JP2017129426A - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
JP2017129426A
JP2017129426A JP2016008267A JP2016008267A JP2017129426A JP 2017129426 A JP2017129426 A JP 2017129426A JP 2016008267 A JP2016008267 A JP 2016008267A JP 2016008267 A JP2016008267 A JP 2016008267A JP 2017129426 A JP2017129426 A JP 2017129426A
Authority
JP
Japan
Prior art keywords
distance
reflected light
light
target
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016008267A
Other languages
English (en)
Inventor
祥雅 原
Yoshimasa Hara
祥雅 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016008267A priority Critical patent/JP2017129426A/ja
Publication of JP2017129426A publication Critical patent/JP2017129426A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】ターゲットとの距離をより精度よく検出できるレーザレーダ装置を提供する。【解決手段】レーザレーダ装置100は、パルスレーザ光を出射するレーザ光出射部10と、パルスレーザ光がターゲットに反射されて返ってくる反射光を受光する受光部30と、ターゲットとの距離を算出する距離演算部50を備える。距離演算部50は、パルスレーザ光を出射した時点から反射光を受光するまでの飛行時間に基づいてターゲットとの距離を仮算出する。そして、仮算出した値から、反射光に対応する電圧波形の波高値とパルス幅に基づいて定まる補正値を減算した値を、ターゲットとの距離として採用する。【選択図】図1

Description

本発明は、パルスレーザ光を送受することで物体との距離を検出するレーザレーダ装置に関する。
従来、パルス状のレーザ光を装置外部に出射するとともに、そのレーザ光が装置外部の物体(以降、ターゲット)で反射された光である反射光を受光することで、ターゲットまでの距離を計算するレーザレーダ装置が知られている。この種のレーザレーダ装置は、ターゲットとの距離を、レーザ光を投光してから反射光を受光するまでの時間である飛行時間(いわゆるTOF:Time of Flight)に基づいて算出する。また、特許文献1には、反射波のパルス幅が大きいほど、計測した飛行時間を、より小さい値へと補正して用いるレーザレーダ装置が開示されている。
なお、一般的に、レーザレーダ装置における反射光の検出は、フォトダイオードなどの受光素子を用いて実現される。受光素子は、光を電気に変換する素子であって、反射光の強度に応じた大きさの電流を出力する。受光素子が出力する電流は、電流電圧変換アンプによって電圧に変換されて、反射光の受光の検出に用いられる。
具体的には、レーザレーダ装置は反射光の強度に対応する電圧の時間変化から反射光を受光したことを検出するとともに、電圧値がピークとなった時点を反射光の受光時点と見なして飛行時間を算出する。
特開平7−191143号公報
反射光を受けたとき受光素子での光電変換による電流値は、反射光の強度に応じた値となるため、反射光の強度が弱いほど、受光素子の出力電流値も小さくなる。なお、反射光の強度は、ターゲットとの距離や、霧などの減衰要因の有無のほか、パルスレーザ光を反射した物体の反射率によっても変化する。
ところで、受光素子からの電流電圧変換アンプの入力端子までの回路は、回路の構成に応じた寄生容量を備えており、電流電圧変換アンプが入力電流に応じた電圧を出力するためには、その寄生容量がある程度充電されている必要がある。
しかしながら、上述したように受光素子の出力電流が小さいほど(換言すれば、反射光の強度が弱いほど)、この寄生容量の充電に要する時間が長くなる。そのため、反射光の強度が弱いほど、電流電圧変換アンプの立ち上がりが遅延し、最終的に反射光のピークが観測されるタイミングにも遅延が生じる。その結果、電流電圧変換アンプでの立ち上がりの遅延に由来する誤差が飛行時間に含まれるようになる。当然、飛行時間に誤差が含まれると、ターゲットとの距離として算出される値にも誤差が含まれるようになる。
