013−255808号公報 特許第5393525号
An Automated Tracking Approach for Extraction of Retinal Vasculature in Fundus Images, A.Osareh et al., J Ophthalmic Vis Res 2010; 5(1): 20-26
近年では、血管の有無だけでなく、粘膜下の特定深さにある血管の情報が、疾患の進行度(癌のステージ等)の判断に利用できることが分かってきている。例えば、特定深さにある血管の密度は、消化管の表在癌の進行度の判断に利用できる。より具体的な例を上げれば、食道の疾患であるバレット腺癌では、バレット食道からバレット腺癌に進行する過程において、粘膜表面付近にある血管(以下、表層血管という)の中でも粘膜下の特に浅い位置にある血管(以下、極表層血管という)の密度変化が大きい。このため、極表層血管を強調して表示することができれば、あるいは極表層血管の血管密度を算出することができれば、バレット腺癌のステージ判別精度が向上すると考えられている。
一方、従来の内視鏡システムで血管を抽出し、強調する方法では、観察対象を撮像するときに照射する照明光の深達度によって観察可能な血管が存在する粘膜下の深さが概ね決まっている。例えば、表層血管は、青色光や紫色光等の短波長帯域の光を照明光に用いれば観察可能である。しかし、バレット腺癌のステージ間で差が顕著に表れるのは極表層血管の密度であり、極表層血管を含んでいても、従来のように表層という深さ方向に広い範囲の血管を全て重畳して観察していたのでは、バレット腺癌のステージの判別精度は低下する。
また、特許文献3の内視鏡システムが、二種類の画像の重み付けによって表層血管と中深層血管のいずれかだけを抽出することができるのは、表層血管と中深層血管は粘膜下の深さ位置に大きな違いがあるからであり、この方法では、表層血管の中から極表層血管を抽出するのは容易ではない。二種類の画像の重み付けによって表層血管の中から極表層血管だけを抽出することができるとしても、重み付けのバランスは極めてシビアであり、観察対象には個体差もあるので、安定して表層血管の中から極表層血管だけを抽出するのは困難である。
本発明は、特定の深さ方向の範囲(以下、特定深さという)の血管が観察しやすい画像を表示することができる内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法を提供することを目的とする。
本発明の内視鏡システムは、照明光を発生する光源と、照明光が照射された観察対象を撮像する撮像センサと、照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、照明光のうち第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得する画像信号取得部と、観察する血管の深さの設定をする設定部と、血管の深さの設定を用いて、第1画像信号、第2画像信号、または、第1画像信号と第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択する画像信号選択部と、画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成する画像生成部と、第1画像信号及び第2画像信号の差または比によって算出される演算画像信号を生成する演算画像信号生成部を備え、画像生成部は、演算画像信号を二つの色差チャンネルに割り当てた画像を生成する
演算画像信号生成部は、血管の深さの設定によって演算画像信号の生成方法を変更することが好ましい。
画像信号選択部は、混合画像信号を選択する場合に、混合画像信号を生成する混合画像信号生成部を備え、混合画像信号生成部は、血管の深さの設定によって第1画像信号と第2画像信号の混合比率を変えて混合画像信号を生成することが好ましい。
血管の深さの設定によって第1照明光と第2照明光の各波長帯域を制御し、または、血管の深さの設定によって第1照明光と第2照明光の光量のバランスを制御する光源制御部を備えることが好ましい。
観察対象の観察距離を取得する観察距離取得部を備え、設定部は、観察距離を用いて血管の深さの設定をすることが好ましい。
観察対象を撮像センサに結像させ、かつ、撮像倍率が可変な撮像光学系を備え、観察距離取得部は、撮像光学系の撮像倍率を観察距離として取得することが好ましい。
設定部に血管の深さの設定を入力するための入力部を備えることが好ましい。
光源を有する光源装置と、撮像センサを有する内視鏡と、画像生成部を有するプロセッサ装置と、を備え、入力部が内視鏡に設けられていることが好ましい。
光源を有する光源装置と、撮像センサを有する内視鏡と、画像生成部を有するプロセッサ装置とを備え、入力部がプロセッサ装置に設けられていることが好ましい。
第1画像信号または第2画像信号の少なくとも一方を補正し、第1画像信号が表す観察対象と、第2画像信号が表す観察対象との位置合わせをする位置合わせ処理部を備えることが好ましい。
第1画像信号または第2画像信号の少なくとも一方を補正し、第1画像信号の明るさと第2画像信号の明るさとの比を特定比にする明るさ補正処理部を備えることが好ましい。
本発明のプロセッサ装置は、照明光を発生する光源と、照明光が照射された観察対象を撮像する撮像センサと、を有する内視鏡システムのプロセッサ装置において、照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、照明光のうち第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得する画像信号取得部と、観察する血管の深さの設定をする設定部と、血管の深さの設定を用いて、第1画像信号、第2画像信号、または、第1画像信号と第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択する画像信号選択部と、画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成する画像生成部と、第1画像信号及び第2画像信号の差または比によって算出される演算画像信号を生成する演算画像信号生成部を備え、画像生成部は、演算画像信号を二つの色差チャンネルに割り当てた画像を生成する。
本発明の内視鏡システムの作動方法は、光源が、照明光を発生するステップと、撮像センサが、照明光が照射された観察対象を撮像するステップと、画像信号取得部が、照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、照明光のうち第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得するステップと、設定部が、観察する血管の深さの設定をするステップと、画像信号選択部が、血管の深さの設定を用いて、第1画像信号、第2画像信号、または、第1画像信号と第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択するステップと、画像生成部が、画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成するステップと、演算画像信号生成部が、第1画像信号及び前記第2画像信号の差または比によって算出される演算画像信号を生成するステップとを有し、画像生成部が画像を生成するステップでは、演算画像信号を二つの色差チャンネルに割り当てた画像を生成する。
本発明のプロセッサ装置の作動方法は、照明光を発生する光源と、照明光が照射された観察対象を撮像する撮像センサと、を有する内視鏡システムのプロセッサ装置の作動方法において、画像信号取得部が、照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、照明光のうち第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得するステップと、設定部が、観察する血管の深さの設定をするステップと、画像信号選択部が、血管の深さの設定を用いて、第1画像信号、第2画像信号、または、第1画像信号と第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択するステップと、画像生成部が、画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成するステップと、演算画像信号生成部が、第1画像信号及び第2画像信号の差または比によって算出される演算画像信号を生成するステップとを有し、画像生成部が画像を生成するステップでは、演算画像信号を二つの色差チャンネルに割り当てた画像を生成する。

本発明によれば、特定深さの血管が観察しやすい画像を表示することができる内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法を提供することができる。
内視鏡システムの外観図である。 内視鏡システムの機能を示すブロック図である。 紫色光、青色光、緑色光、及び赤色光の分光スペクトルを示すグラフである。 観察対象の散乱係数を示すグラフである。 ヘモグロビンの吸光係数を示すグラフである。 カラーフィルタの分光特性を示すグラフである。 特殊画像処理部の機能を示すブロック図である。 血管の深さと血管のコントラストの関係を模式的に表すグラフである。 特定深さ血管強調画像の生成方法を示す説明図である。 特殊観察モード時のフローチャートである。 B1画像信号の模式図である。 B2画像信号の模式図である。 演算画像信号の模式図である。 低解像度化処理後の演算画像信号の模式図である。 特定深さ血管強調画像の模式図である。 変形例の特定深さ血管強調画像の生成方法を示す説明図である。 第2実施形態の特殊画像処理部のブロック図である。 第3実施形態の内視鏡システムのブロック図である。 第4実施形態の内視鏡システムのブロック図である。 観察する血管の深さの設定にモード切り替えスイッチを用いる変形例の特殊画像処理部のブロック図である。 特殊画像処理部と位置合わせ処理部の連携関係を示すブロック図である。 カプセル内視鏡の概略図である。
