JP2017138053A - 電池冷却装置 - Google Patents

電池冷却装置 Download PDF

Info

Publication number
JP2017138053A
JP2017138053A JP2016019006A JP2016019006A JP2017138053A JP 2017138053 A JP2017138053 A JP 2017138053A JP 2016019006 A JP2016019006 A JP 2016019006A JP 2016019006 A JP2016019006 A JP 2016019006A JP 2017138053 A JP2017138053 A JP 2017138053A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
plate
tank
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016019006A
Other languages
English (en)
Inventor
幸克 尾▲崎▼
Yukikatsu Ozaki
幸克 尾▲崎▼
内田 和秀
Kazuhide Uchida
和秀 内田
芳昭 川上
Yoshiaki Kawakami
芳昭 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2016019006A priority Critical patent/JP2017138053A/ja
Publication of JP2017138053A publication Critical patent/JP2017138053A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】蒸発器内でドライアウトが生じることが抑制された電池冷却装置を提供することである。【解決手段】電池冷却装置は、圧縮機と、圧縮機に接続された凝縮器と、凝縮器に接続された膨張弁と、膨張弁に接続された蒸発器4とを含み、第1冷媒C1が循環する第1冷媒C1回路と、蒸発器4が内部に収容されると共に気体状の第2冷媒C2が循環する循環管と、循環管内に設けられた電池と送風機とを含む第2冷媒C2回路とを備える。上記蒸発器4は、第1冷媒C1が供給される供給部と、複数の第1冷却管23を含む第1プレート23と、複数の第1冷却管23が接続されたタンクと、タンクに接続されると共に複数の第1冷却管23よりも第2冷媒C2の流通方向上流側に配置されると共に流通方向に配列する複数の第2冷却管24を含む第2プレート24とを含む。【選択図】図7