本発明は、この事情に基づいて成されたものであり、その目的とするところは、ターゲットとの距離をより精度よく検出できるレーザレーダ装置を提供することにある。
その目的を達成するための本発明は、所定の方向に向けてパルスレーザ光を出射する出射部(10)と、パルスレーザ光に対応する波長域の光を受光し、電気信号に変換して出力する受光部(30)と、受光部が出力する電気信号の時間変化に基づいて、出射部がパルスレーザ光を照射した時点から、当該パルスレーザ光がターゲットで反射されて返ってきた反射光を受光部が受光するまでの時間である飛行時間を特定し、飛行時間に基づいてターゲットとの距離を算出する距離演算部(50)と、を備え、距離演算部は、反射光の受光に対応して受光部が出力するパルス状の電気信号である反射光対応信号の波高値及びパルス幅に応じた補正値を用いて、ターゲットとの距離を算出することを特徴とする。
以上の構成において、距離演算部は、飛行時間だけでなく、反射光の受光に伴って受光部が出力する一連の電気信号である反射光対応信号の波高値およびパルス幅に応じた補正値を用いて、ターゲットとの距離を算出する。
一般的に、反射光に対応する電気信号波形の波高値及びパルス幅は、反射光の強度に対応した値となる。そのため、反射光対応信号の波高値及びパルス幅に応じた補正値とは、受光する反射光の強度に対応する値となっている。したがって、相対的に強度が弱い反射光に対応する波高値及びパルス幅に応じた補正値は、反射光の強度が相対的に小さいことに由来して飛行時間に含まれる誤差に対応する値となる。たとえば、電流電圧変換アンプの立ち上がりに遅延が生じるほど弱い反射光に対応する波高値及びパルス幅の補正値は、その遅延時間に由来して飛行時間に含まれてしまう誤差を相殺する値に設定されている。
したがって、以上のように反射光対応信号の波高値及びパルス幅に応じた補正値を用いることで、電流電圧変換アンプの立ち上がりの遅延時間に由来する誤差成分が、ターゲットの距離に含まれることを抑制できる。すなわち、ターゲットとの距離をより精度よく検出できる。
なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
本実施形態のレーザレーダ装置100の概略的な構成を示すブロック図である。 レーザレーダ装置100を車両200に搭載する場合の搭載態様の一例を示す図である。 距離演算部50による受信タイミングの特定方法を説明するための図である。 距離演算部50による受信タイミングの特定方法を説明するための図である。 反射光のパルス幅W及び波高値Hについて説明するための図である。 補正用データの概略的な構成の一例を示す図である。 距離演算処理に対応するフローチャートである。 パルス幅に応じた誤差について説明するための図である。 反射光の強度が微弱である場合の受光部30の作動を説明するための図である。
以下、本発明の実施形態について図を用いて説明する。図1は、本実施形態にかかるレーザレーダ装置100の概略的な構成の一例を示す図である。図1に示すようにレーザレーダ装置100は、レーザ光出射部10、出射制御部20、受光部30、アナログデジタル変換部(以降、AD変換部)40、距離演算部50、及びパラメータ記憶部60を備えている。
ここでは一例としてレーザレーダ装置100は、図2に示すように車両200の前方の所定範囲(以降、検知エリア)Arに存在する物体(以降、ターゲット)との距離を検出するように、車両200に設置されているものとする。レーザレーダ装置100の設置位置は適宜設計されればよく、例えばフロントバンパやフロントグリル等に設置されればよい。レーザレーダ装置100が検出したターゲットとの距離は、先行車両との車間距離の維持をする走行制御や、自動運転、衝突を回避するための自動ブレーキ制御に利用することができる。
以下、レーザレーダ装置100が備える各部についてより詳細に述べる。なお、出射制御部20、AD変換部40、距離演算部50のそれぞれは、図示しないCPUが所定のプログラムを実行することによって実現される機能ブロックとして実現されればよい。もちろん、他の態様として、出射制御部20、AD変換部40、距離演算部50の一部又は全部は、ICなどのデジタル回路素子やアナログ回路素子を用いたハードウェアによって実現されてもよい。もちろん、ソフトウェアとハードウェアの組み合わせによって実現されても良い。
レーザ光出射部10は、出射制御部20からの駆動信号に従って、車幅方向に所定の角度の範囲で不連続にパルス状のレーザ光(つまりパルスレーザ光)を掃引照射するためのユニットである。
レーザ光出射部10は、レーザ光を出射するレーザダイオードや、レーザダイオードが出力したレーザ光を反射してレーザレーダ装置100の筐体外部に射出させるためのポリゴンミラー、モータを介してレーザダイオードに対するポリゴンミラーの回転角度を調整することでパルスレーザ光を射出する方向を制御するスキャナ駆動回路などを用いて実現されればよい。
