JP2017110216A - Semiconductor protective tape - Google Patents

Semiconductor protective tape Download PDF

Info

Publication number
JP2017110216A
JP2017110216A JP2016240629A JP2016240629A JP2017110216A JP 2017110216 A JP2017110216 A JP 2017110216A JP 2016240629 A JP2016240629 A JP 2016240629A JP 2016240629 A JP2016240629 A JP 2016240629A JP 2017110216 A JP2017110216 A JP 2017110216A
Authority
JP
Japan
Prior art keywords
protective tape
semiconductor protective
adhesive layer
sensitive adhesive
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016240629A
Other languages
Japanese (ja)
Other versions
JP7100957B2 (en
Inventor
林 聡史
Satoshi Hayashi
聡史 林
亨 利根川
Kyo Tonegawa
亨 利根川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2017110216A publication Critical patent/JP2017110216A/en
Application granted granted Critical
Publication of JP7100957B2 publication Critical patent/JP7100957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Adhesive Tapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor protective tape which can prevent the deformation of solder due to the thermal shrinkage of the semiconductor protective tape during a high-temperature treatment.SOLUTION: The present invention provides a semiconductor protective tape comprising a substrate layer and a photocurable adhesive layer, wherein, thermal shrinkages of the semiconductor protective tape at 250°C for 10 minutes after photocuring the photocurable adhesive layer are 1.5% or less in both flow direction (MD) and vertical direction (TD).SELECTED DRAWING: None

Description

本発明は、高温処理時において半導体保護テープの熱収縮による半田の変形を防止することができる半導体保護テープに関する。 The present invention relates to a semiconductor protective tape that can prevent solder deformation due to thermal shrinkage of the semiconductor protective tape during high-temperature processing.

半導体チップの製造工程において、ウエハの加工時の取扱いを容易にし、破損を防止するために半導体保護テープが用いられている。例えば、高純度なシリコン単結晶等から切り出した厚膜ウエハを所定の厚さにまで研削して薄膜ウエハとする場合、厚膜ウエハに半導体保護テープを貼り合わせた後に研削が行われる。 In a semiconductor chip manufacturing process, a semiconductor protective tape is used to facilitate handling during processing of a wafer and prevent breakage. For example, when a thick film wafer cut out from a high-purity silicon single crystal or the like is ground to a predetermined thickness to form a thin film wafer, the semiconductor protective tape is bonded to the thick film wafer before grinding.

近年の半導体チップの高性能化に伴い、半導体保護テープを貼り付けたままウエハの表面に薬液処理、加熱処理又は発熱を伴う処理を施す工程が行われるようになってきた。例えば、次世代の技術として、複数の半導体チップを積層させてデバイスを飛躍的に高性能化、小型化したTSV(Si貫通ビヤ/Through Si via)を使った3次元積層技術が注目されている。TSVは、半導体実装の高密度化ができるほか、接続距離が短くできることにより低ノイズ化、低抵抗化が可能であり、アクセススピードが飛躍的に速く、使用中に発生する熱の放出にも優れる。このようなTSVの製造では、研削して得た薄膜ウエハをバンピングしたり、裏面にバンプを形成したり、3次元積層時にリフローを行ったりする等の200℃以上の高温処理プロセスを行うことが必要となる。そのため、半導体保護テープには耐熱性が求められるようになってきており、種々の耐熱性半導体保護テープが提案されている(例えば特許文献1、2)。 With the recent improvement in performance of semiconductor chips, a process of performing chemical treatment, heat treatment, or heat generation on the surface of a wafer while a semiconductor protective tape is attached has been performed. For example, three-dimensional stacking technology using TSV (Through Si via) that has dramatically improved the performance of devices by stacking a plurality of semiconductor chips has attracted attention as the next generation technology. . TSV can not only increase the density of semiconductor mounting, but also reduce the noise and resistance by shortening the connection distance. The access speed is dramatically faster and the heat generated during use is excellent. . In the manufacture of such TSV, a high-temperature treatment process of 200 ° C. or higher, such as bumping a thin film wafer obtained by grinding, forming bumps on the back surface, or performing reflow during three-dimensional stacking, is performed. Necessary. For this reason, the semiconductor protective tape is required to have heat resistance, and various heat-resistant semiconductor protective tapes have been proposed (for example, Patent Documents 1 and 2).

特開2015−126063号公報Japanese Unexamined Patent Publication No. 2015-126063 特開2014−216534号公報JP 2014-216534 A

しかしながら、従来の耐熱性の半導体保護テープを用いた場合、半田付けを行うリフロー工程において、半導体保護テープの貼り付けられた面にある半田が変形してしまい、接続信頼性が低下してしまうという問題があった。
基材層と粘着剤層とを有する半導体保護テープに高温処理が行われると、基材層が高温によって収縮する。基材層が収縮すると、粘着剤層と粘着剤層によって貼り合わされたウエハ上の半田も基材層の収縮方向に引っ張られ、高温によって軟化した半田が変形してしまう(図1(b))。この問題に対し、基材層に熱収縮の小さな物質を用いることで半田の変形を抑えることが考えられたが、この方法でも半田の変形を抑えるのには充分でなかった。
However, when a conventional heat-resistant semiconductor protective tape is used, in the reflow process for soldering, the solder on the surface to which the semiconductor protective tape is attached is deformed, and the connection reliability is reduced. There was a problem.
When a high-temperature treatment is performed on a semiconductor protective tape having a base material layer and an adhesive layer, the base material layer shrinks due to the high temperature. When the base material layer shrinks, the solder on the wafer bonded by the adhesive layer and the adhesive layer is also pulled in the shrinking direction of the base material layer, and the softened solder is deformed by the high temperature (FIG. 1B). . In order to solve this problem, it has been considered to suppress the deformation of the solder by using a material having a small thermal shrinkage for the base material layer, but this method is not sufficient to suppress the deformation of the solder.

本発明は、上記現状に鑑み、高温処理時において半導体保護テープの熱収縮による半田の変形を防止することができる半導体保護テープを提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a semiconductor protective tape that can prevent deformation of solder due to thermal shrinkage of the semiconductor protective tape during high-temperature processing.

本発明は、基材層と光硬化型粘着剤層とを有する半導体保護テープであって、前記光硬化型粘着剤層を光硬化した後の半導体保護テープの250℃における10分間の熱収縮率が、流れ方向(MD)、垂直方向(TD)ともに1.5%以下である半導体保護テープである。
以下に本発明を詳述する。
This invention is a semiconductor protective tape which has a base material layer and a photocurable adhesive layer, Comprising: The thermal contraction rate for 10 minutes of the semiconductor protective tape after photocuring the said photocurable adhesive layer at 250 degreeC Is a semiconductor protective tape having a flow direction (MD) and a vertical direction (TD) of 1.5% or less.
The present invention is described in detail below.

本発明者らは鋭意検討の結果、基材層に熱収縮の小さな物質を用いることに加えて、粘着剤層に光硬化型粘着剤を用い、高温処理前に光硬化させることによって、半田の変形を防止できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have used a photocurable adhesive for the adhesive layer in addition to using a substance having a small thermal shrinkage for the base material layer, and photocured before high temperature treatment, thereby The present inventors have found that deformation can be prevented and have completed the present invention.