[第1実施形態]
図1に示すように、内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16と、モニタ18と、コンソール19とを有する。内視鏡12は、光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられた湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作によって、先端部が所望の方向に向けられる。
また、操作部12bには、アングルノブ12eの他、モード切り替えスイッチ13a、ズーム操作部13b、静止画取得指示部(図示しない)等が設けられている。モード切り替えスイッチ13aは、観察モードの切り替え操作に用いられる。内視鏡システム10は、観察モードとして通常観察モードと特殊観察モードとを有している。通常観察モードは、照明光に白色光を用いて観察対象を撮像して得た自然な色合いの画像(以下、通常画像という)をモニタ18に表示する。特殊観察モードでは、観察対象を撮像して得た画像信号を用いて、観察対象に含まれる血管のうち、特定深さにある血管を抽出し、強調表示する。内視鏡システム10では、特殊観察モードとして、粘膜表層の中でも比較的深い位置にある表層血管を抽出及び表示する表層血管強調表示モードと、特殊観察モードには極表層血管を抽出及び強調表示する極表層血管強調表示モードとをさらに備え、モード切り替えスイッチ13aの操作によって特殊観察モードに切り替えられた場合にこれらのどちらが実行されるかは、設定により定められる。
プロセッサ装置16は、モニタ18及びコンソール19と電気的に接続される。モニタ18は、観察対象の画像や、観察対象の画像に付帯する情報等を出力表示する。コンソール19は、機能設定等の入力操作を受け付けるユーザインタフェースであり、設定部71(図2参照)に観察する血管の深さの設定をするための入力部として機能する。本実施形態の場合、モニタ18に表示する設定メニューにおいて、観察する血管の深さの設定として、「表層血管」と「極表層血管」を選択可能である。なお、プロセッサ装置16には、画像や画像情報等を記録する外付けの記録部(図示省略)を接続しても良い。
図2に示すように、光源装置14は、光源20と、光源20を制御する光源制御部22と、を備えている。光源20は、例えば複数の半導体光源を有し、これらをそれぞれ点灯または消灯し、点灯する場合には各半導体光源の発光量を制御することにより、観察対象に照射する照明光を発生する。本実施形態では、光源20は、V−LED(Violet Light Emitting Diode)23a、B−LED(Blue Light Emitting Diode)23b、G−LED(Green Light Emitting Diode)23c、及びR−LED(Red Light Emitting Diode)23dの四色のLEDを有する。図3に示すように、V−LED23aは、中心波長405nm、波長帯域380〜420nmの紫色光Vを発光する紫色光源である。B−LED23bは、中心波長460nm、波長帯域420〜500nmの青色光Bを発する青色半導体光源である。G−LED23cは、波長帯域が480〜600nmに及ぶ緑色光Gを発する緑色半導体光源である。R−LED23dは、中心波長620〜630nmで、波長帯域が600〜650nmに及び赤色光Rを発光する赤色半導体光源である。なお、V−LED23aとB−LED23bの中心波長は±5nmから±10nm程度の幅を有する。
これらの各LED23a〜23dの点灯や消灯、点灯時の発光量等は、光源制御部22が各々に独立した制御信号を入力するによって各々に制御することができる。通常観察モードの場合、光源制御部22は、V−LED23a、B−LED23b、G−LED23c、及びR−LED23dを全て点灯させる。このため、通常観察モードでは、紫色光V、青色光B、緑色光G、及び赤色光Rを含む白色光が照明光として用いられる。一方、特殊観察モードの場合、光源制御部22は、V−LED23aだけを点灯し、B−LED23b等の他のLEDを消灯する第1発光パターンと、V−LED23aを消灯し、B−LED23bを点灯し、V−LED23a等の他のLEDを消灯する第2発光パターンとで光源20を制御する。すなわち、特殊観察モードでは、紫色光Vと青色光Bとを順次発生し、観察対象に照射する。したがって、紫色光Vが第1照明光であり、青色光Bが、第1照明光とは波長帯域が異なる第2照明光である。
本実施形態では、上記のように、特殊観察モードにおいて、V−LED23aが発する紫色光Vと、B−LED23aが発する青色光Bとを、第1照明光及び第2照明光としてそのまま用いているが、光源20に波長帯域を制限する光学フィルタ等を設けることによって、紫色光Vと青色光Bとはそれぞれさらに波長帯域を制限してから、特殊観察モードの照明光として利用することが好ましい。
これは第1照明光と第2照明光とが、観察対象の散乱係数が互いに異なり、かつ、ヘモグロビンの吸光係数がほぼ等しい二つの波長帯域の光であると、特定深さの血管の抽出を特に鮮明に抽出することができるからである。例えば、各照明光の波長帯域における観察対象の散乱係数は、観察対象への深達度、すなわち、その波長帯域で観察可能な血管の粘膜下の深さに関連する。一方、ヘモグロビンの吸光係数は、各照明光で観察可能な血管のコントラストに関連する。したがって、特殊観察モード時に用いる第1照明光と第2照明光に要求する、観察対象の散乱係数が異なり、かつ、ヘモグロビンの吸光係数がほぼ等しいという条件は、観察可能な血管の粘膜下の深さがそれぞれ異なり、かつ、粘膜下での深さが異なる血管が同程度のコントラストに観察可能である二つの波長帯域の光を選択して用いるという条件である。光源20に用いるLED等の特性(中心波長)等によっては、上記条件を完全には満たせない場合があるが、このような場合には、少なくとも観察対象の散乱係数が異なる範囲内で、できる限りヘモグロビンの吸光係数が近い二つの波長帯域の光を第1照明光及び第2照明光とすれば良い。なお、第1照明光が第2照明光よりも短波長帯域の光であるとすると、観察対象の散乱係数が異なるとは、第1照明光の散乱係数に対する第2照明光の散乱係数の比が0.8以下であることを言う。また、第1照明光と第2照明光の散乱係数の差は70cm−1以上あると良い。
特殊観察モード時に照明光として用いる紫色光Vと青色光Bとでは、図4に示すように、紫色光Vの散乱係数に対する青色光Bの散乱係数の比は0.75あり、図5に示すように、ヘモグロビンの吸光係数(酸化ヘモグロビンの吸光係数:還元ヘモグロビンの吸光係数=3:7)は概ね同程度である。
各LED23a〜23dが発する各色の光は、ミラーやレンズ等で形成される光路結合部(図示しない)を介して、挿入部12a内に挿通されたライトガイド41に入射される。ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と、光源装置14及びプロセッサ装置16を接続するコード)に内蔵されている。ライトガイド41は、光源20が発生した照明光を、内視鏡12の先端部12dまで伝搬する。
内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、ライトガイド41によって伝搬された照明光は照明レンズ45を介して観察対象に照射される。撮像光学系30bは、対物レンズ46、ズームレンズ47、撮像センサ48を有している。照明光を照射したことによる観察対象からの反射光、散乱光、及び蛍光等の各種の光は、対物レンズ46及びズームレンズ47を介して撮像センサ48に入射する。これにより、撮像センサ48に観察対象の像が結像される。なお、ズームレンズ47は、ズーム操作部13bを操作することでテレ端とワイド端との間で自在に移動され、撮像センサ48に結像する観察対象の反射像を拡大または縮小する。すなわち、撮像光学系30bは、観察対象を撮像センサ48に結像させ、かつ、撮像倍率が可変である。
撮像センサ48は、照明光が照射された観察対象を撮像するカラー撮像センサである。撮像センサ48の各画素には、図6に示すR(赤色)カラーフィルタ、G(緑色)カラーフィルタ、B(青色)カラーフィルタのいずれかが各画素に設けられている。このため、撮像センサ48は、紫色から青色の光をBカラーフィルタが設けられたB画素(青色画素)で受光し、緑色の光をGカラーフィルタが設けられたG画素(緑色画素)で受光し、赤色の光をRカラーフィルタが設けられたR画素(赤色画素)で受光する。そして、各色の画素から、RGB各色の画像信号を出力する。特殊観察モードでは、光源20の発光パターンが第1発光パターンの場合には、紫色光Vが照明光として用いられるので、撮像センサ48は、紫色光Vが照射された観察対象を撮像し、紫色光Vに対応する第1画像信号(以下、B1画像信号という)をB画素から出力する。また、光源20の発光パターンが第2発光パターンの場合には、青色光Bが照明光として用いられるので、撮像センサ48は、青色光Bに対応する第2画像信号(以下、B2画像信号という)をB画素から出力する。
