JP2017106263A - Plastic fluidity grasping method - Google Patents

Plastic fluidity grasping method Download PDF

Info

Publication number
JP2017106263A
JP2017106263A JP2015241686A JP2015241686A JP2017106263A JP 2017106263 A JP2017106263 A JP 2017106263A JP 2015241686 A JP2015241686 A JP 2015241686A JP 2015241686 A JP2015241686 A JP 2015241686A JP 2017106263 A JP2017106263 A JP 2017106263A
Authority
JP
Japan
Prior art keywords
earth pressure
soil
chamber
plastic
excavated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015241686A
Other languages
Japanese (ja)
Other versions
JP6584311B2 (en
Inventor
篤 岩下
Atsushi Iwashita
篤 岩下
敦 谷口
Atsushi Taniguchi
敦 谷口
隆正 福田
Takamasa Fukuda
隆正 福田
英明 足立
Hideaki Adachi
英明 足立
金田 修一
Shuichi Kaneda
修一 金田
淳 秦野
Jun Hatano
淳 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015241686A priority Critical patent/JP6584311B2/en
Publication of JP2017106263A publication Critical patent/JP2017106263A/en
Application granted granted Critical
Publication of JP6584311B2 publication Critical patent/JP6584311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plastic fluidity grasping method capable of appropriately grasping plastic fluidity of excavated soil inside a chamber.SOLUTION: A plastic fluidity grasping method comprises the processes to: set an upper limit value and a lower limit value of anti-earth pressure acting on an object moving in a soil layer in a plastic fluid state; measure earth pressure with a first earth pressure gauge 6 installed on an agitation blade 31 and a second earth pressure gauge 7 installed on a chamber bulkhead 4; calculate the anti-earth pressure of excavated soil inside a chamber 5 on the basis of measurement results of the first earth pressure gauge 6 and the second earth pressure gauge 7; and estimate whether or not the excavated soil inside the chamber 5 is in the plastic fluid state by comparing the anti-earth pressure of the excavated soil with the upper limit value and the lower limit value.SELECTED DRAWING: Figure 1

Description

本発明は、塑性流動性の把握方法に関する。   The present invention relates to a method for grasping plastic fluidity.

土圧式シールド工法は、トンネルの掘削に伴って発生した掘削土の土圧を切羽に作用させることによって、切羽の安定化を図りつつ、掘削を行うものである。掘削土は、チャンバー内において攪拌翼によって攪拌することで塑性流動性を持たせてある。
切羽に対する土圧を均一かつ安定的に作用させるには、チャンバー内における掘削土の塑性流動性を的確に把握し、必要に応じて調整する必要がある。
そのため、特許文献1には、隔壁を貫通してチャンバー内に出没可能に設置された計測ロッドの変形量によって、チャンバー内の掘削土の流動方向とその大きさを推定する方法が開示されている。
また、特許文献2には、掘削機のチャンバー隔壁に設けられた開口からチャンバー内に突出する探査用ロッドを備え、この探査用ロッドのロッド貫入時に発生する振動と貫入抵抗を検出して、チャンバー内の泥土状態を把握する方法が開示されている。
The earth pressure type shield method is to excavate while stabilizing the face by applying the earth pressure of the excavated soil generated during excavation of the tunnel to the face. The excavated soil is made to have plastic fluidity by stirring with a stirring blade in the chamber.
In order to apply the earth pressure to the face uniformly and stably, it is necessary to accurately grasp the plastic fluidity of the excavated soil in the chamber and adjust it as necessary.
Therefore, Patent Document 1 discloses a method of estimating the flow direction and the size of excavated soil in the chamber based on the deformation amount of the measuring rod installed through the partition wall so as to be able to appear in and out of the chamber. .
Further, Patent Document 2 includes an exploration rod that protrudes into the chamber from an opening provided in a chamber partition wall of an excavator, and detects vibrations and penetration resistance that occur when the exploration rod penetrates the rod. A method for grasping the state of mud inside is disclosed.

特開2008−169692号公報JP 2008-169692 A 特開昭63−280191号公報JP-A-63-280191

前記従来の塑性流動性の把握方法は、チャンバー内を滞留する掘削土から得られる抵抗値を、切羽から離れた位置(チャンバー隔壁側)において測定するものであるため、切羽側の土砂性状を把握することができず、切羽に対して均一かつ安定的に土圧を作用させていることを確認することができない。また、チャンバー内に突出している計測ロッドや探査用ロッドが、レキ等との接触によって破損するおそれがある。
このような観点から、本発明は、チャンバー内の掘削土の塑性流動性を的確に把握することを可能とした掘削土の塑性流動性の把握方法を提供することを目的とする。
The conventional method of grasping plastic fluidity is to measure the resistance value obtained from excavated soil staying in the chamber at a position away from the face (chamber bulkhead side). It is impossible to confirm that the earth pressure is applied uniformly and stably to the face. Moreover, there is a possibility that the measuring rod or the exploring rod protruding into the chamber may be damaged by contact with the rake or the like.
From such a viewpoint, an object of the present invention is to provide a method for grasping the plastic fluidity of excavated soil, which makes it possible to accurately grasp the plastic fluidity of the excavated soil in the chamber.