本発明の半導体保護テープは、基材層と光硬化型粘着剤層とを有するものであって、該光硬化型粘着剤層を光硬化した後の半導体保護テープの250℃における10分間の熱収縮率(以下、光硬化後の半導体保護テープの熱収縮率ともいう。)が、流れ方向(MD)、垂直方向(TD)ともに1.5%以下である。光硬化後の半導体保護テープの流れ方向と垂直方向の熱収縮率を1.5%以下とすることで、高温処理前に光硬化型粘着剤層に光を照射して硬化させておくことにより、その後の高温処理時における半田の変形を防ぐことができる。上記光硬化後の半導体保護テープの熱収縮率は、例えば、後述する基材層と光硬化型粘着剤層とを組み合わせ、かつ、高温処理前に光硬化型粘着剤層を光硬化させることによって達成することができる。 The semiconductor protective tape of the present invention has a base material layer and a photocurable pressure-sensitive adhesive layer, and the semiconductor protective tape after photocuring the photocurable pressure-sensitive adhesive layer is heated at 250 ° C. for 10 minutes. The shrinkage rate (hereinafter also referred to as the thermal shrinkage rate of the semiconductor protective tape after photocuring) is 1.5% or less in both the flow direction (MD) and the vertical direction (TD). By setting the heat shrinkage rate in the direction perpendicular to the flow direction of the semiconductor protective tape after photocuring to 1.5% or less, by irradiating the photocurable pressure-sensitive adhesive layer with light before being cured at high temperature, Then, deformation of the solder during the subsequent high temperature treatment can be prevented. The heat shrinkage rate of the semiconductor protective tape after photocuring is obtained by, for example, combining a base material layer and a photocurable pressure-sensitive adhesive layer, which will be described later, and photocuring the photocurable pressure-sensitive adhesive layer before high-temperature treatment. Can be achieved.

従来の半導体保護テープでは、高温処理による基材層の熱収縮が大きく、高温処理後の半導体保護テープは、図1(a)に示すように、熱収縮によって多数のしわができていた。そして、その結果、基材層の熱収縮に引っ張られて図1(b)に示すような半田の変形が起こっていた。しかしながら、本願発明の半導体保護テープでは、高温処理前に光硬化型粘着剤層に光を照射して硬化させておくことにより、その後に高温処理を行った後でも図2(a)に示すように半導体保護テープのしわが少なく、熱収縮が小さい。また、半導体保護テープの熱収縮が小さくなったことによって、半田の変形もほとんど起こらない(図2(b))。 In the conventional semiconductor protective tape, the thermal contraction of the base material layer due to the high temperature treatment is large, and the semiconductor protective tape after the high temperature treatment has a large number of wrinkles due to the thermal shrinkage as shown in FIG. As a result, the solder was deformed as shown in FIG. 1B due to the thermal contraction of the base material layer. However, in the semiconductor protective tape of the present invention, as shown in FIG. 2 (a), after the high temperature treatment is performed by irradiating the photocurable pressure-sensitive adhesive layer with light before the high temperature treatment and curing it. In addition, there are few wrinkles of the semiconductor protective tape and the thermal shrinkage is small. Further, since the thermal shrinkage of the semiconductor protective tape is reduced, solder deformation hardly occurs (FIG. 2B).

なお、本明細書において「MD(Machine Direction)」とは、フィルムの製造の際に製造装置から押し出される方向を意味し、「TD(Transverse Direction)」とはMDに対して垂直な方向を意味する。
また、本明細書中における「250℃における10分間の熱収縮」とは、JISK7133に準拠してサンプリング、評線間距離の測定、算出を行った値を意味する。ただし加熱に関しては、あらかじめ250℃に熱したホットプレートを準備し、そのホットプレートを用いて10分間の加熱を行う。
In this specification, “MD (Machine Direction)” means a direction pushed out from a manufacturing apparatus during film production, and “TD (Transverse Direction)” means a direction perpendicular to MD. To do.
In addition, “thermal shrinkage at 250 ° C. for 10 minutes” in the present specification means a value obtained by sampling, measuring a distance between evaluation lines, and calculating in accordance with JISK7133. However, for heating, a hot plate heated to 250 ° C. is prepared in advance, and heating is performed for 10 minutes using the hot plate.

また、本明細書において「光硬化型粘着剤層を光硬化した後」とは、上記光硬化型粘着剤層に光を照射することにより完全に硬化させた後を意味する。
ここで、光硬化型粘着剤層を光硬化させるための光照射の条件は、光硬化型粘着剤層に含有される光硬化型粘着剤の種類により適宜選択すればよい。例えば、後述する重合性ポリマーを主成分とし、250〜800nmの波長の光を照射することにより活性化する光重合開始剤を含有する光硬化型粘着剤を用いた場合には、365nm以上の波長の光を好ましくは5mW以上、より好ましくは10mW以上、更に好ましくは20mW以上、特に好ましくは50mW以上の照度で照射することにより、光硬化させることができる。また、波長365nmの光を300mJ以上の積算照度で照射することが好ましく、500mJ以上、10000mJ以下の積算照度で照射することがより好ましく、500mJ以上、7500mJ以下の積算照度で照射することが更に好ましく、1000mJ以上、5000mJ以下の積算照度で照射することが特に好ましい。
より具体的には例えば、超高圧水銀灯を用いて、365nmの紫外線を光硬化型粘着材層の表面への照射強度が80mW/cmとなるよう照度を調節して2分間照射することにより、光硬化型粘着剤層を光硬化させる。
In the present specification, “after photocuring the photocurable pressure-sensitive adhesive layer” means after the photocurable pressure-sensitive adhesive layer is completely cured by irradiating light.
Here, the light irradiation conditions for photocuring the photocurable pressure-sensitive adhesive layer may be appropriately selected depending on the type of the photocurable pressure-sensitive adhesive contained in the photocurable pressure-sensitive adhesive layer. For example, in the case of using a photocurable pressure sensitive adhesive containing a photopolymerization initiator that is activated by irradiating light having a wavelength of 250 to 800 nm with a polymerizable polymer described later as a main component, a wavelength of 365 nm or more. Can be cured by irradiating with an illuminance of preferably 5 mW or more, more preferably 10 mW or more, still more preferably 20 mW or more, and particularly preferably 50 mW or more. In addition, it is preferable to irradiate light with a wavelength of 365 nm with an integrated illuminance of 300 mJ or more, more preferably with an integrated illuminance of 500 mJ or more and 10,000 mJ or less, and more preferably with an integrated illuminance of 500 mJ or more and 7500 mJ or less. It is particularly preferable to irradiate with an integrated illuminance of 1000 mJ or more and 5000 mJ or less.
More specifically, for example, by using an ultra-high pressure mercury lamp, by irradiating 365 nm ultraviolet rays for 2 minutes while adjusting the illuminance so that the irradiation intensity on the surface of the photocurable pressure-sensitive adhesive layer becomes 80 mW / cm 2 , The photocurable pressure-sensitive adhesive layer is photocured.

本発明の半導体保護テープは基材層を含有する。
上記基材層は、上記半導体保護テープの熱収縮率を満たすものなら特に限定されないが、光を透過又は通過するものであることが好ましい。中でも、熱収縮が小さく、光を透過することからポリエチレンナフタレートがより好ましい。
The semiconductor protective tape of the present invention contains a base material layer.
Although the said base material layer will not be specifically limited if the heat shrinkage rate of the said semiconductor protective tape is satisfy | filled, It is preferable that it is what permeate | transmits or passes light. Among these, polyethylene naphthalate is more preferable because it has a small heat shrinkage and transmits light.