撮像センサ48としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。また、原色の撮像センサ48の代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(緑)の補色フィルタを備えた補色撮像センサを用いても良い。補色撮像センサを用いる場合には、CMYGの四色の画像信号が出力されるので、補色−原色色変換によって、CMYGの四色の画像信号をRGBの三色の画像信号に変換することにより、撮像センサ48と同様のRGB画像信号を得ることができる。また、撮像センサ48の代わりに、カラーフィルタを設けていないモノクロセンサを用いても良い。
CDS/AGC回路51は、撮像センサ48から得られるアナログの画像信号に相関二重サンプリング(CDS;Correlated Double Sampling)や自動利得制御(AGC;Automatic Gain Control)を行う。CDS/AGC回路51を経た画像信号は、A/D(Analog to Digital)コンバータ52により、デジタル画像信号に変換される。A/D変換後のデジタル画像信号がプロセッサ装置16に入力される。
プロセッサ装置16は、画像信号取得部53と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、画像処理切替部61と、通常画像処理部66と、特殊画像処理部67と、映像信号生成部68と、を備えている。画像信号取得部53は、CDS/AGC回路51及びA/Dコンバータ52を介して、撮像センサ48からデジタルの画像信号を取得する。
DSP56は、取得した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、デモザイク処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施された画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理では、オフセット処理後の画像信号に特定のゲインを乗じることにより信号レベルが整えられる。
ゲイン補正処理後の画像信号には、色再現性を高めるためのリニアマトリクス処理が施される。その後、ガンマ変換処理によって明るさや彩度が整えられる。ガンマ変換処理後の画像信号には、デモザイク処理(等方化処理、または同時化処理とも言う)が施され、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。ノイズ除去部58は、DSP56でデモザイク処理等が施された画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等による)を施すことによってノイズを除去する。ノイズが除去された画像信号は、画像処理切替部61に送信される。モード切り替えスイッチ13aの操作によって通常観察モードにセットされている場合、画像処理切替部61は、受信した画像信号を通常画像処理部66に送信し、特殊観察モードにセットされている場合には、受信した画像信号を特殊画像処理部67に送信する。
通常画像処理部66は、通常観察モードに設定されている場合に作動し、受信した画像信号に対して、色変換処理、色彩強調処理、及び構造強調処理を行い、通常画像信号を生成する。色変換処理では、RGB画像信号に対して3×3のマトリックス処理、階調変換処理、及び3次元LUT(ルックアップテーブル)処理などにより色変換処理を行う。色彩強調処理は、色変換処理済みの画像信号に対して行われる。構造強調処理は、例えば表層血管やピットパターン等の観察対象の構造を強調する処理であり、色彩強調処理後の画像信号に対して行われる。上記のように、構造強調処理まで各種画像処理等を施した通常画像信号を用いたカラー画像が通常画像である。
特殊画像処理部67は、特殊観察モードに設定されている場合に作動する画像処理部であり、紫色光Vに対応するB1画像信号と、青色光Bに対応するB2画像信号と、を用いて特定深さの血管を抽出し、他の血管に対して抽出した血管を色の違いで表す画像を表示用に生成する。具体的には、特殊画像処理部67は、B1画像信号、またはB2画像信号いずれかの画像信号を選択し、選択した画像信号を輝度チャンネルに割り当てた画像を生成する。
また、特殊画像処理部67には、観察する血管の深さの設定をする設定部71から観察する血管の深さを表す設定情報が入力される。そして、特殊画像処理部67は、設定情報を用いて、すなわち観察する血管の深さの設定を用いて、表示用の画像を生成する際に、輝度チャンネルに割り当てる画像信号を選択する。本実施形態の場合、設定部71から入力される設定情報は「表層血管」または「極表層血管」のいずれかである。このため、観察する血管の深さの設定が「表層血管」である場合、特殊画像処理部67はB2画像信号を輝度チャンネルに割り当てて表示用の画像を生成する。一方、観察する血管の深さの設定が「極表層血管」である場合、特殊画像処理部67はB1画像信号を輝度チャンネルに割り当てて表示用の画像を生成する。なお、RGBのチャンネルを有する表示用の画像を生成し、かつ、観察する血管の深さの設定が「表層血管」の場合にはB2画像信号をGチャンネル(緑色チャンネル)に割り当て、RGBのチャンネルを有する表示用の画像を生成し、かつ、観察する血管の深さの設定が「極表層血管」の場合にはB1画像信号をGチャンネルに割り当てる。
また、特殊画像処理部67に入力されるB1画像信号とB2画像信号は、位置合わせ処理部62及び明るさ補正処理部63を介して入力される。
位置合わせ処理部62は、順次取得されたB1画像信号が表す観察対象とB2画像信号が表す観察対象との位置合わせを行う。位置合わせ処理部62は、B1画像信号、または、B2画像信号のうち少なくとも一方を補正する。
明るさ補正処理部63は、位置合わせ処理部62によって位置合わせされたB1画像信号及びB2画像信号の明るさが特定比になるように、B1画像信号、または、B2画像信号のうち少なくとも一方の明るさを補正する。具体的には、第1発光パターンの紫色光Vと第2発光パターンの青色光Bの光量比は既知なので、これらの光量比を用いて、それぞれ同等の光量の紫色光V及び青色光Bを観察対象に照射して得る場合の明るさになるように、B1画像信号の明るさを、B2画像信号の明るさに一致させるようにゲイン補正をする。画像信号の明るさとは、例えば、全ての画素の画素値の平均値(あるいは合計値や中間値等の他の統計値)であり、観察対象の粘膜の明るさに概ね対応する。
図7に示すように、特殊画像処理部67は、画像信号選択部72と、演算画像信号生成部76と、低解像度化処理部77と、画像生成部78とを備える。
画像信号選択部72には、観察する血管の深さを表す設定情報が設定部71から入力される。画像信号選択部72は、入力された設定情報(すなわち観察する血管の深さの設定)を用いて、画像生成部78が表示用の画像を生成する際に、輝度チャンネルに割り当てる画像信号を選択する。本実施形態の場合、設定情報は、「表層血管」または「極表層血管」という二つの値のいずれかであるため、これらに対応するB1画像信号またはB2画像信号のいずれかから、輝度チャンネルに割り当てる画像信号を選択する。より具体的には、設定情報が「表層血管」の場合、画像信号選択部72はB2画像信号を選択し、設定情報が「極表層血管」の場合はB1画像信号を選択する。
演算画像信号生成部76は、位置合わせ処理及び明るさ補正処理が施されたB1画像信号とB2画像信号とを用いて演算をし、演算画像信号を生成する。具体的には、B1画像信号とB2画像信号の差または比を算出する。本実施形態では、演算画像信号生成部76は、B1画像信号及びB2画像信号を対数変換し、対数変換後のB1画像信号とB2画像信号の差を生成することにより、演算画像信号ΔBを生成する。B1画像信号とB2画像信号を対数変換せずにそのまま用いる場合には、B1画像信号とB2画像信号の比を画素毎に演算することにより、演算画像信号を生成する。B1画像信号及びB2画像信号は、各画素が受光量に比例する画素値を有するが、対数変換をすると、濃度に比例する画素値を有することになるので、各画像信号を得たときの照明光の照度によらず、安定した演算結果を得ることができる。
演算画像信号生成部76は、設定部71から設定情報を受けることで、観察する血管の深さの設定によって、演算画像信号の生成方法を変更する。具体的には、観察する血管の深さの設定が「表層血管」である場合、対数変換後のB1画像信号からB2画像信号を減算することにより、演算画像信号ΔBを生成する。一方、観察する血管深さの設定が「極表層血管」である場合、対数変換後のB2画像信号からB1画像信号を減算することにより、演算画像信号ΔBを生成する。
上記のように演算画像信号ΔBを算出することは、粘膜下の特定深さにある血管を抽出することに対応する。例えば、図8に示すように、紫色光Vと青色光Bは、これらを照明光として用いると、概ね表層血管(深さAs及び深さAdの全範囲の血管)を観察可能であるが、紫色光Vは青色光Bと比較して波長が短いので、観察対象への深達度が小さく、青色光Bに対して相対的に粘膜下の浅い位置Asにある血管しか写し出せない代わりに、浅い位置Asにある血管のコントラスト(血管からの反射光量に対する周辺の粘膜からの反射光量の比)は青色光Bを用いる場合よりも大きい。一方、青色光Bは紫色光Vと比較して波長が長いので、観察対象への深達度が大きく、紫色光Vに対して相対的に粘膜下の深い位置Adにある血管まで写し出せる代わりに、浅い位置Asにある血管のコントラストは紫色光Vを用いる場合よりも小さい。このため、青色光Bに対応するB2画像信号から紫色光Vに対応するB1画像信号を減算すれば、特に粘膜下の浅い位置Asにある極表層血管を表す画素の画素値は強調されて、大きい値(白色)になり、極表層血管よりも深い位置Adにある表層血管を表す画素の画素値は小さい値(黒色)になる。これとは逆に、紫色光Vに対応するB1画像信号から青色光Bに対応するB2画像信号を減算すれば、浅い位置Asにある極表層血管を表す画素の画素値は小さい値(黒色)になり、極表層血管よりも深い位置Adにある表層血管の画素値は強調されて大きい値(白色)になる。