レーザ光出射部10は、出射制御部20から入力される発光指示信号に基づいてレーザダイオードに所定のパルス幅のパルスレーザ光を出力させる。なお、本実施形態では一例として、レーザ光出射部10が出射するパルスレーザ光のパルス幅(以降、オリジナルパルス幅)は20ナノ秒とする。また、スキャナ駆動回路は、出射制御部20から入力されるスキャン指示信号に基づいてポリゴンミラーのレーザダイオードに対する回転角度を制御し、筐体外部に向けてパルスレーザ光を射出する方向を制御する。
レーザ光を掃引照射させる角度範囲は予め設定されており、この角度範囲によってレーザレーダ装置100の検知エリアArが規定される。なお、ここでは一例として、パルスレーザ光の掃引照射方向(換言すればスキャン方向)を車幅方向とする態様を例示するが、もちろん車両高さ方向にも掃引照射させる態様としてもよい。
出射制御部20は、スキャナ駆動回路に対してスキャン指示信号を出力することで、ミラー制御ICと協働し、ポリゴンミラーの角度を変更させる(換言すればパルスレーザ光の照射方向を変更させる)。また、ポリゴンミラーの回転角度の変化に応じて発光指示信号を出力する。これにより、検知エリアArを形成するようにレーザ光出射部10に不連続にパルスレーザ光を照射させる。
さらに、出射制御部20は、パルスレーザ光が出射されたタイミングを示す情報を、距離演算部50に提供する。ここでは一例として出射制御部20は、レーザ光出射部10に発光指示信号を出力すると同時に、距離演算部50に対してパルスレーザ光の出射を指示したことを示す出射通知信号を出力するものとする。このような構成によれば、距離演算部50は、出射通知信号が入力されたタイミングを、パルスレーザ光が出射されたタイミングとして認識する。
受光部30は、レーザ光出射部10が射出するパルスレーザ光が属する波長域の光を受光し、その受光した光の強度に対応する大きさの電流をAD変換部40に出力する。この受光部30は、より細かい構成要素として、受光レンズ31、受光素子32、及び電流電圧変換部33を備える。
受光レンズ31は、合成樹脂又はガラス等などを用いて実現される透光性の凸レンズである。受光レンズ31は、パルスレーザ光が照射方向に存在する物体(つまりターゲット)で反射されて返ってくる光(つまり反射光)を集光して、受光素子32に向けて射出する。
受光素子32は、光を電気信号に変換する素子であって、例えばフォトダイオードを用いて実現することができる。受光素子32は、反射光の強度に対応する電流を電流電圧変換部33へ出力する。
なお、前述の通り、レーザ光出射部10はパルス状のレーザ光を出射するため、反射光もまたパルス状となる。それに伴い、反射光の受光に伴って受光素子32が出力する電流もまたパルス状となる。ここでのパルス状とは、矩形状に限らず、立ち上がり時間や立下り時間を備え、波形が凸状となるように連続的に変化する形状を含む。
電流電圧変換部33は、受光素子32から入力された電流に対応する電圧をAD変換部40に出力する。電流電圧変換部33は、例えばオペアンプのマイナス側入力端子と出力端子とを所定の抵抗値を有する抵抗素子で接続することで実現されればよい。以降では便宜上、電流電圧変換部33が備えるオペアンプを電流電圧変換アンプと称する。
電流電圧変換部33が出力する電圧は、受光素子32が出力する電流の強度に比例する。したがって、反射光の受光に伴って電流電圧変換部33が出力する一連の電圧を線形的に接続してなる信号波形もまた、パルス状となる。パルス状の電圧変化が請求項に記載の反射光対応信号に相当する。
なお、受光素子32から電流電圧変換部33の入力端子までの回路部分(以降、アンプ入力側回路部)は、回路素子や配線パターンに由来する寄生容量を備える。図1に示すコンデンサ34は、アンプ入力側回路部が備える寄生容量を等価的に表す、仮想的なコンデンサである。コンデンサ34が備える容量(つまりアンプ入力側回路部の寄生容量)は、上述の通り、回路構成などによって定まる。
AD変換部40は、電流電圧変換部33から入力される電圧をデジタル信号に変換する。つまり、AD変換部40は入力電圧の大きさをデジタルビット列で表したデータを出力する。ここでは一例としてAD変換部40は入力電圧の大きさを16ビットで表すこととする。これにより、入力電圧の大きさは、0を含めると65536段階で表されることになる。
以降では便宜上、デジタル化された電圧値の単位としてはLSBを用いて、その大きさを表す。1LSBは、電流電圧変換部33の出力最大値をAD変換部40の分解能(ここでは16ビット)で量子化した際の1ビット当りの電圧値に相当する。
AD変換部40によってデジタル化された電圧値は、逐次距離演算部50に提供される。なお、AD変換部40が出力する電圧値は、電流電圧変換部33が出力する電圧をデジタル化したものであるため、AD変換部40が出力する電圧値もまた、反射光の受光に伴ってパルス状に変化する。
