JP2010013895A - Measuring device for sediment property in chamber and shield excavator - Google Patents

Measuring device for sediment property in chamber and shield excavator Download PDF

Info

Publication number
JP2010013895A
JP2010013895A JP2008176929A JP2008176929A JP2010013895A JP 2010013895 A JP2010013895 A JP 2010013895A JP 2008176929 A JP2008176929 A JP 2008176929A JP 2008176929 A JP2008176929 A JP 2008176929A JP 2010013895 A JP2010013895 A JP 2010013895A
Authority
JP
Japan
Prior art keywords
chamber
rod
sediment
property
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176929A
Other languages
Japanese (ja)
Inventor
Takashi Nakane
隆 中根
Yuzuru Yoshida
譲 吉田
Yoshio Iwai
義雄 岩井
Toshiyuki Kasai
利幸 香西
Masashi Tsuji
昌志 辻
Jun Takahashi
潤 高橋
Taizo Nakamura
太三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Toda Corp
Original Assignee
IHI Corp
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Toda Corp filed Critical IHI Corp
Priority to JP2008176929A priority Critical patent/JP2010013895A/en
Publication of JP2010013895A publication Critical patent/JP2010013895A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To set injection rate of additive to be poured into a chamber properly by measuring properties of sediment in the chamber accurately by a simple configuration. <P>SOLUTION: This measuring device measures properties of sediment in the chamber 6 formed between a cutter head 4 and a bulk head 5 of the shield excavator 1. The bulk head 5 includes a rod-like member 19 supported in the chamber 6 to come in and out freely, an axial direction earth pressure gauge 36 arranged at a tip of the rod-like member 19 to measure pressure in the axial direction of the rod-like member 19, and a sediment property computing means 38 for obtaining properties of the sediment in the chamber 6 based on travel speed of the rod-like member 19 when inserting the rod-like member 19 into the sediment in the chamber 6 and the values measured by the axial direction earth pressure gauge 36. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、チャンバ内土砂性状計測装置及びシールド掘進機に関する。   The present invention relates to a chamber earth and sand property measuring apparatus and a shield machine.

シールド掘進機は、シールド本体の前方に設けられた回転カッタで地山を掘削して、その後方でセグメントを順次組立てることにより、トンネルを構築していくものである。回転カッタの前端には複数のビットが配置されており、回転カッタを回転させてビットにより地山を掘削するようになっている。   In the shield machine, a tunnel is constructed by excavating a natural ground with a rotary cutter provided in front of the shield body and sequentially assembling segments behind it. A plurality of bits are arranged at the front end of the rotary cutter, and the rotary cutter is rotated to excavate natural ground with the bits.

泥土圧シールド掘進機は、回転カッタとシールド本体の前端部近傍に設けられたバルクヘッドとの間に形成されるチャンバ内に添加材を注入し、チャンバ内の土砂(掘削土砂)を添加材と混合して、チャンバ内の土砂に適度な流動性を与えるものである。   The mud pressure shield machine injects additive material into the chamber formed between the rotary cutter and the bulkhead provided near the front end of the shield body, and the soil (excavated soil) in the chamber is used as the additive material. It mixes and gives moderate fluidity to the earth and sand in a chamber.

泥土圧シールド掘進機において、チャンバ内の土砂の性状(硬さ)は、特にチャンバ内に注入する添加材の注入量により変化する。また、チャンバ内の土砂の性状(硬さ)は、シールド掘進機の掘進速度、回転カッタの回転数、添加材の材質や添加材の注入位置等にも影響される。   In the mud pressure shield machine, the property (hardness) of the earth and sand in the chamber varies particularly depending on the amount of additive material injected into the chamber. Moreover, the property (hardness) of the earth and sand in the chamber is also affected by the digging speed of the shield machine, the rotational speed of the rotary cutter, the material of the additive, the injection position of the additive, and the like.