前記課題を解決するための本発明の塑性流動性の把握方法は、塑性流動状態の土層内を移動する物体に作用する抗土圧の上限値および下限値を設定する工程と、攪拌翼に設けられた第一の土圧計およびチャンバー隔壁に設けた第二の土圧計により土圧を計測する工程と、前記第一の土圧計の計測結果および前記第二の土圧計の計測結果に基づいてチャンバー内の掘削土の抗土圧を算出する工程と、前記掘削土の抗土圧と前記上限値および下限値とを比較して前記チャンバー内の掘削土が塑性流動状態であるか否かを推定する工程とを備えることを特徴としている。
なお、前記チャンバー内の掘削土が塑性流動状態であるか否かを推定は、カッターが1回転するたびに行うのが望ましい。
かかる塑性流動性の把握方法によれば、掘削土を直接攪拌する攪拌翼に設置された計測機によってチャンバー内の掘削土の性状を測定するため、塑性流動性の土砂を適時添加材によって保持することができ、切羽に均一かつ安定的に土圧を作用させていることを把握することできる。
The method for grasping the plastic fluidity of the present invention for solving the above-mentioned problems includes a step of setting an upper limit value and a lower limit value of an anti-earth pressure acting on an object moving in a plastic fluidized soil layer, and a stirring blade. Based on the step of measuring the earth pressure with the first earth pressure gauge provided and the second earth pressure gauge provided on the chamber partition, the measurement result of the first earth pressure gauge and the measurement result of the second earth pressure gauge The step of calculating the anti-earth pressure of the excavated soil in the chamber and comparing the anti-earth pressure of the excavated soil with the upper limit value and the lower limit value to determine whether the excavated soil in the chamber is in a plastic flow state or not. And a step of estimating.
Note that it is desirable to estimate whether or not the excavated soil in the chamber is in a plastic flow state every time the cutter rotates once.
According to such a method for grasping the plastic fluidity, the properties of the excavated soil in the chamber are measured by a measuring device installed on the stirring blade that directly agitates the excavated soil. It is possible to grasp that earth pressure is applied to the face uniformly and stably.

本発明の掘削土の塑性流動性の把握方法によれば、チャンバー内の塑性流動性を的確に把握することが可能となる。   According to the method for grasping the plastic fluidity of excavated soil according to the present invention, the plastic fluidity in the chamber can be accurately grasped.

本発明の実施形態に係るシールド掘削機を示す断面図である。It is sectional drawing which shows the shield excavator which concerns on embodiment of this invention. 図1に示すシールド掘削機のカッターを示す正面図である。It is a front view which shows the cutter of the shield excavator shown in FIG. 抗土圧分布の一例を示す模式図である。It is a schematic diagram which shows an example of anti-earth pressure distribution. 実験装置を模式的に示す断面図である。It is sectional drawing which shows an experimental apparatus typically. 実験結果の一例であって、粘性土の摺動速度と土圧との関係を示すグラフである。It is an example of an experimental result, Comprising: It is a graph which shows the relationship between the sliding speed of clay soil, and earth pressure. 実験結果の一例であって、砂質土の摺動速度と土圧との関係を示すグラフである。It is an example of an experimental result, Comprising: It is a graph which shows the relationship between the sliding speed of sandy soil, and earth pressure. 実験結果の一例であって、砂礫土の摺動速度と土圧との関係を示すグラフである。It is an example of an experimental result, Comprising: It is a graph which shows the relationship between the sliding speed of gravel soil, and earth pressure.

本発明の実施形態では、土圧式シールド工法によりトンネルを施工する場合について説明する。土圧式シールド工法では、地山の掘削によって発生した掘削土をチャンバー内において攪拌して塑性流動性を持たせるとともに、この掘削土の土圧を切羽に作用させることによって切羽の安定化を図りつつ掘進を行う。切羽の安定化および施工性を確保するためには、切羽に対して均一且つ安定的に土圧を作用させる必要がある。
切羽に対する土圧を均一かつ安定的に作用させるには、チャンバー内における掘削土の塑性流動性を的確に把握し、加泥材や気泡材等の添加材の注入量および注入箇所を必要に応じて調整する必要がある。
本実施形態では、準備工程と、閾値設定工程と、土圧計測工程と、抗土圧算出工程と、推定工程とを備える塑性流動性の把握方法により、チャンバー内の掘削土の性状を的確に把握する。
In the embodiment of the present invention, a case where a tunnel is constructed by the earth pressure shield method will be described. In the earth pressure type shield method, the excavated soil generated by excavation of the natural ground is agitated in the chamber to give plastic fluidity, and the earth pressure of this excavated soil is applied to the face to stabilize the face. Do excavation. In order to ensure the stability and workability of the face, it is necessary to apply earth pressure to the face uniformly and stably.
To make the earth pressure against the face evenly and stably, ascertain the plastic fluidity of the excavated soil in the chamber accurately, and adjust the injection amount and injection location of additive materials such as mud and foam materials as needed. Need to be adjusted.
In the present embodiment, the property of the excavated soil in the chamber is accurately determined by a plastic fluidity grasping method including a preparation step, a threshold setting step, a soil pressure measurement step, an anti-earth pressure calculation step, and an estimation step. To grasp.

