JP2006233677A - Boring machine and measuring instrument - Google Patents

Boring machine and measuring instrument Download PDF

Info

Publication number
JP2006233677A
JP2006233677A JP2005052669A JP2005052669A JP2006233677A JP 2006233677 A JP2006233677 A JP 2006233677A JP 2005052669 A JP2005052669 A JP 2005052669A JP 2005052669 A JP2005052669 A JP 2005052669A JP 2006233677 A JP2006233677 A JP 2006233677A
Authority
JP
Japan
Prior art keywords
chamber
cutter
measuring device
rod
excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005052669A
Other languages
Japanese (ja)
Other versions
JP4523453B2 (en
Inventor
Shunsuke Shirai
俊輔 白井
Kunihiro Nagamori
邦博 永森
Tatsuro Tamai
達郎 玉井
Hiromasa Igarashi
寛昌 五十嵐
Izuru Kuronuma
出 黒沼
Hidemoto Nagatani
英基 永谷
Taiga Ono
大我 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005052669A priority Critical patent/JP4523453B2/en
Publication of JP2006233677A publication Critical patent/JP2006233677A/en
Application granted granted Critical
Publication of JP4523453B2 publication Critical patent/JP4523453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boring machine and a measuring instrument capable of more rationally grasping properties of sediment in a chamber at real time. <P>SOLUTION: The measuring instrument 20 is composed of a bar-like member 19 connected to a plate-like member 17 of a cutter 3 and projected into the chamber 9; a strain gage 21 installed at the bar-like member 19; and a computer (not shown in the figure) or the like. One end of the bar-like member 19 is fixed or pin-joined to the plate-like member 17. When the boring machine 1 excavates the natural ground by rotating the cutter 3, the measuring instrument 20 connected to the plate-like member 17 of the cutter 3 moves rotating in the chamber 9 filled with excavated sediment. The strain gage 21 of the measuring instrument 20 measures the flexure (displacement or deformation) of the bar-like member 19 caused by the force received from the excavated sediment in the chamber 9. The measuring instrument 20 sends a measured value measured by the strain gage 21, to the computer (not shown in the figure) or the like and grasps the properties of the excavated sediment in the chamber 9 based on the measured value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、掘進機および計測装置に関するものである。   The present invention relates to an excavation machine and a measuring device.

泥土圧系シールド掘進機は、掘削土に加泥材と称する添加剤を添加して撹拌し、土に適当な塑性流動性を持たせることにより、切羽を安定させ、地山を掘削する。掘削した土砂は、シールド機内のチャンバに取り込まれた後、一般にスクリューコンベヤで坑内に土砂を取り込んで排出する。   The mud pressure system shield machine stabilizes the face and excavates the natural ground by adding an additive called a mud material to the excavated soil and stirring it to give the soil appropriate plastic fluidity. The excavated earth and sand are taken into the chamber in the shield machine, and then the earth and sand are generally taken into the pit by a screw conveyor and discharged.

このとき、チャンバ内の土の塑性流動性が小さく閉塞状態となった場合、スクリューコンベヤで掘削土を排出できなかったり、カッタトルクが上昇して掘進不能となったりするため、(1)スクリューコンベヤで坑内に取り込まれた土砂の状況を目視等で確認する方法、(2)ジャッキ推力、カッタトルクなどから判断する方法で、チャンバ内の状況を把握しながら施工が行われていた。   At this time, if the plastic fluidity of the soil in the chamber is small and closed, the excavated soil cannot be discharged by the screw conveyor, or the cutter torque increases and the excavation becomes impossible. (1) Screw conveyor The construction was carried out while grasping the situation in the chamber by the method of visually confirming the state of the earth and sand taken into the pit in (2) the method of judging from the jack thrust, the cutter torque and the like.

また、(3)シールド機のバルクヘッド部に検出器を取り付けて、チャンバ内の土砂性状を確認する方法が試みられていた(例えば、特許文献1、特許文献2参照)。   In addition, (3) a method has been attempted in which a detector is attached to the bulkhead portion of the shield machine and the sediment property in the chamber is confirmed (see, for example, Patent Document 1 and Patent Document 2).

特開昭58−195693号公報JP 58-195893 A 特開昭58−54199号公報JP 58-54199 A

しかしながら、(1)の方法は官能的な手段によって土砂の状況を把握するものであり、熟練した経験者が判断する必要があった。(2)の方法で用いられるジャッキ推力やカッタトルクは定量的な値ではあるが、他の要素も含むため、完全にチャンバ内の土砂の性状を表す指標とは言い難かった。(3)の方法は、バルクヘッド部に装置を取り付けるが、バルクヘッド部は、いわゆる流体で言う境界層に近く、土砂が固着しやすい環境であった。   However, the method (1) grasps the state of earth and sand by sensual means, and it has been necessary for a skilled person to judge. Although the jack thrust and cutter torque used in the method (2) are quantitative values, they include other factors, and thus are not completely indicative of the properties of the earth and sand in the chamber. In the method (3), the apparatus is attached to the bulkhead portion. However, the bulkhead portion is close to a boundary layer referred to as a so-called fluid and is an environment in which earth and sand are easily fixed.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、チャンバ内の土砂の性状を、リアルタイムでより合理的に把握できる掘進機および計測装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an excavator and a measuring device that can more reasonably grasp the property of the earth and sand in the chamber in real time. .

前述した目的を達成するための第1の発明は、カッタによる切削面より後方において前記カッタに連結され、前記カッタの回転とともに回転移動する部材にセンサを設け、前記センサによる計測値を用いてチャンバ内の土砂の性状を把握することを特徴とする掘進機である。   According to a first aspect of the present invention for achieving the above object, a sensor is provided on a member that is connected to the cutter behind the cutting surface of the cutter and that rotates with the rotation of the cutter, and the chamber uses the measurement value of the sensor. It is an excavation machine characterized by grasping the properties of the earth and sand inside.

カッタに連結され、カッタの回転とともに回転移動する部材は、チャンバ内、または、カッタ内およびチャンバ内に突出して設置される。センサには、例えば、歪みゲージ、ロードセル、シリンダ、圧力センサ、間隙水圧計、RI計器等が用いられる。また、計測値とは、これらのセンサを用いて取得した部材の変位、部材の変形、部材に作用する力、チャンバ内の土砂の土圧、チャンバ内の土砂の水圧、チャンバ内の土砂の密度および含水比等である。掘進機とは、泥土圧式シールド機や泥水式シールド機等の、カッタで切削した土砂をチャンバに取りこむ形式の掘進機である。   A member that is connected to the cutter and that rotates with the rotation of the cutter is installed in the chamber or in the cutter and in the chamber. As the sensor, for example, a strain gauge, a load cell, a cylinder, a pressure sensor, a pore water pressure meter, an RI meter, or the like is used. The measured value is the displacement of the member obtained by using these sensors, the deformation of the member, the force acting on the member, the earth pressure of the earth and sand in the chamber, the water pressure of the earth and sand in the chamber, the density of the earth and sand in the chamber And the water content. The excavator is an excavator of a type in which earth and sand cut with a cutter are taken into a chamber, such as a mud pressure shield machine and a mud shield machine.