なお、特許文献1には、チャンバ内で回転板を回転させて、チャンバ内の土砂に対する回転板の回転抵抗から、チャンバ内の土砂の流動方向とその大きさとを推定する技術が開示されている。   Patent Document 1 discloses a technique for rotating the rotating plate in the chamber and estimating the flow direction and size of the sediment in the chamber from the rotational resistance of the rotating plate with respect to the sediment in the chamber. .

また、特許文献1には、チャンバ内に計測ロッドを設置して、チャンバ内の土砂が流動する際の計測ロッドの変形量から、チャンバ内の土砂の流動方向とその大きさとを推定する技術が開示されている。   Further, Patent Document 1 discloses a technique for installing a measurement rod in a chamber and estimating the flow direction and size of the sediment in the chamber from the amount of deformation of the measurement rod when the sediment in the chamber flows. It is disclosed.

特開2007−191878号公報JP 2007-191878 A

しかし、特許文献1の回転板の回転抵抗から土砂流動を計測するものでは、回転板を回転させる装置が必要であり、構造が複雑となる。また、特許文献1の計測ロッドの変形量から土砂流動を計測するものでは、計測ロッドの変形と土砂の流動方向が必ずしも一致せず、チャンバ内の土砂流動を精度良く測定することができない虞がある。   However, in the method of measuring sediment flow from the rotational resistance of the rotating plate of Patent Document 1, a device for rotating the rotating plate is required, and the structure becomes complicated. Moreover, in the thing which measures sediment flow from the deformation | transformation amount of the measurement rod of patent document 1, there exists a possibility that the deformation | transformation of a measurement rod and the flow direction of earth and sand may not necessarily correspond, and the sediment flow in a chamber cannot be measured accurately. is there.

そこで、本発明の目的は、簡単な構成で、チャンバ内の土砂の性状を正確に計測することで、チャンバ内に注入する添加材の注入量を適切に設定することができるチャンバ内土砂性状計測装置及びシールド掘進機を提供することにある。   Accordingly, an object of the present invention is to measure the sediment property in the chamber, which can appropriately set the injection amount of the additive to be injected into the chamber by accurately measuring the property of the sediment in the chamber with a simple configuration. It is to provide a device and a shield machine.

上記目的を達成するために請求項1の発明は、シールド掘進機のカッタヘッドとバルクヘッドとの間に形成されたチャンバ内の土砂性状を計測する装置であって、上記バルクヘッドに、上記チャンバ内に出没自在に支持される棒状部材と、該棒状部材の先端に配設され、上記棒状部材の軸方向の圧力を計測する軸方向土圧計と、上記棒状部材を上記チャンバ内の土砂に貫入させた際の上記棒状部材の移動速度と上記軸方向土圧計の測定値とにより、上記チャンバ内の土砂性状を求める土砂性状演算手段とを備えたことを特徴とするチャンバ内土砂性状計測装置である。   In order to achieve the above object, an invention according to claim 1 is an apparatus for measuring sediment properties in a chamber formed between a cutter head and a bulk head of a shield machine, wherein the bulk head includes the chamber. A rod-like member supported so as to freely move in and out, an axial earth pressure gauge disposed at the tip of the rod-like member for measuring the axial pressure of the rod-like member, and the rod-like member penetrating into the earth and sand in the chamber A sediment property measuring apparatus in the chamber, comprising: a sediment property calculating means for determining the sediment property in the chamber based on the moving speed of the rod-shaped member and the measured value of the axial earth pressure gauge. is there.

請求項2の発明は、上記土砂性状演算手段は、上記棒状部材を一定の移動速度で上記チャンバ内の土砂に貫入させた際の上記軸方向土圧計の測定値に基づいて、上記チャンバ内の土砂性状を求める請求項1に記載のチャンバ内土砂性状計測装置である。   According to a second aspect of the present invention, the earth and sand property calculating means is configured to determine whether or not the rod-shaped member is inserted into the earth and sand in the chamber at a constant moving speed based on the measured value of the axial earth pressure gauge. 2. The in-chamber sediment property measuring apparatus according to claim 1, wherein the sediment property is obtained.

