JP2017158558A - 幹細胞の培養方法 - Google Patents
幹細胞の培養方法 Download PDFInfo
- Publication number
- JP2017158558A JP2017158558A JP2017074820A JP2017074820A JP2017158558A JP 2017158558 A JP2017158558 A JP 2017158558A JP 2017074820 A JP2017074820 A JP 2017074820A JP 2017074820 A JP2017074820 A JP 2017074820A JP 2017158558 A JP2017158558 A JP 2017158558A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- culture
- serum
- neurons
- differentiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0623—Stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/33—Insulin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/415—Wnt; Frizzeled
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/42—Notch; Delta; Jagged; Serrate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/02—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Neurology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Neurosurgery (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
しかしながらマウス胚性幹細胞を用いた解析によると、SFEB法を適用した場合、3割程度の細胞が大脳神経細胞に分化したものの、残りの過半の細胞はそれ以外の種類の神経細胞の混雑物であった。また分化誘導した大脳神経細胞のうち、大脳皮質細胞はさらにその4割程度であり、その誘導効率は良好なものではなかった。さらにSFEB法などの従来法で誘導された大脳組織のうち大半のものは、明確な皮質組織の形態を示さず、乱雑な細胞塊になることが殆どであった。また従来のSFEB法では、中枢神経系の最も吻側から発生する吻側部の間脳、特に視床下部の組織の分化誘導をES細胞から効率よく行うことができなかった。
た。さらに、ヒトES細胞の分化培養では、インシュリンを除いた培地では生存が悪いが、インシュリンを含む化学合成培地にAkt阻害剤を併用することで、視床下部神経組織を分化誘導することが可能となった。
即ち、本発明は下記の通りである:
[2]さらに無血清培地中で均一な幹細胞の凝集体を浮遊培養する工程を含む、上記[1]に記載の方法。
[3]幹細胞が多能性幹細胞である、上記[1]または[2]に記載の方法。
[4]幹細胞が胚性幹細胞である、上記[3]に記載の方法。
[5]浮遊培養を60時間〜350時間行うことを特徴とする、上記[2]〜[4]のいずれか一項に記載の方法。
[6]さらにNodalシグナル阻害剤および/またはWntシグナル阻害剤の存在下で培養する工程を含む、上記[1]〜[5]のいずれか一項に記載の方法。
[7]Nodalシグナル阻害剤が、Lefty−1である、上記[6]に記載の方法。[8]Wntシグナル阻害剤が、Dkk1である、上記[6]に記載の方法。
[9]さらにNotchシグナル阻害剤の存在下で培養する工程を含む、上記[1]〜[8]のいずれか一項に記載の方法。
[10]Notchシグナル阻害剤が、DAPTである、上記[9]に記載の方法。
[11]さらに分泌型パターン形成因子の存在下で培養する工程を含む、上記[1]〜[8]のいずれか一項に記載の方法。
[12]神経系細胞への分化誘導法である、上記[1]〜[11]のいずれか一項に記載の方法。
[13]大脳前駆細胞への分化誘導法である、上記[1]〜[8]のいずれか一項に記載の方法。
[14]大脳皮質前駆細胞への分化誘導法である、上記[1]〜[8]のいずれか一項に記載の方法。
[15]大脳皮質神経細胞への分化誘導法である、上記[1]〜[11]のいずれか一項に記載の方法。
[16]層特異的ニューロンへの選択的な分化誘導法である、上記[1]〜[11]のいずれか一項に記載の方法。
[17]カハール・レチウス細胞への分化誘導法である、上記[1]〜[7]のいずれか一項に記載の方法。
[18]尾側大脳皮質神経細胞の分化誘導法である、上記[1]〜[5]および[8]〜[11]のいずれか一項に記載の方法。
[19]Fgfシグナル阻害剤の存在下で培養することを特徴とする、上記[18]に記載の方法。
[20]Fgfシグナル阻害剤が、Fgf受容体阻害剤である、上記[19]に記載の方法。
[21]吻側大脳皮質神経細胞への分化誘導法である、上記[1]〜[5]および[8]〜[11]のいずれか一項に記載の方法。
[22]吻側大脳皮質神経細胞が、嗅球ニューロンである、上記[21]に記載の方法。[23]Fgfシグナル促進剤の存在下で培養することを特徴とする、上記[21]または[22]に記載の方法。
[24]Fgfシグナル促進剤が、Fgfまたはそのアゴニストである、上記[23]に記載の方法。
[25]海馬神経細胞への分化誘導法である、上記[1]〜[5]および[8]〜[11
]のいずれか一項に記載の方法。
[26]Wntの存在下またはBMPの存在下、あるいはその両方で培養することを特徴とする、上記[23]に記載の方法。
[27]大脳基底核神経細胞への分化誘導法である、上記[1]〜[5]および[8]〜[11]のいずれか一項に記載の方法。
[28]Shhシグナル促進剤の存在下で培養することを特徴とする、上記[27]に記載の方法。
[29]Shhシグナル促進剤が、Shhである、上記[28]に記載の方法。
[30]Nodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤、レチノイン酸及びインシュリン類を実質的に含有しない無血清培地において多能性幹細胞を浮遊凝集体として培養すること、及び培養物から視床下部ニューロンの前駆細胞を単離することを含む、視床下部ニューロンの前駆細胞の製造方法。
[31]無血清培地が、Nodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤、レチノイン酸及びインシュリン類を実質的に含有しない無血清培地である、上記[2]記載の方法。
[32]無血清培地が亜セレン酸またはその塩を含有する、上記[30]または[31]記載の方法。
[33]無血清培地がShhシグナル促進剤を含有する、上記[30]または[31]記載の方法。
[34]無血清培地がShhシグナル促進剤を実質的に含有しない、上記[30]または[31]記載の方法。
[35]得られ得る前駆細胞が腹側視床下部ニューロンの前駆細胞である、上記[33]記載の方法。
[36]得られ得る前駆細胞が、内腹側核ニューロン、A12型ドーパミンニューロン、弓状核ニューロン又はオレキシン陽性ニューロンへの分化能を有する、上記[33]記載の方法。
[37]得られ得る前駆細胞が背側視床下部ニューロンの前駆細胞である、上記[34]記載の方法。
[38]得られ得る前駆細胞がバゾプレシン産生内分泌細胞への分化能を有する、上記[34]記載の方法。
[39]少なくとも7日間培養する、上記[30]または[31]記載の方法。
[40]PI3K阻害剤及びAkt阻害剤からなる群より選択される少なくとも1つの阻害剤並びにインシュリン類を含有し、且つNodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤及びレチノイン酸を実質的に含有しない無血清培地において多能性幹細胞を浮遊凝集体として培養すること、及び培養物から視床下部ニューロンの前駆細胞を単離することを含む、視床下部ニューロンの前駆細胞の製造方法。
[41]無血清培地が、PI3K阻害剤及びAkt阻害剤からなる群より選択される少なくとも1つの阻害剤並びにインシュリン類を含有し、且つNodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤及びレチノイン酸を実質的に含有しない無血清培地である、上記[2]記載の方法。
[42]無血清培地が、ROCK阻害剤を更に含有する、上記[40]または[41]記載の方法。
[43]多能性幹細胞が霊長類の多能性幹細胞である、上記[40]または[41]記載の方法。
[44]上記[1]〜[43]のいずれか一項に記載の方法により得られる、細胞培養物。
[45]無血清培地中で均一な幹細胞の凝集塊を形成させる工程を含む、脳組織の立体構造を試験管内で産生する方法。
[46]脳組織が、大脳皮質組織である、上記[45]に記載の方法。
[47]大脳皮質組織が層形成を伴うことを特徴とする、上記[46]に記載の方法。
[48]無血清培地が細胞外マトリクス成分を含有することを特徴とする、上記[45]に記載の方法。
[49]上記[45]〜[48]のいずれか一項に記載の方法により得られる、培養産物。
[50]無血清培地中で均一な幹細胞の凝集塊を形成させる工程を含む、大脳皮質神経ネットワークを試験管内で形成する方法。
[51]大脳皮質神経ネットワークが、同期した自発発火を伴うことを特徴とする、上記[50]に記載の方法。
[52]上記[50]または[51]に記載の方法により得られる、培養産物。
[53]上記[44]に記載の細胞培養物、上記[49]に記載の培養産物または上記[52]に記載の培養産物を用いることを特徴とする、被検物質のスクリーニング方法。
、FGFシグナル促進剤、BMPシグナル促進剤、レチノイン酸等の増殖因子並びにインシュリン類を実質的に含有しない無血清培地において多能性幹細胞を浮遊凝集体として培養すること、及び培養物から視床下部ニューロンの前駆細胞を単離することを含む、視床下部ニューロンの前駆細胞の製造方法を提供する。
以下、本発明の詳細を説明する。
「幹細胞」とは、細胞分裂を経ても同じ分化能を維持することができる細胞のことをいう。幹細胞の例としては、受精卵あるいはクローン胚由来で多能性を有する胚性幹細胞(ES細胞)、生体内の組織中に存在する体性幹細胞や多能性幹細胞、各組織の基になる肝幹細胞、皮膚幹細胞、生殖幹細胞、生殖幹細胞由来の多能性幹細胞、体細胞由来で核初期化によって得られる多能性幹細胞などが挙げられる。
具体的に本発明の方法で用いられる幹細胞としては、例えば、着床以前の初期胚を培養することによって樹立した哺乳動物等の胚性幹細胞(以下、「胚性幹細胞I」と省略)、体細胞の核を核移植することによって作製された初期胚を培養することによって樹立した胚性幹細胞(以下、「胚性幹細胞II」と省略)、体細胞へ数種類の転写因子を導入することにより樹立した誘導性多能性幹細胞(iPS細胞)、および胚性幹細胞I、胚性幹細胞II又はiPS細胞の染色体上の遺伝子を遺伝子工学の手法を用いて改変した多能性幹細胞(以下、「改変多能性幹細胞」と省略)が挙げられる。
胚性幹細胞Iは、着床以前の初期胚を、文献(Manipulating the Mouse Embryo A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1994))に記載された方法に従って培養することにより調製することができる。
7(1999);Proc.Natl.Acad.Sci.USA,96,14984(1999))、RideoutIIIら(Nature Genetics,24,109(2000))等によって報告された方法を用いることにより、例えば以下のように作製することができる。
Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1994);Gene
Targeting,A Practical Approach,IRL Press at Oxford University Press(1993);バイオマニュアルシリーズ8ジーンターゲッティング,ES細胞を用いた変異マウスの作製,羊土社(1995)等に記載の方法を用い、行うことができる。
本発明の方法により、幹細胞、好ましくは胚性幹細胞などの多能性幹細胞の分化細胞を得ることができる。本発明の方法により幹細胞から分化誘導される細胞は特に限定されず、内胚葉系細胞、中胚葉系細胞、外胚葉系細胞のいずれであってもよいが、好ましくは外胚葉系細胞、より好ましくは神経系細胞である。本発明の方法により得られた細胞がいずれの細胞であるかは、自体公知の方法、例えば細胞マーカーの発現により確認できる。