第2の発明は、カッタによる切削面より後方において前記カッタに連結され、前記カッタの回転とともに回転移動する部材と、前記部材に設置されたセンサと、前記センサによる計測値を用いてチャンバ内の土砂の性状を把握する手段と、からなることを特徴とする計測装置である。   According to a second aspect of the present invention, there is provided a member connected to the cutter behind the cutting surface of the cutter and rotating with the rotation of the cutter, a sensor installed on the member, and a measured value by the sensor. It is a measuring device characterized by comprising means for grasping the properties of earth and sand.

カッタに連結され、カッタの回転とともに回転移動する部材は、チャンバ内、または、カッタ内およびチャンバ内に突出して設置される。センサには、例えば、歪みゲージ、ロードセル、シリンダ、圧力センサ、間隙水圧計、RI計器等が用いられる。また、計測値とは、これらのセンサを用いて取得した部材の変位、部材の変形、部材に作用する力、チャンバ内の土砂の土圧、チャンバ内の土砂の水圧、チャンバ内の土砂の密度および含水比等である。   A member that is connected to the cutter and that rotates with the rotation of the cutter is installed in the chamber or in the cutter and in the chamber. As the sensor, for example, a strain gauge, a load cell, a cylinder, a pressure sensor, a pore water pressure meter, an RI meter, or the like is used. The measured value is the displacement of the member obtained by using these sensors, the deformation of the member, the force acting on the member, the earth pressure of the earth and sand in the chamber, the water pressure of the earth and sand in the chamber, the density of the earth and sand in the chamber And the water content.

本発明の掘進機および計測装置によれば、チャンバ内の土砂の性状を、リアルタイムでより合理的に把握できる。   According to the excavator and the measuring device of the present invention, the property of the earth and sand in the chamber can be grasped more rationally in real time.

以下、図面に基づいて、本発明の第1の実施の形態について詳細に説明する。図1は、掘進機1の軸方向の断面図である。掘進機1は、例えばシールド機等であり、地山を掘削しつつ前進する。図1に示すように、掘進機1は、カッタ3、スキンプレート7、チャンバ9、排土装置13、隔壁15、計測装置20等で構成される。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the excavator 1 in the axial direction. The excavator 1 is, for example, a shield machine or the like, and moves forward while excavating natural ground. As shown in FIG. 1, the excavator 1 includes a cutter 3, a skin plate 7, a chamber 9, a soil removal device 13, a partition wall 15, a measuring device 20, and the like.

カッタ3は、筒状のスキンプレート7の前面に設けられ、地山を掘削する板状のカッタスポーク5、カッタスポーク5の後方に設けられた板状部材17等からなる。隔壁15は、カッタ3の後方において、スキンプレート7の内部に設けられる。隔壁15は、スキンプレート7内の空間を前後に区切る。チャンバ9は、板状部材17と隔壁15とスキンプレート7に囲まれた空間である。   The cutter 3 is provided on the front surface of the cylindrical skin plate 7, and includes a plate-like cutter pork 5 for excavating natural ground, a plate member 17 provided on the rear side of the cutter pork 5, and the like. The partition wall 15 is provided inside the skin plate 7 behind the cutter 3. The partition wall 15 divides the space in the skin plate 7 forward and backward. The chamber 9 is a space surrounded by the plate member 17, the partition wall 15, and the skin plate 7.

排土装置13は、隔壁15に固定される。排土装置13は、スクリューコンベヤ等である。計測装置20は、カッタ3の板状部材17に連結され、チャンバ9内に突出した棒状材19、棒状材19に設置された歪みゲージ21、コンピュータ(図示せず)等からなる。棒状材19は、カッタ3に連結された攪拌翼等の部材である。棒状材19は、一端が板状部材17に固定されるか、ピン接合される。   The earth removing device 13 is fixed to the partition wall 15. The earth removing device 13 is a screw conveyor or the like. The measuring device 20 is connected to the plate-like member 17 of the cutter 3 and includes a rod-shaped material 19 protruding into the chamber 9, a strain gauge 21 installed on the rod-shaped material 19, a computer (not shown), and the like. The rod-shaped material 19 is a member such as a stirring blade connected to the cutter 3. One end of the rod-like material 19 is fixed to the plate-like member 17 or pin-joined.

掘進機1は、カッタ3を回転させ、カッタスポーク5に取り付けられたビット(図示せず)を用いて地山を掘削する。掘進機1は、カッタ内11に流入した掘削土をチャンバ9内に取りこんだ後、排土装置13を用いて排出する。   The excavator 1 rotates the cutter 3 and excavates a natural ground using a bit (not shown) attached to the cutter pork 5. The excavator 1 takes the excavated soil that has flowed into the cutter 11 into the chamber 9 and then discharges the excavated soil using the soil removal device 13.

掘進機1がカッタ3を回転させて地山を掘削すると、カッタ3の板状部材17に連結された計測装置20は、掘削土砂が充満したチャンバ9内を回転移動する。計測装置20の歪みゲージ21は、チャンバ9内の掘削土砂から受ける力による棒状材19のたわみ(変位もしくは変形)を計測する。計測装置20では、コンピュータ(図示せず)等に歪みゲージ21が計測した計測値を送り、計測値に基づいてチャンバ9内の掘削土砂の性状を把握する。   When the excavator 1 rotates the cutter 3 to excavate a natural ground, the measuring device 20 connected to the plate-like member 17 of the cutter 3 rotates in the chamber 9 filled with excavated earth and sand. The strain gauge 21 of the measuring device 20 measures the deflection (displacement or deformation) of the rod-shaped material 19 due to the force received from the excavated soil in the chamber 9. In the measuring device 20, the measurement value measured by the strain gauge 21 is sent to a computer (not shown) or the like, and the property of the excavated sediment in the chamber 9 is grasped based on the measurement value.

次に、第2の実施の形態について説明する。図2は、他の掘進機1aの軸方向の断面図である。図2に示すように、掘進機1aは、掘進機1とほぼ同様の構成であるが、計測装置20のかわりに計測装置20aが設置される。   Next, a second embodiment will be described. FIG. 2 is a sectional view in the axial direction of another excavator 1a. As shown in FIG. 2, the excavator 1 a has substantially the same configuration as the excavator 1, but a measuring device 20 a is installed instead of the measuring device 20.