低解像度化処理部77は、いわゆるローパスフィルタ(以下、LPFという)であり、演算画像信号生成部76が生成した演算画像信号ΔBを低解像度化する。低解像度化処理部77が演算画像信号ΔBに施す低解像度化処理の強度は、LPFのカットオフ周波数で定まる。LPFのカットオフ周波数は予め設定され、少なくとももとの演算画像信号ΔBの解像度よりは低解像度化する。
画像生成部78は、特殊画像処理部67が受信するB1画像信号またはB2画像信号のいずれかと、低解像度化された演算画像信号ΔBとを用いて、複数の出力チャンネルを有する画像を生成する。より具体的には、画像生成部78は、輝度チャンネルYと色差に関する二つの色差チャンネルCb,Crとを有する画像を生成する。このとき、図9に示すように、画像生成部78は、観察する血管の深さの設定を用いて画像信号選択部72が選択したB1画像信号またはB2画像信号のいずれかを輝度チャンネルYに割り当て、低解像度化された演算画像信号ΔBを二つの色差チャンネルCb,Crに割り当てる。これにより、特定深さの血管の走行パターンを色で強調した画像(以下、特定深さ血管強調画像という)を表示用の画像として生成する。
観察する血管の深さの設定が「極表層血管」の場合、画像信号選択部72は、紫色光Vに対応したB1画像信号を選択するので、画像生成部78はB1画像信号を輝度チャンネルYに割り当てる。これは、観察対象への深達度が、青色光Bよりも紫色光Vの方が低く、極表層血管のコントラストが高くなりやすいので、極表層血管を観察しやすい画像が得られるからである。同様の理由により、観察する血管の深さの設定が「表層血管」の場合、観察対象への深達度が高い青色光Bに対応し、やや深い位置にある表層血管のコントラストが高くなりやすいB2画像信号が画像信号選択部72によって選択されるので、画像生成部78はB2画像信号を輝度チャンネルYに割り当てる。
画像生成部78は、色差チャンネルCb,Crに演算画像信号ΔBを割り当てる際に、それぞれ係数αと係数βを乗じる。これは、表層血管等を強調観察する内視鏡システムが表示する画像と色味を揃えるためである。
具体的には、表層血管を強調観察する強調観察モードを有する従来の内視鏡システムでは、強調観察モードの場合に、狭帯域の青色光を照射して観察対象を撮像してB画像信号を取得し、かつ、狭帯域の緑色光を照射して観察対象を撮像してG画像信号を取得する。そして、B画像信号を表示用の画像のBチャンネル(青色チャンネル)とGチャンネル(緑色チャンネル)に割り当て、G画像信号をRチャンネル(赤色チャンネル)に割り当てることにより、粘膜下の深い位置にある中深層血管を緑色系(シアン系)の色にし、粘膜下の浅い位置にある表層血管を赤色系(マゼンタ系)の色にして強調表示する。ITU−R.601では、RGB各画像信号と輝度チャンネルY及び色差チャンネルCb,Crの関係は、下記式(1),(2),及び(3)で表される。
Y=0.299R+0.587G+0.114B ・・・(1)
Cb=−0.169−0.331G+0.5G ・・・(2)
Cr=0.5R−0.419G−0.081B ・・・(3)
そして、色差チャンネルCb,Crの式(2)及び式(3)において、RにGを代入し、GにBを代入すると、式(4)及び式(5)に示すように色差チャンネルCb,Crを(G−B)で表すことができる。
Cb=−0.169G+0.169B=0.169(G−B) ・・・(4)
Cr=0.5G−0.5B=0.5(G−B) ・・・(5)
本実施形態では、極表層血管を抽出及び表示するので、この(G−B)信号に代えて、演算画像信号ΔBを用いる。すなわち、係数α=0.169を乗じて演算画像信号ΔBを色差信号Cbに割り当て、係数β=0.5を乗じて演算画像信号ΔBを色差信号Crに割り当てる。これにより、内視鏡システム10では、従来の内視鏡システムとほぼ同配色の画像を表示する。但し、極表層血管と、比較的深い位置にある表層血管との色の違いを強調するために、設定等に応じて、上記係数α及び係数βにさらに係数を乗じる場合がある。
なお、輝度チャンネルY及び色差チャンネルCb,CrからRGBの特定深さ血管強調画像を生成するには、ITU−R.601の逆変換にしたがって、
R=Y+1.402Cr ・・・(7)
G=Y−0.344Cb−0.714Cr ・・・(8)
B=Y+1.772Cb ・・・(9)
によって行う。
通常画像処理部66が生成する通常画像、及び、特殊画像処理部67が生成する特定深さ血管強調画像は、映像信号生成部68に入力される。映像信号生成部68は通常画像や特定深さ血管強調画像をモニタ18で表示可能な画像として表示するための映像信号に変換する。この映像信号を用いて、モニタ18は、通常画像や特定深さ血管強調画像を表示する。
次に、特殊観察モードにおける画像処理の一連の流れを図10に沿って説明する。まず、特殊観察モードで観察対象を観察する場合には、コンソール19(入力部)を用いて、設定部71に、観察する血管の深さの設定をする(S10)。具体的には、コンソール19を用いてモニタ18に設定メニューを表示させ、観察する血管の深さの設定を「表層血管」または「極表層血管」の何れかから選択する。以下では、観察する血管の深さの設定が「極表層血管」に設定されているとする。
このように観察する血管の深さの設定がされた状態で特殊観察モードに切り替えると、光源20が紫色光Vを発生し、発生した紫色光Vを観察対象に照射する(S11)。撮像センサ48は、紫色光Vが照射された観察対象を撮像し(S12)、画像信号取得部53は、紫色光Vに対応するB1画像信号を取得する(S13)。図11に示すように、B1画像信号110は、紫色光Vによって観察対象を撮像して得た画像信号なので、観察対象の起伏等の形状112の他、極表層血管124が観察可能である。また、極表層血管124よりも粘膜下の深い位置にある表層血管123も、B1画像信号110によって観察可能である。
次に、光源20が青色光Bを発生し、発生した青色光Bを観察対象に照射し(S14)、撮像センサ48は青色光Bが照射された観察対象を撮像する(S15)。そして、画像信号取得部53は、青色光Bに対応するB2画像信号を取得する(S16)。図12に示すように、B2画像信号120は、青色光Bによって観察対象を撮像して得た画像信号なので、観察対象の形状112の他、比較的深い位置にある表層血管123が観察可能である。また、極表層血管124もB2画像信号120によって観察可能である。B1画像信号110とB2画像信号120を比較すると、B1画像信号110の方が極表層血管124のコントラストが高く、B2画像信号120の方が極表層血管124に比べて比較的深い位置にある表層血管123のコントラストが高い。
上記のようにして得られたB1画像信号とB2画像信号は、位置合わせ処理部62で位置合わせされ(S17)、さらに明るさ補正処理部63によって明るさ補正処理が施された後(S18)、特殊画像処理部67に入力される。特殊画像処理部67では、演算画像信号生成部76によって、演算画像信号ΔBを生成する(S19)。観察する血管の深さの設定が「極表層血管」である場合、演算画像信号ΔBは、元の画像信号(例えば図11のB1画像信号や図12のB2画像信号)に対して、比較的深い位置にある表層血管123の画素値は小さく、かつ、極表層血管124の画素値は大きくなる。このため、図13に示すように、演算画像信号ΔBでは、極表層血管124と比較的深い位置にある表層血管123の違いが元の画像信号よりも顕著になる。特殊画像処理部67は、演算画像信号ΔBを生成すると、さらに低解像度化処理部77によって演算画像信号ΔBを低解像度化する(S20)。図14に示すように、低解像度化処理部77を経た演算画像信号ΔBでは、表層血管123や極表層血管124はぼやけた状態になる。
このように演算画像信号ΔBを生成する一方で、特殊画像処理部67は、画像信号選択部72によって、画像生成部78が表示用に生成する特定深さ血管強調画像の輝度チャンネルYに割り当てる画像信号を選択する(S21)。画像信号選択部72は、観察する血管の深さの設定が「表層血管」の場合にはB2画像信号を選択し、観察する血管の深さの設定が「極表層血管」の場合にはB1画像信号を選択するので、ここではB1画像信号が選択される。
演算画像信号生成部76によって演算画像信号ΔBを生成し、かつ、画像信号選択部72によって画像信号を選択すると、特殊画像処理部67は、画像生成部78によって、画像信号選択部72が選択したB1画像信号を輝度チャンネルYに割り当て、低解像度化された演算画像信号ΔBを色差チャンネルCr,Cbを割り当てることにより、特定深さ血管強調画像を生成する。図15に示すように、観察する血管の深さの設定が「極表層血管」の場合に生成される特定深さ血管強調画像130では、表層血管123はシアン系の色に着色して表示され、極表層血管124がマゼンタ系に着色して表示される。このため、特定深さ血管強調画像130では、表層血管123と極表層血管124を色で識別可能であり、実質的に極表層血管124が観察しやすい強調画像として表示される。
観察する血管の深さの設定を「表層血管」に設定する場合、演算画像信号ΔBでは、表層血管123の画素値が大きくなり、かつ、極表層血管124の画素値は小さくなる。また、特定深さ血管強調画像の輝度チャンネルYに割り当てる画像信号にはB2画像信号が選択される。このため、観察する血管の深さの設定が「極表層血管」の場合とは逆に、表層血管123がマゼンタ系に着色して表示され、極表層血管124がシアン系の色に着色して表示される。このため、観察する血管の深さの設定が「表層血管」の場合に生成される特定深さ血管強調画像では、表層血管123と極表層血管124を色で識別可能であり、実質的に表層血管123が観察しやすくなる。