Description

本発明は、電池冷却装置に関する。
従来から電池を冷却する冷却装置について各種提案されている。たとえば、特開2014−160594号公報に記載された電池冷却装置は、蒸発器を含み、冷媒が循環する冷凍サイクルと、蒸発器および電池が内部に配置され、冷却用空気が循環する循環用通風路とを備える。
特開2014−160594号公報 特開2014−196018号公報
特開2014−160594号公報には、蒸発器の詳細な構成について記載されていないが、一般的に、サーペンタイン式の蒸発器が採用されることが多い。
このサーペンタイン式の蒸発器は、蛇行する複数のマイクロ配管と、このマイクロ配管に取り付けられた複数の放熱フィンとを含む。マイクロ配管は、周囲の冷却用空気の流通方向に配列するように複数形成されている。
そして、マイクロ配管内を流れる冷媒は、周囲の冷却用空気から熱を吸熱して気体状になると共に、周囲の冷却用空気を冷却する。ここで、複数のマイクロ配管のうち、冷却用空気の流通方向上流側に位置するマイクロ配管には、高温の冷却用空気が吹き付けられる。その一方で、冷却用空気の流通方向下流側に位置する冷却用配管には、比較的低温の冷却用空気が吹き付けられる。
その結果、上流側に配置されたマイクロ配管内において、蒸発器から排出されるまでの間に、冷媒の乾き度が1に非常に近くなるおそれがある。マイクロ配管内で冷媒の乾き度が1に近くなると、マイクロ配管の内表面に付着している液体状の冷媒の液膜が消失してドライアウトが生じる。その結果、蒸発器の冷却効率が低下する。
本発明は、上記のような課題に鑑みてなされたものであって、その目的は、蒸発器内でドライアウトが生じることが抑制された電池冷却装置を提供することである。
本発明に係る電池冷却装置は、1つの局面では、圧縮機と、前記圧縮機に接続された凝縮器と、前記凝縮器に接続された膨張弁と、前記膨張弁に接続された蒸発器とを含み、第1冷媒が循環する第1冷媒回路と、前記蒸発器が内部に収容されると共に気体状の第2冷媒が循環する循環管と、前記循環管内に設けられた電池と、前記第2冷媒を前記蒸発器に向けて送風する送風機とを含む第2冷媒回路とを備える。上記蒸発器は、前記第1冷媒が供給される供給部と、前記供給部に接続されると共に前記第2冷媒の流通方向に配列する複数の第1冷却管を含む第1プレートと、前記複数の第1冷却管が接続されると共に前記複数の第1冷却管から供給される前記第1冷媒が導入されるタンクと、前記タンクに接続されると共に前記複数の第1冷却管よりも前記第2冷媒の流通方向上流側に配置されると共に前記流通方向に配列する複数の第2冷却管を含む第2プレートとを含む。
上記の電池冷却装置においては、第1冷媒循環回路によって、蒸発器に低温低圧の第1冷媒が供給される。
複数の第1冷却管のうち、第2冷媒の流通方向の上流側に配置された第1冷却管には、比較的高温の第2冷媒が吹き付けられる。第2冷媒の下流側に配置された第1冷却管は、比較低低温の第1冷媒が吹き付けられる。
そのため、上流側配置された第1冷却管内を流れる第2冷媒が比較的早期に蒸発しやすくなる。その一方で、各第1冷却管は、タンクに接続されるため、上流側の第1冷却管内を流れてきた第1冷媒も、下流側の第1冷却管を流れてきた第1冷媒もタンク内に導入され、互いに混合され、乾き度が平準化される。そして、乾き度が平準化された第1冷媒は、その後、第2冷却管を流通する。
このように、第1冷却管内においてドライアウトが生じる前に第1冷媒の乾き度を平準化し、その後、第2冷却管に第1冷媒を供給することができるので、蒸発器内でドライアウトが生じることを抑制することができる。
本発明に係る電池冷却装置によれば、蒸発器内でドライアウトが生じることを抑制することができる。
実施の形態に係る電池冷却装置10を示す回路図である。 蒸発器4を示す平面図である。 図2に示すIII方向から見たときの平面図である。 図3に示すIV−IV線におけるプレート23の断面図である。 図2のV−V線における断面図である。 図5のVI−VI線におけるプレート24の断面図である。 図2に示すVII方向からみたときの平面図である。 ヘッドタンク21の近傍におけるプレート23の断面図である。 図8に示す位置よりも、ヘッドタンク21から離れた位置におけるプレート23の断面図である。 図9に示す位置よりも、さらに、冷媒C2の流通方向の下流側におけるプレート23の断面図である。 ヘッドタンク42近傍におけるプレート24の断面図である。 図11における位置から冷媒C2の流通方向下流側における断面図である。 ヘッドタンク21の排出タンク41の近傍におけるプレート24の断面図である。 冷媒C2の温度変化を示すグラフである。 実施の形態に係る蒸発器4の温度効率と、比較例に係る蒸発器4Aの温度効率のグラフである。 比較例に係る蒸発器4Aを示す平面図である。 図16に示すXVII線から視たときの平面図である。 変形例に係る蒸発器4Bを示す平面図である。 図18に示すXIXの方向から見たときの平面図である。 図18のXX方向から見たときの平面図である。
図1は、実施の形態に係る電池冷却装置10を示す回路図である。この図1に示すように、電池冷却装置10は、冷媒C1が循環する第1冷媒回路100と、気体状の冷媒C2が循環する第2冷媒回路200とを備える。
第1冷媒回路100は、圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4と、配管5とを含む。配管5は、圧縮機1と凝縮器2と膨張弁3と蒸発器4とを順次接続し、冷媒C1は圧縮機1、凝縮器2、膨張弁3および蒸発器4を順次循環する。冷媒C1としては、たとえば、フロンなどが採用される。圧縮機1において、冷媒C1は、圧縮されて高温となる。凝縮器2において、圧縮された高温の冷媒C1は外気で冷却される。膨張弁3において、冷媒C1を膨張させて低温および低圧にする。蒸発器4において、低温低圧の冷媒C1と、冷媒C2とを熱交換させる。この際、冷媒C1は蒸発して、冷媒C2から熱を吸収し、冷媒C2を冷却する。
第2冷媒回路200は、蒸発器4が内部に配置された循環路12と、循環路12内に収容された電池11と、循環路12内で冷媒C2を循環させる送風機6とを含む。循環路12は、電池11が収容されている電池収容室13を含む。