神経幹細胞とは、神経細胞、アストロサイト(astrocyte)およびオリゴデンドロサイト(oligodendrocyte)に分化しうる能力を有し、かつ自己複製能力を有する細胞をいい、脳内において神経細胞、アストロサイト、オリゴデンドロサイトを供給する機能を有している。
神経幹細胞であることを確認する方法としては、実際に脳に移植してその分化能を確認する方法、インビトロで神経幹細胞を神経細胞、アストロサイト、オリゴデンドロサイトに分化誘導させて確認する方法などが挙げられる(Mol.Cell.Neuroscience,8,389(1997);Science,283,534(1999))。また、このような機能を有した神経幹細胞は、神経前駆細胞での発現が確認されているマーカーである細胞骨格蛋白質ネスチンを認識する抗ネスチン抗体で染色可能である(Science,276,66(1997))。従って、抗ネスチン抗体で染色することにより神経幹細胞を確認することもできる。
神経細胞(neuron)とは、他の神経細胞あるいは刺激受容細胞からの刺激を受け別の神経細胞、筋あるいは腺細胞に刺激を伝える機能を有する細胞をいう。神経細胞は、神経細胞が産生する神経伝達物質の違いにより分類でき、例えば、分泌する神経伝達物質などの違いで分類されている。これらの神経伝達物質で分類される神経細胞としては、例えば、ドパミン分泌神経細胞、アセチルコリン分泌神経細胞、セロトニン分泌神経細胞、ノルアドレナリン分泌神経細胞、アドレナリン分泌神経細胞、グルタミン酸分泌神経細胞などがあげられる。ドパミン分泌神経細胞、ノルアドレナリン分泌神経細胞、アドレナリン分泌神経細胞を総称してカテコールアミン分泌神経細胞と呼ぶ。
本発明の方法によれば、神経細胞として前脳神経細胞、好ましくは大脳神経細胞をより効率的に分化誘導できる。前脳神経細胞とは、前脳組織(即ち、大脳及び間脳から構成される組織)に存在する神経細胞、あるいは前脳組織に存在する神経細胞への分化が決定付けられている前駆細胞(例、大脳前駆細胞)をいう。
本発明の方法により得られた細胞が前脳神経細胞であるか否かは、自体公知の方法、例えば、前脳神経細胞マーカーの発現により確認できる。前脳神経細胞マーカーとしては、Otx1(前脳)、Bf1(大脳)、Emx1(大脳背側)、Gsh2及びNkx2.1(大脳腹側)などが挙げられる。
本発明の方法により得られた細胞が背側大脳神経細胞であるか否かは、自体公知の方法、例えば、背側大脳神経マーカーの発現により確認できる。背側大脳神経細胞マーカーとしては、例えば、大脳皮質神経細胞マーカー(例えば、Pax6、Emx1、Tbr1)が挙げられる。
本発明の方法により得られた細胞が腹側大脳神経細胞であるか否かは、自体公知の方法、例えば、腹側大脳神経細胞マーカーの発現により確認できる。腹側大脳神経細胞マーカーとしては、例えば、大脳基底核神経細胞マーカー(例えば、Gsh2、Mash1、Nkx2.1、Noz1)が挙げられる。
また、本発明の方法により得られるBf1+細胞のうち、例えば約50%以上、好ましくは約70%以上、より好ましくは約80%以上の細胞が、Emx1陽性であり得る。さらに、本発明の方法により得られるBf1+細胞のうち、例えば約50%以上、好ましくは約70%以上、より好ましくは約80%以上の細胞が、VGluT1陽性であり得る。また、本発明の方法により得られるBf1+細胞のうち、いくつかの細胞において、Telencephalin、GluR1、CamKII、Ctip2、Tbr1の発現も観察されうる。
本発明は、無血清培地中で均一な幹細胞の凝集体を形成させる工程を含む、幹細胞の分化誘導法を提供する。
ビン酸ナトリウム)を使用できる。
R、0.1mM 非必須アミノ酸溶液、2mM グルタミン、1mM ピルビン酸および0.1mM 2−メルカプトエタノールを添加した培地。必要に応じて後述する因子などを適量含んでいてもよい。)に懸濁し、細胞非接着性のU底96穴培養プレートに、1ウェルあたり3×103細胞になるように150μLの上記培地に浮遊させ、凝集体を速やかに形成させる方法が挙げられる。
本工程は、(3)で形成した均一な幹細胞の凝集体を浮遊培養することで、幹細胞を分化誘導する工程である。
均一な幹細胞の凝集体を「浮遊培養する」または「浮遊凝集体(凝集塊ともいう)として培養する」とは、上記(3)で得られた集合し均一な凝集体を形成した幹細胞群を、培養培地中において、細胞培養器に対して非接着性の条件下で培養することをいう(本明細書中、上記(3)の工程と(4)の工程とをあわせて、「SFEBq法」と記載する場合がある)。幹細胞を浮遊培養する場合、浮遊凝集体の形成をより容易にするため、並びに/あるいは、効率的な分化誘導(例えば、神経系細胞等の外胚葉系細胞への分化誘導)のために、フィーダー細胞の非存在下で培養を行うのが好ましい。
。しかしながら、調製の煩雑さを回避するという観点からは、かかる無血清培地として、市販のKSRを適量(例えば、1−20%)添加した無血清培地(GMEM又はdMEM、0.1mM 2−メルカプトエタノール、0.1mM 非必須アミノ酸Mix、1mM
ピルビン酸ナトリウム)を使用できる。
神経系細胞として前脳神経細胞の分化誘導を例に挙げ、より好適な、(3)で得られる幹細胞の均一な凝集体(以下、「本発明の凝集体」と記載する場合がある)の浮遊培養を行うために組合せるべき本発明の方法論を以下に詳述する。すなわち本発明のSFEBq法において、以下の方法論を組み合わせることで、選択的に前脳神経細胞を得ることが可能となる。
前脳神経細胞は、上述した本発明の浮遊培養により、又は必要に応じて上述した浮遊培養と接着培養との組合せにより、幹細胞から分化誘導することができる。好ましくは、前脳神経細胞の分化効率の向上・安定化等の観点から、以下に述べる方法論を併用できる。
本発明の凝集体の浮遊培養は、パターン形成因子の存在下で行うことができる。パターン形成因子とは、幹細胞または前駆細胞に働いて多様な分化の方向性を制御する物質であり、このようなパターン形成因子としては、分泌型パターン形成因子が挙げられる。分泌型パターン形成因子としては、分化制御に関わる細胞内シグナルを活性化あるいは抑制する活性物質である限り特に限定されないが、例えば、FGF、BMP、Wnt、Nodal、Notch、Shhなどが挙げられる。
分泌型パターン形成因子を適用した前脳神経細胞への分化誘導については、例えば、以下の方法論を適用できる。
一つの方法論は、Nodalシグナル阻害剤および/またはWntシグナル阻害剤の存在下における、本発明の凝集体の浮遊培養である。かかる方法論は、例えば、前脳神経細胞(特に大脳神経細胞)への分化効率を向上・安定化させる場合に有用である。また、Nodalシグナル阻害剤、Wntシグナル阻害剤の併用により、さらに著しい効果が期待できる。
培養数日後(例えば、培養10日以内の時期)に培地に添加してもよい。好ましくは、Wntシグナル阻害剤は、培養5日以内の時期に培地に添加される。なお、本発明の凝集体の浮遊培養は、Nodalシグナル阻害剤及び/又はWntシグナル阻害剤の非存在下で行うことも勿論可能である。また、浮遊培養の途中に、これら培養条件を切り替えることも可能である。
一つの方法論は、Notchシグナル阻害剤の存在下における、本発明の凝集体の浮遊培養である。かかる方法論は、例えば、前脳神経細胞(特に大脳神経細胞)への分化効率を向上・安定化させる場合に有用である。
さらに別の方法論は、Fgfシグナル促進剤の存在下における、本発明の凝集体の浮遊培養である。かかる方法論は、例えば、腹側大脳神経細胞や腹側大脳皮質神経細胞への分化を促進する場合、背側大脳神経細胞や背側大脳皮質神経細胞への分化を抑制する場合に有用である。またかかる方法論は、吻側大脳神経細胞や吻側大脳皮質神経細胞への分化を促進する場合、尾側大脳神経細胞や尾側大脳皮質神経細胞への分化を抑制する場合にも有用である。
養である。かかる方法論は、例えば、背側大脳神経細胞や背側大脳皮質神経細胞への分化を促進する場合、腹側大脳神経細胞や腹側大脳皮質神経細胞への分化を抑制する場合に有用である。またかかる方法論は、尾側大脳神経細胞や尾側大脳皮質神経細胞への分化を促進する場合、吻側大脳神経細胞や吻側大脳皮質神経細胞への分化を抑制する場合にも有用である。
一つの方法論は、BMPシグナル促進剤またはWntシグナル促進剤、あるいはその両方の存在下における、本発明の凝集体の浮遊培養である。かかる方法論は、例えば、前脳神経細胞(特に大脳神経細胞)、好ましくは背側大脳神経細胞や尾側大脳神経細胞、より好ましくは海馬神経細胞への分化を促進する場合に有用である。また、吻側大脳神経細胞への分化を抑制する場合に有用である。腹側大脳神経細胞は必ずしも抑制しない。
本発明の凝集体の浮遊培養後に用いられるWntシグナル促進剤の濃度は、上記有用性
を達成可能であるような濃度である限り限定されないが、例えば、Wnt3aについては約0.1〜500ng/ml、好ましくは約1.0〜100ng/ml、より好ましくは約5.0〜50ng/ml、最も好ましくは約50ng/mlであり得る。
Wntシグナル促進剤は、本発明の凝集体の培養開始時に既に培地に添加されてもよく、接着培養直後から数日後(例えば、浮遊培養開始4日以降、または浮遊培養10日以内の期間)に培地に添加してもよい。好ましくは、Wntシグナル促進剤は、浮遊培養5日以内の時期に培地に添加される。
さらに別の方法論は、Shhシグナル促進剤の存在下における本発明の凝集体の浮遊培養である。かかる方法論は大脳神経細胞、好ましくは大脳基底核神経細胞への分化を促進する場合に有用であるところ、大脳基底核腹側部神経細胞への分化を促進する場合にも有用であるし、また大脳基底核背側部神経細胞への分化を促進する場合にも有用である。
詳細には後述するように、培地に添加するShhシグナル促進剤の濃度を変えることで、幹細胞を選択的に背側部、腹側部の大脳基底核神経細胞へとそれぞれ分化誘導することができる。
ここでSFEBq法を適用した培養において、大脳基底核背側部神経細胞へと分化誘導させる場合は、例えば約0.5〜20nM、好ましくは約2〜10nMのShhシグナル促進剤の濃度で培養することが望ましい。一方、SFEBq法を適用した培養において、大脳基底核腹側部神経細胞へと分化誘導させる場合は、例えば約10〜300nM、好ましくは約20〜100nMのShhシグナル促進剤の濃度で培養することが望ましい。
Shhシグナル阻害剤は、Shhにより媒介されるシグナル伝達を増強し得るものである限り特に限定されない。Shhシグナル阻害剤としては、例えば、Shhシグナル促進剤に対する抗体、Shhシグナル促進剤のドミナントネガティブ変異体、可溶型Shh受容体、Shh受容体アンタゴニストが挙げられるが、なかでも、Shh抗体、Shhドミナントネガティブ変異体が好ましい。
なお、胚性幹細胞の浮遊培養は、Shhシグナル阻害剤の非存在下で行うことも勿論可能である。また、浮遊培養の途中に、この培養条件を切り替えることも可能である。
また別の方法論は、SFEBq法の後に接着培養を行うことである。凝集塊をそのまま、あるいは分散処理(例えば、トリプシン/EDTA処理)後に、細胞を接着培養に供することができる。なお、接着培養では、細胞接着性の培養器、例えば、細胞外マトリクス等(例えば、ポリ−D−リジン、ラミニン、フィブロネクチン)によりコーティング処理された培養器を使用することが好ましい。接着培養は、例えば1日以上、好ましくは1〜14日、より好ましくは2〜5日行うことができる。
本発明のSFEBq法で得られた幹細胞の均一な凝集体は、上記コーティング処理された培養器上においても、浮遊培養した場合と同様に、良好に分化誘導される。
上述した各種方法論は、前脳神経細胞、あるいは特定の前脳神経細胞(例えば、大脳神経細胞、腹側大脳神経細胞、背側大脳神経細胞、吻側大脳神経細胞、尾側大脳神経細胞、大脳基底核背側神経細胞、大脳基底核腹側神経細胞など)を効率的に得るために適宜組合せることができる。
また同一の効果を奏する方法論を組合せることで、より優れた効果が期待できる。
上述したとおり、大脳皮質神経細胞は、上述した本発明の凝集体の浮遊培養(SFEBq法)により幹細胞から分化誘導することができるところ、大脳皮質層特異的ニューロンを選択的に分化誘導する観点から、以下に述べる方法論を併用することが好ましい。ここで、「大脳皮質」とは大脳の表面に広がる神経細胞の灰白質の層であり、神経細胞が規則正しい6層構造をなして整然と並んでいる。本明細書における「大脳皮質層特異的ニューロン」とは、6つの層をそれぞれ構成する特異的な大脳皮質神経細胞のことをいう。
一つの方法論は、本発明の凝集体の浮遊培養を60時間〜350時間行うことを特徴とする方法である。かかる方法論によれば、例えば一般的な神経分化を経て、幹細胞を大脳皮質の層構造特異的な細胞に分化させることができる。
具体的には、まず大脳第1層特異的なReelin陽性細胞(カハール・レチウス細胞)が誘導され、次いで第6層特異的なTbr1陽性細胞が誘導される。さらに、第5層特異的なCrip2陽性細胞が誘導され、次いで第2−3層特異的なBrn2陽性細胞が誘導される。