計測装置20aは、カッタ3の板状部材17に連結され、チャンバ9内に突出した棒状材19a、棒状材19aに設置された歪みゲージ21a、コンピュータ(図示せず)等からなる。棒状材19aは、カッタ3に連結された攪拌翼等の部材である。   The measuring device 20a is connected to the plate-like member 17 of the cutter 3, and includes a rod-shaped material 19a protruding into the chamber 9, a strain gauge 21a installed on the rod-shaped material 19a, a computer (not shown), and the like. The rod-shaped material 19 a is a member such as a stirring blade connected to the cutter 3.

図1に示す計測装置20では、棒状材19をチャンバ9側のみに突出させたが、図2に示す計測装置20aでは、棒状材19aをチャンバ9内とカッタ内11に突出させる。棒状材19aは、板状部材17に挿通されて、板状部材17に固定されるか、ピン接合される。歪みゲージ21aは、棒状材19aのカッタ内11側に設置される。   In the measuring device 20 shown in FIG. 1, the rod-shaped material 19 is protruded only to the chamber 9 side, but in the measuring device 20a shown in FIG. 2, the rod-shaped material 19a is protruded into the chamber 9 and the cutter 11. The rod-shaped member 19a is inserted into the plate-like member 17 and is fixed to the plate-like member 17 or pin-joined. The strain gauge 21a is installed on the inside 11 of the cutter of the rod-shaped material 19a.

掘進機1aがカッタ3を回転させて地山を掘削すると、カッタ3の板状部材17に連結された計測装置20aは、掘削土砂が充満したチャンバ9内を回転移動する。計測装置20aの歪みゲージ21aは、チャンバ9内の掘削土砂から受ける力による棒状材19aのたわみ(変位もしくは変形)を計測する。計測装置20aでは、コンピュータ(図示せず)等に歪みゲージ21aが計測した計測値を送り、計測値に基づいてチャンバ9内の掘削土砂の性状を把握する。   When the excavator 1a rotates the cutter 3 to excavate the natural ground, the measuring device 20a connected to the plate-like member 17 of the cutter 3 rotates in the chamber 9 filled with excavated earth and sand. The strain gauge 21 a of the measuring device 20 a measures the deflection (displacement or deformation) of the rod-shaped material 19 a due to the force received from the excavated soil in the chamber 9. In the measuring device 20a, the measured value measured by the strain gauge 21a is sent to a computer (not shown) or the like, and the property of the excavated soil in the chamber 9 is grasped based on the measured value.

このように、第1、第2の実施の形態では、カッタ3に連結した棒状材19(棒状材19a)に取り付けた歪みゲージ21(歪みゲージ21a)を用いて棒状材19(棒状材19a)のたわみを計測することにより、チャンバ9内の掘削土砂の性状をリアルタイムで確認できる。第1、第2の実施の形態では、カッタ3に連結した棒状材19(棒状材19a)に歪みゲージ21(歪みゲージ21a)を取り付けるため、チャンバ9内の掘削土砂の性状を従来の方法と比べて合理的に把握できる。   As described above, in the first and second embodiments, the rod-shaped material 19 (rod-shaped material 19a) using the strain gauge 21 (strain gauge 21a) attached to the rod-shaped material 19 (rod-shaped material 19a) connected to the cutter 3 is used. By measuring the deflection, the property of the excavated soil in the chamber 9 can be confirmed in real time. In the first and second embodiments, since the strain gauge 21 (strain gauge 21a) is attached to the rod-shaped material 19 (bar-shaped material 19a) connected to the cutter 3, the properties of the excavated sediment in the chamber 9 are compared with the conventional method. Compared to a reasonable understanding.

なお、第1、第2の実施の形態において、計測装置20(計測装置20a)の棒状材19(棒状材19a)の形状は棒状に限らない。さらに、計測装置20(計測装置20a)の歪みゲージ21(歪みゲージ21a)の設置位置は、図1、図2に示す位置でなくてもよい。計測装置は、カッタ3による切削面より後方においてカッタ3に連結され、カッタ3の回転とともに回転移動するような部材に、チャンバ9内の掘削土砂によるたわみを検出できるように歪みゲージを設置したものであればよい。   In the first and second embodiments, the shape of the rod-like material 19 (rod-like material 19a) of the measuring device 20 (measuring device 20a) is not limited to the rod shape. Furthermore, the installation position of the strain gauge 21 (strain gauge 21a) of the measurement apparatus 20 (measurement apparatus 20a) may not be the position shown in FIGS. The measuring device is connected to the cutter 3 behind the cutting surface of the cutter 3 and is provided with a strain gauge on a member that rotates with the rotation of the cutter 3 so as to detect deflection due to excavated sediment in the chamber 9. If it is.

図3は、他の掘削機の計測装置付近を示す図である。図3の(a)図は、掘削機1bの計測装置20b付近を示す図である。図3の(a)図に示すように、掘進機1bは、掘進機1とほぼ同様の構成であるが、計測装置20のかわりに計測装置20bが設置される。   FIG. 3 is a view showing the vicinity of a measuring device of another excavator. FIG. 3A shows the vicinity of the measuring device 20b of the excavator 1b. As shown in FIG. 3A, the excavator 1 b has substantially the same configuration as the excavator 1, but a measuring device 20 b is installed instead of the measuring device 20.

計測装置20bは、カッタ3の板状部材17に連結され、チャンバ9内に突出した棒状材19、棒状材19に固定された付属部品27、付属部品27に設置された歪みゲージ(図示せず)、コンピュータ(図示せず)等からなる。棒状材19は、一端が板状部材17に固定されるか、ピン接合される。歪みゲージ(図示せず)は、棒状材19のたわみを検出できるような位置に設置される。   The measuring device 20 b is connected to the plate-like member 17 of the cutter 3, and protrudes into the chamber 9, the accessory 19 fixed to the stick 19, and a strain gauge (not shown) installed in the accessory 27. ), A computer (not shown), and the like. One end of the rod-like material 19 is fixed to the plate-like member 17 or pin-joined. The strain gauge (not shown) is installed at a position where the deflection of the rod-shaped material 19 can be detected.

図3の(b)図は、掘削機1cの計測装置20c付近を示す図である。図3の(b)図に示すように、掘進機1cは、掘進機1とほぼ同様の構成であるが、計測装置20のかわりに計測装置20cが設置される。   FIG. 3B is a view showing the vicinity of the measuring device 20c of the excavator 1c. As shown in FIG. 3B, the excavator 1c has substantially the same configuration as the excavator 1, but a measuring device 20c is installed instead of the measuring device 20.