上記基材層の250℃における10分間の熱収縮率(以下、基材層の熱収縮率ともいう。)は、流れ方向(MD)、垂直方向(TD)ともに5.0%以下であることが好ましい。上記基材層の熱収縮率が5.0%以下であることによって、得られる半導体保護テープの熱収縮率を上記範囲に調節しやすくなる。上記基材層の熱収縮率のより好ましい範囲は4.0%以下、更に好ましい範囲は3.0%以下である。 The base material layer has a heat shrinkage rate at 250 ° C. for 10 minutes (hereinafter also referred to as a heat shrinkage rate of the base material layer) of 5.0% or less in both the flow direction (MD) and the vertical direction (TD). Is preferred. When the heat shrinkage rate of the base material layer is 5.0% or less, the heat shrinkage rate of the obtained semiconductor protective tape can be easily adjusted to the above range. A more preferable range of the thermal shrinkage of the base material layer is 4.0% or less, and a more preferable range is 3.0% or less.

上記基材層の熱収縮率の範囲を満たす基材層の市販品としては、例えば、テオネックス(ポリエチレンナフタレート、帝人デュポンフィルム社製)等が挙げられる。 As a commercial item of the base material layer which satisfy | fills the range of the thermal contraction rate of the said base material layer, Teonex (Polyethylene naphthalate, the Teijin DuPont Films company make) etc. are mentioned, for example.

上記基材層の厚みは特に限定されないが、好ましい下限は1μm、好ましい上限は200μmである。上記基材層の厚さがこの範囲であることによって、得られる半導体保護テープの取扱い性とウエハの保護性を向上させることができる。 Although the thickness of the said base material layer is not specifically limited, A preferable minimum is 1 micrometer and a preferable upper limit is 200 micrometers. When the thickness of the base material layer is within this range, the handleability of the obtained semiconductor protective tape and the protective property of the wafer can be improved.

本発明の半導体保護テープは光硬化型粘着剤層を含有する。
本発明の半導体保護テープは、光硬化型粘着剤層を含有することで、光硬化によって粘着剤層の弾性率を上げることができる。即ち、光硬化前は常温においてウエハに対する充分な粘着力を発揮しつつも、光硬化後は高い弾性率によって半導体保護テープの熱収縮を抑え、その結果、半田の変形を抑えることができる。このように、本発明は単に基材層の熱収縮率を小さくするだけでなく、高温処理前に粘着剤層を光硬化させ、粘着剤層の弾性率を上げることで、半導体保護テープの熱収縮を抑えて半田の変形を防止することができる。
The semiconductor protective tape of the present invention contains a photocurable pressure-sensitive adhesive layer.
The semiconductor protective tape of this invention can raise the elasticity modulus of an adhesive layer by photocuring by containing a photocurable adhesive layer. That is, while exhibiting a sufficient adhesive force to the wafer at normal temperature before photocuring, thermal shrinkage of the semiconductor protective tape can be suppressed by the high elastic modulus after photocuring, and as a result, solder deformation can be suppressed. Thus, the present invention not only reduces the thermal shrinkage rate of the base material layer, but also photocures the pressure-sensitive adhesive layer before high-temperature treatment to increase the elastic modulus of the pressure-sensitive adhesive layer, thereby increasing the heat of the semiconductor protective tape. Shrinkage can be suppressed and solder deformation can be prevented.

上記光硬化型粘着剤層は、光硬化後の光硬化型粘着剤層を、25℃から250℃まで10℃/minの昇温速度で測定したときの引っ張り貯蔵弾性率の極小値が1.0MPa以上であることが好ましい。上記条件で測定した引っ張り貯蔵弾性率が1.0MPa以上であることで、得られる半導体保護テープの熱収縮率を上記範囲に調節しやすくなる。上記引っ張り貯蔵弾性率のより好ましい範囲は1.2MPa以上、更に好ましい範囲は1.5MPa以上である。
なお、ここで「引っ張り貯蔵弾性率」とは、粘弾性測定機(型式「DVA−200」、アイティー計測制御社製)を用いて、昇温速度10℃/分、引っ張り、つかみ幅24mm、10Hzで300℃まで昇温して得られる値である。
The minimum value of the tensile storage elastic modulus when the photocurable pressure-sensitive adhesive layer after photocuring is measured at a temperature increase rate of 10 ° C./min from 25 ° C. to 250 ° C. is 1. It is preferably 0 MPa or more. It becomes easy to adjust the thermal contraction rate of the obtained semiconductor protective tape to the said range because the tensile storage elastic modulus measured on the said conditions is 1.0 Mpa or more. A more preferable range of the tensile storage elastic modulus is 1.2 MPa or more, and a more preferable range is 1.5 MPa or more.
Here, the “tensile storage elastic modulus” means a viscoelasticity measuring device (model “DVA-200”, manufactured by IT Measurement Control Co., Ltd.), a heating rate of 10 ° C./min, a tension, a grip width of 24 mm, It is a value obtained by raising the temperature to 300 ° C. at 10 Hz.

上記光硬化型粘着剤層を構成する粘着剤としては、例えば、重合性ポリマーを主成分として、光重合開始剤を含有する光硬化型粘着剤が挙げられる。
上記重合性ポリマーは、例えば、分子内に官能基を持った(メタ)アクリル系ポリマー(以下、官能基含有(メタ)アクリル系ポリマーという)をあらかじめ合成し、分子内に上記の官能基と反応する官能基とラジカル重合性の不飽和結合とを有する化合物(以下、官能基含有不飽和化合物という。)と反応させることにより得ることができる。
Examples of the pressure-sensitive adhesive constituting the photocurable pressure-sensitive adhesive layer include a photocurable pressure-sensitive adhesive containing a polymerizable polymer as a main component and a photopolymerization initiator.
The polymerizable polymer is prepared by, for example, previously synthesizing a (meth) acrylic polymer having a functional group in the molecule (hereinafter referred to as a functional group-containing (meth) acrylic polymer) and reacting with the functional group in the molecule. It can obtain by making it react with the compound (henceforth a functional group containing unsaturated compound) which has a functional group to perform and a radically polymerizable unsaturated bond.

上記官能基含有(メタ)アクリル系ポリマーは、常温で粘着性を有するポリマーとして、一般の(メタ)アクリル系ポリマーの場合と同様に、アルキル基の炭素数が通常2〜18の範囲にあるアクリル酸アルキルエステル及び/又はメタクリル酸アルキルエステルを主モノマーとし、これと官能基含有モノマーと、更に必要に応じてこれらと共重合可能な他の改質用モノマーとを常法により共重合させることにより得られるものである。上記官能基含有(メタ)アクリル系ポリマーの重量平均分子量は通常20万〜200万程度である。 The functional group-containing (meth) acrylic polymer is an acrylic having an alkyl group usually in the range of 2 to 18 as a polymer having adhesiveness at room temperature, as in the case of a general (meth) acrylic polymer. By copolymerizing an acid alkyl ester and / or methacrylic acid alkyl ester as a main monomer, a functional group-containing monomer, and, if necessary, another modifying monomer copolymerizable therewith by a conventional method It is obtained. The weight average molecular weight of the functional group-containing (meth) acrylic polymer is usually about 200,000 to 2,000,000.

上記官能基含有モノマーとしては、例えば、アクリル酸、メタクリル酸等のカルボキシル基含有モノマー;アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル等のヒドロキシル基含有モノマー;アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有モノマー;アクリル酸イソシアネートエチル、メタクリル酸イソシアネートエチル等のイソシアネート基含有モノマー;アクリル酸アミノエチル、メタクリル酸アミノエチル等のアミノ基含有モノマー等が挙げられる。 Examples of the functional group-containing monomer include a carboxyl group-containing monomer such as acrylic acid and methacrylic acid; a hydroxyl group-containing monomer such as hydroxyethyl acrylate and hydroxyethyl methacrylate; and an epoxy group containing glycidyl acrylate and glycidyl methacrylate. Monomers; Isocyanate group-containing monomers such as isocyanate ethyl acrylate and isocyanate ethyl methacrylate; and amino group-containing monomers such as aminoethyl acrylate and aminoethyl methacrylate.