また別の方法論は、本発明のSFEBq法において、Notchシグナル阻害剤を任意の時期に培地に添加することによって、特定の層特異的ニューロンを選択的に分化誘導することである。かかる方法論によれば、幹細胞を、大脳皮質の層構造特異的な細胞に分化させることができる。
用した場合、9日間(約216時間)の培養後にDAPT処理を行った細胞は、大脳第1層特異的なReelin陽性細胞(カハール・レチウス細胞)に誘導される。一方で12日間(約288時間)の培養後にDAPT処理を行った細胞は、第5層特異的なCrip2陽性細胞に誘導される。
また本発明は、間脳、特に視床下部ニューロンの前駆細胞、またはそこからさらに分化成熟した視床下部ニューロンを幹細胞から分化誘導する方法を提供する。この場合、上記SFEBq法に適用する無血清培地が、Nodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤、レチノイン酸等の増殖因子並びにインシュリン類を実質的に含有しないことが望ましい。これらの増殖因子並びにインシュリン類を実質的に含有しないことを条件に、任意の動物細胞の培養に用いられる培地を基礎培地として調製することができる。
浮遊培養で用いる無血清培地は、視床下部ニューロンの前駆細胞への選択的分化を促進するため亜セレン酸またはその塩を含むことが好ましい。亜セレン酸の塩としては、亜セレン酸ナトリウムが好ましい。亜セレン酸またはその塩の濃度は、通常約1〜100μg/ml、好ましくは約10〜50μg/mlである。
有する培地からのこれらの因子の除去処理により調製できる。
たはそれらの前駆細胞の選択的分化を阻害/抑制する作用をいう)を有する任意の物質をいい、例えば、IGF−I等が挙げられる。
好ましいが、場合により、培養数日後に培地に添加することも考えられる。
内因性の増殖因子/インシュリンの作用を抑制するため、このようなgfCDM培地あるいは他の培地に増殖因子阻害剤/インシュリン阻害剤をさらに添加してもよい。
増殖を亢進させるためのインシュリン添加を実施し、同時にインシュリンの分化誘導阻害効果に拮抗するインシュリンシグナル阻害剤(例、PI3K阻害剤/Akt阻害剤)を添加することが好ましい。この場合、分化培地に含まれるインシュリン類の濃度は、多能性幹細胞の増殖を促進し得る濃度である。例えば、インシュリンについてこのような濃度は、通常約0.02〜40μg/ml、好ましくは約0.1〜10μg/mlである。PI3K阻害剤及びAkt阻害剤の濃度範囲は上述の通りである。
ン前駆体、微量元素、2−メルカプトエタノール又は3’チオールグリセロール、あるいはこれらの均等物などを適宜含有するものであり得、市販の血清代替物としては、例えば、knockout Serum Replacement(KSR)、Chemically−defined Lipid concentrated(Gibco社製)、Glutamax(Gibco社製)が挙げられる。
ems)で実施し、GAPDH発現によってデータを正規化することにより解析する。定量PCRの方法は当業者に公知である。或いは、目的とするマーカー遺伝子が、マーカー遺伝子産物とGFPなどとの融合タンパク質として発現されるように、細胞を操作してもよい(ノックイン)。マーカー遺伝子産物に対して特異的な抗体を用いて、タンパク質の発現を検出することができる。
これらのタンパク質の検出は、免疫染色又はラジオイミュノアッセイにより実施することができる。また、その他のホルモン産生ニューロンについても、産生されるホルモン等に特異的な抗体等を用いて、同様のアッセイが可能である。このような方法は当業者に公知である。
本発明はまた、本発明の方法により得られる細胞培養物を提供する。本発明の細胞培養物は、例えば、幹細胞の浮遊凝集体、浮遊凝集体を分散処理した細胞、分散処理細胞の培養により得られる細胞などであり得る。また、本発明は、かかる細胞培養物より被験体に投与し得る程度に単離・精製された均質な細胞、例えば、大脳神経細胞、視床下部ニューロン等の前脳神経細胞を提供する。
本発明の方法で得られた細胞を移植することにより治療/緩和され得る疾患としては、内分泌異常(例えば、中枢性尿崩症、フレーリッヒ症候群、視床下部性下垂体機能低下症、視床下部症候群)、摂食障害(拒食症/過食症)、睡眠障害、日内リズム障害などが挙げられる。
ce,2,1137(1999)参照)。
本発明は、(3)の工程を含む、大脳皮質神経ネットワークを試験管内で形成する方法を提供する。この方法によれば、SFEBq法により得られた細胞凝集体が乱雑な細胞塊になることなく、その中に大脳皮質神経ネットワークを形成することができる。
また本発明の方法によって形成される大脳皮質神経ネットワークにおいては、多くの細胞で周囲の細胞と同調した、または同調しないCa2+上昇(カルシウムオシレーション)が繰り返し観察される。このように、本発明の方法で形成される大脳皮質神経ネットワークは、好ましくは同期した自発発火を伴うものであり、ここで「発火」とは、神経細胞の脱分極による興奮性活動のことをいい、「自発発火」とは、それが自発的に起こることをいう。すなわち本発明の方法で形成される大脳皮質神経ネットワークは、ある面で生体組織と類似した神経活動を起こしうる。
本発明は、(3)の工程を含む、脳組織の立体構造を試験管内で形成する方法を提供する。この方法によれば、SFEBq法により得られた細胞凝集体が乱雑な細胞塊になることなく、その中に脳組織の立体構造を形成することができる。より好ましくは、初期の大脳原基で認められる大脳皮質層と同様の順序で、自己組織化が進む大脳皮質の組織形成の初期過程を模倣することが可能である。
を構築している細胞凝集体が提供される(以下、(9)で得られる大脳神経ネットワークを形成する細胞凝集体、(10)で得られる脳組織の立体構造を構築している細胞凝集体、および(11)で得られる胎仔脳胞に類似した組織学的特徴を持つ構造を有する細胞凝集体をまとめて、「本発明の培養産物」と記載する)。本発明の培養産物は、大脳皮質の組織形成の初期過程と極めて類似した脳組織を構築しているので、神経系細胞、例えば前脳神経細胞の障害に基づく疾患の治療薬のスクリーニング、その他の原因による細胞損傷状態における治療薬のスクリーニング、またはそれらの毒性試験などに用いることができる。ここで神経系細胞の障害に基づく疾患としては、例えば、パーキンソン病、脊髄小脳変性症、ハンチントン舞踏病、アルツハイマー病、虚血性脳疾患(例えば、脳卒中)、てんかん、脳外傷、脊髄損傷、運動神経疾患、神経変性疾患、網膜色素変性症、加齢黄斑変性症、内耳性難聴、多発性硬化症、筋萎縮性側索硬化症、神経毒物の障害に起因する疾患などが挙げられる。具体的には、前脳神経細胞、特に終脳神経細胞の障害に基づく疾患としては、例えば、ハンチントン舞踏病、アルツハイマー病、虚血性脳疾患(例えば、脳卒中)、脳外傷が挙げられる。
上記浮遊培養において培地中に細胞外マトリクス成分を添加することにより、無添加の場合よりも長期間にわたって大脳皮質組織の上皮構造が安定に維持され、胎仔脳胞に類似した組織学的特徴を持つ構造が得られる。
胎仔脳胞との類似性は、以下の特徴を指標として判断することができる:1)radial glia細胞の高い密度、2)ラミニン陽性の連続した基底膜の保持、3)radial glia細胞の基底膜接着部に見られるend foot構造。radial gliaは、BLBPをマーカーとして検出することができる。
培地に添加する細胞外マトリクス成分としては市販のものが利用でき、例えば、Matrigel(BD Bioscience)、ヒト型ラミニン(シグマ)などが挙げられる。
Matrigelは、Engelbreth Holm Swarn(EHS)マウス肉腫由来の基底膜調製物である。Matrigelの主成分はIV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカン、エンタクチンであるが、これらに加えてTGF−β、線維芽細胞増殖因子(FGF)、組織プラスミノゲン活性化因子、EHS腫瘍が天然に産生する増殖因子が含まれる。
Matrigelのgrowth factor reduced製品は、通常のMatrigelよりも増殖因子の濃度が低く、その標準的な濃度はEGFが<0.5ng/ml、NGFが<0.2ng/ml、PDGFが<5pg/ml、IGF−1が5ng/ml、TGF−βが1.7ng/mlである。本発明の方法では、growth factor reduced製品の使用が好ましい。
される。
本発明は、本発明の細胞培養物または本発明の培養産物を用いることを特徴とする、被検物質のスクリーニング方法を提供する。特に本発明の培養産物は、生体における神経ネットワークと極めて類似した神経ネットワークを構築しており、また大脳皮質の組織形成の初期過程と極めて類似した脳組織を構築しているので、神経系細胞、例えば前脳神経細胞の障害に基づく疾患の治療薬のスクリーニング、その他の原因による細胞損傷状態における治療薬のスクリーニング、またはそれらの毒性試験、さらには神経系疾患の新たな治療方法の開発などに適用することができる。
(方法)
マウスES細胞(E14由来)のEB5細胞または、E14由来の細胞株で神経分化レポーターとして大脳神経マーカーBf1遺伝子に改変GFP(green fluorescent protein)であるVenus遺伝子を相同組替えにてノックインした細胞(以下「Bf1/Venus−mES 細胞」と記載する)を、文献(渡辺ら、Nature Neuroscience,2005)記載の通りに培養し、実験に用いた。
培地にはG−MEM 培地(Invitrogen)に1% 牛胎児血清、10% KSR(Knockout Serum Replacement;Invitrogen)、2mM グルタミン、0.1mM 非必須アミノ酸、1mM ピルビン酸、0.1mM 2−メルカプトエタノールおよび2000U/ml LIFを添加したものを用いた。浮遊培養による神経分化誘導には、0.25% trypsin−EDTA (Invitrogen)を用いてES細胞を単一分散し、非細胞接着性の96穴培養プレート(スミロン スフェロイド プレート,住友ベークライト社)の1ウェルあたり3×103細胞になるように150μlの分化培地に浮遊させ、凝集塊を速やかに形成させた後、37℃、5%CO2で7日間インキュベーションした(SFEBq法;図1A)。
その際の分化培地には、G−MEM培地に10%KSR、2mM glutamine、1mM pyruvate、0.1mM nonessential amino acids、0.1mM 2−ME、250 μg/ml recombinant human Dkk−1、1 μg/ml recombinant human Lefty−1を添加した無血清培地(渡辺ら、Nature Neuroscience,2005参照)を用いた。
凝集塊を6cmの非接着性プラスチックシャーレ(3.5mlの分化培地)に回収し、さらに3日間浮遊培養を継続したのち(計10日間)、蛍光免疫染色法で分化状態を解析した。結果を図1に示す。
免疫染色解析の結果、分化培養開始後10日の凝集塊の細胞のうち約7割の細胞が大脳特異的マーカーBf1を発現していた。また、Bf1陽性細胞のうち9割の細胞が大脳皮
質特異的マーカーEmx1を発現していた。Bf1/Venus−mES 細胞を分化させたものをVenus−GFPの発現で解析した場合も、約7割の細胞が陽性であり、その大半がEmx1を発現していた(図1A)。このように、SFEBq法は上記の分化培地を用いた場合、高効率で大脳皮質細胞(前駆細胞)を分化誘導することが可能である。なお、10cm培養ディッシュを用いて、緩徐にES細胞の凝集塊を形成させる既存の方法(渡辺ら、Nature Neuroscience,2005)では、Bf1陽性細胞は3割にとどまり、そのうち大脳皮質マーカーEmx1陽性となるのは4割未満であった。また凝集体が極性を持った上皮様構造を有していることは、N−カドヘリン、CD−133、ラミニンなどの発現(図1B〜G)や、電子顕微鏡によるタイトジャンクション(図1H、括弧)やアドヘレンスジャンクション(図1I、括弧)などの形態観察、ロゼットの形成(図1J、図1K、点線はロゼットを示す)、極性マーカーの発現(図1L〜O、点線はロゼットを示し、星印は内腔を示す)などにより確認した。
このように、SFEBq法は従来法に比して、より高効率に大脳、とりわけ大脳皮質へのES細胞の分化を促進する。
(方法)
実施例1に記載の方法で培養を継続し、12日間分化培養した凝集塊を酵素的に分散させ(スミロン Neural Tissue Dissociationキット)、poly−D−リジン/ラミニン/フィブロネクチンでコートした培養プレートの上に5×104cells/cm2で播種し、DMEM/F12培地に1×N2 supplementと10ng/ml FGF2を添加した培地で2日間培養した。その後、B27 supplementを添加したNeurobasal培地+50ng/ml BDNF+50ng/ml NT3でさらに6日間培養した。分化したニューロンの性状を蛍光抗体法で解析した。結果を図2に示す。