計測装置20cは、カッタ3の板状部材17に連結され、チャンバ9内に突出した棒状材19c、棒状材19cに設置された歪みゲージ(図示せず)、コンピュータ(図示せず)等からなる。棒状材19cは、所定の角度で板状部材17に挿通されて、板状部材17に固定されるか、ピン接合される。歪みゲージ(図示せず)は、棒状材19cのたわみを検出できるような位置に設置される。   The measuring device 20c is connected to the plate-like member 17 of the cutter 3, and includes a rod-like material 19c protruding into the chamber 9, a strain gauge (not shown) installed on the rod-like material 19c, a computer (not shown), and the like. . The rod-shaped member 19c is inserted into the plate-like member 17 at a predetermined angle and is fixed to the plate-like member 17 or pin-joined. The strain gauge (not shown) is installed at a position where the deflection of the rod-shaped material 19c can be detected.

図3に示す計測装置20b、計測装置20cは、カッタ3の回転とともに掘削土砂が充満したチャンバ9内を回転移動し、チャンバ9内の掘削土砂から受ける力による棒状材19(棒状材19c)のたわみ(変位もしくは変形)を歪みゲージ(図示せず)で計測し、計測値に基づいてコンピュータ(図示せず)等でチャンバ9内の掘削土砂の性状を把握する。   The measuring device 20b and the measuring device 20c shown in FIG. 3 rotate and move in the chamber 9 filled with excavated sediment with the rotation of the cutter 3, and the rod-shaped material 19 (rod-shaped material 19c) due to the force received from the excavated sediment in the chamber 9 Deflection (displacement or deformation) is measured by a strain gauge (not shown), and the properties of the excavated sediment in the chamber 9 are grasped by a computer (not shown) or the like based on the measured value.

図3に示すような計測装置を用いた場合にも、第1、第2の実施の形態と同様に、カッタ3に連結した棒状材に取り付けた歪みゲージを用いて棒状材のたわみを計測することにより、チャンバ9内の掘削土砂の性状をリアルタイムで確認できる。また、カッタ3に連結した棒状材に歪みゲージを取り付けるため、チャンバ9内の掘削土砂の性状を従来の方法と比べて合理的に把握できる。   Even when the measuring apparatus as shown in FIG. 3 is used, the deflection of the rod-shaped material is measured using a strain gauge attached to the rod-shaped material connected to the cutter 3 as in the first and second embodiments. Thus, the properties of the excavated soil in the chamber 9 can be confirmed in real time. Moreover, since the strain gauge is attached to the rod-shaped material connected to the cutter 3, the properties of the excavated soil in the chamber 9 can be reasonably grasped as compared with the conventional method.

さらに、図1から図3では、センサとして歪みゲージを用いて、棒状材のたわみを計測したが、歪みゲージ以外のセンサを用いて棒状材の変位や変形を計測してもよい。例えば、図1に示す歪みゲージ21の位置にロードセル等を設置して、棒状材の変位を計測する場合もある。   Further, in FIGS. 1 to 3, the strain of the rod-shaped material is measured using a strain gauge as a sensor, but the displacement or deformation of the rod-shaped material may be measured using a sensor other than the strain gauge. For example, a load cell or the like may be installed at the position of the strain gauge 21 shown in FIG. 1 to measure the displacement of the rod-shaped material.

また、計測装置では、掘削土砂から受ける力による棒状材の変位や変形以外の値を計測して、チャンバ9内の掘削土砂の性状を把握する場合もある。   In addition, the measuring device may measure values other than the displacement and deformation of the rod-like material due to the force received from the excavated earth and sand to grasp the properties of the excavated earth and sand in the chamber 9.

図4は、他の掘削機の計測装置付近を示す図である。図4の(a)図は、掘削機1dの計測装置20d付近を示す図である。図4の(a)図に示すように、掘進機1dは、掘進機1とほぼ同様の構成であるが、計測装置20のかわりに計測装置20dが設置される。   FIG. 4 is a view showing the vicinity of a measuring device of another excavator. FIG. 4A shows the vicinity of the measuring device 20d of the excavator 1d. As shown in FIG. 4A, the excavator 1 d has substantially the same configuration as the excavator 1, but a measuring device 20 d is installed instead of the measuring device 20.

計測装置20dは、カッタ3の板状部材17に連結され、チャンバ9内に突出した棒状材19d、棒状材19dに設置されたロードセル23、コンピュータ(図示せず)等からなる。棒状材19dは、板状部材17に挿通されて、板状部材17にピン接合される。ロードセル23は、カッタ内11に配置される。ロードセル23は、棒状材19dと板状部材17の連結部を支点として、てこの作用点となるような位置に配置される。   The measuring device 20d is connected to the plate-like member 17 of the cutter 3, and includes a rod-shaped material 19d protruding into the chamber 9, a load cell 23 installed on the rod-shaped material 19d, a computer (not shown), and the like. The rod-shaped member 19 d is inserted into the plate-like member 17 and is pin-bonded to the plate-like member 17. The load cell 23 is arranged in the cutter 11. The load cell 23 is disposed at a position where the lever cell 19d and the plate-like member 17 serve as a lever, with the connecting portion serving as a fulcrum.

図4の(b)図は、掘削機1eの計測装置20e付近を示す図である。図4の(b)図に示すように、掘進機1eは、掘進機1とほぼ同様の構成であるが、計測装置20のかわりに計測装置20eが設置される。   FIG. 4B is a diagram showing the vicinity of the measuring device 20e of the excavator 1e. As shown in FIG. 4B, the excavator 1e has substantially the same configuration as the excavator 1, but a measuring device 20e is installed instead of the measuring device 20.

計測装置20eは、カッタ3の板状部材17に連結され、チャンバ9内に突出した棒状材19e、棒状材19eに設置されたピン型ロードセル25、コンピュータ(図示せず)等からなる。棒状材19eは、板状部材17に挿通されて、板状部材17にピン接合される。ピン型ロードセル25は、カッタ内11に配置される。ピン型ロードセル25は、棒状材19eと板状部材17の連結部を支点として、てこの作用点となるような位置に配置される。   The measuring device 20e is connected to the plate-like member 17 of the cutter 3, and includes a rod-shaped material 19e protruding into the chamber 9, a pin-type load cell 25 installed on the rod-shaped material 19e, a computer (not shown), and the like. The rod-shaped member 19 e is inserted into the plate-like member 17 and is pin-bonded to the plate-like member 17. The pin type load cell 25 is arranged in the cutter 11. The pin-type load cell 25 is disposed at a position where it acts as a lever with the connecting portion between the rod-shaped member 19e and the plate-like member 17 as a fulcrum.