上記共重合可能な他の改質用モノマーとしては、例えば、酢酸ビニル、アクリロニトリル、スチレン等の一般の(メタ)アクリル系ポリマーに用いられている各種のモノマーが挙げられる。 Examples of other modifying monomers that can be copolymerized include various monomers used in general (meth) acrylic polymers such as vinyl acetate, acrylonitrile, and styrene.

上記官能基含有(メタ)アクリル系ポリマーに反応させる官能基含有不飽和化合物としては、上記官能基含有(メタ)アクリル系ポリマーの官能基に応じて上述した官能基含有モノマーと同様のものを使用できる。例えば、上記官能基含有(メタ)アクリル系ポリマーの官能基がカルボキシル基の場合はエポキシ基含有モノマーやイソシアネート基含有モノマーが用いられ、同官能基がヒドロキシル基の場合はイソシアネート基含有モノマーが用いられ、同官能基がエポキシ基の場合はカルボキシル基含有モノマーやアクリルアミド等のアミド基含有モノマーが用いられ、同官能基がアミノ基の場合はエポキシ基含有モノマーが用いられる。 The functional group-containing unsaturated compound to be reacted with the functional group-containing (meth) acrylic polymer is the same as the functional group-containing monomer described above according to the functional group of the functional group-containing (meth) acrylic polymer. it can. For example, when the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group, an epoxy group-containing monomer or an isocyanate group-containing monomer is used, and when the functional group is a hydroxyl group, an isocyanate group-containing monomer is used. When the functional group is an epoxy group, a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used, and when the functional group is an amino group, an epoxy group-containing monomer is used.

上記光重合開始剤は、例えば、250〜800nmの波長の光を照射することにより活性化されるものが挙げられ、このような光重合開始剤としては、例えば、メトキシアセトフェノン等のアセトフェノン誘導体化合物;ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール、アセトフェノンジエチルケタール等のケタール誘導体化合物;フォスフィンオキシド誘導体化合物;ビス(η5−シクロペンタジエニル)チタノセン誘導体化合物、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、トデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、α−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシメチルフェニルプロパン等の光ラジカル重合開始剤が挙げられる。これらの光重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the photopolymerization initiator include those activated by irradiation with light having a wavelength of 250 to 800 nm. Examples of such a photopolymerization initiator include acetophenone derivative compounds such as methoxyacetophenone; Benzoin ether compounds such as benzoin propyl ether and benzoin isobutyl ether; ketal derivative compounds such as benzyldimethyl ketal and acetophenone diethyl ketal; phosphine oxide derivative compounds; bis (η5-cyclopentadienyl) titanocene derivative compounds, benzophenone, Michler's ketone, Chlorothioxanthone, Todecylthioxanthone, Dimethylthioxanthone, Diethylthioxanthone, α-hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, etc. These radical photopolymerization initiators. These photoinitiators may be used independently and 2 or more types may be used together.

上記光硬化型粘着剤層は、更に、ラジカル重合性の多官能オリゴマー又はモノマーを含有することが好ましい。ラジカル重合性の多官能オリゴマー又はモノマーを含有することにより、光硬化性が向上する。
上記多官能オリゴマー又はモノマーは、分子量が1万以下であるものが好ましく、より好ましくは加熱又は光の照射による粘着剤層の三次元網状化が効率よくなされるように、その分子量が5000以下でかつ分子内のラジカル重合性の不飽和結合の数が2〜20個のものである。
The photocurable pressure-sensitive adhesive layer preferably further contains a radical polymerizable polyfunctional oligomer or monomer. Photocurability improves by containing a radically polymerizable polyfunctional oligomer or monomer.
The polyfunctional oligomer or monomer preferably has a molecular weight of 10,000 or less, and more preferably has a molecular weight of 5000 or less so that the three-dimensional network of the pressure-sensitive adhesive layer can be efficiently formed by heating or light irradiation. And the number of radically polymerizable unsaturated bonds in the molecule is 2-20.

上記光硬化型粘着剤層は、刺激により気体を発生する気体発生剤を含有してもよい。上記光硬化型粘着剤層が上記気体発生剤を含有する場合には、リフロー工程後に保護が不要となったときに、刺激を与えて上記気体発生剤から気体を発生させることにより、より容易に、かつ、糊残りすることなく半導体保護テープをウエハから剥離することができる。 The said photocurable adhesive layer may contain the gas generating agent which generate | occur | produces gas by irritation | stimulation. When the photocurable pressure-sensitive adhesive layer contains the gas generating agent, when protection is not necessary after the reflow process, it is easier to generate gas from the gas generating agent by giving a stimulus. In addition, the semiconductor protective tape can be peeled from the wafer without any adhesive residue.

上記気体発生剤は特に限定されず、例えば、アゾ化合物、アジド化合物等の従来公知の気体発生剤を用いることができるが、リフロー工程中に気体が発生して剥離しないように、ケトプロフェンや2−キサントン酢酸等のカルボン酸化合物又はその塩や、1H−テトラゾール、5,5’−ビステトラゾールジアンモニウム塩、5,5’−ビステトラゾールアミンモノアンモニウム塩等のテトラゾール化合物又はその塩等の耐熱性に優れる気体発生剤を用いることが好ましい。 The gas generating agent is not particularly limited. For example, a conventionally known gas generating agent such as an azo compound or an azide compound can be used. However, in order to prevent gas generation and separation during the reflow process, ketoprofen and 2- For heat resistance of carboxylic acid compounds such as xanthone acetic acid or salts thereof, tetrazole compounds such as 1H-tetrazole, 5,5′-bistetrazole diammonium salt, 5,5′-bistetrazoleamine monoammonium salt or salts thereof It is preferable to use an excellent gas generating agent.

上記光硬化型粘着剤層中の上記気体発生剤の含有量は特に限定されないが、上記光硬化型粘着剤層100重量部に対する好ましい下限が5重量部、好ましい上限が50重量部である。上記気体発生剤の含有量がこの範囲内にあると、充分な剥離性向上効果が得られる。上記気体発生剤の含有量のより好ましい下限は10重量部、より好ましい上限は30重量部である。 Although content of the said gas generating agent in the said photocurable adhesive layer is not specifically limited, The preferable minimum with respect to 100 weight part of the said photocurable adhesive layers is 5 weight part, and a preferable upper limit is 50 weight part. When the content of the gas generating agent is within this range, a sufficient peelability improving effect can be obtained. The minimum with more preferable content of the said gas generating agent is 10 weight part, and a more preferable upper limit is 30 weight part.

上記光硬化型粘着剤層には、以上の成分のほか、粘着剤としての凝集力の調節を図る目的で、所望によりイソシアネート化合物、メラミン化合物、エポキシ化合物等の一般の粘着剤に配合される各種の多官能性化合物を適宜配合してもよい。また、帯電防止剤、可塑剤、樹脂、界面活性剤、ワックス、微粒子充填剤等の公知の添加剤を加えることもできる。
また、樹脂の安定性を高めるために熱安定剤、酸化防止剤を配合させてもよい。このような添加剤は、例えばフェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、有機スズ系安定剤、鉛系安定剤等が挙げられる。これらの添加剤は、単独で用いられてもよく、2種以上が併用されてもよい。
In addition to the above components, the above-mentioned photocurable pressure-sensitive adhesive layer may be blended with general pressure-sensitive adhesives such as isocyanate compounds, melamine compounds, and epoxy compounds as desired for the purpose of adjusting the cohesive force as a pressure-sensitive adhesive. These polyfunctional compounds may be appropriately blended. In addition, known additives such as an antistatic agent, a plasticizer, a resin, a surfactant, a wax, and a fine particle filler can be added.
Moreover, in order to improve stability of resin, you may mix | blend a heat stabilizer and antioxidant. Examples of such additives include phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, organotin-based stabilizers, lead-based stabilizers, and the like. These additives may be used independently and 2 or more types may be used together.