そして、送風機6は、冷媒C2を蒸発器4に吹き付ける。冷媒C2は、蒸発器4によって冷却される。蒸発器4によって冷却された冷媒C2は、電池11を冷却する。電池11を冷却して、高温となった冷媒C2は、再度、蒸発器4によって冷却される。
図2は、蒸発器4を示す平面図である。蒸発器4は、コネクタ20と、コネクタ20に接続されたヘッドタンク21と、プレート23と、プレート24とを含む。
コネクタ20内には、コネクタ20の内部を供給室30および排出室31に仕切る仕切板28が設けられている。
ヘッドタンク21内には、仕切板22が設けられており、仕切板22によって、ヘッドタンク21は、供給タンク40と、排出タンク41とに仕切られている。供給タンク40と供給室30とは連通しており、排出室31と排出タンク41とは連通している。
なお、図2中の「D1」は、冷媒C2の流通方向を示す。
図3は、図2に示すIII方向から見たときの平面図である。プレート23は、アルミニウムや銅合金など金属によって形成されており、蛇行するように形成されている。プレート23の一端は、供給タンク40に接続されている。プレート23の他方の端部は、ヘッドタンク42に接続されている。蛇行するように形成されたプレート23には、複数の冷却フィン25が設けられている。冷却フィン25は、アルミニウムや銅合金などの金属によって形成されており、プレート23にロウ付けされている。なお、冷媒C2は、図3の紙面背面側から紙面表面側に向かう方向に流れる。
図4は、図3に示すIV−IV線におけるプレート23の断面図である。プレート23は、内部に形成された複数のマイクロ流路32を含む。なお、この図4に示す例においては、マイクロ流路32a〜32eが形成されており、複数のマイクロ流路32a〜32eのうち、マイクロ流路32aが最も冷媒C2の流通方向D1の上流側に配置されている。
図5は、図2のV−V線における断面図である。この図5に示すように、プレート24も、プレート23と同様に蛇行するように形成されている。プレート24もアルミニウムや銅合金によって形成されている。プレート24の一端は、ヘッドタンク42に接続されており、プレート24の他方の端部は、ヘッドタンク21の排出タンク41に接続されている。プレート24にも、冷却フィン25が設けられており、冷却フィン25がプレート24にロウ付けされている。
図6は、図5のVI−VI線におけるプレート24の断面図である。プレート24にも、プレート24内に形成された複数のマイクロ流路33a〜33eが形成されている。なお、複数のマイクロ流路33a〜33eのうち、マイクロ流路33aが最も、冷媒C2の流通方向D1の上流側に位置している。
図7は、図2に示すVII方向からみたときの平面図である。この図7において、コネクタ20の供給室30には、供給口50が形成されており、排出室31には排出口51が形成されている。
冷媒C1は、まず、コネクタ20の供給室30内に入り込み、その後、供給タンク40に入り込む。供給タンク40には、プレート23のマイクロ流路32が接続されており、冷媒C1は、各マイクロ流路32に入り込み、マイクロ流路32内を流れる。
冷媒C1がマイクロ流路32内を流れる過程において、冷媒C1は冷媒C2と熱交換する。そのため、液体状の冷媒C1は、徐々に蒸発する。
図8は、ヘッドタンク21の近傍におけるプレート23の断面図である。ヘッドタンク21の近傍においては、マイクロ流路32a〜32e内を流れる冷媒C1は、いずれも乾き度の小さな状態である。そして、図9は、図8に示す位置よりも、ヘッドタンク21から離れた位置におけるプレート23の断面図である。この図9に示すように、複数のマイクロ流路32a〜32e内を流れる冷媒C1のうち、まず、マイクロ流路32a内を流れる冷媒C1内の液体が蒸発して乾き度が増加し始める。複数のマイクロ流路32a〜32eのうち、マイクロ流路32aが最も、流通方向D1の上流側に位置しており、冷媒C2から多くの熱を吸熱するためである。そして、マイクロ流路32b〜32eの順に、冷媒C1が蒸発して、乾き度が増加し始める。
図10は、図9に示す位置よりも、さらに、冷媒C1の流通方向の下流側におけるプレート23の断面図である。この図10に示す位置においては、マイクロ流路32a内を流れる冷媒C1の大部分が蒸発しており、マイクロ流路32aの内表面は薄い冷媒C1の膜が形成されている。
液体状の冷媒C1の熱伝達効率は、気体状の冷媒C1の熱伝達率よりも高いため、マイクロ流路32aの内表面に残留する気体状の冷媒C1に良好に冷媒C2からの熱が伝達される。そして、残留する液体状の冷媒C1が蒸発するときの潜熱によって、冷媒C2が冷却される。
複数のマイクロ流路32a〜32eにおいて、マイクロ流路32a、32b、23c、32d、32eに順次向かうにつれて、液体状の冷媒C1が残留する残留量が多くなる。
そのため、各マイクロ流路32b〜32eにおいても、冷媒C1によって冷媒C2を冷却することは可能な状態になっている。
そして、図10に示す位置から直ぐに、図7に示すヘッドタンク42に各マイクロ流路32が接続されている。
ヘッドタンク42内においては、各マイクロ流路32a〜32eから冷媒C1が供給される。マイクロ流路32aから供給される冷媒C1の乾き度は高い一方で、マイクロ流路32eなどから供給される冷媒C1の乾き度は低い。
ヘッドタンク42内においては、各マイクロ流路32a〜32eから供給される冷媒C1が混ざり合う。そして、ヘッドタンク42内において、冷媒C1の乾き度が均等化される。
乾き度が均等化された冷媒C1は、ヘッドタンク42に接続されたプレート24のマイクロ流路33a〜33e内に入り込む。
図11は、ヘッドタンク42近傍におけるプレート24の断面図である。この図11に示すように、ヘッドタンク42の近傍においては、各マイクロ流路33a〜33e内を流れる冷媒C1の乾き度は、略均等化されている。
その一方で、複数のマイクロ流路33a〜33eのうち、マイクロ流路33aが最もC2の流通方向D1の上流側に位置しているため、マイクロ流路33a内を流れる冷媒C1が最も蒸発し易くなっている。