距離演算部50は、出射制御部20から入力される出射通知信号に基づいて出射タイミングを特定する。また、距離演算部50は、AD変換部40から入力される電圧値の時間変化に基づいて、反射光を受光したことを検出する。例えば距離演算部50は、AD変換部40から入力される電圧値が立ち上がった場合に、反射光を受光したと判定する。
なお、入力電圧の立ち上がりや立ち下がりは周知の方法によって検出されればよい。たとえば、図3に示すように、電圧値が受光閾値Vth以下となっている状態から受光閾値Vthを超過した場合に、電圧値が立ち上がったと判定する。また、電圧値が受光閾値Vthを超過している状態から受光閾値Vth以下となった場合に、電圧値が立ち下がったと判定する。受光閾値Vthは、適宜設計されればよく、例えば100LSBなどとすればよい。以降では、便宜上、反射光の受光に対応する電圧値の変化を示す信号波形を、反射受光波形と称する。
さらに距離演算部50は、AD変換部40から入力される電圧値の時間変化に基づいて、反射光を受光した受光タイミングTrを特定する。具体的には、距離演算部50は、図3に示すように反射受光波形のピークを検出できた場合には、ピークとなっている時点Tpを受光タイミングTrと見なし、パルスレーザ光が出射されてから反射光を受光するまでの飛行時間Tfを特定する。飛行時間Tfの計測は図示しないタイマーを用いて実施すれば良い。
一方、図4に示すように、反射光の強度が強く、AD変換部40の出力が飽和している場合には、反射受光波形のピークを検出することができない。このような場合、距離演算部50は、AD変換部40の出力が飽和した時点Tqaと、飽和状態が終了した時点Tqbとの中間となる時点を受光タイミングTrと見なし、パルスレーザ光が出射されてから反射光を受光するまでの飛行時間Tfを特定する。なお、AD変換部40の出力が飽和している状態とは、AD変換部40の出力値が出力範囲の最大値(つまり65535LSB)となっている場合を指す。
なお、AD変換部40の出力が飽和している場合における受光タイミングTrの特定方法は、上述した方法に限らない。他の態様として、入力電圧が最大電圧の90%となる時点を立ち上がり時点及び立ち下がり時点と見なし、それらの時点の中間となる時点を、受光タイミングTrとして採用してもよい。
また、距離演算部50は、反射受光波形の最大値を波高値Hとして採用する。仮にピークを検出できている場合には、当該ピーク時点での電圧値が波高値Hに相当する。また、AD変換部40の出力値が飽和している場合には、AD変換部40の出力範囲の最大値が波高値Hに相当する。
さらに、距離演算部50は、反射受光波形において波高値Hの半分となっている部分の長さ(つまり半値幅)を、当該反射受光波形のパルス幅Wとして採用する。図5中の時刻Ta及びTbは、電圧値が波高値Hの半分となった時点を表している。なお、図3〜図5に示す各グラフの横軸は、出射タイミングからの経過時間を表しおり、縦軸は電圧値を表している。
距離演算部50は、以上のようにして特定した飛行時間Tf、波高値H、パルス幅Wを用いて、ターゲットとの距離を算出する処理(以降、距離演算処理)を実施する。距離演算処理についての詳細は別途後述する。
パラメータ記憶部60は、距離演算処理を実施する際に用いるパラメータを記憶している記憶媒体である。パラメータ記憶部60は例えばフラッシュメモリやROMなどの不揮発性の記憶媒体を用いて実現されればよい。
パラメータ記憶部60は、飛行時間に光の伝搬速度とから定まるターゲットとの距離を、パルス幅W及び波高値を用いて補正するための補正用データを記憶している。補正用データは、パルス幅や波高値に応じて補正すべき量(以降、補正値)Dcrrを定義しているデータである。補正用データ自体は、実試験やシミュレーション等によって予め作成されればよい。図6は、補正用データの構成の一例を示している。
本実施形態ではパルス幅W毎の補正値Dcrrは、波高値が300LSB以上である場合と、波高値が300LSB未満であって200LSBよりも大きい場合と、200LSB以下である場合の3つに分けて定義されているものとする。ただし、反射受光波形のパルス幅Wがオリジナルパルス幅Wir以上となる場合には、反射光の強度が十分にあり、波高値Hは300LSB以上となることが想定される。そのため、パルス幅Wがオリジナルパルス幅Wirに相当する20ナノ秒以上となる領域においては、波高値が300LSB未満となっている場合の補正値Dcrrの定義は省略している。
なお、本実施形態では一例として、補正用データはテーブル形式で表現されている態様とするが、これに限らない。マップ形式で表されていても良いし、パルス幅Wと波高値Hを変数とする関数で表されていても良い。補正用データを関数で表すことは、パルス幅Wと波高値Hを入力変数とし、補正値Dcrrを出力するプログラムとして表すことに相当する。