上記光硬化型粘着剤層の厚さは特に制限されないが、好ましい下限は1μm、好ましい上限は600μmである。上記光硬化型粘着剤層の厚さが上記範囲内であることにより、得られる半導体保護テープの粘着能力と剥がしやすさを両立させることができる。 Although the thickness of the said photocurable adhesive layer is not specifically limited, A preferable minimum is 1 micrometer and a preferable upper limit is 600 micrometers. When the thickness of the photocurable pressure-sensitive adhesive layer is within the above range, it is possible to achieve both the adhesive ability and ease of peeling of the obtained semiconductor protective tape.

本発明の半導体保護テープの製造方法は特に限定されず、従来公知の方法を用いることができる。例えば、上記重合性ポリマーと上記光重合開始剤、必要に応じてその他の配合成分とを混合、攪拌して光硬化型粘着剤溶液を調製し、続いて、この光硬化型粘着剤溶液を離型処理したPETフィルムに塗工乾燥させて粘着剤層を形成し、得られた光硬化型粘着剤層を基材の片面に転着させる方法、基材に直接塗工乾燥させる方法等が挙げられる。 The manufacturing method of the semiconductor protective tape of this invention is not specifically limited, A conventionally well-known method can be used. For example, the photopolymerizable pressure-sensitive adhesive solution is prepared by mixing and stirring the polymerizable polymer, the photopolymerization initiator, and, if necessary, other ingredients, and stirring. Examples include a method of coating and drying a mold-treated PET film to form a pressure-sensitive adhesive layer, a method of transferring the obtained photocurable pressure-sensitive adhesive layer to one side of a substrate, a method of directly coating and drying a substrate, and the like. It is done.

本発明の半導体保護テープの用途は、半導体チップの製造工程において半導体の表面に貼付して半導体を保護する用途であれば特に限定されないが、半田突起電極が形成された半導体の該突起電極が形成された側の面に貼付して、リフロー等の200℃以上の高温処理プロセスを行う用途に特に好適である。
本発明の半導体保護テープは、光硬化型粘着剤層を光硬化した後には、高温処理時における熱収縮率が極めて小さい。半田突起電極が形成された半導体の該突起電極が形成された側の面に本発明の半導体保護テープを貼付し、光照射して光硬化型粘着剤層を光硬化した後にリフロー等の200℃以上の高温処理プロセスを行えば、半導体保護テープの貼り付けられた面にある半田突起電極が変形したりすることがなく、接続信頼性が低下してしまうことがない。
The use of the semiconductor protective tape of the present invention is not particularly limited as long as it is an application for protecting the semiconductor by sticking to the surface of the semiconductor in the manufacturing process of the semiconductor chip, but the semiconductor protruding electrode formed with the solder protruding electrode is formed. It is particularly suitable for an application in which a high temperature treatment process of 200 ° C. or higher such as reflow is applied to the surface on the processed side.
The semiconductor protective tape of the present invention has a very small heat shrinkage rate during high-temperature treatment after photocuring the photocurable pressure-sensitive adhesive layer. The semiconductor protective tape of the present invention is affixed to the surface of the semiconductor on which the solder bump electrode is formed, and the photocurable pressure-sensitive adhesive layer is photocured by light irradiation and then 200 ° C. such as reflow. By performing the above high-temperature treatment process, the solder bump electrode on the surface to which the semiconductor protective tape is attached is not deformed, and connection reliability is not lowered.

本発明によれば、高温処理時において半導体保護テープの熱収縮による半田の変形を防止することができる半導体保護テープを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the semiconductor protective tape which can prevent the deformation | transformation of the solder by the heat shrink of a semiconductor protective tape at the time of a high temperature process can be provided.

従来の粘着剤層の半導体保護テープを用いて、リフロー工程を行った後の半導体保護テープ(a)の写真と、光学顕微鏡を用いて5000倍の倍率で観察したウエハ上の半田を模式的に示した図(b)である。Using a conventional semiconductor protective tape with a pressure-sensitive adhesive layer, a photograph of the semiconductor protective tape (a) after the reflow process and the solder on the wafer observed at a magnification of 5000 using an optical microscope are schematically shown. It is shown figure (b). 本発明の半導体テープを用いて、粘着剤層の光硬化後にリフロー工程を行った後の半導体保護テープ(a)の写真と、光学顕微鏡を用いて5000倍の倍率で観察したウエハ上の半田を模式的に示した図(b)である。Using the semiconductor tape of the present invention, a photograph of the semiconductor protective tape (a) after performing the reflow process after photocuring of the adhesive layer and the solder on the wafer observed at a magnification of 5000 using an optical microscope It is the figure (b) shown typically.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)基材層熱収縮率の測定
テオネックスフィルムQ83(ポリエチレンナフタレートフィルム、厚さ25μm、帝人デュポン社製)をあらかじめ250℃に加熱したホットプレートを用いて250℃、10分間加熱した。その後、基材層のMDとTDの長さを測定し、加熱前の長さに対する基材層熱収縮率を求めた。なお、サンプリング、評線間距離の測定、算出はJIS K7133に準拠して行った。
Example 1
(1) Measurement of base material layer heat shrinkage Theonex film Q83 (polyethylene naphthalate film, thickness 25 μm, manufactured by Teijin DuPont) was heated at 250 ° C. for 10 minutes using a hot plate heated to 250 ° C. in advance. Then, the length of MD and TD of the base material layer was measured, and the base material layer thermal contraction rate with respect to the length before heating was obtained. Sampling, measurement of distance between evaluation lines, and calculation were performed according to JIS K7133.