なお、本実施形態のシールド掘削機1は、図1に示すように、筒状のシールド機本体2およびシールド機本体2の前面に設けられたカッター3を備えている。シールド機本体2の前面(切羽側面)はチャンバー隔壁4によって遮蔽されている。カッター3とチャンバー隔壁4との間には、掘削土が取り込まれるチャンバー5が形成されている。
カッター3は、前面(切羽側面)に複数のカッタービット(図示せず)を備えていて、回転することで地山を切削する。カッター3の背面には、チャンバー5内の掘削土を攪拌するための攪拌翼31が複数突設されている。なお、攪拌翼31の配置や数は限定されるものではなく、適宜設定すればよい。
図2に示すように、複数の攪拌翼31のうちの少なくとも一部には、土圧計(第一土圧計)6が固定されている。本実施形態では、10個の第一土圧計6が、カッター3に対して均等に分散されるように配置されている。なお、第一土圧計6の配置および数は限定されるものではなく、適宜設定すればよい。例えば、各攪拌翼31に第一土圧計6を設置してもよい。第一土圧計6は、カッター3の回転に伴って回転する。本実施形態の第一土圧計6は、攪拌翼31の回転方向の前面側および後面側に取り付けるものとする。
また、チャンバー隔壁4のチャンバー5側(切羽側)の面には、複数の土圧計(第二土圧計)7が設けられている(図1参照)。第二土圧計7の数や配置は限定されるものではなく、適宜設定すればよい。
第一土圧計6および第二土圧計7は、制御盤8を介して抗力計測システム(図示せず)に連結されている。抗力計測システムは、第一土圧計6および第二土圧計7の計測値を保存するとともに、計測結果に基づいてチャンバー5内の掘削土の抗土圧を算出する。
In addition, the shield excavator 1 of this embodiment is provided with the cutter 3 provided in the front surface of the cylindrical shield machine main body 2 and the shield machine main body 2 as shown in FIG. The front surface (face side surface) of the shield machine main body 2 is shielded by the chamber partition wall 4. A chamber 5 into which excavated soil is taken is formed between the cutter 3 and the chamber partition wall 4.
The cutter 3 includes a plurality of cutter bits (not shown) on the front surface (side surface), and cuts natural ground by rotating. On the back surface of the cutter 3, a plurality of stirring blades 31 for stirring the excavated soil in the chamber 5 are provided. The arrangement and number of the stirring blades 31 are not limited and may be set as appropriate.
As shown in FIG. 2, a earth pressure gauge (first earth pressure gauge) 6 is fixed to at least a part of the plurality of stirring blades 31. In the present embodiment, ten first earth pressure gauges 6 are arranged so as to be evenly distributed with respect to the cutter 3. In addition, arrangement | positioning and the number of the 1st earth pressure gauge 6 are not limited, What is necessary is just to set suitably. For example, the first earth pressure gauge 6 may be installed on each stirring blade 31. The first earth pressure gauge 6 rotates as the cutter 3 rotates. The first earth pressure gauge 6 of the present embodiment is attached to the front side and the rear side of the stirring blade 31 in the rotation direction.
A plurality of earth pressure gauges (second earth pressure gauges) 7 are provided on the surface of the chamber partition wall 4 on the chamber 5 side (face side) (see FIG. 1). The number and arrangement of the second earth pressure gauges 7 are not limited and may be set as appropriate.
The first earth pressure gauge 6 and the second earth pressure gauge 7 are connected to a drag measurement system (not shown) via a control panel 8. The drag measurement system stores the measured values of the first earth pressure gauge 6 and the second earth pressure gauge 7 and calculates the earth pressure of the excavated soil in the chamber 5 based on the measurement result.

準備工程では、ボーリング柱状図に基づいて作成された土層縦断図により、1施工サイクル毎(各セグメントリングに対応する地山)の代表土質を選定しておく。代表土質には、地山を掘削することにより発生する掘削土中で支配的になることが予想される土質を選定する。すなわち、土質縦断図からセグメントの幅(1サイクル毎の掘進長:本実施形態では1.6m)ピッチにおいて土質毎に占める割合を算出し、その割合が最も支配的な土質を代表土質に選定する。本実施形態では、粘性土、砂質土および砂礫土の3種類の土質に分類する。   In the preparation process, the representative soil quality for each construction cycle (the ground corresponding to each segment ring) is selected based on the longitudinal profile of the soil layer created based on the boring columnar diagram. For the representative soil quality, select the soil quality that is expected to become dominant in the excavated soil generated by excavating natural ground. That is, the proportion of each soil in the segment width (distance per cycle: 1.6 m in this embodiment) pitch is calculated from the soil profile, and the soil having the most dominant proportion is selected as the representative soil. . In this embodiment, it classify | categorizes into three types of soil types, viscous soil, sandy soil, and gravel soil.