請求項3の発明は、上記土砂性状演算手段は、上記棒状部材を一定の圧力で上記チャンバ内の土砂に貫入させた際の上記棒状部材の移動速度に基づいて、上記チャンバ内の土砂性状を求める請求項1に記載のチャンバ内土砂性状計測装置である。   According to a third aspect of the present invention, the earth and sand property calculating means calculates the earth and sand property in the chamber based on the moving speed of the rod member when the rod member is penetrated into the earth and sand in the chamber at a constant pressure. The in-chamber sediment property measuring apparatus according to claim 1 to be obtained.

請求項4の発明は、請求項1から3のいずれかに記載のチャンバ内土砂性状計測装置を備えたシールド掘進機であって、上記土砂性状演算手段で求めた上記チャンバ内の土砂の性状に応じて、上記チャンバ内に注入する添加材の注入量を決定する添加材注入量決定手段を備えたことを特徴とすることを特徴とするシールド掘進機である。   The invention of claim 4 is a shield machine equipped with the in-chamber sediment property measuring device according to any one of claims 1 to 3, wherein the sediment property in the chamber is obtained by the sediment property calculating means. Accordingly, there is provided a shield machine having an additive injection amount determining means for determining an injection amount of the additive injected into the chamber.

本発明によれば、簡単な構成で、チャンバ内の土砂の性状を正確に計測することで、チャンバ内に注入する添加材の注入量を適切に設定することができるという優れた効果を奏する。   According to the present invention, it is possible to accurately set the amount of additive to be injected into the chamber by accurately measuring the property of the earth and sand in the chamber with a simple configuration.

以下、本発明の好適な実施形態を添付図面に基づいて詳述する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係るシールド掘進機の側断面図である。図2は、図1のII−II線矢視図である。   FIG. 1 is a side sectional view of a shield machine according to an embodiment of the present invention. 2 is a view taken along the line II-II in FIG.

図1及び図2に示すように、シールド掘進機1は、略円筒状のシールド本体2と、シールド本体2の前部に回転自在に設けられ、円形断面を掘削する回転カッタ3とを備えている。   As shown in FIGS. 1 and 2, the shield machine 1 includes a substantially cylindrical shield body 2 and a rotary cutter 3 that is rotatably provided at the front of the shield body 2 and excavates a circular cross section. Yes.

シールド本体2の後部には、回転カッタ3により掘削した孔内にセグメントを組立ててトンネルを構築するためのエレクタ(図示せず)と、シールド本体2の内周に所定間隔を隔てて複数設けられ、セグメントに反力を取ってシールド本体2を推進させるためのシールドジャッキ(図示せず)とが設けられる。   At the rear part of the shield body 2, a plurality of erectors (not shown) for assembling the segments in the holes excavated by the rotary cutter 3 and constructing a tunnel are provided on the inner periphery of the shield body 2 at a predetermined interval. A shield jack (not shown) for propelling the shield body 2 by taking a reaction force on the segment is provided.

回転カッタ3(カッタヘッド4)と、シールド本体2の前端部近傍に設けられたバルクヘッド(隔壁)5との間には、回転カッタ3により掘削した土砂(掘削土砂)を取り込むチャンバ6が形成される。バルクヘッド5の下部には、これを貫通してチャンバ6に開口するスクリュコンベア7が設けられる。   Between the rotary cutter 3 (cutter head 4) and the bulkhead (partition wall) 5 provided in the vicinity of the front end of the shield body 2, a chamber 6 for taking in the earth and sand (excavated earth and sand) excavated by the rotary cutter 3 is formed. Is done. A screw conveyor 7 that passes through the bulkhead 5 and opens into the chamber 6 is provided below the bulkhead 5.