上記のように、内視鏡システム10は、観察する血管の深さの設定をしておき、表示用の画像である特定深さ血管強調画像を生成する際に、輝度チャンネルYに割り当てる画像信号を、観察する血管の深さの設定に応じて変更する。このため、特定深さ血管強調画像では、設定した深さにある血管のコントラストが高く、観察しやすい。
さらに、内視鏡システム10は、紫色光Vに対応するB1画像信号と青色光Bに対応するB2画像信号との差(または比)によって演算画像信号ΔBを算出し、色差チャンネルCb,Crに演算画像信号ΔBを割り当てる。これにより、輝度チャンネルYに割り当てる画像信号を選択することで、設定した特定深さの血管のコントラストが高い上に、従来では識別が難しかった極表層血管124と、極表層血管124に対して比較的深い位置にある表層血管123とを、色の違いで可視化し、強調表示することができる。
また、B1画像信号とB2画像信号の取得タイミングの違いによって、輝度チャンネルYに割り当てるB1画像信号と演算画像信号ΔBと間に齟齬が生じ、結果として、特定深さ血管強調画像130に色ずれが表れることがある。このため、内視鏡システム10では、演算画像信号ΔBを色差チャンネルCb,Crに割り当てるときに、低解像度化処理部77によって低解像度化してから演算画像信号ΔBを色差チャンネルCb,Crに割り当てるので色ずれは低減されている。
また、上記第1実施形態では、画像生成部78は、B1画像信号を輝度チャンネルYに割り当て、かつ、演算画像信号ΔBを色差チャンネルCb,Crに割り当てて、YCbCr形式の特定深さ血管強調画像130を生成しているが、RチャンネルとGチャンネルとBチャンネルを有するRGB形式の画像を生成しても良い。この場合、画像生成部78は、図16に示すように、輝度に最も寄与するGチャンネルに画像信号選択部72が選択した画像信号を割り当て、残りのBチャンネル及びRチャンネルに演算画像信号ΔBを割り当てる。
[第2実施形態]
上記第1実施形態では、観察する血管の深さの設定が「表層血管」と「極表層血管」の二種類であり、これらのうちの一方を選択しているが、観察する血管の深さの設定はより細かく段階的に設定可能であることが好ましい。例えば、粘膜からの深さを数値で設定可能にすることが好ましい。この場合、図17に示すように、特殊画像処理部67には、上記実施形態の画像信号選択部72及び演算画像信号生成部76の代わりに、画像信号選択部272と演算画像信号生成部276を設ける。
画像信号選択部272は、混合画像信号生成部273を備える。混合画像信号生成部273は、B1画像信号とB2画像信号を混合した混合画像信号Bを生成する。また、混合画像信号生成部273は、血管の深さの設定によって、B1画像信号とB2画像信号の混合比率を変えて混合画像信号Bを生成する。具体的には、観察する血管の深さを数値で設定する場合、B1画像信号とB2画像信号に観察する血管の深さを表す数値に対応する重み付けをして画素値を平均することにより、混合画像信号Bを生成する。例えば、観察する血管の深さとして設定可能な範囲が「0」〜「100」(任意単位)であり、数値が大きいほど深い位置を表すものとする。この場合、観察する血管の深さが「30」に設定されると、混合画像信号生成部273は、B1画像信号とB2画像信号を7:3(=1−30/100:30/100)の混合比率で重み付け平均をすることで、混合画像信号Bを生成する。同様に、観察する血管の深さが「60」に設定されると、混合画像信号部273は、B1画像信号とB2画像信号を4:6(=1−60/100:60/100)の混合比率で重み付け平均をすることで、混合画像信号Bを生成する。もちろん、観察する血管の深さの設定が「0」の場合はB1画像信号とB2画像信号の混合比率は1:0であり、混合画像信号BはB1画像信号に等しく、観察する血管の深さの設定が「100」の場合はB1画像信号とB2画像信号の混合比率は0:1であり、混合画像信号BはB2画像信号に等しい。
演算画像信号生成部276は、混合画像信号生成部273と同様に観察する血管の深さの設定に応じてB1画像信号とB2画像信号に重み付けをして、これらの差または比を算出することにより、演算画像信号ΔBを生成する。こうすると、図8の紫色光Vのグラフまたは青色光Bのグラフが上下に相対的にシフトすることになるので、紫色光Vのグラフと青色光Bのグラフの交点が左右にシフトする。このため、演算画像信号ΔBで画素値が小さい値(黒色)になる血管と、画素値が大きい値(白色)になる血管の境界が変更されるので、結果として、特定深さ血管強調画像において強調される血管の深さが変わる。
そして、画像生成部78では、混合画像信号Bを輝度チャンネルYに割り当て、演算画像信号生成部276が生成した演算画像信号ΔBを色差チャンネルCb,Crに割り当てて、特定深さ血管強調画像を生成する。
なお、上記第1実施形態の内視鏡システム10は、B1画像信号とB2画像信号のいずれかを選択して特定深さ血管強調画像の輝度チャンネルYに割り当てているが、B1画像信号、B2画像信号、または、上記第2実施形態の混合画像信号Bのうちのいずれかの画像信号を選択し、選択した画像信号を輝度チャンネルに割り当てて特定深さ血管強調画像を生成しても良い。この場合、観察する血管の深さの設定として、「表層血管」と「極表層血管」の他に、「血管の深さを指定」を選択できるようにし、観察する血管の深さの設定が「表層血管」の場合にはB2画像信号を輝度チャンネルYに割り当て、観察する血管の深さの設定が「極表層血管」の場合にはB1画像信号を輝度チャンネルYに割り当て、観察する血管の深さの設定が「血管の深さを指定」の場合には、指定された深さに応じて生成した混合画像信号Bを輝度チャンネルYに割り当てれば良い。
なお、B1画像信号とB2画像信号の混合比率を7:3にすると、表層血管を強調観察する強調観察モードを有する従来の内視鏡システムが表示する画像に近い特定深さ血管強調画像が得られる。
[第3実施形態]
上記第1及び第2実施形態では、紫色光Vと青色光Bを用いることで、極表層血管または表層血管を強調表示しているが、同様の原理で、中層や中深層、あるいは深層と称される粘膜下のさらに深い位置にある血管を強調表示することもできる。例えば、図18に示すように、第3実施形態の内視鏡システム300は、観察する血管の深さの設定として、「極表層血管」と「表層血管」の他に、「中深層血管」を設定可能にしたものであり、観察する血管の深さの設定が、設定部71から入力される光源制御部322を備える。
光源制御部322は、第1及び第2実施形態と同様に光源20の各LED23a〜23dの点灯や消灯、発光量等の制御をするが、特に、観察する血管の深さの設定によって、特殊観察モードで用いる第1照明光及び第2照明光の各波長帯域を制御する。具体的には、観察する血管の深さの設定が「極表層血管」または「表層血管」である場合には、第1実施形態と同様に、紫色光Vを第1照明光とし、青色光Bを第2照明光とする。一方、観察する血管の深さの設定が「中深層血管」である場合、青色光Bを第1照明光とし、緑色光Gを第2照明光とする。
青色光Bを第1照明光とし、緑色光Gを第2照明光とする場合、青色光Bが照射された観察対象をB画素で撮像して得た画像信号を第1画像信号とし、緑色光Gが照射された観察対象をB画素で撮像して得た画像信号を第2画像信号とする。こうすると、特定深さ血管強調画像を生成する際に、第2画像信号を選択して輝度チャンネルYに割り当て、対数変換後のB1画像信号からB2画像信号を減算して生成した演算画像信号ΔBを色差チャンネルCb,Crに割り当てれば、表層血管に対して中深層血管を強調表示することができる。逆に、第1画像信号を選択して輝度チャンネルYに割り当て、対数変換後のB2画像信号からB1画像信号を減算して生成した演算画像信号ΔBを色差チャンネルCb,Crに割り当てれば、表層血管と中深層血管を色の違いで表し、中深層血管に対して表層血管を強調表示することができる。
上記第3実施形態の内視鏡システム300のように、観察する血管の深さの設定が、設定部71から光源制御部322に入力されるようにし、光源制御部322では、観察する血管の深さの設定によって、特殊観察モードで使用する第1照明光及び第2照明光の各波長帯域を制御すれば(分光スペクトルを変化させる場合を含む)、中深層、あるいはさらに細かく分けて、中層血管や深層血管を強調表示することができる。
なお、上記第3実施形態では、光源制御部322が、観察する血管の深さの設定によって特殊観察モードで用いる第1照明光及び第2照明光の波長帯域を切り替える制御をしているが、光源制御部322は、観察する血管の深さの設定によって、第1照明光と第2照明光の発光量のバランス(以下、光量比という)を切り替えても良い。例えば、第1及び第2実施形態のように紫色光Vを第1照明光とし、青色光Bを第2照明光とする場合に、観察する血管の深さ設定によって、紫色光Vと青色光Bの光量比を制御すれば、第2実施形態でB1画像信号及びB2画像信号に対して行っている重み付けを、B1画像信号及びB2画像信号を得る段階で行っておくことができる。