試験管内の細胞のほとんどがTuJ1陽性のニューロンとなっており、そのうち8割が大脳皮質特異的なマーカーであるEmx1陽性で、グルタミン酸作動性ニューロン(大脳皮質に豊富に存在)のマーカーであるVGluT1陽性であった(図2A〜B)。また、大脳ニューロンに特徴的な複数の神経マーカー(Telencephalin、GluR1、CamKII、Ctip2、Tbr1など)の発現も観察された(図2C〜F)。
このように、SFEBq法により誘導された大脳皮質前駆細胞からの大脳特異的なニューロンへの分化が確認された。
SFEBq法により産生された大脳ニューロンの活動とネットワーク形成を確認するために、fluo4−AMを用いたCa++イメージング法による解析を行った。観察方法は、文献(Ikegaya et al,2005,Neurosci.Res.,52,132−138)に記載した通りである。
実施例1に記載の方法で、18日間培養したマウスES細胞由来の凝集塊をTranswell culture insert(Corning)上で、N2 supplementしたDMEM/F12培地を用いてさらに7日間培養した(図3A)。Ca++イメージングは人工脳脊髄液を用いて、室温で行った。結果を図3に示す。
Ca++イメージングでは、多くの細胞で周囲の細胞と同調したあるいは同調しないCa++上昇を繰り返し観察した(図3B〜C)。これらのCa++上昇はいずれも、グル
タミン投与により強められ(図3D)、神経活動電位の遮断を起こすテトロドトキシンの添加により阻害された(図3E〜F)ので、神経伝達依存的なネットワークによる事が示唆された。また、7割の凝集塊では、1mmに及ぶ長距離で高速の伝搬速度(1mm/秒以上)で同調するCa++上昇の繰り返し活動(Ca++オシレーション)を観察した(図3G〜I;図3Hにおける符号A〜Eは個々の細胞を示し、また図3Iにおける数字もまた個々の細胞を示す。)。これらすべてのCa++上昇はグルタミン拮抗剤のCNQX(図3J)またはテトロドトキシンの添加により阻害される。
以上の結果は、SFEBq由来の大脳組織が生体組織と類似した神経活動を(少なくともある面においては)起こすことを示している。
(方法)
Bf1/Venus−mES細胞は、文献(Nature Biotech.,20,87−90)記載の方法により作成した。Bf1/Venus−mES細胞を実施例1に記載の方法で14日間培養した後、生じたVenus陽性の細胞塊を下記の実験に用いた。マウス胎生14.5日または生後1日目の大脳のスライス組織に、Venus陽性の細胞塊を脳室の部分に細胞塊を置くかたちで接触させ(図4A)、Transwell filter上で共培養を3日間行った。
また、Venus陽性の細胞塊(分化培養11日後)を塊のまま、あるいは分散して、新生児マウスの大脳皮質運動野近傍に生体移植し、移植4週間後に組織学的に解析した。結果を図4に示す。
マウス胎生14.5日または生後1日目の大脳のスライス組織との共培養では、Venus陽性の細胞塊から多数のVenus陽性神経細胞が大脳皮質組織に侵入した(図4B〜C)。新生児マウスの大脳皮質運動野近傍への生体移植では、分散し移植したVenus陽性細胞からは大脳錐体細胞と形態的に類似したニューロンが分化した(図4D)。細胞塊のまま移植したものからは、脳の広範囲の組織への軸索投射が認められ、特に大脳皮質ニューロンからの軸索投射が多い、視床、線条体、大脳脚、橋核部に多くのVenus陽性の投射が確認された(図4E;符号O〜U;図4E中、Cxは皮質を示す)。
(方法)
実施例1に記載の方法で7日後から15日後まで培養し、その間の大脳皮質層特異的ニューロンのマーカーの発現を蛍光免疫染色法で解析した。また、層特異的ニューロンの最終分化(細胞周期を出る)のタイミングをBrdUパルスラベルによるbirth−date解析法(Eur.N.Neurosci.,22,331−342)で解析した。結果を図5に示す。
大脳第1層のCajal−Retzius細胞特異的なReelinを発現する細胞はSFEBq培養の7日目から出現した。また、大脳第6層特異的なTbr1/Bf1陽性細胞も7日目から認められた。大脳第5層特異的なCitp2陽性細胞は9−10日目から有意に出現し(図5B)、大脳第2−3層に特異的なBrn2陽性ニューロンは11−12日目に有意に認められた(図5C)。この順(図5A)は、発生過程でのこれらの大脳層特異的ニューロンの発生順と一致する。また、その相関はBrdUパルスラベルによるbirth−date解析法でも確認され、第1層、6層、5層、2−3層の順に細胞周期を出ることが確認された(図5D〜H)。
このことは、SFEBq法で分化した大脳前駆細胞が発生過程の大脳皮質と類似した時
間制御下に層特異的ニューロンを生み出すことを示し、生体内での大脳皮質前駆細胞と非常に良く似た性格を有することを示唆している。
(方法)
Bf1/Venus−mES細胞を異なった長さの期間(9日間あるいは12日間)、分化培養した後に、生じたVenus陽性細胞をFACSで分離し、非細胞接着性の96穴培養プレートで急速再凝集(5000細胞/ウェル)を行った。翌日からNotch阻害剤のDAPT(10μM;ニューロンの分化を促進することが知られている;Nelson et al,2007)の処理で急速なニューロンへの分化誘導を行い、さらに6日間分化培養後に層特異的マーカーを蛍光免疫染色法で解析した(図6A)。結果を図6に示す。
9日間分化培養した後DAPT処理を行ったものでは、5割以上の細胞がReelin陽性のCajal−Retzius細胞に分化した(図6A、B)。一方、12日間分化培養した後DAPT処理を行ったものでは、6割以上の細胞がCtip2/Emx1陽性の第5層特異的な大脳皮質ニューロンに分化しており、Reelin陽性細胞は1割未満であった(図6A、C)。
このように、SFEBq法では異なった培養期間と時期特異的なNotch阻害により、異なった層特異性を有する大脳ニューロンを選択的に産生することが可能である。
(方法)
Bf1/Venus−mES細胞を7日間、SFEBq法で分化培養した後に、生じたVenus陽性細胞をFACSで分離し、非細胞接着性の96穴培養プレートで急速再凝集(5000細胞/ウェル)を行った。そこへFgf8b(50ng/ml)、Fgf受容体阻害剤FGFR3−Fc(50ng/ml)、Wnt3a(20ng/ml)、BMP4(0.5ng/ml)などの分泌型のパターン形成因子を添加して、培養を3〜12日間行った。大脳部位特異的マーカーの発現を蛍光免疫染色法で解析した(図7A)。結果を図7に示す。
パターン形成因子を添加していない再凝集塊(再凝集培養3日後)では、大脳組織のうちで尾側大脳皮質型の細胞(Coup−TF1+/Bf1+)と吻側大脳皮質型の細胞(Coup−TF1−/Bf1+)が5割ずつを占めていた。一方、Fgf8b添加群では、9割の細胞が吻側大脳皮質型(Coup−TF1−/Bf1+)となり、Fgf受容体阻害剤FGFR3−Fc添加群では、8割の細胞が尾側大脳皮質型(Coup−TF1+/Bf1+)となっていた(図7B〜I)。このことは、SFEBqで誘導した大脳皮質組織は、Fgfシグナルの有無により、それぞれ吻側あるいは尾側大脳皮質組織に選択的に分化誘導可能であることを示す。
Wnt3a添加群では、大脳の最尾側かつ背側に存在するhem領域(海馬周辺組織)の部位特異的マーカーであるOtx2およびLmx1aの発現誘導を2−3割の細胞で観
察した(図7O〜R)。
BMP4添加群では、Otx2およびLmx1aの発現に加えて、大脳の最背側に存在する脈絡膜組織(TTR陽性)の分化を認めた(図7O、S)。特に、Wnt3a+BMP4添加群ではこの発現が強められ、5割以上の細胞でOtx2およびLmx1aの発現を、2割の細胞でTTRの発現を認めた(図7T〜U)。
(方法)
実施例1の方法で、マウスES細胞をSFEBq培養で10日間培養し、その間の浮遊凝集塊内での組織形成とニューロン産生を蛍光免疫染色で観察した。組織切片の調製は凍結切片で行った。また、初期の組織像の詳細な解析には透過型電子顕微鏡も用いた。結果を図8等に示す。
SFEBq培養では、浮遊凝集塊は一定の均一なサイズで形成され、凝集塊間の分化程度もほぼ同一であった(図1A)。分化培養開始3〜4日後より、神経前駆細胞マーカーSox1やN−カドヘリンの集積を認め(図1B〜C)、5日後では9割以上の細胞が神経前駆細胞マーカーを発現した。5日後では、こうした神経前駆細胞は組織学的に単層の円柱上皮(神経上皮)を連続した形で形成し、こうした上皮は再現性良く内部をapical側とする極性を有していた(図1D〜F)。7−8日後には、神経上皮は数個の球状の塊(ロゼット)に分かれたが、なおその内部をapical側とする極性を保持していた。
10日後の組織解析では、各ロゼットの最内部はPax6/CD133/Ki67陽性の分裂能を持つ、神経前駆細胞の層が占め、その外側には大脳皮質第5−6層の神経細胞であるTbr1やCtip2陽性のニューロンが占める大脳板(cortical plate)様の層が存在した(図8A〜B)。この2つの層にまたがるように、大脳皮質第2−3層など後期大脳板(cortical plate)由来のニューロンの前駆細胞であるTbr2陽性細胞の層が存在していた(図8C)。さらに、Tbr1やCtip2陽性のニューロンの外側には、しばしば大脳皮質第1層のニューロンであるReelin陽性細胞の層が存在していた。これらの層の順は、初期の大脳原基(例、マウス胎生14日)で認められる層の順やマーカー発現パターンと同じであり、SFEBq法では大脳皮質の組織形成の初期過程を試験管内で自己組織化的に模倣することができる(図8D〜E)ことを示す。
(方法)
ヒトES細胞(KhES#1;京都大学中辻教授樹立)は既に報告した通りに維持培養した(上野ら,PNAS,2006)。分化誘導に関しては、分散浮遊培養時の細胞死を抑制することを私たちが報告したROCK阻害剤(Y−27632;渡辺ら、Nature Biotechnology 2007)を培養開始時から培地に添加して行った(SFEBq/RI法)。G−MEM培地に20%KSR、10μM Y27632、2mM グルタミン、1mM ピルビン酸、0.1mM 非必須アミノ酸、0.1mM 2−メルカプトエタノール、250μg/ml recombinant Dkk−1(500ng/ml)を添加し、さらにNodal阻害剤Lefty−A(5μg/ml;R&
D)、BMP阻害剤BMPRFc(1.5μg/ml;R&D)を添加したものを分化培地に用いた。単一分散したヒトES細胞(渡辺ら,Nature Biotechnology,2007)を9000細胞/150μl/ウェルずつ、実施例1と同様の方法で非細胞接着性の96穴培養プレートに分注し、37℃、5%CO2下に18日間浮遊培養した。その後、浮遊凝集塊を非細胞接着性の6cmシャーレ(スミロン Celli−tight−X)に回収し、DMEM/F12にN2 supplementを添加した培地でさらに7日間培養した。さらに凝集塊をpoly−D−リジン/ラミニン/フィブロネクチンでコートした8−well チャンバースライド培養器の上でB27 supplement添加のNeurobasal培地(2mM L−グルタミン入り)を用いて、合計46日目まで培養した(図9A)。結果を図9に示す。
ヒトES細胞由来の細胞凝集塊はコートした培養器の上でもドーム型の立体構造を保っていた(図9A)。9割以上の凝集塊では、Bf1/Emx1陽性の大脳皮質型の神経上皮が連続的な組織として存在しており、内部をapical側とする極性を有していた(図9B〜D)。同様の構築は、ヒトiPS細胞(253G4;Nakagawa et al,2008、Nature Biotechnology 26,101−106)を用いた同様の培養でも認められた。
重要なことに、マウスES細胞由来の大脳組織と同様に、層特異的な大脳ニューロンの産生が認められ、しかも細胞凝集塊内で同様の層状の配置がそれらのニューロン群に認められた。すなわち、最も内部の層にはPax6陽性の分裂能を有する大脳皮質前駆細胞組織が存在し、その外側にTbr1、Ctip2陽性の大脳皮質第5−6層のニューロンの層が存在した。それらの層の間にまたがる形で、後期大脳板(第2−3層)に対応するニューロンの前駆細胞であるTbr2陽性細胞群が存在した。さらに、Tbr1、Ctip2陽性の外側には、大脳第1層に対応するReelin陽性細胞が存在した(図9E〜J)。
(方法)