回転カッタ3は、バルクヘッド5に回転自在に設けられている。回転カッタ3は、その回転中心から半径方向外側に延出し、掘進方向と平行な軸廻りに回転されるカッタヘッド4を有している。カッタヘッド4の前面には、その半径方向中央にセンタビット8が配置され、そのセンタビット8よりも外周側に複数のカッタビット9が配置されている。カッタヘッド4は、スポーク状に形成されていても良く、面板状に形成されていても良い。   The rotary cutter 3 is rotatably provided on the bulkhead 5. The rotary cutter 3 has a cutter head 4 that extends radially outward from the center of rotation and is rotated about an axis parallel to the excavation direction. On the front surface of the cutter head 4, a center bit 8 is disposed at the center in the radial direction, and a plurality of cutter bits 9 are disposed on the outer peripheral side of the center bit 8. The cutter head 4 may be formed in a spoke shape or a face plate shape.

カッタヘッド4の後面には、掘進方向後方に延出してチャンバ6内の土砂を撹拌するための撹拌羽根(回転撹拌羽根)10が複数設けられており、バルクヘッド5の前面には、掘進方向前方に延出してチャンバ6内の土砂を攪拌するための撹拌羽根(固定撹拌羽根)11が複数設けられている(図1参照)。   On the rear surface of the cutter head 4, a plurality of stirring blades (rotating stirring blades) 10 are provided to extend rearward in the digging direction and stir the earth and sand in the chamber 6. A plurality of stirring blades (fixed stirring blades) 11 extending forward and stirring the earth and sand in the chamber 6 are provided (see FIG. 1).

また、カッタヘッド4の前面には、添加材をチャンバ6内に注入する添加材注入管の添加材注入口12が開口している。本実施形態では、添加材注入口12は、カッタヘッド4の中央部、カッタヘッド4の半径方向中間部、カッタヘッド4の外周部にそれぞれ設けられている(図1参照)。   In addition, an additive material inlet 12 of an additive material injection pipe for injecting the additive material into the chamber 6 is opened in front of the cutter head 4. In this embodiment, the additive inlet 12 is provided in the center part of the cutter head 4, the radial direction intermediate part of the cutter head 4, and the outer peripheral part of the cutter head 4 (refer FIG. 1).

バルクヘッド5には、ギヤ13を有するリング状部材14が回転自在に支持されている。リング状部材14は、回転カッタ3のカッタヘッド4から掘進方向後方に延出する複数の中間ビーム15によって、カッタヘッド4と連結されている。中間ビーム15は、回転カッタ3の周方向に所定間隔を隔てて複数設けられる。シールド本体2内には、リング状部材14を回転させるための複数の駆動モータ16が設けられている。駆動モータ16にはピニオン17が取り付けられており、そのピニオン17がリング状部材14に設けられたギヤ13と歯合するようになっている。   A ring-shaped member 14 having a gear 13 is rotatably supported on the bulkhead 5. The ring-shaped member 14 is connected to the cutter head 4 by a plurality of intermediate beams 15 extending rearward in the digging direction from the cutter head 4 of the rotary cutter 3. A plurality of intermediate beams 15 are provided at predetermined intervals in the circumferential direction of the rotary cutter 3. A plurality of drive motors 16 for rotating the ring-shaped member 14 are provided in the shield body 2. A pinion 17 is attached to the drive motor 16, and the pinion 17 meshes with a gear 13 provided on the ring-shaped member 14.

かかるシールド掘進機1を用いて掘進を行うには、シールドジャッキで既設セグメントを押しながら、駆動モータ16によって回転カッタ3(カッタヘッド4)を回転させる。これによって、シールド掘進機1が前方に推進しながら、地山が掘削される。   In order to dig using the shield machine 1, the rotary cutter 3 (cutter head 4) is rotated by the drive motor 16 while pushing the existing segment with the shield jack. As a result, the natural ground is excavated while the shield machine 1 is propelled forward.