図12は、図11における位置から冷媒C1の流通方向下流側における断面図である。この図12に示すように、マイクロ流路33a、33b、33c、33dに順次向かうにつれて、冷媒C1の蒸発量は少なくなっており、マイクロ流路33a内の冷媒C1が最も多く蒸発する。
図13は、ヘッドタンク21の排出タンク41の近傍におけるプレート24の断面図である。この図13に示すように、マイクロ流路33a内の冷媒C1の大部分は蒸発している一方で、マイクロ流路33aの内表面に沿って、冷媒C1が残留している。そのため、このマイクロ流路33aにおいても、冷媒C2を冷却する冷却能力は維持されている。
なお、他のマイクロ流路33b〜33eにおいても、液体状の冷媒C1が多く残っており、冷媒C2を冷却する冷却能力を有している。
このように、本実施の形態においては、蒸発器4内において、冷媒C1をヘッドタンク42内で一度均等化し、その後、プレート24に供給しており、蒸発器4内においてドライアウトが生じることが抑制されており、蒸発器4による冷却効率は高くなっている。
図7において、冷媒C1は、プレート23内を流れた後に、プレート24内を流れており、プレート24内の冷媒C1が過熱された場合、プレート23内の冷媒C1の温度よりも、プレート24内の冷媒C1の温度の方が高い。
プレート23は、プレート24よりも冷媒C2の流通方向D1の下流側に配置されており、プレート24は、プレート23よりも流通方向D1の上流側に配置されている。プレート24には、比較的、高温の冷媒C2が吹き付けられ、プレート23には、プレート24によって冷却された比較的低温の冷媒C2が吹き付けられる。
そのため、プレート24内を流れる冷媒C1の温度が過熱されて比較的高くなったとしても、プレート24に吹き付けられる冷媒C2の温度が高いため、冷媒C1および冷媒C2の温度差を確保でき、冷媒C2を良好に冷却することができる。
同様に、プレート23内を流れる冷媒C1の温度はプレート24内を流れる冷媒C1の過熱された部分に対し比較的低いため、比較的温度の高い冷媒C2がプレート23に吹き付けられたとしても、冷媒C1および冷媒C2の温度差が確保されており、プレート23によって良好に冷媒C2を冷却することができる。なお、冷却フィン25には、穴部25aが複数形成されており、冷媒C1および冷媒C2の熱交換の促進が図られている。
図14は、冷媒C2の温度変化を示すグラフである。この図14に示すグラフの横軸は、冷媒C2の位置を示し、縦軸は、冷媒C1,C2の温度を示す。なお、横軸において、右側が蒸発器4よりも風上側であり、左側が蒸発器4の風下側である。
この図14に示すように、冷媒C2が蒸発器4を通る間に良好に冷却されていることが分かる。
図15は、実施の形態に係る蒸発器4の温度効率と、比較例に係る蒸発器4Aの温度効率のグラフである。図16は、比較例に係る蒸発器4Aを示す平面図であり、図17は、図16に示すXVII線から視たときの平面図である。
図16および図17に示すように、蒸発器4Aは、コネクタ20Aと、コネクタ20Aに接続されたヘッドタンク21Aと、ヘッドタンク21Aに接続されると共に蛇行状に延びるプレート60と、プレート60の端部に接続されたヘッドタンク42Aと、ヘッドタンク42Aが接続されたコネクタ20Bとを含む。なお、この蒸発器4Aにおいては、ヘッドタンク42Aにまで冷媒C2が流通すると、ヘッドタンク42Aから排出される。なお、プレート60の幅は、本実施の形態に係るプレート23およびプレート24を合わせた幅となっている。プレート60の長さは、プレート23,24の長さと同じである。
ここで、温度効率Eは、下記式で示すことができる。
E=(Tai−Tao)/(Tai−Tr)
「Tai」は、蒸発器に吹き付けられる冷媒C2の温度である。「Tao」は、蒸発器によって冷却された後の冷媒C2の温度である。「Tr」は、蒸発器に流入する冷媒C1の温度である。
図15において、縦軸は、温度効率を示し、横軸は、圧縮機1の回転数を示す。図15のグラフの実線L1は、実施の形態における温度効率を示し、破線L2は比較例における温度効率を示す。
この図15に示すように、本実施の形態に係る蒸発器4の方が、比較例に係る蒸発器4Aよりも温度効率が高いことが分かる。
なお、本実施の形態に係る蒸発器4として、図2などを用いて説明したが、蒸発器4の構成としては各種の構成を採用することができる。
図18は、変形例に係る蒸発器4Bを示す平面図である。この図18に示すように、蒸発器4Bは、ヘッドタンク21B内に、仕切板22Bが設けられており、仕切板22Bによって、ヘッドタンク21Bは、供給タンク40Bおよび排出タンク41Bに分割されている。そして、供給タンク40Bに供給管52が接続され、排出タンク41Bに排出管53が接続されている。
図19は、図18に示すXIXの方向から見たときの平面図であり、供給タンク40Bにプレート23Bが接続されている。プレート23Bは、蛇行するように形成されており、プレート23Bの端部には、ヘッドタンク42Bが接続されている。
図20は、図18のXX方向から見たときの平面図であり、ヘッドタンク42Bには、プレート24Bが接続されており、プレート24Bは、排出タンク41Bに接続されている。このように、蒸発器において、コネクタ20は必須の構成ではない。
以上、本発明に基づいた実施の形態について説明したが、今回開示された事項はすべての点で例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明は、電池冷却装置に適用することができる。
1 圧縮機、2 凝縮器、3 膨張弁、4,4A,4B 蒸発器、5 配管、6 送風機、10 電池冷却装置、11 電池、12 循環路、13 電池収容室、20 コネクタ、21,21A,21B,42,42A,42B ヘッドタンク、22,28,28B 仕切板、23,23B,24,24B,60 プレート、25 冷却フィン、30 供給室、31 排出室、32,32a,32b,32e,33a,33b,33e マイクロ流路、40,40B 供給タンク、41,41B 排出タンク、50 供給口、51 排出口、52 供給管、53 排出管、100 第1冷媒回路、200 第2冷媒回路、C1,C2 冷媒、D1 流通方向、E 温度効率。