図4に示す計測装置20d、計測装置20eは、カッタ3の回転とともに掘削土砂が充満したチャンバ9内を回転移動し、棒状材19d、棒状材19eがチャンバ9内の掘削土砂から受ける土圧や水圧等の力をロードセル23、ピン型ロードセル25で計測し、計測値に基づいてコンピュータ(図示せず)等でチャンバ9内の掘削土砂の性状を把握する。   The measuring device 20d and the measuring device 20e shown in FIG. 4 rotate and move in the chamber 9 filled with excavated earth and sand with the rotation of the cutter 3, and the bar-like material 19d and bar-like material 19e receive the earth pressure received from the excavated earth and sand in the chamber 9. A force such as water pressure is measured by the load cell 23 and the pin type load cell 25, and the property of the excavated soil in the chamber 9 is grasped by a computer (not shown) or the like based on the measured value.

図4では、センサとしてロードセル23やピン型ロードセル25を用いたが、棒状材がチャンバ9内の掘削土砂から受ける力を計測してチャンバ9内の掘削土砂の性状を把握する場合、これらのセンサのかわりに、シリンダ等の油圧を計測するセンサや圧力センサを用いてもよい。また、ロードセル23やピン型ロードセル25を用いて棒状材がチャンバ9内の掘削土砂から受ける力を計測する場合、棒状材の形状や設置位置は、図4に示すものに限らない。   In FIG. 4, the load cell 23 and the pin type load cell 25 are used as sensors. However, when measuring the force that the rod-shaped material receives from the excavated sediment in the chamber 9 and grasping the properties of the excavated sediment in the chamber 9, these sensors are used. Instead of this, a sensor for measuring the hydraulic pressure of a cylinder or a pressure sensor may be used. Moreover, when measuring the force which a rod-shaped material receives from the excavation earth and sand in the chamber 9 using the load cell 23 or the pin type load cell 25, the shape and installation position of a rod-shaped material are not restricted to what is shown in FIG.

図5は、他の掘削機1fの計測装置付近を示す図である。図5に示すように、掘進機1fは、図4に示す掘進機1dや掘進機1eとほぼ同様の構成であるが、計測装置20dや計測装置20eのかわりに計測装置20fが設置される。   FIG. 5 is a view showing the vicinity of the measuring device of another excavator 1f. As shown in FIG. 5, the excavator 1f has substantially the same configuration as the excavator 1d and the excavator 1e shown in FIG. 4, but a measuring device 20f is installed instead of the measuring device 20d and the measuring device 20e.

計測装置20fは、カッタ3の板状部材17に連結され、チャンバ9内に突出した棒状材19f、棒状材19fに設置されたロードセルまたはピン型ロードセル(図示せず)、コンピュータ(図示せず)等からなる。棒状材19fは、カッタスポーク5および板状部材17に挿通され、板状部材17にピン接合される。ロードセルまたはピン型ロードセル(図示せず)は、カッタスポーク5から棒状材19fが突出した部分29に配置される。ロードセルやピン型ロードセルは、棒状材19fと板状部材17の連結部を支点として、てこの作用点となるような位置に設置される。   The measuring device 20f is connected to the plate-like member 17 of the cutter 3 and protrudes into the chamber 9, and a load cell or pin-type load cell (not shown) installed in the rod-like material 19f, a computer (not shown). Etc. The rod-shaped member 19 f is inserted into the cutter pork 5 and the plate-like member 17 and is pin-joined to the plate-like member 17. A load cell or a pin-type load cell (not shown) is disposed in a portion 29 where the bar-shaped material 19f protrudes from the cutter pork 5. The load cell or the pin type load cell is installed at a position where it acts as a lever with the connecting portion of the rod-shaped member 19f and the plate-like member 17 as a fulcrum.

図5に示す計測装置20fは、カッタ3の回転とともに掘削土砂が充満したチャンバ9内を回転移動し、チャンバ9内の掘削土砂から受ける力による棒状材19fの変位をロードセルやピン型ロードセル(図示せず)で計測し、計測値に基づいてコンピュータ(図示せず)等でチャンバ9内の掘削土砂の性状を把握する。   The measuring device 20f shown in FIG. 5 rotates and moves in the chamber 9 filled with excavated earth and sand as the cutter 3 rotates, and the displacement of the rod-like material 19f due to the force received from the excavated earth and sand in the chamber 9 is a load cell or pin type load cell (see FIG. 5). (Not shown), and the property of the excavated sediment in the chamber 9 is grasped by a computer (not shown) or the like based on the measured value.

図4、図5に示すような計測装置を用いた場合にも、カッタ3に連結した棒状材に取り付けたロードセルやピン型ロードセルを用いて棒状材が受ける力を計測することにより、チャンバ9内の掘削土砂の性状をリアルタイムで確認できる。また、カッタ3に連結した棒状材にロードセルやピン型ロードセルを取り付けるため、チャンバ9内の掘削土砂の性状を従来の方法と比べて合理的に把握できる。   Even in the case where a measuring device as shown in FIGS. 4 and 5 is used, by measuring the force received by the rod-shaped material using a load cell or a pin-type load cell attached to the rod-shaped material connected to the cutter 3, The properties of the excavated soil can be checked in real time. Further, since the load cell or the pin type load cell is attached to the rod-shaped material connected to the cutter 3, the properties of the excavated sediment in the chamber 9 can be reasonably grasped as compared with the conventional method.

次に、第3の実施の形態について説明する。図6は、掘進機31の軸方向の断面図、図7は、掘進機31の周方向の断面図である。図7は、図6のA−Aによる断面図を示す。図6、図7に示すように、掘進機31は、カッタ3、スキンプレート7、チャンバ9、排泥管33、送泥管35、計測装置20等で構成される。   Next, a third embodiment will be described. 6 is a sectional view in the axial direction of the excavator 31, and FIG. 7 is a sectional view in the circumferential direction of the excavator 31. FIG. 7 is a cross-sectional view taken along line AA of FIG. As shown in FIGS. 6 and 7, the excavator 31 includes a cutter 3, a skin plate 7, a chamber 9, a mud pipe 33, a mud pipe 35, a measuring device 20, and the like.

掘進機31は、掘進機1とほぼ同様の構成であるが、隔壁15に、排土装置13が設置されず、排泥管33と送泥管35とが設置される点と、計測装置20の設置箇所とが掘進機1とは異なる。   The excavator 31 has substantially the same configuration as that of the excavator 1, but the earthing device 13 is not installed on the partition wall 15, and the mud pipe 33 and the mud pipe 35 are installed, and the measuring device 20. Is different from the excavator 1.