このとき、回転カッタ3で掘削された土砂は、カッタヘッド4とバルクヘッド5との間に形成されたチャンバ6内に流入する。このチャンバ6内では、回転カッタ3(カッタヘッド4)の回転と共に撹拌羽根(回転撹拌羽根)10が回転しており、チャンバ6内の土砂はスクリュコンベア7によって順次バルクヘッド5後方の坑内へ搬出される。   At this time, the earth and sand excavated by the rotary cutter 3 flows into a chamber 6 formed between the cutter head 4 and the bulkhead 5. In this chamber 6, the stirring blade (rotary stirring blade) 10 is rotating with the rotation of the rotary cutter 3 (cutter head 4), and the earth and sand in the chamber 6 is sequentially carried out into the mine behind the bulkhead 5 by the screw conveyor 7. Is done.

本実施形態のシールド掘進機1は、チャンバ6内の土砂性状を計測するチャンバ内土砂性状計測装置18を備えている。   The shield machine 1 according to the present embodiment includes an in-chamber soil property measuring apparatus 18 that measures the sediment property in the chamber 6.

図3は、本発明の一実施形態に係るチャンバ内土砂性状計測装置の側断面図である。図4は、チャンバ内土砂性状計測装置の側断面図であり、棒状部材をチャンバ内に貫入させた状態を示す。図5は、図3のV−V線矢視図である。図6は、図3のVI−VI線矢視図である。図7は、図3のVII−VII線矢視図である。図8は、図3のVIII−VIII線矢視図である。   FIG. 3 is a side cross-sectional view of the in-chamber sediment property measuring apparatus according to one embodiment of the present invention. FIG. 4 is a side cross-sectional view of the in-chamber sediment property measuring apparatus, and shows a state in which a bar-like member is inserted into the chamber. FIG. 5 is a view taken along the line VV in FIG. 6 is a view taken along the line VI-VI in FIG. 7 is a view taken along the line VII-VII in FIG. 8 is a view taken along the line VIII-VIII in FIG.

図3から図8に示すように、本実施形態のチャンバ内土砂性状計測装置18は、バルクヘッド5に、チャンバ6内に出没自在に且つ回転自在に支持される棒状部材19と、棒状部材19をその長手方向に移動させるアクチュエータと、棒状部材19の側面に周方向に間隔を隔てて複数配設され、棒状部材19の長手方向に直交する方向の圧力を計測する直交方向土圧計20と、これら各直交方向土圧計20の計測値に基づいて、チャンバ6内の土砂の流動方向を求める土砂流動演算手段とを備える。   As shown in FIGS. 3 to 8, the in-chamber sediment property measuring apparatus 18 of the present embodiment includes a bar-like member 19 that is supported by the bulkhead 5 so as to be able to move in and out of the chamber 6 and to be rotatable, and a bar-like member 19. And an orthogonal earth pressure gauge 20 that measures a pressure in a direction perpendicular to the longitudinal direction of the rod-shaped member 19, and a plurality of actuators that are disposed on the side surface of the rod-shaped member 19 at intervals in the circumferential direction. Sediment flow calculation means for determining the flow direction of sediment in the chamber 6 based on the measured values of the respective orthogonal earth pressure gauges 20 is provided.

棒状部材19は、略円筒状の筒体21と、筒体21の先端に設けられた切頭円錐状の先端部22とから主に構成される。本実施形態では、棒状部材19は、バルクヘッド5に装着された略円筒状の支持筒体23を介して、バルクヘッド5に回転自在に支持される。支持筒体23の内周には棒状部材19の筒体21と支持筒体23との間をシールするシール部材24が配設される。   The rod-shaped member 19 is mainly composed of a substantially cylindrical tubular body 21 and a truncated conical distal end portion 22 provided at the distal end of the tubular body 21. In the present embodiment, the rod-shaped member 19 is rotatably supported by the bulkhead 5 via a substantially cylindrical support cylinder 23 attached to the bulkhead 5. A seal member 24 that seals between the cylinder 21 of the rod-shaped member 19 and the support cylinder 23 is disposed on the inner periphery of the support cylinder 23.