Bf1/Venus−mES 細胞を10日間SFEBq法で分化培養した。この際、最初の6日間はWnt阻害剤Dkk1(100ng/ml)および10%KSRを添加したGMEM培地で培養し、分化培養開始3日後より6mMのShhタンパクを培地に添加した。分化培養開始6日後に培地を6mM ShhおよびN2サプリメントを添加したDMEM/F12に交換し、さらに4日間浮遊培養した。合計10日間培養したのち、生じたVenus陽性細胞をFACSで分離し、非細胞接着性の96穴培養プレートで急速再凝集(20000細胞/ウェル)を行った。形成された凝集塊は6mM Shh、N2サプリメントおよび10%牛血清培地を添加したDMEM/F12培地でさらに1週間浮游培養し、神経マーカーで免疫染色を行った(計17日)。また、Shhを添加していないもの、あるいは30nMのShhを添加したものと比較した。結果を図10に示す。
発生過程で大脳基底部背側(外側基底核隆起)から由来する線条体神経細胞マーカーにはFoxP1およびNolz1などがある。6nMのShhを添加し培養した場合、17
日後に9割のBf1/Venus陽性凝集塊(図10C)がFoxP1およびNolz1を発現していた。うちNolz1(線条体前駆細胞にも発現する)は全細胞の5割に(図10A)、FoxP1(より成熟した線条体神経細胞のマーカー)は2−3割に(図10B、図10D)発現していた。またこれらの神経はGABA作動性ニューロンマーカーであるGADを発現していた(図10E、図10F)。これらのマーカーの発現はShhを添加しない場合は、全体の5%未満であった。
一方、6nMのShhを添加し培養した場合、大脳基底部腹側(内側基底核隆起)から発生する神経細胞(淡蒼球ニューロン、大脳皮質介在ニューロン、線条体介在ニューロンなど)のマーカーであるNkx2.1の発現は認められなかった。しかし、30nMのShhを添加した同様の培養では、4割のBf1/Venus陽性凝集塊でNkx2.1の発現を認めた。
(方法)
ヒトES細胞は実施例9と同様の方法で大脳皮質組織に分化させ、47日間培養後に固定した。なお、この培養では、Nodal阻害剤Lefty−Aの代わりに、Lefty−Aと同様に大脳マーカーBf1を誘導する低分子のNodal受容体阻害剤SB431542(10μM)を用いた。分化培養開始後25日からFgf8(100μg/ml)を培地に添加し、以後3日おきにFgf8を含む培地を用いて培地交換を行い、47日まで培養した。対照には、Fgf8を添加しないものを用いた。後方の大脳皮質組織マーカーであるCoupTf1を用い、これが陽性である後方皮質細胞と陰性である前方皮質細胞の割合を免役染色で解析した。結果を図11に示す。
Fgf8添加の有無に関わらず、8割以上の細胞がBf1陽性であった。Fgf8を添加しない対照では、Bf1陽性の8割の細胞がCoupTf1陽性の後方型であった(図11A)。一方、Fgf8添加群では、CoupTf1陽性細胞は2割以下で、大半はCoupTf1陰性の前方型であった(図11B)。
以上の結果は、ヒトES細胞からSFEBq法で分化させた大脳皮質組織は、その細胞の多くが後方皮質細胞のタイプであるが、実施例7でのマウス細胞と同様に、Fgfシグナルの作用で前方皮質細胞への選択分化を誘導できることを示す。このようにFgfシグナルを人為的に調節することで、試験管内で後方皮質細胞と前方皮質細胞をヒト多能性幹細胞から選択的に産生することが可能である。
(方法)
Sox1−GFP mES細胞(GFPを初期神経マーカー遺伝子Sox1座にノックインしたマウスES細胞)をSFEBq法(96ウェルの低細胞結合性培養プレート)で分化培養した。その際、実施例1の培養液を用い、1ウェルあたり3個−3000個の細胞を植えた。1日後より、細胞外マトリクス成分の効果をみるため、Matrigel(growth factor reduced仕様;BD Bioscience;BDによれば主要なタンパク成分のうち、61%ラミニン、30%コラーゲンIV、7%エンタクチン)を培養液の容積あたり1/100量添加して、その効果を神経分化や組織構築に関して、観察した。
Matrigelを加えない培養液のみで培養した群では、1ウェルあたりの播き込み細胞数を500−3000個にすると培養5日後には8割の細胞がSox1陽性の神経前駆細胞に分化していた。ところが、播き込み数を3個−50個にすると、Sox1陽性細胞への分化は全く認められなかった。ところが、Matrigel添加群では、3個−50個しか播き込まなかった場合も9割の細胞がSox1陽性に分化した。このことは、SFEBq培養で神経分化に好ましくない条件下でも、細胞外マトリクス成分の培養液での添加により、神経分化が大きく改善することを意味する。これにより3個などのごく少数のES細胞からも再現性良く神経分化の制御が可能であることが示された。(なお、500−3000個の播き込みの場合にもMatrigelを添加した場合、9割程度の細胞が神経前駆細胞に分化しており、この場合も軽度の促進効果が確認された。)
更に重要なことは、ES細胞由来の神経細胞塊の組織構築を観察した結果である(細胞播き込みウェル当たり2000個)。実施例8にあるように、Matrigelの添加の有無によらず、5−6日後では、神経前駆細胞は組織学的に単層の円柱上皮(神経上皮)を連続した形で形成し、神経上皮組織は再現性良く内部をapical側とする極性を有していた。Matrigelの非添加群では、7−8日後には、神経上皮は数個の球状の小塊(ロゼット)に分かれ出し、10日後には神経上皮が1つの袋状に連続した形は全く認められなかった。
ところが、Matrigelの添加群では10日後でも細胞塊の表面に神経上皮が1つの袋状に連続した形で残っており、ロゼットに分裂しなかった。非添加群と異なり、Matrigelの添加群の10日後の神経上皮は、1)radial glia細胞の高い密度、2)ラミニン陽性の連続した基底膜の保持、3)radial glia細胞の基底膜接着部に見られるend foot構造などの「胎児の脳胞(大脳皮質の神経上皮組織)により良く似た組織上の特徴」が確認された(図12)。
このことは、マトリクス成分の培養液への添加により、基底膜などの構造がより強固になり、神経上皮の主要構造成分の細胞であるradial glia細胞の増殖、維持および形態保持が促進され、胎児の脳胞を模倣する大脳皮質組織の上皮構造形成が促進されたことを強く示唆する。
増殖因子を含まない化学合成培地でのマウスES細胞の浮遊培養(SFEBq/gfCDM法)によるES細胞からの神経分化誘導
(方法)
マウスES細胞(EB5及びSox1−GFP ES cells)は以前に記載の通り(渡辺らNature Neuroscience,2005:非特許文献4)に維持培養した。培地にはG−MEM培地(Invitrogen)に1% 牛胎児血清、10% KSR(Knockout Serum Replacement;Invitrogen)、2mM グルタミン、0.1mM 非必須アミノ酸、1mM ピルビン酸、0.1mM 2−メルカプトエタノール及び2000U/ml LIFを添加したものを用いた。
浮遊培養による神経分化誘導には、0.25% trypsin−EDTA(Invitrogen)を用いてES細胞を単一分散し、非細胞接着性の96穴培養プレート(Lipidure−Coat,NOF Corp.)の1ウェルあたり3000細胞になるように150μlの分化培地に浮遊させ、37℃、5%CO2で5日間インキュベーションした。
分化培地にはIscove’s Modified Dulbecco’s Medium(IMDM)/Hams F12 1:1(Invitrogen)に、1×Chemically−defined lipid concentrate(Invitrogen)、モノチオグリセロール(450μM;Sigma)および牛血清アルブミン
(>99%の純度の再結晶精製品;Sigma)を添加したものを用いた。
ヒトapo−transferrin(15μg/ml;Sigma)の添加の有無は、以下の結果のいずれにも影響がなかった。
神経前駆細胞への分化は以前に記載の通り(渡辺らNature Neuroscience,2005)、神経分化した細胞が蛍光を発するSox1−GFP ES cellsを用いて、FACSを用いて解析した。FACSはFACSAria(Beckton Dickenson)を用い、FACSDiva softwareで分析した。また、EB5細胞を用いて、蛍光抗体法でも神経分化を解析した。
(結果)
非接着性の96穴培養プレートを用いることで、1つのウェルに入れた細胞のほとんどが半日以内に1つの浮遊凝集塊を再現性良く形成し、増殖因子を含まない化学合成培地での培養でも、ほとんど細胞死を認めずに良く成長した。培養5日後では、FACS解析で90%以上の細胞がSox1−GFP陽性となった。蛍光抗体法でも90%以上の細胞が神経マーカーN−cadherin陽性であった。これらの結果は、上記の培養条件(SFEBq/gfCDM法)では、選択的な神経分化をマウスES細胞から誘導することができることを示す。
SFEBq/gfCDM法による視床下部前駆細胞のES細胞からの視床下部分化誘導と各種増殖因子の効果
(方法)
実施例13と同様の培養条件で、7日間分化培養を行った。分化細胞の解析には、視床下部と網膜の前駆細胞のマーカーであるRxというタンパクの抗体を用いた。視床下部の前駆細胞ではRxに加えて、nestinというタンパクを発現しているが、網膜の前駆細胞ではRxのみでnestinを発現していないため、Rxとnestinの共発現を指標として、視床下部の前駆細胞の同定を蛍光抗体法で行った。
さらにRx遺伝子座にGFPをノックインしたEB5細胞(以下、Rx−GFP ES細胞)を作成し、Rx−GFPの発現をFACSでも解析した。
また、FACS分画したRx−GFP+ ES細胞において、Otx2、Rx、Six3、Vax1、Irx3、En2及びHoxb9の発現を確認した。
(結果)
SFEBq/gfCDM法でEB5細胞およびSox1−GFP ES細胞に対し7日間分化培養を行ったのち、その凝集塊を凍結切片にし、蛍光抗体法で組織染色を行ったところ、45−65%の細胞がRx陽性であった。それらのRx陽性細胞はすべてnestin陽性であった。他のマーカーについての結果は図13を参照のこと。このことは、SFEBq/gfCDM法による培養で、マウスES細胞が選択的に視床下部前駆細胞に分化誘導されることを示唆する。
Rx−GFP ES細胞のSFEBq/gfCDM培養でも50−70%の高い分化効率を確認した。これを指標に、各種の増殖因子の効果を検討した。3日目から7日までNodal(1μg/ml)、Wnt3a(200ng/ml)、Fgf8b(250ng/ml)、BMP7(500ng/ml)、レチノイン酸(0.2μM)、lipid−richアルブミン(1x;Invitrogen)のそれぞれを培地に添加したところ、いずれもRx−GFPのパーセントを10%未満に低下させた。逆に、Shh−N(30μM)の添加はRx−GFPのパーセントを約80%に上昇させた。一方、分化培地に亜セレン酸ナトリウムを追加添加する(分化培地では0.017mg/Lであるが、これを0.025mg/Lに増加)ことでも、Rx−GFPのパーセントを約80%に上昇させることができた。以上のことは、ES細胞からの視床下部前駆細胞への分化には、Nodal、Wnt3a、Fgf8b、BMP7、レチノイン酸、lipid−richアルブミンなどの無血清培地にしばしば添加される増殖因子・添加剤を含まないことが重要であることを示す。逆に、Shhの添加や亜セレン酸ナトリウムの増量は、視床下部前駆細
胞への分化を中程度に促進する効果を示すことも示唆された。
SFEBq/gfCDM法による視床下部前駆細胞分化に対するインシュリンおよびAkt阻害剤の効果
(方法)
実施例14と同様の培養条件で、7日間分化培養を行い、培地へのインシュリンの添加の、ES細胞からの視床下部前駆細胞分化への影響を、Rx−GFP ES細胞を用いてFACS解析した。また、インシュリンの細胞内シグナル伝達には、大きく分けて2つの経路(MAPK経路とPI3K−Akt経路)が関与する。従って、MAPKを阻害するPD98059やPI3Kを阻害するLY294002、およびPI3Kのさらに下流因子であるAktの阻害剤Akt inhibitor VIII(Calbiochem)の視床下部前駆細胞分化への効果も同様に検討した。LY294002、Akt inhibitor VIII、PD98059又はDMSO(ビヒクルコントロール)は、培養2日目に添加した。
(結果)
7μg/mlのインシュリンの添加で、Rx−GFPの陽性率は5%未満に低下した。同様の分化阻害はインシュリンと構造の近い0.5μg/ml IGFの添加でも認められた(図14)。これらのことは、インシュリンやその類似物質を培地に含まないことが、視床下部前駆細胞へ選択的に分化誘導させるための培地に重要であることを示す。
タイムウインドウ(time−window)解析(図15)により、最初の3日間のCDM中のインシュリンの存在は、Rx−GFP+%に対して殆ど阻害効果を及ぼさなかったが、4日目以降にインシュリンが存在した場合には、Rx−GFP+%が実質的に減少したことが示された。逆に、5日目又はそれ以前のgfCDMへのインシュリンの添加はRx−GFP発現を抑制した。このことは、4日目及び5日目の間の高インシュリンシグナルの非存在が、効率的なRx発現に重要であることを示唆している。