(2)光硬化型粘着剤組成物Aの製造
温度計、攪拌機、冷却管を備えた反応器を用意し、この反応器内に、ブチルアクリレート79重量部、エチルアクリレート15重量部、アクリル酸1重量部、2−ヒドロキシアクリレート5重量部、酢酸エチル100重量部を加えた後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤として1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.01重量部を添加し、還流下で重合を開始させた。次に、重合開始から1時間後及び2時間後にも、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサンを0.01重量部ずつ添加し、更に、重合開始から4時間後にt−ヘキシルパーオキシピバレートを0.05重量部添加して重合反応を継続させた。そして、重合開始から8時間後に、固形分50重量%、重量平均分子量70万の官能基含有(メタ)アクリル系酢酸エチル溶液を得た。
得られた官能基含有(メタ)アクリル系酢酸エチル溶液の樹脂固形分100重量部に対して、2−イソシアナトエチルメタクリレート3.5重量部を加えて反応させて光硬化型粘着剤Aの酢酸エチル溶液を得た。
得られた光硬化型粘着剤Aの酢酸エチル溶液の樹脂固形分100重量部に対して、光重合開始剤(エサキュアワン、日本シイベルヘグナー社製)1重量部、可塑剤(根上工業社製、UN−5500)20重量部、及び、架橋剤(日本ポリウレタン社製、コロネートL−45)0.5重量部を混合して光硬化型粘着剤組成物Aの酢酸エチル溶液を調製した。
(2) Production of photocurable pressure-sensitive adhesive composition A A reactor equipped with a thermometer, a stirrer, and a cooling tube was prepared. In this reactor, 79 parts by weight of butyl acrylate, 15 parts by weight of ethyl acrylate, and acrylic acid 1 After adding parts by weight, 5 parts by weight of 2-hydroxyacrylate, and 100 parts by weight of ethyl acetate, the reactor was heated to start refluxing. Subsequently, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added as a polymerization initiator in the reactor, and polymerization was started under reflux. It was. Next, after 1 hour and 2 hours from the start of polymerization, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added, and the polymerization was started. 4 hours later, 0.05 part by weight of t-hexylperoxypivalate was added to continue the polymerization reaction. Then, 8 hours after the start of polymerization, a functional group-containing (meth) acrylic ethyl acetate solution having a solid content of 50% by weight and a weight average molecular weight of 700,000 was obtained.
To 100 parts by weight of the resin solid content of the functional group-containing (meth) acrylic ethyl acetate solution, 3.5 parts by weight of 2-isocyanatoethyl methacrylate was added and reacted to form acetic acid of the photocurable pressure-sensitive adhesive A. An ethyl solution was obtained.
1 part by weight of a photopolymerization initiator (Esacure One, manufactured by Nippon Shibel Hegner), a plasticizer (manufactured by Negami Kogyo Co., Ltd., UN-) with respect to 100 parts by weight of the resin solid content of the obtained ethyl acetate solution of the photocurable pressure-sensitive adhesive A 5500) 20 parts by weight and 0.5 part by weight of a crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., Coronate L-45) were mixed to prepare an ethyl acetate solution of the photocurable pressure-sensitive adhesive composition A.

(3)半導体保護テープの製造
テオネックスフィルムQ83を基材として、該基材の片面に得られた光硬化型粘着剤組成物Aの酢酸エチル溶液を、乾燥皮膜の厚さが200μmとなるようにドクターナイフで塗工し、110℃、10分間加熱して塗工溶液を乾燥させた後、乾燥粘着剤表面にシリコン離型処理PETフィルムをラミネートし、その後、40℃、3日間静置養生を行い、基材層と光硬化型粘着剤層Aとを有する半導体保護テープを得た。
(3) Manufacture of semiconductor protective tape Using Teonex film Q83 as a base material, the ethyl acetate solution of photocurable pressure-sensitive adhesive composition A obtained on one side of the base material is dried to a thickness of 200 μm. After coating with a doctor knife and heating at 110 ° C. for 10 minutes to dry the coating solution, a silicone release-treated PET film is laminated on the surface of the dried adhesive, and then allowed to stand at 40 ° C. for 3 days. The semiconductor protective tape which has a base material layer and the photocurable adhesive layer A was obtained.

(4)光硬化型粘着剤層の引っ張り貯蔵弾性率の測定
測定用サンプルとして、光硬化型粘着剤組成物Aの酢酸エチル溶液を、片面にシリコン離型処理を施したPETフィルムのシリコン処理面上に、乾燥皮膜の厚さが500μmとなるようにドクターナイフで塗工し、そのまま常温で10分間静置し溶剤をある程度蒸発させ、引き続き110℃、10分間加熱して塗工溶液を乾燥させた後、乾燥粘着剤表面に片面にシリコン離型処理を施したPETフィルムのシリコン処理面をラミネートし、40℃、3日間静置養生を行い、接着テープを得た。得られた接着テープを縦5.0cm、横5.0cmの四角形状に切断して、これを測定用サンプルとした。
次いで、超高圧水銀灯を用いて、365nmの紫外線を測定用サンプルの表面への照射強度が80mW/cmとなるよう照度を調節して2分間照射して、測定用サンプルを光硬化させた。光硬化後の測定用サンプルについて、さらに縦4.0cm、横0.5cmにカットして弾性率測定用サンプルとした。
弾性率測定用サンプルを用い、粘弾性測定機(型式「DVA−200」、アイティー計測制御社製)を用いて、昇温速度10℃/分、引っ張り、つかみ幅24mm、10Hzで300℃まで連続昇温して測定を行った。測定値の中から、25℃から250℃の間における最小の引っ張り貯蔵弾性率の値を得た。
(4) As a sample for measuring and measuring the tensile storage elastic modulus of the photocurable pressure-sensitive adhesive layer, a silicon-treated surface of a PET film in which an ethyl acetate solution of the photocurable pressure-sensitive adhesive composition A is subjected to silicon release treatment on one side On top, apply with a doctor knife so that the thickness of the dried film is 500 μm, leave it at room temperature for 10 minutes to evaporate the solvent to some extent, then heat at 110 ° C. for 10 minutes to dry the coating solution After that, the surface of the dried adhesive was laminated with a silicon-treated surface of a PET film that had been subjected to a silicon release treatment on one side, and subjected to static curing at 40 ° C. for 3 days to obtain an adhesive tape. The obtained adhesive tape was cut into a rectangular shape having a length of 5.0 cm and a width of 5.0 cm, and this was used as a measurement sample.
Next, using an ultrahigh pressure mercury lamp, 365 nm ultraviolet light was irradiated for 2 minutes while adjusting the illuminance so that the irradiation intensity on the surface of the measurement sample was 80 mW / cm 2, and the measurement sample was photocured. The measurement sample after photocuring was further cut into a length of 4.0 cm and a width of 0.5 cm to obtain a sample for elastic modulus measurement.
Using a sample for elastic modulus measurement, using a viscoelasticity measuring device (model “DVA-200”, manufactured by IT Measurement Control Co., Ltd.), a temperature rising rate of 10 ° C./min, pulling, grip width of 24 mm, up to 300 ° C. at 10 Hz Measurement was performed by continuously raising the temperature. From the measured values, the minimum tensile storage modulus value between 25 ° C. and 250 ° C. was obtained.

(5)半導体保護テープの熱収縮率の測定
得られた半導体保護テープの光硬化型粘着剤層の表面に、超高圧水銀灯を用いて、365nmの紫外線を照射強度が80mW/cmとなるよう照度を調節して2分間照射して、光硬化型粘着剤層を光硬化させた。
光硬化後の半導体保護テープを、あらかじめ250℃に加熱したホットプレートを用いて250℃、10分間加熱を行った。その後、半導体保護テープのMDとTDの長さを測定し、加熱前の長さに対するテープ熱収縮率を求めた。なお、サンプリング、評線間距離の測定、算出はJIS K7133に準拠して行った。
(5) Measurement of heat shrinkage rate of semiconductor protective tape Using an ultrahigh pressure mercury lamp on the surface of the photocurable pressure-sensitive adhesive layer of the obtained semiconductor protective tape, the irradiation intensity of 365 nm is 80 mW / cm 2. The photocurable pressure-sensitive adhesive layer was photocured by irradiating for 2 minutes while adjusting the illuminance.
The semiconductor protective tape after photocuring was heated at 250 ° C. for 10 minutes using a hot plate heated to 250 ° C. in advance. Then, the length of MD and TD of the semiconductor protective tape was measured, and the tape heat shrinkage ratio with respect to the length before heating was determined. Sampling, measurement of distance between evaluation lines, and calculation were performed according to JIS K7133.