閾値設定工程は、塑性流動状態の土層内を移動する物体に作用する抗土圧の上限値および下限値を設定する工程である。
本実施形態では、予め設定された、粘性土、砂質土および砂礫土の3種類の土質毎に塑性流動状態の土圧の上限値および下限値(以下、「塑性流動状態の土圧の上限値および下限値」を、それぞれ「塑性流動上限値」および「塑性流動下限値」という)の中から、代表土質に対応する値を選定する。
塑性流動上限値および塑性流動下限値は、塑性流動状態であるか否かを判定する際の閾値である。すなわち、チャンバー内の抗土圧が塑性流動上限値を上回っている場合は掘削土が塑性状態であり、抗土圧が塑性流動下限値を下回っている場合は掘削土が流動状態であると評価することができる。
The threshold setting step is a step of setting an upper limit value and a lower limit value of the anti-earth pressure acting on the object moving in the soil layer in the plastic flow state.
In the present embodiment, the upper limit value and lower limit value of the earth pressure in the plastic flow state (hereinafter referred to as “the upper limit of the earth pressure in the plastic flow state” for each of the three types of soil properties of the viscous soil, the sandy soil, and the gravel soil are set. The value corresponding to the representative soil quality is selected from “the upper limit value of plastic flow” and “the lower limit value of plastic flow”.
The plastic flow upper limit value and the plastic flow lower limit value are thresholds for determining whether or not the plastic flow state is present. In other words, if the anti-earth pressure in the chamber exceeds the upper limit of plastic flow, the excavated soil is in a plastic state, and if the anti-earth pressure is lower than the lower limit of the plastic flow, the excavated soil is evaluated as in a fluid state. can do.

本実施形態では、塑性流動上限値および塑性流動下限値を、現地等において採取された掘削土を利用した実験により設定する。本実験では、掘削土を添加材とともに土槽に投入し、攪拌翼を模擬した攪拌棒により攪拌するとともに、当該攪拌棒に設置された土圧計により塑性状態、塑性流動状態および流動状態における土圧を測定する。塑性状態、塑性流動状態および流動状態の判定は、掘削土(気泡混合土)に対するスランプ試験の結果に基づいて行う。
なお、実験方法は前記の方法に限定されるものではない。また、塑性流動上限値および塑性流動下限値の設定方法は限定されるものではなく、例えば、既存のデータ等に基づいて設定してもよい。
In the present embodiment, the plastic flow upper limit value and the plastic flow lower limit value are set by an experiment using excavated soil collected at the site or the like. In this experiment, excavated soil is put into an earth tank together with an additive, and stirred with a stirring rod that simulates a stirring blade, and earth pressure in a plastic state, a plastic flow state, and a fluid state is measured by an earth pressure gauge installed on the stirring rod. Measure. The plastic state, the plastic flow state, and the flow state are determined based on the result of the slump test on the excavated soil (bubble mixed soil).
The experimental method is not limited to the above method. Moreover, the setting method of a plastic flow upper limit and a plastic flow lower limit is not limited, For example, you may set based on the existing data.

土圧計測工程は、チャンバー5内の掘削土の土圧を計測する工程である。また、土圧計測工程では、土圧の計測タイミングに合わせて、エンコーダ等の情報に基づき、カッター3の回転角度(攪拌翼31の位置)を計測する。
本実施形態では、攪拌翼31に設けられた第一土圧計6およびチャンバー隔壁4に設けた第二土圧計7により土圧を計測する。
第一土圧計6は、攪拌翼31が回転(移動)する際に攪拌翼31に作用する土圧を計測する。
第二土圧計7は、チャンバー隔壁4の表面に作用する土圧を計測する。
第一土圧計6および第二土圧計7の計測結果は、攪拌翼31の位置情報とともに抗力計測システムに入力される。
The earth pressure measuring step is a step of measuring the earth pressure of the excavated soil in the chamber 5. In the earth pressure measurement process, the rotation angle of the cutter 3 (the position of the stirring blade 31) is measured based on information from an encoder or the like in accordance with the earth pressure measurement timing.
In the present embodiment, the earth pressure is measured by the first earth pressure gauge 6 provided on the stirring blade 31 and the second earth pressure gauge 7 provided on the chamber partition wall 4.
The first earth pressure gauge 6 measures the earth pressure acting on the stirring blade 31 when the stirring blade 31 rotates (moves).
The second earth pressure gauge 7 measures the earth pressure acting on the surface of the chamber partition wall 4.
The measurement results of the first earth pressure gauge 6 and the second earth pressure gauge 7 are input to the drag measurement system together with the position information of the stirring blade 31.