排泥管33は、掘進機31の下半部の隔壁15に固定され、送泥管35は、掘進機31の上半部の隔壁15に固定される。計測装置20は、構成や板状部材17との連結方法は、掘進機1に設置されたものと同様であるが、掘進機31では、計測装置20の棒状材19を板状部材17の外周付近に連結するのが望ましい。すなわち、掘進機31では、計測装置20を、棒状材19とスキンプレート7との距離が棒状材19と掘進機31の中心との距離よりも小さくなるような位置に設置するのが望ましい。   The mud drain pipe 33 is fixed to the partition wall 15 in the lower half of the excavator 31, and the mud pipe 35 is fixed to the partition wall 15 in the upper half of the excavator 31. The measuring device 20 has the same configuration and method of connecting to the plate-like member 17 as those installed in the excavator 1, but in the excavator 31, the rod-like material 19 of the measuring device 20 is connected to the outer periphery of the plate-like member 17. It is desirable to connect in the vicinity. That is, in the excavator 31, it is desirable to install the measuring device 20 at a position where the distance between the bar 19 and the skin plate 7 is smaller than the distance between the bar 19 and the center of the excavator 31.

掘進機31は、図7の矢印Bに示す方向にカッタ3を回転させ、カッタスポーク5に取り付けられたビット(図示せず)を用いて地山を掘削する。掘進機31は、カッタ内11に流入した掘削土をチャンバ9内に取りこみ、送泥管35からチャンバ9内に送りこまれた送泥水と混合した後、排泥管33を用いて排出する。   The excavator 31 rotates the cutter 3 in the direction indicated by the arrow B in FIG. 7 and excavates a natural ground using a bit (not shown) attached to the cutter pork 5. The excavator 31 takes the excavated soil that has flowed into the cutter 11 into the chamber 9, mixes it with the muddy water fed from the mud pipe 35 into the chamber 9, and then discharges it using the mud pipe 33.

掘進機31がカッタ3を回転させて地山を掘削すると、カッタ3の板状部材17に連結された計測装置20は、泥水39や土砂37(図7)が充満したチャンバ9内を回転移動する。計測装置20の歪みゲージ21は、チャンバ9内の泥水39や土砂37から受ける力による棒状材19のたわみ(変位もしくは変形)を計測する。計測装置20では、コンピュータ(図示せず)等に歪みゲージ21が計測した計測値を送り、計測値に基づいてコンピュータ(図示せず)等でチャンバ9内の掘削土砂の性状を把握する。   When the excavator 31 rotates the cutter 3 to excavate the natural ground, the measuring device 20 connected to the plate-like member 17 of the cutter 3 rotates and moves in the chamber 9 filled with mud 39 and earth and sand 37 (FIG. 7). To do. The strain gauge 21 of the measuring device 20 measures the deflection (displacement or deformation) of the rod-shaped material 19 due to the force received from the muddy water 39 and the earth and sand 37 in the chamber 9. In the measuring device 20, the measurement value measured by the strain gauge 21 is sent to a computer (not shown) or the like, and the property of the excavated sediment in the chamber 9 is grasped by the computer (not shown) or the like based on the measurement value.

掘削機31のチャンバ9内では、掘削土と送泥水とが混合されるが、砂や砂礫地盤の場合で、泥水の粘性が低くなると、図7に示すように、土砂37がチャンバ9内の下方に沈降しやすくなる。チャンバ9内に土砂37が堆積していると、計測装置20が土砂37内を移動しているときの抵抗が、泥水39内を移動しているときの抵抗より大きくなるため、歪みゲージ21による計測値が変化する。   In the chamber 9 of the excavator 31, the excavated soil and the muddy water are mixed. However, in the case of sand or gravel ground, when the viscosity of the muddy water becomes low, as shown in FIG. It tends to settle down. If the earth and sand 37 is accumulated in the chamber 9, the resistance when the measuring device 20 is moving in the earth and sand 37 is larger than the resistance when the measuring device 20 is moving in the mud water 39, so that the strain gauge 21 The measured value changes.

計測装置20を用いることにより、歪みゲージ21による計測値とカッタ3の回転角との関係から、土砂37の堆積範囲を検知することができる。また、歪みゲージ21による計測値から土砂37の固化度を把握し、チャンバ9内の土砂37による閉塞を検知することができる。   By using the measuring device 20, the accumulation range of the earth and sand 37 can be detected from the relationship between the measurement value obtained by the strain gauge 21 and the rotation angle of the cutter 3. Further, the degree of solidification of the earth and sand 37 can be grasped from the measurement value obtained by the strain gauge 21, and the blockage by the earth and sand 37 in the chamber 9 can be detected.

このように、第3の実施の形態では、カッタ3に連結した棒状材19に取り付けた歪みゲージ21を用いて棒状材19のたわみを計測することにより、チャンバ9内の掘削土砂の性状をリアルタイムで確認できる。第3の実施の形態では、カッタ3に連結した棒状材19に歪みゲージ21を取り付けるため、チャンバ9内の掘削土砂の性状を、土砂37の堆積の有無や堆積範囲を含めて、合理的に把握できる。   As described above, in the third embodiment, by measuring the deflection of the rod-shaped material 19 using the strain gauge 21 attached to the rod-shaped material 19 connected to the cutter 3, the property of the excavated sediment in the chamber 9 is measured in real time. It can be confirmed with. In the third embodiment, since the strain gauge 21 is attached to the rod-shaped member 19 connected to the cutter 3, the properties of the excavated sediment in the chamber 9 are rationally determined including the presence / absence of sediment 37 and the deposition range. I can grasp.

なお、第3の実施の形態において、計測装置20の棒状材19の形状は棒状に限らない。また、計測装置20の歪みゲージ21の設置位置は、図6に示す位置でなくてもよい。計測装置は、例えば図3に示すように、カッタ3による切削面より後方においてカッタ3に連結され、カッタ3の回転とともに回転移動するような部材に、チャンバ9内の掘削土砂によるたわみを検出できるように歪みゲージを設置したものであればよい。   In the third embodiment, the shape of the rod-shaped material 19 of the measuring device 20 is not limited to the rod shape. Further, the installation position of the strain gauge 21 of the measuring device 20 may not be the position shown in FIG. For example, as shown in FIG. 3, the measuring device is connected to the cutter 3 behind the cutting surface of the cutter 3, and can detect a deflection caused by excavated sediment in the chamber 9 in a member that rotates with the rotation of the cutter 3. Any strain gauge may be used.