(実施例2)
温度計、攪拌機、冷却管を備えた反応器を用意し、この反応器内に、ブチルアクリレート79重量部、エチルアクリレート15重量部、アクリル酸1重量部、2−ヒドロキシアクリレート5重量部、酢酸エチル100重量部を加えた後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤として1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.01重量部を添加し、還流下で重合を開始させた。次に、重合開始から1時間後及び2時間後にも、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサンを0.01重量部ずつ添加し、更に、重合開始から4時間後にt−ヘキシルパーオキシピバレートを0.05重量部添加して重合反応を継続させた。そして、重合開始から8時間後に、固形分50重量%、重量平均分子量70万の官能基含有(メタ)アクリル系酢酸エチル溶液を得た。
得られた官能基含有(メタ)アクリル系酢酸エチル溶液の樹脂固形分100重量部に対して、2−イソシアナトエチルメタクリレート2.0重量部を加えて反応させて光硬化型粘着剤Bの酢酸エチル溶液を得た。
得られた光硬化型粘着剤Bの酢酸エチル溶液の樹脂固形分100重量部に対して、光重合開始剤(エサキュアワン、日本シイベルヘグナー社製)1重量部、可塑剤(根上工業社製、UN−5500)20重量部、及び、架橋剤(日本ポリウレタン社製、コロネートL−45)0.5重量部を混合して光硬化型粘着剤組成物Bの酢酸エチル溶液を調製した。
(Example 2)
A reactor equipped with a thermometer, a stirrer, and a cooling pipe was prepared. In this reactor, 79 parts by weight of butyl acrylate, 15 parts by weight of ethyl acrylate, 1 part by weight of acrylic acid, 5 parts by weight of 2-hydroxy acrylate, ethyl acetate After adding 100 parts by weight, the reactor was heated to begin refluxing. Subsequently, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added as a polymerization initiator in the reactor, and polymerization was started under reflux. It was. Next, after 1 hour and 2 hours from the start of polymerization, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added, and the polymerization was started. 4 hours later, 0.05 part by weight of t-hexylperoxypivalate was added to continue the polymerization reaction. Then, 8 hours after the start of polymerization, a functional group-containing (meth) acrylic ethyl acetate solution having a solid content of 50% by weight and a weight average molecular weight of 700,000 was obtained.
To 100 parts by weight of the resin solid content of the functional group-containing (meth) acrylic ethyl acetate solution, 2.0 parts by weight of 2-isocyanatoethyl methacrylate was added and reacted to form acetic acid of the photocurable pressure-sensitive adhesive B. An ethyl solution was obtained.
1 part by weight of a photopolymerization initiator (Esacure One, manufactured by Nippon Shibel Hegner), plasticizer (manufactured by Negami Kogyo Co., Ltd., UN-) with respect to 100 parts by weight of the resin solid content of the ethyl acetate solution of the obtained photocurable adhesive B 5500) 20 parts by weight and 0.5 part by weight of a crosslinking agent (manufactured by Nippon Polyurethane Co., Ltd., Coronate L-45) were mixed to prepare an ethyl acetate solution of the photocurable pressure-sensitive adhesive composition B.

得られた光硬化型粘着剤組成物Bを用いた以外は実施例1と同様にして、基材層と光硬化型粘着剤層Bとを有する半導体保護テープを製造した。また、実施例1と同様の方法により、光硬化後の光硬化型粘着剤層の引っ張り貯蔵弾性率、及び、光硬化後の半導体保護テープの熱収縮率を測定した。 A semiconductor protective tape having a base material layer and a photocurable pressure-sensitive adhesive layer B was produced in the same manner as in Example 1 except that the obtained photocurable pressure-sensitive adhesive composition B was used. Moreover, the tensile storage elastic modulus of the photocurable pressure-sensitive adhesive layer after photocuring and the heat shrinkage rate of the semiconductor protective tape after photocuring were measured by the same method as in Example 1.

(比較例1)
実施例1と同様の方法により半導体保護テープを製造した。
ただし、「(4)光硬化型粘着剤層の引っ張り貯蔵弾性率の測定」及び「(5)半導体保護テープの熱収縮率の測定」においては、光硬化型粘着剤層の光硬化を行わずに測定を行った。
(Comparative Example 1)
A semiconductor protective tape was produced in the same manner as in Example 1.
However, in “(4) Measurement of tensile storage elastic modulus of photocurable pressure-sensitive adhesive layer” and “(5) Measurement of thermal shrinkage rate of semiconductor protective tape”, photocuring of the photocurable pressure-sensitive adhesive layer is not performed. Measurements were made.

(比較例2)
基材層にテオネックスフィルムQ51(ポリエチレンナフタレートフィルム、厚さ25μm、帝人デュポン社製)を用いた以外は比較例1と同様にして、半導体保護テープの製造と測定を行った。
(Comparative Example 2)
A semiconductor protective tape was produced and measured in the same manner as in Comparative Example 1 except that Teonex film Q51 (polyethylene naphthalate film, thickness 25 μm, manufactured by Teijin DuPont) was used as the base material layer.

(比較例3)
基材層にテオネックスフィルムQ51(ポリエチレンナフタレートフィルム、厚さ25μm、帝人デュポン社製)を用いた以外は実施例1と同様にして、半導体保護テープの製造と測定を行った。
(Comparative Example 3)
A semiconductor protective tape was produced and measured in the same manner as in Example 1 except that Teonex film Q51 (polyethylene naphthalate film, thickness 25 μm, manufactured by Teijin DuPont) was used as the base material layer.

(評価)
実施例及び比較例で得られた半導体保護テープについて、以下の方法により評価を行った。
結果を表1に示した。
(Evaluation)
About the semiconductor protective tape obtained by the Example and the comparative example, it evaluated by the following method.
The results are shown in Table 1.

(半田変形の評価)
半導体保護テープの粘着剤層側の面を、80μm高さの半田突起電極が片面に形成されたシリコンウエハの、突起電極が形成された側の面に貼り付けて積層体を得た。次いで、超高圧水銀灯を用いて、365nmの紫外線を片面粘着テープ表面への照射強度が80mW/cmとなるよう照度を調節して2分間照射して、光硬化型粘着剤成分を架橋、硬化させた。
得られた積層体のウエハのもう一方の面に他の半導体チップを重ね、その状態でリフロー炉に入れて、260℃、6分間の熱処理を合計3回行い、導電接続を行った。
熱処理工程後、めくるようにして片面粘着テープを剥離した。
半導体テープ剥離後のシリコンウエハ上の突起電極を、光学顕微鏡を用いて5000倍の倍率で観察し、半田電極頭頂部の横方向移動が半田電極円周直径の5%未満の場合を「○」、5%以上の場合を「×」として半田変形を評価した。ただし、横方向の移動が5%未満でも、縦方向に半田電極がつぶれたり、原形をとどめていなかったりしたものも「×」と評価した。一般的に、電極が5%以上の位置ずれを起こすと次の工程での通電ができなくなる。
なお、比較例1、2については、光硬化型粘着剤層の光硬化を行わずにリフローを行い、半田変形の評価を行った。
(Evaluation of solder deformation)
The surface of the semiconductor protective tape on the side of the pressure-sensitive adhesive layer was attached to the surface of the silicon wafer on which the solder bump electrodes having a height of 80 μm were formed on one side, and the laminate electrode was obtained. Next, using an ultra-high pressure mercury lamp, irradiation of 365 nm ultraviolet rays is performed for 2 minutes while adjusting the illuminance so that the irradiation intensity on the surface of the single-sided adhesive tape becomes 80 mW / cm 2, and the photocurable adhesive component is crosslinked and cured. I let you.
Another semiconductor chip was stacked on the other surface of the wafer of the obtained laminate, put in that state into a reflow furnace, and subjected to heat treatment at 260 ° C. for 6 minutes for a total of 3 times to conduct conductive connection.
After the heat treatment step, the single-sided adhesive tape was peeled off by turning over.
When the protruding electrode on the silicon wafer after peeling the semiconductor tape is observed at a magnification of 5000 times using an optical microscope, the horizontal movement of the top of the solder electrode is less than 5% of the circumferential diameter of the solder electrode. The case of 5% or more was evaluated as “x” and solder deformation was evaluated. However, even if the movement in the horizontal direction was less than 5%, the solder electrode in the vertical direction was crushed or the original shape was not retained. Generally, when the electrode is displaced by 5% or more, it is impossible to energize in the next step.
For Comparative Examples 1 and 2, reflow was performed without performing photocuring of the photocurable pressure-sensitive adhesive layer, and solder deformation was evaluated.