また、上記第3実施形態では、光源制御部322が、観察する血管の深さの設定によって特殊観察モードで用いる第1照明光及び第2照明光の波長帯域を切り替える制御をしているが、第1照明光及び第2照明光の波長帯域の組み合わせの他に、特定深さ血管強調画像の輝度チャンネルYに割り当てる画像信号を取得する画素の色や、第1照明光及び第2照明光の光量比等を変更しても良い。例えば、紫色光Vと青色光Bを7:3の光量比で同時発光させ、この照明光が照射された観察対象を、B画素で撮像して得た画像信号と、G画素で撮像して得た画像信号とを用いて特定深さ血管強調画像を生成しても良い。また、紫色光Vと青色光Bを7:3の光量比で同時発光させた照明光と、青色光Bと緑色光Gを1:1の光量比で同時発光させた照明光を、撮像のフレーム毎に切り替え、各フレームで得た画像信号を組み合わせて使用しても良い。このように、第1照明光及び第2照明光の波長帯域の制御や、特定深さ血管強調画像の生成に用いる画像信号を取得する画素、照明光の光量比等の制御を組み合わせることで、観察する血管の深さのより細かな設定に柔軟に対応することができる。
[第4実施形態]
上記第1〜第3実施形態では、入力部として機能するコンソール19を用いて、観察する血管の深さの設定をしているが、内視鏡システムが自動的に観察する血管の深さの設定をしても良い。この場合、図19に示す内視鏡システム400のように、例えば、プロセッサ装置16に観察距離取得部419を設ける。撮像光学系30bの撮像倍率は、観察距離と相関があり、撮像倍率が小さい場合には、遠景観察をしており、観察距離は長く、撮像倍率が大きい場合には、近景観察をしており、観察距離は短いと言える。このため、観察距離取得部419は、ズーム操作部13bから、撮像光学系30bの撮像倍率を取得する。観察距離取得部419は、取得した撮像倍率を観察距離として、あるいは取得した撮像倍率を観察距離に換算して、設定部471に入力する。設定部471は、観察距離取得部419から入力される観察距離を用いて、観察する血管の深さを設定する。例えば、観察距離が予め定めた閾値よりも短い場合には、観察する血管の深さの設定を「極表層血管」に自動設定し、観察距離が閾値以上の場合には、観察する血管の深さの設定を「表層血管」に自動設定する。
このように、観察する血管の深さの設定を自動化すれば、例えば、ズーム操作部13bを自然に操作するだけで、状況に応じて適切な血管を強調した画像をモニタ18に表示することができる。
上記第4実施形態では、観察距離取得部419は、撮像光学系30bの撮像倍率を取得しているが、観察距離取得部419は、画像信号取得部53や画像処理切替部61等から画像信号を取得し、取得した画像信号を用いて観察距離を算出してもよい。
上記第1〜第3実施形態では、コンソール19を用いて観察する血管の深さの設定を行い、上記第4実施形態では、観察する血管の深さを自動的に設定しているが、これらの代わりに、内視鏡12に設けられたボタン等の操作によって観察する血管の深さの設定を行えるようにしても良い。例えば、特殊観察モードを、極表層血管強調モードや表層血管強調モード等、観察する血管の深さの種類に応じて細分化しておき、図20に示すように、モード切り替えスイッチ13aの操作信号が画像信号選択部72及び演算画像信号生成部76に入力されるようにする。そして、画像信号選択部72や演算画像信号生成部76では、モード切り替えスイッチ13aからの操作信号が入力される度に、通常観察モードと、極表層血管強調モードや表層血管強調モード等の観察する血管の深さの種類に応じて細分化された各特殊観察モードをトグル切り替えしても良い。こうすると、内視鏡12を用いて観察する血管の深さの設定を切り替えられるので利便性が向上する。
上記変形例では、観察する血管の深さの設定がモード切り替えスイッチ13aの操作によって切り替わるようにしているが、その他のボタンやレバー、スイッチ(フットペダル等)を用いても良い。
上記第1〜第4実施形態では、低解像度化処理部77で用いるLPFのカットオフ周波数は予め設定されているが、LPFのカットオフ周波数を可変にし、LPFのカットオフ周波数を動的に設定することが好ましい。例えば、図21に示すように、低解像度化処理部77に、位置合わせ処理部62からB1画像信号とB2画像信号の位置合わせ精度が入力されるようにする。そして、低解像度化処理部77は、B1画像信号とB2画像信号の位置合わせ精度に応じてLPFのカットオフ周波数(低解像度化処理の強度)を変更する。具体的には、B1画像信号とB2画像信号の位置合わせ精度が高いほど、LPFのカットオフ周波数を高周波数に設定して低解像度化処理の強度を小さくし、B1画像信号とB2の位置合わせ精度が低いほど、LPFのカットオフ周波数を低周波数に設定して低解像度化処理の強度を大きくすると良い。こうすると、低解像度化処理部77による演算画像信号ΔBの低解像度化の程度が最適化され、特定深さの血管(例えば、極表層血管124)を適切に強調表示することができる。
なお、特定深さ血管強調画像を静止画として表示または保存する場合、LFPのカットオフ周波数は、生成する特定深さ血管強調画像の解像度を基準として、少なくともナイキスト周波数の1/8以下の周波数を残す範囲内で設定することが好ましい。
上記変形例では、位置合わせ処理部62の位置合わせ処理の精度に応じて、低解像度化処理部77が低解像度化処理の強度を調節しているが、これとは逆に、低解像度化処理部77が行う低解像度化処理の強度に応じて、位置合わせ処理部62が位置合わせ処理の精度を調節しても良い。この場合、位置合わせ処理部62は、LPFのカットオフ周波数が大きく、低解像度化処理の強度が小さく設定されているほど、B1画像信号とB2画像信号の位置合わせ精度を高く設定する。
位置合わせ処理部62が行うB1画像信号とB2画像信号との位置合わせ処理の精度は可変にし、特定深さ血管強調画像の静止画を表示または保存する場合と、特定深さ血管強調画像の動画を表示する場合とで位置合わせ処理の精度を変えることが好ましい。例えば、モニタ18に特定深さ血管画像で構成される動画を表示する場合には、位置合わせ処理部62は、特定深さ血管画像の静止画をモニタ18に表示する(あるいは保存する)場合よりも低い第1精度で、B1画像信号とB2画像信号との位置合わせをする。これとは逆に、特定深さ血管画像の静止画をモニタ18に表示する場合、位置合わせ処理部62は、特定深さ血管画像の動画をモニタ18に表示する場合よりも高い第2精度で、B1画像信号とB2画像信号の位置合わせをする。こうすると、動画表示時には、色ずれが目立たない範囲内で高速に特定深さ血管強調画像を生成することができ、かつ、色ずれが目立ちやすい静止画の取得時には、色ずれがない特定深さ血管強調画像を生成することができる。
また、位置合わせ処理部62は、生成する特定深さ血管画像の大きさによって、B1画像信号とB2画像信号との位置合わせ精度を変更しても良い。例えば、生成する特定深さ血管画像が大きい場合には、僅かな位置ずれも目立つので、位置合わせ処理部62は高精度にB1画像信号とB2画像信号の位置合わせをし、生成する特定深さ血管画像が小さい場合には、位置ずれは目立ち難いので、低精度でB1画像信号とB2画像信号の位置合わせをする。生成する特定深さ血管画像の大きさによらずプロセッサ装置16の処理負荷が一定になるように、生成する特定深さ血管画像が大きい場合は、許容できる処理負荷になるように位置合わせの精度を落としても良い。
上記のように、位置合わせ処理部62が動画表示時と静止画取得時とで位置合わせ処理の精度を変更する場合や特定深さ血管画像の大きさに応じて位置合わせ精度を変更する場合に、低解像度化処理部77は位置合わせ精度によってLPFのカットオフ周波数を変更することが好ましい。例えば、動画表示時には、位置合わせ処理部62はB1画像信号とB2画像信号の位置合わせ精度を低下させ、その代わりに、低解像度化処理部77ではLPFのカットオフ周波数を低周波数側にシフトさせると良い。また、静止画取得時には、位置合わせ処理部62は、B1画像信号とB2画像信号の位置合わせ精度を上げ、その代わりに、低解像度化処理部77ではLFPのカットオフ周波数を高周波側にシフトさせると良い。すなわち、動画表示時にはプロセッサ装置16の処理負担が小さい低解像度化処理部77のLPFを優先し、静止画取得時には位置合わせ処理部62による正確な位置合わせを優先すると良い。
なお、位置合わせ処理部62は、動画表示時にはB1画像信号とB2画像信号との位置合わせを行わず、静止画取得時にだけB1画像信号とB2画像信号との位置合わせを行っても良い。
上記実施形態では、低解像度化処理部77は、LPFによって演算画像信号ΔBを低解像度化しているが、LPFの代わりに、演算画像信号ΔBを縮小し、その後元の大きさにまで拡大することでも低解像度化することができる。このように、演算画像信号ΔBを縮小及び拡大して低解像度課する場合、演算画像信号ΔBの縮小時には、エリアジングの少ない縮小方法を採用することが好ましい。例えば、面積平均法によって縮小した後、キュービックスプライン補間によって拡大して、演算画像信号ΔBを低解像度化することができる。
上記第1〜第4実施形態のように、極表層血管124を表層血管123と峻別して強調表示する場合には、第1照明光及び第2照明光の波長帯域は、ともに波長500nm以下の範囲内であることが好ましい。具体的には、上記実施形態の通り、405±10nmに中心波長を有する紫色光Vと、460±10nmに中心波長を有する青色光Bとを、第1照明光及び第2照明光として用いることが好ましい。405±10nmに中心波長を有する紫色光と445±10nmに中心波長を有する青色光を第1照明光及び第2照明光として用いることがさらに好ましい。445±10nmに中心波長を有する青色光は、例えば、B−LED23bの長波長側をカットする光学フィルタをB−LED23bの光路中に用いることで、上記青色光Bから生成することができる。また、B−LED23bを445±10nmに中心波長を有する青色光を発する別のLEDに替えても良い。