さらに、第3の実施の形態においても、第1および第2の実施の形態で図4から図5を用いて説明したような、センサとしてロードセル23やピン型ロードセル25、シリンダ等の油圧を計測するセンサ、圧力センサ等を用いた他の計測装置を適用することができる。他の計測装置を用いた場合にも、チャンバ9内の掘削土砂の性状を、土砂37の堆積の有無や堆積範囲を含めて、合理的に把握できる。   Further, also in the third embodiment, as described with reference to FIGS. 4 to 5 in the first and second embodiments, the oil pressure of the load cell 23, the pin type load cell 25, the cylinder, etc. is measured as a sensor. Other measuring devices using sensors, pressure sensors and the like can be applied. Even when other measuring devices are used, the properties of the excavated sediment in the chamber 9 can be reasonably grasped including the presence / absence of the sediment 37 and the accumulation range.

第1、第2の実施の形態では、掘進機1(掘進機1a)に複数の計測装置20(計測装置20a)を設置し、第3の実施の形態では、掘進機31に1つの計測装置20を設置したが、計測装置の設置数は、これらに限らない。計測装置の設置数や設置箇所は、掘進機の種類や計測の目的に応じて設定される。例えば、図1、図2に示すような泥土圧式シールド機では、計測装置は、チャンバ内の土砂の性状を適切に把握できる位置を通過するように設置される。図6に示すような泥水式シールド機では、計測装置は、チャンバ内で堆積土砂が生じる可能性のある位置を通過するように設置される。   In the first and second embodiments, a plurality of measuring devices 20 (measuring devices 20a) are installed in the digging machine 1 (digging machine 1a), and in the third embodiment, one measuring device is provided in the digging machine 31. However, the number of measuring devices is not limited to these. The number of installations and installation locations of measuring devices are set according to the type of excavator and the purpose of measurement. For example, in the mud pressure shield machine as shown in FIGS. 1 and 2, the measuring device is installed so as to pass through a position where the property of the earth and sand in the chamber can be properly grasped. In the muddy water type shield machine as shown in FIG. 6, the measuring device is installed so as to pass through a position where sedimentary sediment may occur in the chamber.

以上、添付図面を参照しながら本発明にかかる掘進機および計測装置の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of the excavation machine and measuring device concerning this invention was described referring an accompanying drawing, this invention is not limited to this example. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

図1から図3、図6、図7では、歪みゲージ等を用いて棒状材の変位や変形を計測してチャンバ9内の掘削土砂の性状を把握する計測装置について、図4および図5では、ロードセル等を用いて棒状材にかかる力を計測してチャンバ9内の掘削土砂の性状を把握する計測装置について説明したが、計測装置に用いるセンサやセンサで計測する計測値の種類はこれらに限らない。   1 to 3, 6, and 7, a measurement device that measures the displacement and deformation of a rod-like material using a strain gauge or the like to grasp the properties of excavated sediment in the chamber 9 is illustrated in FIGS. 4 and 5. The measurement device that measures the force applied to the rod-shaped material using a load cell or the like and grasps the properties of the excavated sediment in the chamber 9 has been described. However, the types of measurement values measured by the sensors and sensors used in the measurement device Not exclusively.

例えば、計測装置を、カッタ3による切削面より後方においてカッタ3に連結され、カッタ3の回転とともに回転移動する部材と、その部材に設置した間隙水圧計と、コンピュータ等とで構成してもよい。この場合、間隙水圧計によりチャンバ9内の掘削土砂の水圧を計測して、チャンバ9内の掘削土砂の性状を把握する。   For example, the measuring device may be configured by a member that is connected to the cutter 3 behind the cutting surface of the cutter 3 and that rotates with the rotation of the cutter 3, a pore water pressure gauge installed on the member, a computer, and the like. . In this case, the water pressure of the excavated sediment in the chamber 9 is measured by a pore water pressure gauge to grasp the properties of the excavated sediment in the chamber 9.

また、計測装置を、カッタ3による切削面より後方においてカッタ3に連結され、カッタ3の回転とともに回転移動する部材と、その部材に設置したRI計器と、コンピュータ等とで構成してもよい。この場合、RI計器によりチャンバ9内の掘削土砂の密度および含水比を計測して、チャンバ9内の掘削土砂の性状を把握する。   Further, the measuring device may be constituted by a member that is connected to the cutter 3 behind the cutting surface of the cutter 3 and rotates with the rotation of the cutter 3, an RI instrument installed on the member, a computer, and the like. In this case, the density and water content ratio of the excavated sediment in the chamber 9 are measured by the RI instrument to grasp the properties of the excavated sediment in the chamber 9.

第1、第2の実施の形態では泥土圧式シールド機を、第3の実施の形態は泥水式シールド機を例に挙げて説明したが、本発明の掘進機および計測装置は、これらのシールド機以外の掘進機にも適用できる。   In the first and second embodiments, the mud pressure shield machine is described as an example, and in the third embodiment, the muddy water shield machine is described as an example. It can be applied to other excavators.

掘進機1の軸方向の断面図Cross section of the axial direction of the excavator 1 掘進機1aの軸方向の断面図Cross section of the axial direction of the excavator 1a 他の掘削機の計測装置付近を示す図Diagram showing the vicinity of the measuring device of another excavator 他の掘削機の計測装置付近を示す図Diagram showing the vicinity of the measuring device of another excavator 他の掘削機1fの計測装置20f付近を示す図The figure which shows the measuring device 20f vicinity of the other excavator 1f 掘進機31の軸方向の断面図A sectional view of the excavator 31 in the axial direction 掘進機31の周方向の断面図Cross section in the circumferential direction of the excavator 31

符号の説明Explanation of symbols

1、1a、1b、1c、1d、1e、1f、31………掘進機
3………カッタ
9………チャンバ
11………カッタ内
15………隔壁
17………板状部材
19、19a、19c、19d、19e、19f………棒状材
20、20a、20b、20c、20d、20e、20f………計測装置
21、21a………歪みゲージ
23………ロードセル
25………ピン型ロードセル
1, 1a, 1b, 1c, 1d, 1e, 1f, 31 ......... Engraving machine 3 ......... Cutter 9 ......... Chamber 11 ......... Inside of cutter 15 ......... Partition wall 17 ......... Plate-like member 19, 19a, 19c, 19d, 19e, 19f ......... Bar-shaped material 20, 20a, 20b, 20c, 20d, 20e, 20f ......... Measurement device 21, 21a ......... Strain gauge 23 ......... Load cell 25 ......... Pin Type load cell

Claims (3)