また、本実施形態では一例として、反射受光波形のパルス幅Wがオリジナルパルス幅Wir未満となる場合の補正値として、パルス幅が10ナノ秒である場合と、15ナノ秒である場合の2つを定義している場合を例示しているが、これに限らない。パルス幅が10ナノ秒である場合だけを定義している態様としてもよい。さらに、反射受光波形のパルス幅Wがオリジナルパルス幅Wir未満となる場合を一纏めに取り扱ってもよい。何れの場合においても、パルス幅Wがオリジナルパルス幅Wir未満となる領域においては、波高値Hに応じた補正値が登録されているものとする。
<距離演算処理について>
次に、図7に示すフローチャートを用いて、距離演算部50が実施する距離演算処理について述べる。図7に示す距離演算処理は、出射制御部20から出射通知信号が入力される度に開始されれば良い。なお、図7に示すフローチャートの各ステップは距離演算部50によって実施される。
まず、ステップS1では、AD変換部40から入力される電圧値の時間変化から上述した方法によって反射光の受光を検出し、受光タイミングTrを特定する。そして、飛行時間Tfを特定する。また、反射受光波形の波形を解析することで、パルス幅W及び波高値Hを取得し、ステップS2に移る。
ステップS2では、反射受光波形のパルス幅Wが、オリジナルパルス幅Wir以上となっているか否かを判定する。反射受光波形のパルス幅Wが、オリジナルパルス幅Wir以上となっている場合にはステップS3に移る。一方、反射受光波形のパルス幅Wがオリジナルパルス幅Wir未満となっている場合にはステップS4に移る。
ステップS3では、まず、飛行時間Tfに光速を乗算した値を2で除算した値(便宜上、これを補正前距離とする)を算出する。補正前距離が請求項に記載の仮距離に相当する。
次に、補正用データを参照し、反射受光波形のパルス幅Wに対応する補正値を特定する。仮にパルス幅Wが40ナノ秒である場合には、2.4mを補正値Dcrrとして取得する(図6参照)。そして、補正前距離から補正値Dcrrを減算した値をターゲットまでの距離に決定し、本フローを終了する。
なお、観測されたパルス幅Wが、補正用データで定義されているパルス幅(以降、定義値)の中間に位置する値となっている場合には、検出したパルス幅Wの前後の定義値に対応付けられている補正値を用いて、用いるべき補正値Dcrrを決定すれば良い。例えば、検出したパルス幅Wが30ナノ秒である場合には、パルス幅が20ナノ秒である場合の補正値(=1.26m)と、パルス幅が40ナノ秒である場合の補正値(=2.4m)の中間となる値(つまり1.83m)を、補正値Dcrrとして採用すればよい。
ステップS4では、まず、飛行時間Tfと光速に基づいてステップS3と同様に補正前距離を算出する。次に、補正用データを参照し、反射光のパルス幅W及び波高値Hに対応する補正値Dcrrを特定する。
例えばパルス幅Wが10ナノ秒であって、かつ、波高値Hが200LSB以下である場合には、1.2mを補正値Dcrrとして取得する(図6参照)。そして、ステップS3と同様に補正前距離から補正値Dcrrを減算した値をターゲットまでの距離に決定し、本フローを終了する。
<本実施形態のまとめ>
次に、本実施形態のレーザレーダ装置100の作動及び効果について述べる。まずはパルス幅Wに応じて補正前距離を補正することの効果について述べる。
上記構成においてAD変換部40の出力電圧が飽和している場合には、パルス幅Wが大きいほど、図8に示すように受光タイミングTrが時間軸後方に判断され、飛行時間Tfが長めに評価される。当然、飛行時間Tfが長いほど補正前距離は長い値となる。つまり、AD変換部40の出力電圧が飽和している場合、補正前距離には、反射受光波形のパルス幅Wに応じた誤差を含みうる。
そのような課題に対し、本実施形態の構成では、予め試験等によって特定しておいたパルス幅Wに応じた補正値を用いて補正前距離を補正することで、ターゲットとの距離として採用する。したがって、以上の構成によれば、より精度よくターゲットとの距離を算出することが出来る。
また、反射光の強度が微弱である場合には、仮想的なコンデンサ34を充電するために要する時間が長くなる。換言すれば、電流電圧変換部33の出力の立ち上がりに遅延が生じる。その結果、同一距離離れたターゲットに対して同じ強度でパルスレーザ光を照射した場合であっても、反射光の強度が相対的に弱い場合には、図9に示すように反射受光波形のピークが検出される時点が時間軸後方にずれる。