中深層血管を、比較的浅い位置にある中深層血管と比較的深い位置にある中深層血管とに分けて強調表示をする場合には、第1照明光及び第2照明光の波長帯域は、ともに500nm以上であることが好ましい。具体的には、波長が約500nmの光と、波長が約600nmの光とを、第1照明光及び第2照明光として用いることが好ましい。
なお、上記第1〜第4実施形態では、演算画像信号生成部76は、粘膜下の特定深さにある極表層血管124の走行パターンを表す演算画像信号ΔBを生成しているが、代わりに、血管密度を表す演算画像信号Dや血管等に含まれるヘモグロビンの酸素飽和度(以下、血管の酸素飽和度という)を表す演算画像信号Sを生成しても良い。
血管密度を表す演算画像信号Dは、上記実施形態の演算画像信号ΔBを用いて算出することができる。例えば、上記実施形態の演算画像信号ΔBは、極表層血管124を抽出した画像信号になっているので(図13参照)、演算画像信号ΔBを用いて単位面積中の極表層血管124の面積の割合を各画素について算出することにより、極表層血管124の血管密度を表す演算画像信号Dを生成することができる。このように演算画像信号Dを生成する場合、画像生成部78は、輝度チャンネルYにB1画像信号を割り当て、かつ、演算画像信号Dを色差チャンネルCb,Crに割り当てることにより、極表層血管124の血管密度を表す血管密度画像を生成する。血管密度画像は、バレット腺癌のステージ判別等の診断に直接的な示唆を与えることができる。
血管の酸素飽和度を表す演算画像信号Sを生成する場合は、例えば、中心波長445±10nmの第1青色光と緑色光Gと赤色光Rとを照射して観察対象を撮像し、かつ、中心波長473±10nmの第2青色光と緑色光Gと赤色光Rとを照射して観察対象を撮像する。第1青色光は、上記中心波長445±10nmになるようにB−LED23bが発する青色光Bの波長帯域を制限する第1光学フィルタ(例えば、青色光Bの長波長側をカットする光学フィルタ)を用いることで、青色光Bから生成することができる。同様に、第2青色光は、上記中心波長473±10nmとなるようにB−LED23bが発する青色光Bの波長帯域を制限する第2光学フィルタ(例えば、青色光Bの短波長側をカットする光学フィルタ)を用いることで、青色光Bから生成することができる。
上記第1青色光は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数に差が殆どない波長帯域を有する。一方、上記第2青色光は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数に差がある波長帯域を有する。このため、第1青色光及び第2青色光が照射された観察対象を撮像して得る各画像信号の比または差は、酸素飽和度と相関がある。したがって、第1青色光及び第2青色光に対応する各画像信号の比または差を、酸素飽和度に対応付ける相関関係を実験等により予め求め、演算画像信号生成部76はこの相関関係を予め保持しておく。そして、演算画像信号生成部76は、第1青色光及び第2青色光に対応する各画像信号の比または差を算出して上記相関関係と照らし合わせることで、各画素が観察対象の酸素飽和度の値を表す演算画像信号Sを生成する。画像生成部78は、通常画像処理部66と同様にして、第1青色光と緑色光Gと赤色光とを照射して観察対象を撮像して得た各画像信号を用いて通常画像信号を生成する。そして、輝度チャンネルYに通常画像信号を割り当て、かつ、酸素飽和度を表す演算画像信号Sを色差チャンネルCb,Crに割り当てることにより、観察対象の酸素飽和度を表す酸素飽和度画像を生成する。こうして生成される酸素飽和度画像は、酸素飽和度という診断に有益な情報を表示することができる。
なお、上記実施形態では、撮像センサ48が設けられた内視鏡12を被検体内に挿入して観察を行う内視鏡システム10によって本発明を実施しているが、カプセル内視鏡システムにも本発明は好適である。例えば、図22に示すように、カプセル内視鏡システムでは、カプセル内視鏡500と、プロセッサ装置(図示しない)とを少なくとも有する。
カプセル内視鏡500は、光源502と光源制御部503と、撮像センサ504と、信号処理部506と、送受信アンテナ508とを備えている。光源502は、上記各実施形態の光源20と同様に構成される。光源制御部503は、上記各実施形態の光源制御部22と同様にして光源502の駆動を制御する。また、光源制御部503は、送受信アンテナ508によって、カプセル内視鏡システムのプロセッサ装置と無線で通信可能である。カプセル内視鏡システムのプロセッサ装置は、上記各実施形態のプロセッサ装置16とほぼ同様であるが、信号処理部506は、通常画像処理部66及び特殊画像処理部67の機能を有している。信号処理部506が生成した血管強調画像信号等は、送受信アンテナ508を介してプロセッサ装置に送信される。撮像センサ504は上記各実施形態の撮像センサ48と同様に構成される。
10,300,400 内視鏡システム
12 内視鏡
14 光源装置
16 プロセッサ装置
20,502 光源
22,322,503 光源制御部
53 画像信号取得部
67 特殊画像処理部
71,471 設定部
72 画像信号選択部
76,276 演算画像信号生成部
77 低解像度化処理部
78 画像生成部
419 観察距離取得部

Claims (14)

  1. 照明光を発生する光源と、
    前記照明光が照射された観察対象を撮像する撮像センサと、
    前記照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、前記照明光のうち前記第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得する画像信号取得部と、
    観察する血管の深さの設定をする設定部と、
    前記血管の深さの設定を用いて、前記第1画像信号、前記第2画像信号、または、前記第1画像信号と前記第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択する画像信号選択部と、
    前記画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成する画像生成部と、
    前記第1画像信号及び前記第2画像信号の差または比によって算出される演算画像信号を生成する演算画像信号生成部を備え、
    前記画像生成部は、前記演算画像信号を二つの色差チャンネルに割り当てた画像を生成する内視鏡システム。
  2. 前記演算画像信号生成部は、前記血管の深さの設定によって前記演算画像信号の生成方法を変更する請求項に記載の内視鏡システム。
  3. 前記画像信号選択部は、前記混合画像信号を選択する場合に、前記混合画像信号を生成する混合画像信号生成部を備え、
    前記混合画像信号生成部は、前記血管の深さの設定によって前記第1画像信号と前記第2画像信号の混合比率を変えて前記混合画像信号を生成する請求項1または2に記載の内視鏡システム。
  4. 前記血管の深さの設定によって前記第1照明光と前記第2照明光の各波長帯域を制御し、または、前記血管の深さの設定によって前記第1照明光と前記第2照明光の光量のバランスを制御する光源制御部を備える請求項1または2に記載の内視鏡システム。
  5. 前記観察対象の観察距離を取得する観察距離取得部を備え、
    前記設定部は、前記観察距離を用いて前記血管の深さの設定をする請求項1〜のいずれか1項に記載の内視鏡システム。
  6. 前記観察対象を前記撮像センサに結像させ、かつ、撮像倍率が可変な撮像光学系を備え、
    前記観察距離取得部は、前記撮像光学系の前記撮像倍率を前記観察距離として取得する請求項に記載の内視鏡システム。
  7. 前記設定部に前記血管の深さの設定を入力するための入力部を備える請求項1〜のいずれか1項に記載の内視鏡システム。
  8. 前記光源を有する光源装置と、前記撮像センサを有する内視鏡と、前記画像生成部を有するプロセッサ装置と、を備え、
    前記入力部が前記内視鏡に設けられている請求項に記載の内視鏡システム。
  9. 前記光源を有する光源装置と、前記撮像センサを有する内視鏡と、前記画像生成部を有するプロセッサ装置とを備え、
    前記入力部が前記プロセッサ装置に設けられている請求項に記載の内視鏡システム。
  10. 前記第1画像信号または前記第2画像信号の少なくとも一方を補正し、前記第1画像信号が表す前記観察対象と、前記第2画像信号が表す前記観察対象との位置合わせをする位置合わせ処理部を備える請求項1または2に記載の内視鏡システム。
  11. 前記第1画像信号または前記第2画像信号の少なくとも一方を補正し、前記第1画像信号の明るさと前記第2画像信号の明るさとの比を特定比にする明るさ補正処理部を備える請求項1または2に記載の内視鏡システム。
  12. 照明光を発生する光源と、前記照明光が照射された観察対象を撮像する撮像センサと、を有する内視鏡システムのプロセッサ装置において、
    前記照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、前記照明光のうち前記第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得する画像信号取得部と、
    観察する血管の深さの設定をする設定部と、
    前記血管の深さの設定を用いて、前記第1画像信号、前記第2画像信号、または、前記第1画像信号と前記第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択する画像信号選択部と、
    前記画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成する画像生成部と、