抗土圧算出工程は、抗力計測システムに入力された第一土圧計6の計測結果および第二土圧計7の計測結果に基づいてチャンバー5内の掘削土の抗土圧を算出する工程である。
抗土圧は、第一土圧計6の計測値から静止土圧を減ずることにより算出する。ここで、静止土圧は、第二土圧計7による計測値に基づいて算出された、チャンバー隔壁4に作用する土圧である。
抗土圧は、各第一土圧計6の位置において算出するものとする。すなわち、第一土圧計6の高さ位置に対応する静止土圧を当該第一土圧計6の計測値から減ずることにより抗土圧を算出する。第一土圧計6の高さ位置は、カッター3の回転角度に基づいて算出する。
本実施形態では、カッターが1回転するたびに抗土圧を算出するが、抗土圧を算出する頻度は限定されるものではない。
The anti-earth pressure calculation step is a step of calculating the anti-earth pressure of the excavated soil in the chamber 5 based on the measurement result of the first earth pressure gauge 6 and the measurement result of the second earth pressure gauge 7 input to the drag measurement system. .
The anti-earth pressure is calculated by subtracting the static earth pressure from the measured value of the first earth pressure gauge 6. Here, the static earth pressure is an earth pressure acting on the chamber partition wall 4 calculated based on a measured value by the second earth pressure gauge 7.
The anti-earth pressure is calculated at the position of each first earth pressure gauge 6. That is, the anti-earth pressure is calculated by subtracting the static earth pressure corresponding to the height position of the first earth pressure gauge 6 from the measured value of the first earth pressure gauge 6. The height position of the first earth pressure gauge 6 is calculated based on the rotation angle of the cutter 3.
In the present embodiment, the anti-earth pressure is calculated every time the cutter rotates once, but the frequency of calculating the anti-earth pressure is not limited.

推定工程は、抗力計測システムによって算出された抗土圧を利用して、チャンバー5内の掘削土の性状を推定する工程である。
掘削土の性状は、算出された抗土圧を、塑性流動上限値および塑性流動下限値と比較することにより行う。すなわち、抗土圧が塑性流動上限値を上回っている場合には掘削土が塑性状態であると推定し、塑性流動上限値から塑性流動下限値の範囲内の場合は掘削土が塑性流動状態であると推定し、塑性流動下限値を下回っている場合は掘削土が流動状態であると推定する。
土質の性状は、各第一土圧計6の位置毎に推定(判定)し、この推定結果によりトンネル断面に対する性状の分布を算出する。
隣接する第一土圧計6の間の領域は、隣り合う第一土圧計6の抗土圧の差および距離の関係から比例配分することにより抗土圧を算出し、この抗土圧に基づいて性状を推定する。なお、抗土圧の分布の算出方法は限定されるものではない。
The estimation step is a step of estimating the properties of the excavated soil in the chamber 5 using the anti-earth pressure calculated by the drag measuring system.
The properties of the excavated soil are determined by comparing the calculated anti-earth pressure with the plastic flow upper limit value and the plastic flow lower limit value. That is, when the anti-earth pressure exceeds the plastic flow upper limit value, it is estimated that the excavated soil is in a plastic state, and when the anti-earth pressure is within the range of the plastic flow upper limit value to the plastic flow lower limit value, the excavated soil is in the plastic flow state. It is estimated that the excavated soil is in a fluid state when it is below the lower limit of plastic flow.
The soil property is estimated (determined) for each position of each first earth pressure gauge 6 and the property distribution with respect to the tunnel cross section is calculated based on the estimation result.
The region between the adjacent first earth pressure gauges 6 calculates the anti-earth pressure by proportionally allocating from the relationship between the anti-earth pressure difference between the adjacent first earth pressure gauges 6 and the distance, and based on this anti-earth pressure. Estimate the properties. The calculation method of the anti-earth pressure distribution is not limited.

本実施形態では、算出された掘削土の性状の分布を、抗力計測システムのモニターに表示する(図3参照)。このとき、塑性状態、塑性流動状態および流動状態を色分けして表示する。
本実施形態では、掘削断面積に対する塑性、塑性流動および流動の各性状の割合を面積比率から算出する。面積比率の算出の結果、塑性状態の割合、流動状態の割合または塑性状態および流動状態の割合の合計が、所定の値(例えば、50%)を超えた場合には、抗力計測システムのモニター上に警告が表示されるともに、警告音が鳴るようにする。作業員は、抗力計測システムの警告に応じて、添加材の注入量および注入箇所を調整する。
In the present embodiment, the calculated distribution of the properties of the excavated soil is displayed on the monitor of the drag measurement system (see FIG. 3). At this time, the plastic state, the plastic flow state, and the flow state are displayed in different colors.
In the present embodiment, the ratio of each property of plasticity, plastic flow and flow to the excavation cross-sectional area is calculated from the area ratio. As a result of calculating the area ratio, if the ratio of the plastic state, the ratio of the fluid state, or the sum of the ratio of the plastic state and the fluid state exceeds a predetermined value (for example, 50%), it is displayed on the monitor of the drag measurement system. A warning is displayed and a warning sound is sounded. The worker adjusts the amount of injection of the additive and the injection location according to the warning of the drag measurement system.