なお、図9は同一距離だけ離れた、反射率がそれぞれ異なるターゲットに向けてパルスレーザ光を射出した時のAD変換部40の出力電力の時間推移を表している。図9の実線は反射率が相対的に高い物体をターゲットとした場合の出力電圧の推移を表しており、一点鎖線は反射率が相対的に低い物体をターゲットとした場合の出力電力の推移をそれぞれ表している。また、図9の時点Tp1、Tp2はそれぞれの場合における出力電圧がピークとなった時点(換言すれば受光タイミングTrと判断される時点)を表している。
なお、図9に示す試験結果から、少なくとも波高値Hが150LSB程度となるほど反射光の強度が弱い場合には、波高値Hが300LSBを超過する場合に比べて、ピークが検出される時点が遅れてしまうことがわかる。
このような課題に対して、本実施形態の構成によれば、予め試験等によって特定した置いた波高値Hに応じた補正値を用いて、補正前距離を補正することでターゲットとの距離を決定する。したがって、以上の構成によれば、反射光の強度が微弱である場合に生じうる、電流電圧変換部33の立ち上がりの遅延に由来する誤差を相殺することができる。すなわち、以上の構成によれば、ターゲットとの距離をより精度良く算出することが出来る。
以上、本発明の実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、以降で述べる種々の変形例も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
なお、前述の実施形態で述べた部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した実施形態の構成を適用することができる。
[変形例1]
以上では、補正前距離から、パルス幅W及び波高値Hに基づいて定まる補正値Dcrrを減算することで、ターゲットまでの距離を補正する態様を例示したがこれに限らない。
例えば、パルス幅W及び波高値Hに基づいて、AD変換部40から入力される電圧値の時間推移から定まる飛行時間Tfを補正し、当該補正した飛行時間(補正済み飛行時間)を用いて、ターゲットまでの距離を算出する態様としてもよい。
その場合の補正用データは、パルス幅W及び波高値Hに応じて飛行時間Tfを補正する値(以降、時間補正値)を定義したデータとすればよい。パルス幅W及び波高値Hに応じた時間補正値は、実試験やシミュレーション等によって予め決定されればよい。このような態様によっても前述した実施形態と同様の効果を奏する。
[その他の変形例]
反射光を受光したことを検出する方法や、反射光を受光した時点を特定する方法、パルス幅の算出方法などは、上述した方法に限らない。これらは、周知の方法によって、検出又は特定されればよい。AD変換部40が出力する電圧の立ち上がりや立ち下がりを検出する方法も同様である。
また、以上では、レーザレーダ装置100を車両前方に存在するターゲットとの距離を検出するように車両200に搭載して用いる態様を例示したが、これに限らない。車両後方や側方などに存在するターゲットとの距離を検出するように車両200に搭載して用いてもよい。さらに、レーザレーダ装置100は、車両周辺に存在する物体との距離を検出すること以外の用途に用いても良い。たとえば、ビル等の出入り口付近を検知エリアとするように設置されて、ビルの入り口等に接近する存在を検出するため等に用いられても良い。レーザレーダ装置100は、種々の目的に利用することができる。
100 レーザレーダ装置、200 車両、10 レーザ光出射部、20 出射制御部、30 受光部、40 AD変換部、50 距離演算部、60 パラメータ記憶部、Ar 検知エリア

Claims (5)

  1. 所定の方向に向けてパルスレーザ光を出射する出射部(10)と、
    前記パルスレーザ光に対応する波長域の光を受光し、電気信号に変換して出力する受光部(30)と、
    前記受光部が出力する電気信号の時間変化に基づいて、前記出射部がパルスレーザ光を照射した時点から、当該パルスレーザ光がターゲットで反射されて返ってきた反射光を前記受光部が受光するまでの時間である飛行時間を特定し、前記飛行時間に基づいてターゲットとの距離を算出する距離演算部(50)と、を備え、
    前記距離演算部は、前記反射光の受光に対応して前記受光部が出力するパルス状の電気信号である反射光対応信号の波高値及びパルス幅に応じた補正値を用いて、前記ターゲットとの距離を算出することを特徴とするレーザレーダ装置。
  2. 請求項1において、
    前記距離演算部は、
    前記飛行時間に光の伝搬速度を乗算した結果を2で除算した値を、前記ターゲットとの仮距離として算出し、
    前記仮距離から前記反射光対応信号のパルス幅と波高値に応じた補正値を減算した値を、前記ターゲットとの距離として採用することを特徴とするレーザレーダ装置。
  3. 請求項1において、
    前記距離演算部は、
    前記反射光対応信号のパルス幅と波高値に応じて、前記飛行時間を、前記受光部が出力する電気信号の時間変化に基づいて特定した時間よりも小さい値へと補正し、