Claims (1)

  1. 圧縮機と、前記圧縮機に接続された凝縮器と、前記凝縮器に接続された膨張弁と、前記膨張弁に接続された蒸発器とを含み、第1冷媒が循環する第1冷媒回路と、
    前記蒸発器が内部に収容されると共に気体状の第2冷媒が循環する循環管と、前記循環管内に設けられた電池と、前記第2冷媒を循環させる送風機とを含む第2冷媒回路と、
    を備え、
    前記蒸発器は、
    前記第1冷媒が供給される供給部と、
    前記供給部に接続されると共に前記第2冷媒の流通方向に配列する複数の第1冷却管を含む第1プレートと、
    前記複数の第1冷却管が接続されると共に前記複数の第1冷却管から供給される前記第1冷媒が導入されるタンクと、
    前記タンクに接続されると共に前記複数の第1冷却管よりも前記第2冷媒の流通方向上流側に配置されると共に前記流通方向に配列する複数の第2冷却管を含む第2プレートと、
    を含む、電池冷却装置。
JP2016019006A 2016-02-03 2016-02-03 電池冷却装置 Pending JP2017138053A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019006A JP2017138053A (ja) 2016-02-03 2016-02-03 電池冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019006A JP2017138053A (ja) 2016-02-03 2016-02-03 電池冷却装置