本実施形態の塑性流動性の把握方法によれば、全断面の土砂を一様に効果的に改善することができる。
すなわち、かかる塑性流動性の把握方法によれば、チャンバー5内の掘削土の性状を、画面上で視認することで、簡易かつ的確に把握することができる。そのため、塑性流動化に必要な処理を適切に実施することができる。例えば、性状の分布を確認することで塑性の程度が高い位置に対しては添加材の注入量を増加させ、流動性が高い位置に対しては添加材の注入量を減らすことにより、全体的に均一な塑性流動性を確保するとともに切羽に対する土圧の均一化を図ることができる。なお、本実施形態では、添加材の注入量の調整を、掘削土の性状の分布に基づいて作業員が手動にて行うものとするが、抗力計測システムが掘削土の性状と、土質との関係等に基づいて、信号を発信することで、制御盤8を介して自動的に調整してもよい。
なお、添加材の注入孔は、カッター3とチャンバー隔壁4との両方に形成されている。切羽への土圧の均一化を図る場合には、カッター3に形成された注入孔から添加材を注入する。一方、チャンバー5内の掘削土に対しては、チャンバー隔壁4に形成された注入孔から添加材を注入して、掘削土を攪拌して塑性流動状態にしてから、スクリューコンベアを介して掘削土を排出する。
また、添加材の注入を必要な箇所に必要な分だけ注入することで、材料費の低減化を図ることができる。
According to the plastic fluidity grasping method of the present embodiment, the earth and sand of the entire cross section can be uniformly and effectively improved.
That is, according to the method for grasping plastic fluidity, the property of the excavated soil in the chamber 5 can be grasped easily and accurately by visually recognizing on the screen. Therefore, processing necessary for plastic fluidization can be appropriately performed. For example, by confirming the distribution of properties, the injection amount of the additive can be increased for positions where the degree of plasticity is high, and the injection amount of the additive can be reduced for positions where the fluidity is high. In addition, it is possible to ensure uniform plastic fluidity and to make the earth pressure uniform on the face. In this embodiment, the operator manually adjusts the injection amount of the additive based on the distribution of the properties of the excavated soil, but the drag measurement system uses the properties of the excavated soil and the soil quality. You may adjust automatically via the control board 8 by transmitting a signal based on a relationship or the like.
The additive material injection holes are formed in both the cutter 3 and the chamber partition 4. In order to make the earth pressure on the face uniform, an additive is injected from an injection hole formed in the cutter 3. On the other hand, for the excavated soil in the chamber 5, the additive material is injected from the injection hole formed in the chamber partition wall 4, and the excavated soil is agitated into a plastic flow state, and then the excavated soil is passed through the screw conveyor. Is discharged.
In addition, the material cost can be reduced by injecting only the necessary amount of the additive into the necessary portion.

次に、掘削土の性状の基準値(塑性流動上限値および塑性流動下限値)を設定するための実験方法について説明する。
まず、粘性土、砂質土および砂礫土に対し、添加材の添加量を変化させて、流動状態、塑性流動状態および塑性状態の気泡混合土を生成する。性状の確認は、スランプ試験により行う。
次に、図4に示すように、気泡混合土10を土槽11に投入し、土圧計12が固定された攪拌棒13を土槽11内で気泡混合土10の層(土層)内で摺動させるとともに、土圧を土圧計12により計測した。土圧の計測は、攪拌棒13の摺動速度を変化させながら行うものとし、各摺動速度毎に3回以上計測する。
性状の異なる気泡混合土10毎に計測した土圧の計測結果に基づいて、塑性流動上限値および塑性流動下限値を設定する。
Next, an experimental method for setting the reference values (the plastic flow upper limit value and the plastic flow lower limit value) of the properties of the excavated soil will be described.
First, with respect to viscous soil, sandy soil, and gravel soil, the amount of additive is changed to generate a bubble mixed soil in a fluid state, a plastic fluid state, and a plastic state. The property is confirmed by a slump test.
Next, as shown in FIG. 4, the bubble mixed soil 10 is put into the soil tank 11, and the stirring bar 13 to which the earth pressure gauge 12 is fixed is placed in the layer (the soil layer) of the bubble mixed soil 10 in the soil tank 11. While making it slide, the earth pressure was measured with the earth pressure gauge 12. The earth pressure is measured while changing the sliding speed of the stirring bar 13, and is measured at least three times for each sliding speed.
A plastic flow upper limit value and a plastic flow lower limit value are set based on the measurement result of the earth pressure measured for each of the bubble mixed soils 10 having different properties.