    その補正した前記飛行時間である補正済み飛行時間を用いて、前記ターゲットとの距離を算出することを特徴とするレーザレーダ装置。
  4. 請求項1から3の何れか1項において、
    前記距離演算部は、前記反射光対応信号のパルス幅および波高値に対応した補正値を示す補正用データを記憶する記憶部(60)を備え、
    前記距離演算部は、前記記憶部に登録されている前記補正用データを用いて前記ターゲットとの距離を算出することを特徴とするレーザレーダ装置。
  5. 請求項1から4の何れか1項において、
    車両に搭載され、前記車両の周辺に存在する物体との距離を検出するために用いられることを特徴とするレーザレーダ装置。
JP2016008267A 2016-01-19 2016-01-19 レーザレーダ装置 Pending JP2017129426A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008267A JP2017129426A (ja) 2016-01-19 2016-01-19 レーザレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008267A JP2017129426A (ja) 2016-01-19 2016-01-19 レーザレーダ装置

Publications (1)

Publication Number Publication Date
JP2017129426A true JP2017129426A (ja) 2017-07-27

Family

ID=59396141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008267A Pending JP2017129426A (ja) 2016-01-19 2016-01-19 レーザレーダ装置

Country Status (1)

Country Link
JP (1) JP2017129426A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856434A (zh) * 2019-04-29 2020-10-30 深圳市速腾聚创科技有限公司 激光雷达标定方法、装置、计算机设备和存储介质
WO2021095657A1 (ja) * 2019-11-12 2021-05-20 株式会社デンソー 距離測定装置
JP2022050239A (ja) * 2020-09-17 2022-03-30 株式会社東芝 距離計測装置、及び距離計測方法
JP2022528926A (ja) * 2019-04-09 2022-06-16 華為技術有限公司 測距方法、装置、およびデバイス
CN112262325B (zh) * 2018-06-14 2024-03-19 三菱电机株式会社 激光雷达装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236661A (ja) * 1995-12-27 1997-09-09 Denso Corp 距離測定方法及び距離測定装置
JPH1020035A (ja) * 1996-02-27 1998-01-23 Sick Ag レーザ距離測定装置
US6310682B1 (en) * 1999-07-06 2001-10-30 Quarton, Inc. System and method for laser range finder
JP2003167054A (ja) * 2001-12-04 2003-06-13 Denso Corp 距離測定方法及び距離測定装置
JP2007147332A (ja) * 2005-11-24 2007-06-14 Nippon Signal Co Ltd:The 光測距装置
JP2008026287A (ja) * 2006-07-25 2008-02-07 Denso Corp レーダ装置
JP2012237625A (ja) * 2011-05-11 2012-12-06 Honda Motor Co Ltd 物体距離検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236661A (ja) * 1995-12-27 1997-09-09 Denso Corp 距離測定方法及び距離測定装置
JPH1020035A (ja) * 1996-02-27 1998-01-23 Sick Ag レーザ距離測定装置
US6310682B1 (en) * 1999-07-06 2001-10-30 Quarton, Inc. System and method for laser range finder