カッタによる切削面より後方において前記カッタに連結され、前記カッタの回転とともに回転移動する部材にセンサを設け、前記センサによる計測値を用いてチャンバ内の土砂の性状を把握することを特徴とする掘進機。   An excavation characterized in that a sensor is provided on a member that is connected to the cutter behind the cutting surface of the cutter and that rotates with the rotation of the cutter, and grasps the property of the earth and sand in the chamber using the measurement value of the sensor. Machine. カッタによる切削面より後方において前記カッタに連結され、前記カッタの回転とともに回転移動する部材と、
前記部材に設置されたセンサと、
前記センサによる計測値を用いてチャンバ内の土砂の性状を把握する手段と、からなることを特徴とする計測装置。
A member connected to the cutter behind the cutting surface by the cutter, and a member that rotates with the rotation of the cutter;
A sensor installed on the member;
And a means for grasping the property of the earth and sand in the chamber using the measurement value of the sensor.
前記計測値が、前記部材の変位、前記部材の変形、前記部材に作用する力、前記チャンバ内の土砂の土圧、前記チャンバ内の土砂の水圧、または、前記チャンバ内の土砂の密度および含水比であることを特徴とする請求項2記載の計測装置。   The measured value is displacement of the member, deformation of the member, force acting on the member, earth pressure of earth and sand in the chamber, water pressure of earth and sand in the chamber, or density and water content of earth and sand in the chamber. The measuring device according to claim 2, wherein the measuring device is a ratio.
JP2005052669A 2005-01-27 2005-02-28 Excavator Active JP4523453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005052669A JP4523453B2 (en) 2005-01-27 2005-02-28 Excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005019132 2005-01-27
JP2005052669A JP4523453B2 (en) 2005-01-27 2005-02-28 Excavator

Publications (2)

Publication Number Publication Date
JP2006233677A true JP2006233677A (en) 2006-09-07
JP4523453B2 JP4523453B2 (en) 2010-08-11

Family

ID=37041638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005052669A Active JP4523453B2 (en) 2005-01-27 2005-02-28 Excavator

Country Status (1)

Country Link
JP (1) JP4523453B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13486U1 (en) * 2012-09-19 2014-01-15 Montanuniv Leoben Easy-to-use sensor technology for determining a mechanical load on a mining machine of a tunnel boring machine
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
KR101923851B1 (en) 2018-01-11 2018-11-29 김한성 Sludge height measuring apparatus and monitoring system of sewer pipe using stress measuring method
JP2020193437A (en) * 2019-05-24 2020-12-03 日立造船株式会社 Shield excavator
JP2021107656A (en) * 2019-12-27 2021-07-29 日立造船株式会社 Shield excavator and method for determining sediment properties of shield excavator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560741B (en) * 2017-10-18 2020-04-21 华北水利水电大学 Shield hob temperature detection device and method
CN108613607B (en) * 2018-05-09 2020-02-11 国网山东省电力公司济南市章丘区供电公司 Insulating support outer hole detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817996A (en) * 1981-07-24 1983-02-02 石川島播磨重工業株式会社 Apparatus for detecting filled sand and mud in cutter chamber of shield drilling machine
JPS5854199A (en) * 1981-09-25 1983-03-31 富士通株式会社 Shield excavator
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPH04198587A (en) * 1990-11-28 1992-07-17 Okumura Corp Slush impregnation control method in shield method
JP2006016934A (en) * 2004-07-05 2006-01-19 Okumura Corp Shield excavator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817996A (en) * 1981-07-24 1983-02-02 石川島播磨重工業株式会社 Apparatus for detecting filled sand and mud in cutter chamber of shield drilling machine
JPS5854199A (en) * 1981-09-25 1983-03-31 富士通株式会社 Shield excavator
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPH04198587A (en) * 1990-11-28 1992-07-17 Okumura Corp Slush impregnation control method in shield method
JP2006016934A (en) * 2004-07-05 2006-01-19 Okumura Corp Shield excavator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13486U1 (en) * 2012-09-19 2014-01-15 Montanuniv Leoben Easy-to-use sensor technology for determining a mechanical load on a mining machine of a tunnel boring machine
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
KR101923851B1 (en) 2018-01-11 2018-11-29 김한성 Sludge height measuring apparatus and monitoring system of sewer pipe using stress measuring method
JP2020193437A (en) * 2019-05-24 2020-12-03 日立造船株式会社 Shield excavator
JP7287834B2 (en) 2019-05-24 2023-06-06 地中空間開発株式会社 shield machine
JP2021107656A (en) * 2019-12-27 2021-07-29 日立造船株式会社 Shield excavator and method for determining sediment properties of shield excavator
JP7332467B2 (en) 2019-12-27 2023-08-23 地中空間開発株式会社 Shield machine and sediment property determination method for shield machine

Also Published As

Publication number Publication date
JP4523453B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4523453B2 (en) Excavator
Do et al. 3D numerical investigation of mechanized twin tunnels in soft ground–Influence of lagging distance between two tunnel faces
Li et al. A modified solution to assess the required strength of exposed backfill in mine stopes
JP4854538B2 (en) Shielding machine and chamber blockage management method
Neely Bearing capacity of auger-cast piles in sand
Sun Discussion on some key technical issues for design and construction of undersea tunnels.
JP5189866B2 (en) Drilling section soil layer judgment device and judgment method for shield machine
JP6338097B2 (en) Tunnel face stability prediction / judgment method
JP2007284903A (en) Method of suppressing amount of settlement of ground in shield construction
JP5600289B2 (en) Mud pressure shield excavator with mud pressure monitoring function and mud pressure shield method
KR20190123616A (en) Moisture content measuring device which can prevent disturbance of soil ground
JP2008255765A (en) N-value detection method, n-value detector, and pile hole drilling unit
JP2005226412A (en) Sediment gathering device and ground density measuring method
JP5048601B2 (en) Sediment flow measuring device in chamber and shield machine
JP6035649B2 (en) Ground investigation device, continuous wall construction device and continuous wall construction method
CN1690317A (en) Method for measuring pipe pile swing resulted from foundation ditch digging
JP2010013895A (en) Measuring device for sediment property in chamber and shield excavator
JP2873397B2 (en) Land Survey System
JP4305309B2 (en) Submarine tunnel construction method and submarine excavator
JP6864211B2 (en) Pile hole construction method, pile hole construction system and excavation rod
JP3531537B2 (en) Prediction method of slack in front of tunnel face
Oota et al. Prediction of shield tunnelling influences on ground deformation based on the construction process
JP2007255117A (en) Earth pressure measuring device for shield machine
JP2010065498A (en) Box body construction method
JP6584311B2 (en) How to understand plastic fluidity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Ref document number: 4523453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250