また、SFEBq培養物中の他のマーカー遺伝子の発現に対するインシュリンの影響をqPCRで解析したところ、インシュリンが、最も吻側のCNSマーカーの発現に対し抑制効果を有し、インシュリン処理により尾側マーカー発現が中程度に誘導されることが示された(図16)。
7μg/mlのインシュリンの添加による阻害効果は、PI3K阻害剤LY294002(5μM)の添加やAkt阻害剤Akt inhibitor VIII(2μM)の添加で拮抗され、それぞれ約20%、28%まで回復した。しかし、MAPK阻害剤PD98059(0.5−10μM)では、インシュリンの阻害効果に対する拮抗は認められなかった(図17)。このことは、インシュリンを含む分化培地では、PI3K阻害剤またはAkt阻害剤、あるいはその両方を添加することで、ES細胞からの視床下部前駆細胞への分化誘導を行うことが可能あることを示唆する。インシュリンは多くの無血清培地に含まれており、この阻害剤添加によりインシュリンの分化阻害作用を拮抗できることは重要な方法論である。
ES細胞から産生した視床下部前駆細胞からの背側および腹側視床下部神経細胞への分化(方法)
実施例14と同様の培養条件で、SFEBq/gfCDM法で7日間Rx−GFP ES細胞の分化誘導を行ったのち、Rx−GFP陽性とRx−GFP陰性の細胞をFACSで分画した。それぞれの分画の細胞を1ウェルあたり2500−5000細胞ずつ非細胞接着性の96穴培養プレートに分注し、DMEM/F12培地に7g/L glucose、10% KSRおよびpenicillin/streptomycinを添加したものを培地として、更に3日間培養した。このウェルの中で分画した細胞は半日以内に再凝集塊を形成した。3日後、DFNB培地(DMEM/F12に7g/l glucos
e、1xN2 supplementと1xB27 supplementを加えたもの)に10ng/ml CNTFを添加した培地を半分置換し、更に3日間培養した。
合計13日間培養後、再凝集塊を凍結切片にし、分化した細胞の性状を蛍光抗体法で解析した。Shhの効果を観る場合は、30nMのShhを培養開始4日後から添加した。(結果)
Shh無処理のRx−GFP陽性の再凝集塊では、45%の細胞が背側視床下部のマーカーであるOtpを発現していたが、Rx−GFP陰性の分画からの細胞には発現は認められなかった。Rx−GFP陽性分画でのOtpの発現は、Shh処理で強く抑制された(7%)。一方、Shh処理をしたRx−GFP陽性の再凝集塊では、腹側視床下部のマーカーであるNkx2.1、SF1という2つのタンパク質を発現している細胞が多数認められた(23%の細胞)、Shh無処理のRx−GFP陽性の再凝集塊ではほとんど認められなかった。背側マーカーPax6の発現もこの結果と一致した。Shhシグナル阻害剤Cyclopamineによる処理では、これらのマーカーの発現についてShh処理とは逆の結果が得られた(図示せず)。
以上の結果は、SFEBq/gfCDMで分化させたES細胞由来の視床下部細胞は、Shhが無い条件では背側の視床下部の性格を持ち、Shh処理された場合は、腹側の視床下部の性格を持つことが明らかになった。Shhと同様の効果は、Shh受容体のアゴニストであるPurmorphamine(0.5μM;Calbiochem)をShhの代わりに用いても得ることが出来た。
ES細胞から産生した視床下部前駆細胞からのバゾプレシン産生内分泌細胞への分化
(方法)
背側視床下部由来の典型的な神経細胞は室傍核や視索上核に存在するバゾプレシン産生内分泌細胞である。実施例16と同様に、SFEBq/gfCDM法で7日間Rx−GFP ES細胞の分化誘導を行ったのち、Rx−GFP陽性の細胞をFACSで分画した。これを実施例16と同様に、13日まで再凝集塊として培養後、さらにこれをカルチャーインサート(Transwell;コーニング)上で培養をさらに12日間継続した。培地にはDFNB培地に10ng/ml CNTFを添加したものを用いた。ニューロンの性状は蛍光抗体法で調べた。一方、高カリウム濃度(100mM)の人工髄液に反応して分泌されるバゾプレシンをラジオイミュノアッセイ(2抗体法)で定量した。
(結果)
蛍光抗体法では、多数のバゾプレシン抗体(抗NP II抗体)に陽性の大型ニューロン(20−30μMの直径の細胞体)が検出された(全体の細胞の6%)。高カリウム濃度(100mM)の人工髄液で37℃にて培養すると、10個の細胞塊から10分間で約7pgのバゾプレシンの放出を検出した(図18)。
このことは、SFEBq/gfCDM法で、視床下部内分泌細胞の前駆細胞をES細胞から分化誘導でき、それを分化成熟させることで実際にホルモンを産生するニューロンが産生できることを示す。
ES細胞から産生した視床下部前駆細胞からの他の視床下部ニューロンへの分化
(方法)
実施例16と同様の方法で、Shh処理下にSFEBq/gfCDM培養をRx−GFP ES細胞に対して行い、7日後に、Rx−GFP陽性の細胞をFACSで分画した。これを実施例16と同様に、13日まで再凝集塊として培養後、さらにこれをNeural Tissue Dissociationキット(スミロン)を用いて分散し、poly−D−lysine/laminin/fibronectinでコートした培養プレートの上に20000cells/cm2で播種し、DFNB+50ng/ml BDNFで25日まで培養した。分化したニューロンの性状を蛍光抗体法で解析した。
(結果)
Shh処理した培養では、バゾプレシンを産生する内分泌細胞は認められなかったが、代わりに腹側視床下部由来の細胞の性質をもったニューロンが複数種類同定された。それらは、SF1とGluT2を共発現する内腹側核ニューロン(分化誘導したニューロンの13%;視床下部では満腹中枢を担うニューロンと言われる)、TH(チロシン水酸化酵素)とNkx2.1を共発現するA12型ドーパミンニューロン(分化誘導したニューロンの14%;視床下部では下垂体のプロラクチン分泌の調整などを行うことが知られている)、AgRPやNPY共発現する弓状核ニューロン(分化誘導したニューロンの1.5%;摂食行動を制御する)、Orexin陽性ニューロン(分化誘導したニューロンの約0.5%;摂食行動を制御する)などが含まれていた。
これらの結果は、SFEBq/gfCDM法にShh処理を組み合わせることで、様々な行動や内分泌制御を行う中枢である腹側の視床下部のニューロンをES細胞から産生できることを示す。
SFEBq/gfCDM法の変法によるヒトES細胞からの視床下部前駆細胞の分化誘導(方法)
ヒトES細胞(KhES#1;京都大学中辻教授樹立)は既に報告した通りに維持培養した(上野ら、PNAS 2006)。分化誘導に関しては、実施例13のように、ヒトES細胞をSFEBq/gfCDM分散後、再凝集浮遊培養を行うと、ほとんど死滅して増殖しない。これを次の2つの方法を組み合わせて、回避した。一つは分散浮遊培養時の細胞死を抑制することを本発明者らが報告したROCK阻害剤(Y−27632;渡辺ら、Nature Biotechnology 2007)を培養開始時から培地に添加することである。もう一つは細胞増殖を亢進させるためインシュリンを添加することである。しかし、後者は視床下部への分化誘導を阻害する可能性があるため、その阻害効果に拮抗するAkt inhibitor VIIIを培地に添加した。この改良によりヒトES細胞をSFEBq法により培養し、増殖させることができる。
具体的には、実施例13の分化培地に7μg/mlインシュリン、50μM Y−27632、Wnt阻害剤Dkk1(100ng/ml;R&D)、Nodal阻害剤SB431542(1μM;Sigma)、BMP阻害剤BMPRFc(1μg/ml;R&D)を添加したものを分化培地に用い、単一分散したヒトES細胞(渡辺ら、Nature
Biotechnolohy 2007)を6000細胞/150μl/ウェルずつ、実施例13と同様の方法で非細胞接着性の96穴培養プレートに分注し、37℃、5%CO2下に18日間培養した。培地にはAkt inhibitor VIIIを2μMの濃度で培養開始9日後から添加した。次に、実施例13の分化培地に7μg/mlインシュリン、2μM Akt inhibitor VIIIを添加したものを用いて、さらに13日間培養した。
視床下部の遺伝子マーカーの発現を定量的PCR法で解析した。
(結果)
合計31日間の培養後、上記の培養細胞塊の定量的PCR法による解析では、Rx、Six3、Vax1、Nkx2.1などの視床下部特異的遺伝子の有意の発現が検出された。一方、Akt inhibitor VIIIを添加しなかったものについては、Rxは50%、Vax1は25%に発現が低下していた。
これらの結果は、Y−27632、インシュリン、Akt inhibitor VIIIの追加添加により、ヒト多能性幹細胞からもSFEBq/gfCDM法で視床下部組織の分化誘導が可能であることを示す。
よび範囲に包含されるすべての変更を含むものである。
ここで述べられた特許および特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
Claims (29)
- 無血清培地中で均一な幹細胞の凝集体を形成させる工程を含む、幹細胞の分化誘導法。
- 幹細胞の凝集体形成の時間が12時間以内である、請求項1に記載の方法。
- さらに無血清培地中で均一な幹細胞の凝集体を浮遊培養する工程を含む、請求項1または2に記載の方法。
- 浮遊培養を60時間〜350時間行うことを特徴とする、請求項3に記載の方法。
- さらにNodalシグナル阻害剤および/またはWntシグナル阻害剤の存在下で無血清培地中で培養する工程を含む、請求項1〜4のいずれか一項に記載の方法。
- さらにNotchシグナル阻害剤の存在下で無血清培地中で培養する工程を含む、請求項1〜5のいずれか一項に記載の方法。
- さらに分泌型パターン形成因子の存在下で無血清培地中で培養する工程を含む、請求項1〜5のいずれか一項に記載の方法。
- 神経系細胞への分化誘導法である、請求項1〜7のいずれか一項に記載の方法。
- 大脳前駆細胞への分化誘導法である、請求項1〜5のいずれか一項に記載の方法。
- 大脳皮質前駆細胞への分化誘導法である、請求項1〜5のいずれか一項に記載の方法。
- 大脳皮質神経細胞への分化誘導法である、請求項1〜7のいずれか一項に記載の方法。
- 層特異的ニューロンへの選択的な分化誘導法である、請求項1〜7のいずれか一項に記載の方法。
- 無血清培地が、Nodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤、レチノイン酸及びインシュリン類を実質的に含有しない無血清培地である、請求項3記載の方法。
- 無血清培地が亜セレン酸またはその塩を含有する、請求項13記載の方法。
- 無血清培地がShhシグナル促進剤を含有する、請求項13記載の方法。
- 無血清培地がShhシグナル促進剤を実質的に含有しない、請求項13記載の方法。
- 得られ得る前駆細胞が腹側視床下部ニューロンの前駆細胞である、請求項15記載の方法。
- 得られ得る前駆細胞が背側視床下部ニューロンの前駆細胞である、請求項16記載の方法。
- 少なくとも7日間培養する、請求項13記載の方法。
- 無血清培地が、PI3K阻害剤及びAkt阻害剤からなる群より選択される少なくとも1つの阻害剤並びにインシュリン類を含有し、且つNodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤及びレチノイン酸を実質的に含有しない無血清培地である、請求項3記載の方法。
- 無血清培地が、ROCK阻害剤を更に含有する、請求項20記載の方法。
- 請求項1〜21のいずれか一項に記載の方法により得られる、細胞培養物。
- 無血清培地中で均一な幹細胞の凝集塊を形成させる工程および無血清培地中で均一な幹細胞の凝集体を浮遊培養する工程を含む、脳組織の立体構造を試験管内で産生する方法。
- 脳組織が、大脳皮質組織である、請求項23に記載の方法。
- 無血清培地が細胞外マトリクス成分を含有することを特徴とする、請求項23に記載の方法。
- 請求項23〜25のいずれか一項に記載の方法により得られる、培養産物。
- 無血清培地中で均一な幹細胞の凝集塊を形成させる工程および無血清培地中で均一な幹細胞の凝集体を浮遊培養する工程を含む、大脳皮質神経ネットワークを試験管内で形成する方法。
- 請求項27に記載の方法により得られる、培養産物。
- 請求項22に記載の細胞培養物、請求項26に記載の培養産物または請求項28に記載の培養産物を用いることを特徴とする、被検物質のスクリーニング方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008149880 | 2008-06-06 | ||