JP2003167054A (ja) * 2001-12-04 2003-06-13 Denso Corp 距離測定方法及び距離測定装置
JP2007147332A (ja) * 2005-11-24 2007-06-14 Nippon Signal Co Ltd:The 光測距装置
JP2008026287A (ja) * 2006-07-25 2008-02-07 Denso Corp レーダ装置
JP2012237625A (ja) * 2011-05-11 2012-12-06 Honda Motor Co Ltd 物体距離検出装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112262325B (zh) * 2018-06-14 2024-03-19 三菱电机株式会社 激光雷达装置
JP2022528926A (ja) * 2019-04-09 2022-06-16 華為技術有限公司 測距方法、装置、およびデバイス
CN111856434A (zh) * 2019-04-29 2020-10-30 深圳市速腾聚创科技有限公司 激光雷达标定方法、装置、计算机设备和存储介质
CN111856434B (zh) * 2019-04-29 2023-08-04 深圳市速腾聚创科技有限公司 激光雷达标定方法、装置、计算机设备和存储介质
WO2021095657A1 (ja) * 2019-11-12 2021-05-20 株式会社デンソー 距離測定装置
CN114729999A (zh) * 2019-11-12 2022-07-08 株式会社电装 距离测定装置
JP7501289B2 (ja) 2019-11-12 2024-06-18 株式会社デンソー 距離測定装置
JP2022050239A (ja) * 2020-09-17 2022-03-30 株式会社東芝 距離計測装置、及び距離計測方法
JP7425702B2 (ja) 2020-09-17 2024-01-31 株式会社東芝 距離計測装置、及び距離計測方法

Similar Documents

Publication Publication Date Title
JP2017129426A (ja) レーザレーダ装置
JP2023523111A (ja) ライダーシステムのための適応型エミッタ及びレシーバ
US7158217B2 (en) Vehicle radar device
US6710859B2 (en) Distance measurement apparatus
JP6824236B2 (ja) レーザ距離測定装置
JP4894360B2 (ja) レーダ装置
US20230012091A1 (en) Rangefinder
JP5741474B2 (ja) レーダ装置
JP6700575B2 (ja) 回路装置、光検出器、物体検出装置、センシング装置、移動体装置、光検出方法、及び物体検出方法
JP7294139B2 (ja) 距離測定装置、距離測定装置の制御方法、および距離測定装置の制御プログラム
KR101558660B1 (ko) 멀티 계층 라이더의 빔 각도 보정 장치 및 그 방법
US11715930B2 (en) Multi-pulse generation for pulsed laser diodes using low-side drivers
CN113167871A (zh) 用于脉冲激光二极管的自适应功率控制
JP2021196342A (ja) 測距装置
US10962644B1 (en) Dynamic laser power control in light detection and ranging (LiDAR) systems
JPWO2017138155A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP5637117B2 (ja) 距離測定装置、および距離測定プログラム
JP6930415B2 (ja) 距離測定装置、移動体装置及び距離測定方法
JP2014215157A (ja) レーダ装置およびプログラム
JP2016014577A (ja) 距離測定装置、移動体及び距離測定方法
JP5216673B2 (ja) 距離計用受光装置および距離計
US20230108583A1 (en) Distance measurement device
US20210396876A1 (en) Optical distance measurement apparatus
CN112596066B (zh) 激光雷达的测距方法、测距装置及存储介质
JP2015165196A (ja) 距離測定装置、移動体及び距離測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730