    前記第1画像信号及び前記第2画像信号の差または比によって算出される演算画像信号を生成する演算画像信号生成部を備え、
    前記画像生成部は、前記演算画像信号を二つの色差チャンネルに割り当てた画像を生成する
    を備えるプロセッサ装置。
  13. 光源が、照明光を発生するステップと、
    撮像センサが、前記照明光が照射された観察対象を撮像するステップと、
    画像信号取得部が、前記照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、前記照明光のうち前記第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得するステップと、
    設定部が、観察する血管の深さの設定をするステップと、
    画像信号選択部が、前記血管の深さの設定を用いて、前記第1画像信号、前記第2画像信号、または、前記第1画像信号と前記第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択するステップと、
    画像生成部が、前記画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成するステップと、
    演算画像信号生成部が、前記第1画像信号及び前記第2画像信号の差または比によって算出される演算画像信号を生成するステップとを有し、
    前記画像生成部が前記画像を生成するステップでは、前記演算画像信号を二つの色差チャンネルに割り当てた画像を生成する内視鏡システムの作動方法。
  14. 照明光を発生する光源と、前記照明光が照射された観察対象を撮像する撮像センサと、を有する内視鏡システムのプロセッサ装置の作動方法において、
    画像信号取得部が、前記照明光のうち第1照明光に対応する第1画像信号を取得し、かつ、前記照明光のうち前記第1照明光とは波長帯域が異なる第2照明光に対応する第2画像信号を取得するステップと、
    設定部が、観察する血管の深さの設定をするステップと、
    画像信号選択部が、前記血管の深さの設定を用いて、前記第1画像信号、前記第2画像信号、または、前記第1画像信号と前記第2画像信号を混合した混合画像信号のうちのいずれかの画像信号を選択するステップと、
    画像生成部が、前記画像信号選択部が選択した画像信号を輝度チャンネルに割り当てた画像を生成するステップと、
    演算画像信号生成部が、前記第1画像信号及び前記第2画像信号の差または比によって算出される演算画像信号を生成するステップとを有し、
    前記画像生成部が前記画像を生成するステップでは、前記演算画像信号を二つの色差チャンネルに割り当てた画像を生成するプロセッサ装置の作動方法。
JP2014202652A 2014-09-30 2014-09-30 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法 Active JP6196598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202652A JP6196598B2 (ja) 2014-09-30 2014-09-30 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202652A JP6196598B2 (ja) 2014-09-30 2014-09-30 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法

Publications (2)

Publication Number Publication Date
JP2016067780A JP2016067780A (ja) 2016-05-09
JP6196598B2 true JP6196598B2 (ja) 2017-09-13

Family

ID=55863414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202652A Active JP6196598B2 (ja) 2014-09-30 2014-09-30 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法

Country Status (1)

Country Link
JP (1) JP6196598B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017216883A1 (ja) * 2016-06-14 2017-12-21 オリンパス株式会社 内視鏡装置
WO2018180068A1 (en) * 2017-03-29 2018-10-04 Sony Corporation Medical imaging device and endoscope
JP6995889B2 (ja) * 2018-01-30 2022-01-17 富士フイルム株式会社 内視鏡システム及びその作動方法
CN111770717B (zh) * 2018-02-20 2023-11-07 富士胶片株式会社 内窥镜系统
CN112236067A (zh) * 2018-06-05 2021-01-15 奥林巴斯株式会社 内窥镜系统
JP6924727B2 (ja) * 2018-06-25 2021-08-25 富士フイルム株式会社 内視鏡装置
WO2020022027A1 (ja) * 2018-07-26 2020-01-30 富士フイルム株式会社 学習装置及び学習方法
JP7312843B2 (ja) * 2019-10-10 2023-07-21 富士フイルム株式会社 内視鏡システム及びその作動方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5393525B2 (ja) * 2010-02-18 2014-01-22 オリンパスメディカルシステムズ株式会社 画像処理装置及び画像処理装置の作動方法
JP5405373B2 (ja) * 2010-03-26 2014-02-05 富士フイルム株式会社 電子内視鏡システム
KR20120097828A (ko) * 2011-02-25 2012-09-05 삼성전자주식회사 협대역 영상을 제공할 수 있는 내시경 장치 및 상기 내시경 장치의 영상 처리 방법

Also Published As

Publication number Publication date
JP2016067780A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6234350B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6367683B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6196598B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6522539B2 (ja) 内視鏡システム及びその作動方法
US10039439B2 (en) Endoscope system and method for operating the same
US10709310B2 (en) Endoscope system, processor device, and method for operating endoscope system
JP6525918B2 (ja) 内視鏡システム、画像処理装置、及び画像処理装置の作動方法
WO2017057392A1 (ja) 内視鏡システム及び内視鏡システムの作動方法
JP2006061620A (ja) 内視鏡用映像信号処理装置
JP6576895B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
JP6562554B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの信号処理方法
WO2019163540A1 (ja) 内視鏡システム
WO2017110180A1 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP5869541B2 (ja) 内視鏡システム及びプロセッサ装置並びに内視鏡システムの作動方法
JP6408400B2 (ja) 内視鏡システム、内視鏡プロセッサ装置、及び、内視鏡システムの作動方法
JP2017184861A (ja) 画像処理装置及びその作動方法並びに内視鏡用プロセッサ装置及びその作動方法
JP6153913B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6081622B2 (ja) 内視鏡システム及びプロセッサ装置並びに内視鏡システムの作動方法
JP6153912B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6615950B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170818

R150 Certificate of patent or registration of utility model

Ref document number: 6196598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250