JP2008149880 | 2008-06-06 | ||
JP2008282299 | 2008-10-31 | ||
JP2008282299 | 2008-10-31 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015150961A Division JP6425246B2 (ja) | 2008-06-06 | 2015-07-30 | 幹細胞の培養方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017158558A true JP2017158558A (ja) | 2017-09-14 |
Family
ID=41398243
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010515950A Pending JPWO2009148170A1 (ja) | 2008-06-06 | 2009-06-05 | 幹細胞の培養方法 |
JP2015150961A Active JP6425246B2 (ja) | 2008-06-06 | 2015-07-30 | 幹細胞の培養方法 |
JP2017074820A Pending JP2017158558A (ja) | 2008-06-06 | 2017-04-04 | 幹細胞の培養方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010515950A Pending JPWO2009148170A1 (ja) | 2008-06-06 | 2009-06-05 | 幹細胞の培養方法 |
JP2015150961A Active JP6425246B2 (ja) | 2008-06-06 | 2015-07-30 | 幹細胞の培養方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10227563B2 (ja) |
EP (1) | EP2314671B1 (ja) |
JP (3) | JPWO2009148170A1 (ja) |
WO (1) | WO2009148170A1 (ja) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007070964A1 (en) * | 2005-12-22 | 2007-06-28 | Es Cell International Pte Ltd | Direct differentiation of cardiomyocytes from human embryonic stem cells |
EP2314671B1 (en) | 2008-06-06 | 2022-08-03 | Riken | Method for culture of stem cell |
US10793830B2 (en) | 2009-11-05 | 2020-10-06 | Riken | Method for producing retinal tissue in vitro |
KR101168053B1 (ko) * | 2009-11-06 | 2012-07-24 | 연세대학교 산학협력단 | 효율적이고 보편적인 전분화능 줄기세포의 신경세포 분화 유도방법 |
IL301479A (en) | 2009-11-17 | 2023-05-01 | Astellas Inst For Regenerative Medicine | Methods for preparing human RPE cells and pharmaceutical preparations of human RPE cells |
US8932857B2 (en) * | 2010-06-15 | 2015-01-13 | Kyoto University | Method for selecting reduced differentiation resistance human induced pluripotent stem cells |
RU2576000C2 (ru) * | 2010-08-09 | 2016-02-27 | Такеда Фармасьютикал Компани Лимитед | Способ получения клеток, продуцирующих панкреатические гормоны |
CN103517982B (zh) * | 2011-04-27 | 2018-02-06 | 独立行政法人国立国际医疗研究中心 | 源自多能干细胞的褐色脂肪细胞、源自多能干细胞的细胞凝聚物,其制造方法以及细胞疗法、内科疗法 |
WO2012165287A1 (ja) | 2011-05-27 | 2012-12-06 | 公立大学法人横浜市立大学 | 人工癌幹細胞の作製方法及びその分化誘導方法 |
JPWO2012173207A1 (ja) * | 2011-06-14 | 2015-02-23 | 独立行政法人理化学研究所 | 網膜細胞への分化誘導方法 |
WO2013047773A1 (ja) * | 2011-09-29 | 2013-04-04 | 国立大学法人 東京大学 | オレキシンニューロンの誘導法 |
US9480695B2 (en) | 2011-09-29 | 2016-11-01 | The University Of Tokyo | Methods for inducing orexin neurons and agent for treating narcolepsy or eating disorder |
ES2741969T3 (es) | 2011-10-31 | 2020-02-12 | Riken | Método para el cultivo de células madre |
JP6012164B2 (ja) | 2011-11-25 | 2016-10-25 | 住友化学株式会社 | 多能性幹細胞由来の組織の凍結保存方法 |
JP2013135640A (ja) * | 2011-12-28 | 2013-07-11 | Shiseido Co Ltd | 神経幹細胞から神経細胞及び/又はグリア細胞を形成する培養方法 |
EP2743345A1 (en) * | 2012-12-13 | 2014-06-18 | IMBA-Institut für Molekulare Biotechnologie GmbH | Three dimensional heterogeneously differentiated tissue culture |
CN105026552A (zh) * | 2013-02-25 | 2015-11-04 | 弗·哈夫曼-拉罗切有限公司 | 上皮干细胞的液体培养 |
EP2970892A1 (en) * | 2013-03-15 | 2016-01-20 | The Jackson Laboratory | Isolation of non-embryonic stem cells and uses thereof |
WO2014176606A1 (en) | 2013-04-26 | 2014-10-30 | Memorial Sloan-Kettering Center Center | Cortical interneurons and other neuronal cells produced by the directed differentiation of pluripotent and multipotent cells |
SG11201600813VA (en) | 2013-08-06 | 2016-03-30 | Riken | Method for producing anterior eye segment tissue |
MY188836A (en) * | 2013-11-22 | 2022-01-07 | Sumitomo Chemical Co | Method for manufacturing telencephalon or progenitor tissue thereof |
MY193954A (en) | 2014-01-17 | 2022-11-02 | Sumitomo Chemical Co | Method for manufacturing ciliary margin stem cells |
CA2965609A1 (en) | 2014-10-24 | 2016-04-28 | Sumitomo Dainippon Pharma Co., Ltd. | Production method for retinal tissue |
WO2016063985A1 (ja) | 2014-10-24 | 2016-04-28 | 大日本住友製薬株式会社 | 神経組織の製造方法 |
US20190367868A1 (en) * | 2015-12-31 | 2019-12-05 | President And Fellows Of Harvard College | Neurons and compositions and methods for producing the same |
WO2017132596A1 (en) * | 2016-01-27 | 2017-08-03 | Memorial Sloan-Kettering Cancer Center | Differentiation of cortical neurons from human pluripotent stem cells |
KR102388863B1 (ko) | 2016-04-22 | 2022-04-22 | 다이닛본 스미토모 세이야꾸 가부시끼가이샤 | 망막 조직의 제조 방법 |
JP2018011527A (ja) * | 2016-07-19 | 2018-01-25 | 学校法人藤田学園 | 視床下部前駆細胞の精製方法及びその利用 |
EP3415618B1 (en) * | 2017-06-13 | 2021-10-13 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin | Methods of producing bioengineered neuronal organoids (benos) and uses thereof |
CA3070212A1 (en) | 2017-07-20 | 2019-01-24 | Riken | Method for preserving neural tissue |
EP3658666A4 (en) * | 2017-07-28 | 2021-04-28 | Memorial Sloan-Kettering Cancer Center | ESTABLISHMENT OF A TOPOGRAPHIC ORGANIZATION IN A THREE-DIMENSIONAL TISSUE CULTURE |
WO2019048689A1 (en) * | 2017-09-11 | 2019-03-14 | Imba - Institut Für Molekulare Biotechnologie Gmbh | TUMOR ORGANOID MODEL |
JPWO2019054515A1 (ja) | 2017-09-14 | 2020-10-15 | 国立研究開発法人理化学研究所 | 背側化シグナル伝達物質又は腹側化シグナル伝達物質による錐体視細胞又は桿体視細胞の増加方法 |
CN111094554A (zh) | 2017-09-14 | 2020-05-01 | 国立研究开发法人理化学研究所 | 视网膜组织的制备方法 |
RU2730864C1 (ru) * | 2017-11-10 | 2020-08-26 | Редженесис Сайенс Ко., Лтд. | Способ производства культивируемых клеток и лекарственного препарата для лечения спинномозговых травм |
AU2018373588A1 (en) * | 2017-11-24 | 2020-07-02 | Sumitomo Chemical Company, Limited | Method for producing cell mass including pituitary tissue, and cell mass thereof |
TWI675678B (zh) * | 2018-08-23 | 2019-11-01 | 國為生醫科技股份有限公司 | 亞丁基苯酞於多巴胺神經前驅細胞移植治療的應用 |