Figure 2017110216
Figure 2017110216

本発明によれば、高温処理時において半導体保護テープの熱収縮による半田の変形を防止することができる半導体保護テープを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the semiconductor protective tape which can prevent the deformation | transformation of the solder by the heat shrink of a semiconductor protective tape at the time of a high temperature process can be provided.

Claims (4)

基材層と光硬化型粘着剤層とを有する半導体保護テープであって、前記光硬化型粘着剤層を光硬化した後の半導体保護テープの250℃における10分間の熱収縮率が、流れ方向(MD)、垂直方向(TD)ともに1.5%以下であることを特徴とする半導体保護テープ。 A semiconductor protective tape having a base material layer and a photocurable pressure-sensitive adhesive layer, wherein the heat shrinkage rate at 250 ° C. for 10 minutes of the semiconductor protective tape after photocuring the photocurable pressure-sensitive adhesive layer is the flow direction A semiconductor protective tape characterized in that both MD (MD) and vertical direction (TD) are 1.5% or less. 基材層の250℃における10分間の熱収縮率が、流れ方向(MD)、垂直方向(TD)ともに5.0%以下であり、光硬化後の光硬化型粘着剤層を、25℃から250℃まで10℃/minの昇温速度で測定したときの引っ張り貯蔵弾性率の極小値が1.0MPa以上であることを特徴とする請求項1に記載の半導体保護テープ。 The heat shrinkage rate for 10 minutes at 250 ° C. of the base material layer is 5.0% or less in both the flow direction (MD) and the vertical direction (TD), and the photocurable pressure-sensitive adhesive layer after photocuring is started from 25 ° C. 2. The semiconductor protective tape according to claim 1, wherein the minimum value of the tensile storage modulus when measured at a temperature rising rate of 10 ° C./min up to 250 ° C. is 1.0 MPa or more. 基材層がポリエチレンナフタレートを含有することを特徴とする請求項1又は2記載の半導体保護テープ。 The semiconductor protective tape according to claim 1 or 2, wherein the base material layer contains polyethylene naphthalate. 半導体チップの製造工程において、半田突起電極が形成された半導体の該突起電極が形成された側の面に貼付して、200℃以上の高温処理プロセスを行う用途に用いられるものであることを特徴とする請求項1、2又は3記載の半導体保護テープ。 In the manufacturing process of a semiconductor chip, it is used for an application in which a high temperature treatment process of 200 ° C. or higher is performed by sticking to a surface of a semiconductor on which a solder bump electrode is formed. The semiconductor protective tape according to claim 1, 2 or 3.
JP2016240629A 2015-12-15 2016-12-12 Semiconductor protective tape Active JP7100957B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015244504 2015-12-15
JP2015244504 2015-12-15

Publications (2)

Publication Number Publication Date
JP2017110216A true JP2017110216A (en) 2017-06-22
JP7100957B2 JP7100957B2 (en) 2022-07-14

Family

ID=59079310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240629A Active JP7100957B2 (en) 2015-12-15 2016-12-12 Semiconductor protective tape

Country Status (1)

Country Link
JP (1) JP7100957B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138228A (en) * 2001-11-02 2003-05-14 Nitto Denko Corp Pressure-sensitive adhesive sheet for protecting semiconductor wafer
JP2004095461A (en) * 2002-09-03 2004-03-25 Nitto Denko Corp Tact switch and adhesive tape therefor
WO2004090962A1 (en) * 2003-04-08 2004-10-21 Teijin Dupont Films Japan Limited Base film for semiconductor wafer processing
JP2005053998A (en) * 2003-08-08 2005-03-03 Nitto Denko Corp Repeelable pressure-sensitive adhesive sheet
JP2005332901A (en) * 2004-05-19 2005-12-02 Mitsui Chemicals Inc Protecting method of semiconductor wafer
JP2006013452A (en) * 2004-05-21 2006-01-12 Nitto Denko Corp Manufacturing method for semiconductor device, and adhesive sheet for machining semiconductor substrate for use in manufacturing method
JP2007049082A (en) * 2005-08-12 2007-02-22 Hitachi Chem Co Ltd Adhesive film for semiconductor, lead frame using the same, substrate for loading semiconductor device, and the semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138228A (en) * 2001-11-02 2003-05-14 Nitto Denko Corp Pressure-sensitive adhesive sheet for protecting semiconductor wafer
JP2004095461A (en) * 2002-09-03 2004-03-25 Nitto Denko Corp Tact switch and adhesive tape therefor
WO2004090962A1 (en) * 2003-04-08 2004-10-21 Teijin Dupont Films Japan Limited Base film for semiconductor wafer processing
JP2005053998A (en) * 2003-08-08 2005-03-03 Nitto Denko Corp Repeelable pressure-sensitive adhesive sheet
JP2005332901A (en) * 2004-05-19 2005-12-02 Mitsui Chemicals Inc Protecting method of semiconductor wafer
JP2006013452A (en) * 2004-05-21 2006-01-12 Nitto Denko Corp Manufacturing method for semiconductor device, and adhesive sheet for machining semiconductor substrate for use in manufacturing method
JP2007049082A (en) * 2005-08-12 2007-02-22 Hitachi Chem Co Ltd Adhesive film for semiconductor, lead frame using the same, substrate for loading semiconductor device, and the semiconductor device

Also Published As

Publication number Publication date
JP7100957B2 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP6404475B2 (en) Semiconductor wafer surface protective film and semiconductor device manufacturing method
JP6212450B2 (en) Wafer processing method
TWI821492B (en) Adhesive tape
TW202235576A (en) Method for producing electronic component, method for producing display device, and support tape
JP2017125093A (en) Processing method of semiconductor protective tape and wafer
JP2018147988A (en) Method for manufacturing semiconductor chip
JP2009146974A (en) Double-sided adhesive tape for semiconductor processing
JP6266993B2 (en) Wafer processing method
JP2013231159A (en) Adhesive composition, adhesive tape, and method for processing wafer
JP2014019790A (en) Adhesive composition, adhesive tape and processing method of wafer
TW201608003A (en) Pressure sensitive adhesive sheet
JP2019070094A (en) Double-sided adhesive tape, and method of producing semiconductor device
JP2017110216A (en) Semiconductor protective tape
JP6572043B2 (en) Semiconductor wafer protection film
JP5328132B2 (en) Semiconductor processing tape
JP2018147990A (en) Processing method for taiko wafer
JP2018147987A (en) Method for manufacturing semiconductor chip and adhesive tape
JP2021153183A (en) Production method of semiconductor device
JP6713864B2 (en) Method for manufacturing semiconductor chip and adhesive tape for temporarily fixing wafer
TW202106831A (en) Adhesive tape
JP2010222493A (en) Self-adhesive tape for electronic part processing
JP2003313518A (en) Heat-resistant adhesive tape
JP2020094199A (en) Adhesive tape
JP6564325B2 (en) Wafer processing method
JP2009246011A (en) Double coated adhesive tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220315

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R151 Written notification of patent or utility model registration

Ref document number: 7100957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151