Publications (1)

Publication Number Publication Date
JP2017138053A true JP2017138053A (ja) 2017-08-10

Family

ID=59564811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019006A Pending JP2017138053A (ja) 2016-02-03 2016-02-03 電池冷却装置

Country Status (1)

Country Link
JP (1) JP2017138053A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167122A (zh) * 2018-09-05 2019-01-08 华霆(合肥)动力技术有限公司 热管理系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167122A (zh) * 2018-09-05 2019-01-08 华霆(合肥)动力技术有限公司 热管理系统及方法

Similar Documents

Publication Publication Date Title
JP6749398B2 (ja) 熱交換器および空調システム
JP6894520B2 (ja) 凝縮器
JP2010532859A (ja) 熱交換器を有する熱交換装置、および熱交換装置の製造方法
JP2006071270A (ja) 熱交換器、中間熱交換器及び冷凍サイクル
US10041710B2 (en) Heat exchanger and air conditioner
JP2009030882A (ja) 冷媒蒸発器
JPWO2019008664A1 (ja) 冷凍サイクル装置
JP2017044428A (ja) 熱交換器、分流部品、および熱交換装置
US10544990B2 (en) Heat exchanger
KR101173157B1 (ko) 수냉식 응축기 및 과냉각용 수냉식 열교환기를 구비하는 차량용 공조 시스템
WO2020179651A1 (ja) 車両用バッテリの冷却モジュール
WO2015045105A1 (ja) 熱交換器及びそれを用いた空気調和機
AU2016200845A1 (en) Water Cooled Microchannel Condenser
JP2014020758A (ja) 蓄冷熱交換器
JP6678235B2 (ja) 熱交換器
JP2017138053A (ja) 電池冷却装置
US20110024083A1 (en) Heat exchanger
JP2007155183A (ja) 熱交換器
JPH10170098A (ja) 積層型蒸発器
JP2021148389A (ja) 熱交換器
JP2008267731A (ja) 空気調和装置
KR100709421B1 (ko) 열교환기
JP2007333320A (ja) 熱交換器
WO2016039114A1 (ja) ターボ冷凍機
JP7296264B2 (ja) 熱交換器および冷凍サイクル装置