図5〜図7に示すように、実験の結果、土圧は、気泡混合土の性状に応じて異なる値を示した。すなわち、土圧の大きさにより気泡混合土の性状を判定可能であることが確認できた。そのため、本実施形態では、塑性流動上限値を、塑性状態の気泡混合土と塑性流動状態の気泡混合土の土圧の計測結果に基づいて、各測定値群の中間値(例えば、粘性土:20kPa、砂質土:30kPa、砂礫土:50kPa)に設定するものとする。同様に、塑性流動下限値を、塑性流動状態の気泡混合土と流動状態の気泡混合土との土圧の計測結果に基づいて、各想定値群の中間値(例えば、粘性土:5kPa、砂質土:7kPa、砂礫土:9kPa)に設定する。
なお、図5〜図7に示すように、攪拌棒の速度を変化させた場合であっても、土圧計測値に大きな変化は生じなかった。そのため、カッター3の回転軸からの距離(カッター3への取付位置)によって攪拌翼の移動速度に差がある場合であっても抗土圧に差が生じないことが実証された。したがって、カッター3の背面に突設された攪拌翼31に取り付けられた土圧計6の計測値に基づいて掘削土の抗土圧を算出し、ひいては、掘削土の性状の分布の把握に利用することができる。
なお、攪拌棒13の摺動速度の最大速度は、シールド機のカッターを最大回転数で回転させたときのカッターの最も外側に配設された土圧計の位置における速度に設定する。また、攪拌棒13の摺動速度の最小速度は、シールド機のカッターを最小回転数で回転させたときのカッターの最も内側に配設された土圧計の位置における速度に設定する。そして、この最大速度と最小速度の範囲において攪拌棒13の速度を変化させて実験を行い、閾値を設定する。なお、攪拌棒13の摺動速度の範囲は、使用するシールド機の回転数に応じて適宜設定すればよい。
As shown in FIGS. 5 to 7, as a result of the experiment, the earth pressure showed different values depending on the properties of the bubble mixed soil. That is, it was confirmed that the properties of the bubble-mixed soil can be determined by the magnitude of the earth pressure. Therefore, in the present embodiment, the plastic flow upper limit value is determined based on the measurement result of the earth pressure of the bubble mixed soil in the plastic state and the bubble mixed soil in the plastic flow state (for example, viscous soil: 20 kPa, sandy soil: 30 kPa, gravel soil: 50 kPa). Similarly, based on the measurement result of the earth pressure between the bubble mixed soil in the plastic flow state and the bubble mixed soil in the flow state, the plastic flow lower limit value is an intermediate value of each assumed value group (for example, clay soil: 5 kPa, sand (Soil: 7 kPa, gravel soil: 9 kPa).
In addition, as shown in FIGS. 5-7, even if it was a case where the speed of a stirring rod was changed, the big change did not arise in the earth pressure measurement value. Therefore, it was demonstrated that even if there is a difference in the moving speed of the stirring blade depending on the distance from the rotation axis of the cutter 3 (attachment position to the cutter 3), there is no difference in the anti-earth pressure. Accordingly, the anti-earth pressure of the excavated soil is calculated based on the measured value of the earth pressure gauge 6 attached to the stirring blade 31 protruding from the back surface of the cutter 3, and is used for grasping the distribution of the properties of the excavated soil. be able to.
The maximum sliding speed of the stirring bar 13 is set to the speed at the position of the earth pressure gauge disposed on the outermost side of the cutter when the cutter of the shield machine is rotated at the maximum rotational speed. The minimum sliding speed of the stirring bar 13 is set to the speed at the position of the earth pressure gauge disposed on the innermost side of the cutter when the cutter of the shield machine is rotated at the minimum number of rotations. Then, an experiment is performed by changing the speed of the stirring bar 13 within the range of the maximum speed and the minimum speed, and a threshold value is set. In addition, what is necessary is just to set the range of the sliding speed of the stirring rod 13 suitably according to the rotation speed of the shield machine to be used.

以上、本発明に係る実施形態について説明した。しかし、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
前記実施形態では、掘削土の性状の分布をモニター上に表示する場合について説明したが、性状の分布は必ずしもモニターに表示する必要はない。
The embodiment according to the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.
In the embodiment, the case where the property distribution of excavated soil is displayed on the monitor has been described. However, the property distribution need not necessarily be displayed on the monitor.

1 シールド掘進機
2 シールド機本体
3 カッター
4 チャンバー隔壁
5 チャンバー
6 第一土圧計(第一の土圧計)
7 第二土圧計(第二の土圧計)
8 制御盤
DESCRIPTION OF SYMBOLS 1 Shield machine 2 Shield machine body 3 Cutter 4 Chamber partition 5 Chamber 6 First earth pressure gauge (first earth pressure gauge)
7 Second earth pressure gauge (second earth pressure gauge)
8 Control panel

Claims (2)

塑性流動状態の土層内を移動する物体に作用する抗土圧の上限値および下限値を設定する工程と、
攪拌翼に設けられた第一の土圧計およびチャンバー隔壁に設けた第二の土圧計により土圧を計測する工程と、
前記第一の土圧計の計測結果および前記第二の土圧計の計測結果に基づいてチャンバー内の掘削土の抗土圧を算出する工程と、
前記掘削土の抗土圧と前記上限値および下限値とを比較して、前記チャンバー内の掘削土が塑性流動状態であるか否かを推定する工程と、を備えることを特徴とする塑性流動性の把握方法。
A step of setting an upper limit value and a lower limit value of the anti-earth pressure acting on an object moving in the soil layer in the plastic flow state;
A step of measuring the earth pressure with a first earth pressure gauge provided on the stirring blade and a second earth pressure gauge provided on the chamber partition;
Calculating the anti-earth pressure of the excavated soil in the chamber based on the measurement result of the first earth pressure gauge and the measurement result of the second earth pressure gauge;
Comparing the anti-earth pressure of the excavated soil with the upper limit value and the lower limit value, and estimating whether the excavated soil in the chamber is in a plastic flow state or not. How to grasp sex.
カッターが1回転するたびに前記チャンバー内の掘削土が塑性流動状態であるか否かを推定することを特徴とする、請求項1に記載の塑性流動性の把握方法。   The method for grasping plastic fluidity according to claim 1, wherein it is estimated whether or not the excavated soil in the chamber is in a plastic fluid state every time the cutter rotates once.
JP2015241686A 2015-12-11 2015-12-11 How to understand plastic fluidity Active JP6584311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241686A JP6584311B2 (en) 2015-12-11 2015-12-11 How to understand plastic fluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241686A JP6584311B2 (en) 2015-12-11 2015-12-11 How to understand plastic fluidity