CA3129656A1 (en) | 2019-02-11 | 2020-08-20 | Miltenyi Biotec B.V. & Co. KG | Generation of human pluripotent stem cell derived artificial tissue structures without three dimensional matrices |
SG11202109855PA (en) | 2019-03-13 | 2021-10-28 | Sumitomo Dainippon Pharma Co Ltd | Method for evaluating quality of transplant neural retina, and transplant neural retina sheet |
WO2020230856A1 (ja) * | 2019-05-14 | 2020-11-19 | 国立大学法人 筑波大学 | 神経系細胞集団、神経系細胞含有製剤およびそれらの製造方法 |
CA3162273A1 (en) | 2019-11-20 | 2021-05-27 | Sumitomo Pharma Co., Ltd. | Method for freezing cell aggregates |
IL293137A (en) | 2019-11-20 | 2022-07-01 | Sumitomo Pharma Co Ltd | A method for freezing nerve cells |
WO2021194906A1 (en) * | 2020-03-21 | 2021-09-30 | Florica Therapeutics, Inc. | Neuronal diencephalon stem cells and exosomes thereof for the treatment and prevention of diseases |
WO2022054924A1 (ja) | 2020-09-11 | 2022-03-17 | 大日本住友製薬株式会社 | 移植用組織のための媒体 |
CN112481212A (zh) * | 2020-11-27 | 2021-03-12 | 杭州联众医疗科技股份有限公司 | 一种利用多能干细胞生成脑部类器官的方法 |
AU2022390766A1 (en) | 2021-11-19 | 2024-06-20 | Riken | Production method for sheet-like retinal tissue |
US20230377685A1 (en) | 2022-04-15 | 2023-11-23 | Aspen Neuroscience, Inc. | Methods of classifying the differentiation state of cells and related compositions of differentiated cells |
EP4286513A1 (en) | 2022-06-03 | 2023-12-06 | IMBA-Institut für Molekulare Biotechnologie GmbH | Triple tissue culture fusion |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055402A (ja) * | 2001-08-13 | 2003-02-26 | Shiseido Co Ltd | 架橋ヒアルロン酸スポンジの製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001508302A (ja) | 1997-01-10 | 2001-06-26 | ライフ テクノロジーズ,インコーポレイテッド | 胚性幹細胞血清置換 |
CA2324591A1 (en) | 1998-04-09 | 1999-10-21 | Bresagen Limited | Cell differentiation/proliferation and maintenance factor and uses thereof |
US6887706B2 (en) * | 2001-10-03 | 2005-05-03 | Wisconsin Alumni Research Foundation | Method of in vitro differentiation of transplantable neural precursor cells from primate embryonic stem cells |
JP2004229523A (ja) | 2003-01-28 | 2004-08-19 | Nobuaki Tamamaki | 大脳皮質または大脳基底核原基由来の神経幹細胞もしくは前駆細胞の分離方法 |
JP2004254622A (ja) * | 2003-02-26 | 2004-09-16 | Yamanashi Tlo:Kk | 胚性幹細胞(es細胞)の胚様体(eb)形成のための培養容器及び培養方法 |
RU2345133C2 (ru) * | 2003-03-12 | 2009-01-27 | Релайанс Лайф Сайенсиз Пвт. Лтд. | Получение терминально дифференцированных дофаминергических нейронов из эмбриональных стволовых клеток человека |
ZA200401646B (en) * | 2003-03-12 | 2004-06-07 | Reliance Life Sciences Pvt Ltd | Derivation of terminally differentiated dopaminergic neurons from human embryonic stem cells. |
JP5126801B2 (ja) | 2003-04-02 | 2013-01-23 | 富山化学工業株式会社 | アポトーシスとは異なる神経細胞死を抑制する化合物のスクリーニング方法 |
KR101068802B1 (ko) | 2003-06-25 | 2011-10-04 | 니치유 가부시키가이샤 | 배양체 형성용 용기 및 배양체의 형성 방법 |
US7820439B2 (en) | 2003-09-03 | 2010-10-26 | Reliance Life Sciences Pvt Ltd. | In vitro generation of GABAergic neurons from pluripotent stem cells |
JP4549084B2 (ja) * | 2004-03-19 | 2010-09-22 | 幸英 岩本 | 生体材料回収プレート |
JP5141016B2 (ja) | 2004-06-18 | 2013-02-13 | 独立行政法人理化学研究所 | 無血清浮遊培養による胚性幹細胞の神経分化誘導法 |
JP4543212B2 (ja) | 2004-08-20 | 2010-09-15 | 独立行政法人産業技術総合研究所 | 細胞培養容器及び培養方法 |
JP2008099662A (ja) | 2006-09-22 | 2008-05-01 | Institute Of Physical & Chemical Research | 幹細胞の培養方法 |
US9133435B2 (en) * | 2007-01-18 | 2015-09-15 | Riken | Method for induction/differentiation into photoreceptor cell |
EP2886646B1 (en) * | 2007-04-18 | 2019-08-14 | Hadasit Medical Research Services & Development Limited | Stem cell-derived retinal pigment epithelial cells |
PT2209888T (pt) | 2007-10-12 | 2020-01-17 | Astellas Inst For Regenerative Medicine | Métodos aperfeiçoados de produção de células rpe e composições de células rpe |
EP2314671B1 (en) | 2008-06-06 | 2022-08-03 | Riken | Method for culture of stem cell |
US10793830B2 (en) | 2009-11-05 | 2020-10-06 | Riken | Method for producing retinal tissue in vitro |
-
2009
- 2009-06-05 EP EP09758437.9A patent/EP2314671B1/en active Active
- 2009-06-05 WO PCT/JP2009/060396 patent/WO2009148170A1/ja active Application Filing
- 2009-06-05 US US12/996,503 patent/US10227563B2/en active Active
- 2009-06-05 JP JP2010515950A patent/JPWO2009148170A1/ja active Pending
-
2015
- 2015-07-30 JP JP2015150961A patent/JP6425246B2/ja active Active
-
2017
- 2017-04-04 JP JP2017074820A patent/JP2017158558A/ja active Pending
-
2019
- 2019-02-15 US US16/277,828 patent/US10934523B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055402A (ja) * | 2001-08-13 | 2003-02-26 | Shiseido Co Ltd | 架橋ヒアルロン酸スポンジの製造方法 |
Non-Patent Citations (1)
Title |
---|
六車恵子 他: "ヒトES細胞と神経分化", 実験医学, vol. 26, no. 5, JPN6009038134, 20 March 2008 (2008-03-20), pages 733 - 739 * |
Also Published As
Publication number | Publication date |
---|---|
US10934523B2 (en) | 2021-03-02 |
US10227563B2 (en) | 2019-03-12 |
JPWO2009148170A1 (ja) | 2011-11-04 |
JP2016005465A (ja) | 2016-01-14 |
WO2009148170A1 (ja) | 2009-12-10 |
JP6425246B2 (ja) | 2018-11-21 |
US20190218513A1 (en) | 2019-07-18 |
EP2314671A4 (en) | 2012-07-18 |
US20110091869A1 (en) | 2011-04-21 |
EP2314671A1 (en) | 2011-04-27 |
EP2314671B1 (en) | 2022-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6425246B2 (ja) | 幹細胞の培養方法 | |
US12091680B2 (en) | Method for differentiation induction in cultured stem cells | |
US11834672B2 (en) | Method for producing hypophysis precursor tissue | |
JP5672563B2 (ja) | 無血清浮遊培養による胚性幹細胞の神経分化誘導法 | |
JP6789814B2 (ja) | 腺性下垂体又はその前駆組織の製造方法 | |
JP2020110176A (ja) | 小脳前駆組織の製造方法 | |
JP2020185004A (ja) | 網膜神経節細胞およびその前駆体 | |
JP2023054306A (ja) | 無担体3d球体浮遊培養における網膜ニューロン生成のための方法および組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180306 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180705 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181120 |