Publications (2)

Publication Number Publication Date
JP2017106263A true JP2017106263A (en) 2017-06-15
JP6584311B2 JP6584311B2 (en) 2019-10-02

Family

ID=59059202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241686A Active JP6584311B2 (en) 2015-12-11 2015-12-11 How to understand plastic fluidity

Country Status (1)

Country Link
JP (1) JP6584311B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854199A (en) * 1981-09-25 1983-03-31 富士通株式会社 Shield excavator
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPS63280191A (en) * 1987-05-11 1988-11-17 日立建機株式会社 Shield excavator
JPH0452397A (en) * 1990-06-20 1992-02-20 Daiho Constr Co Ltd Controlling method for excavation of shield machine
JPH05263584A (en) * 1990-12-17 1993-10-12 Daiho Constr Co Ltd Shield tunneling machine
JP2003097181A (en) * 2001-09-21 2003-04-03 Daiho Constr Co Ltd Plastic fluidization measuring method of mud and shield machine having plastic fluidization measuring device
JP2006233677A (en) * 2005-01-27 2006-09-07 Kajima Corp Boring machine and measuring instrument
JP2008169692A (en) * 2008-03-31 2008-07-24 Ohbayashi Corp Measuring device for sediment flow in chamber
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
JP2015212476A (en) * 2014-05-02 2015-11-26 株式会社安藤・間 Property measurement evaluation method of excavated soil in chamber for use in earth pressure shield tunneling, shield machine, and plastic fluidity test device of earth and sand

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854199A (en) * 1981-09-25 1983-03-31 富士通株式会社 Shield excavator
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPS63280191A (en) * 1987-05-11 1988-11-17 日立建機株式会社 Shield excavator
JPH0452397A (en) * 1990-06-20 1992-02-20 Daiho Constr Co Ltd Controlling method for excavation of shield machine
JPH05263584A (en) * 1990-12-17 1993-10-12 Daiho Constr Co Ltd Shield tunneling machine
JP2003097181A (en) * 2001-09-21 2003-04-03 Daiho Constr Co Ltd Plastic fluidization measuring method of mud and shield machine having plastic fluidization measuring device
JP2006233677A (en) * 2005-01-27 2006-09-07 Kajima Corp Boring machine and measuring instrument
JP2008169692A (en) * 2008-03-31 2008-07-24 Ohbayashi Corp Measuring device for sediment flow in chamber
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
JP2015212476A (en) * 2014-05-02 2015-11-26 株式会社安藤・間 Property measurement evaluation method of excavated soil in chamber for use in earth pressure shield tunneling, shield machine, and plastic fluidity test device of earth and sand

Also Published As

Publication number Publication date
JP6584311B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
EP1379735B1 (en) Method and apparatus for determining the location of underground objects during a digging operation
AU2013396723B2 (en) Arrangement for controlling percussive drilling process
JP6678438B2 (en) Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head
JP6416496B2 (en) Method for measuring and evaluating the properties of excavated soil in the chamber used for earth pressure shield method, shield excavator and earth and sand plastic fluidity test equipment
JP4854538B2 (en) Shielding machine and chamber blockage management method
JP6905364B2 (en) Plastic fluidity evaluation method, evaluation device and soil pressure type shield excavator of excavated soil in the chamber in the earth pressure type shield method
JP6584311B2 (en) How to understand plastic fluidity
JP4885325B1 (en) Construction management system for ground improvement method
JP6153591B2 (en) Ground survey method and ground survey device
JP2010275851A (en) Method for improving surface layer soil
JP2023013173A (en) Chamber internal pressure control system for mud pressure shield machine and chamber internal pressure control method
JP6773282B2 (en) Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator
JP6524523B2 (en) Method of evaluating plasticity of excavated soil in chamber in earth pressure type shield method, evaluation device and earth pressure type shield drilling machine
JP6246691B2 (en) Method and apparatus for measuring excavated sediment density of shield machine
JP6035649B2 (en) Ground investigation device, continuous wall construction device and continuous wall construction method
JP2019143383A (en) Operation estimation device
JP2021031996A (en) Device control system and device control method
JP2023022384A (en) Method for grasping plasticity fluidity
JPH0452397A (en) Controlling method for excavation of shield machine
JP6761709B2 (en) Face ground exploration method and equipment
JP6914885B2 (en) Excavation shape confirmation device and excavation shape confirmation method
JPH083317B2 (en) Shield machine
JP2020007815A (en) Determination method of stratum
JP7090320B2 (en) Arithmetic logic unit, excavator, calculation method, and computer program
JP2023136236A (en) Natural ground collapse detection system for shield method and natural ground collapse detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R150 Certificate of patent or registration of utility model

Ref document number: 6584311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150