本実施形態のアクチュエータは、棒状部材19の筒体21内に収容されたジャッキ(本実施形態では、油圧ジャッキ)25からなり、ジャッキ25の一端(図示例では、ロッド27)が棒状部材19の筒体21内に設けられた取付部21aに取り付けられており、ジャッキ25の他端(図示例では、シリンダチューブ26)がバルクヘッド5或いはシールド本体2に取り付けられている。   The actuator according to the present embodiment includes a jack 25 (hydraulic jack in the present embodiment) 25 housed in a cylindrical body 21 of the rod-shaped member 19, and one end of the jack 25 (rod 27 in the illustrated example) is the rod-shaped member 19. The other end of the jack 25 (in the illustrated example, the cylinder tube 26) is attached to the bulkhead 5 or the shield body 2 and attached to an attachment portion 21a provided in the cylindrical body 21.

本実施形態では、ジャッキ25のシリンダチューブ26に対してロッド27が周方向に回転して、これによりジャッキ25のロッド27に取り付けられた棒状部材19が周方向に回転するので、棒状部材19の回転を拘束する回転拘束機構28が設けられる。この回転拘束機構28は、例えば、棒状部材19の筒体21の内周に周方向に間隔を隔てて複数設けられ、棒状部材19の長手方向と平行に延出するレール29と、ジャッキ25のシリンダチューブ26に設けられ、レール29をその両側から挟み込んで係合するガイド30とから構成される。レール29の先端部31は先端に向かい幅が狭くなるテーパ状に形成されており、棒状部材19の筒体21の内周に設けたレール29がジャッキ25のシリンダチューブ26に設けたガイド30に対して掘進方向後方から係合し易くなっている。   In the present embodiment, the rod 27 rotates in the circumferential direction with respect to the cylinder tube 26 of the jack 25, whereby the rod-shaped member 19 attached to the rod 27 of the jack 25 rotates in the circumferential direction. A rotation restraining mechanism 28 for restraining the rotation is provided. For example, a plurality of the rotation restraining mechanisms 28 are provided on the inner periphery of the cylindrical body 21 of the rod-shaped member 19 at intervals in the circumferential direction, the rail 29 extending in parallel with the longitudinal direction of the rod-shaped member 19, and the jack 25 A guide 30 is provided on the cylinder tube 26 and engages with the rail 29 sandwiched from both sides thereof. A tip portion 31 of the rail 29 is formed in a taper shape with a width narrowing toward the tip, and the rail 29 provided on the inner periphery of the cylindrical body 21 of the rod-like member 19 is connected to a guide 30 provided on the cylinder tube 26 of the jack 25. On the other hand, it is easy to engage from the rear in the excavation direction.

棒状部材19の回転を拘束する際には、ジャッキ25を伸長させて、棒状部材19のレール29がジャッキ25のガイド30に係合する位置まで棒状部材19を掘進方向前方側に移動させるようになっている(図4参照)。棒状部材19のレール29をジャッキ25のガイド30に係合させることで、棒状部材19の回転が拘束され、各直交方向土圧計20が所定の向きに位置決めされる。   When restraining the rotation of the rod-shaped member 19, the jack 25 is extended so that the rod-shaped member 19 is moved forward in the digging direction to a position where the rail 29 of the rod-shaped member 19 engages the guide 30 of the jack 25. (See FIG. 4). By engaging the rail 29 of the rod-shaped member 19 with the guide 30 of the jack 25, the rotation of the rod-shaped member 19 is restrained and each orthogonal earth pressure gauge 20 is positioned in a predetermined direction.

他方、棒状部材19を回転させて各直交方向土圧計20の向きを変える際には、ジャッキ25を縮退させて、棒状部材19のレール29がジャッキ25のガイド30から離脱する位置まで棒状部材19を掘進方向後方側に移動させるようになっている(図3参照)。棒状部材19のレール29がジャッキ25のガイド30から離脱し、且つ位置決めピン33が棒状部材19の筒体21の後端部に設けた位置決め穴21bから抜かれた状態で、治具32(図7参照)等を用いて、棒状部材19を周方向に所定角度だけ回転させて各直交方向土圧計20の向きを変えたならば、位置決めピン33を棒状部材19の位置決め穴21bに挿入するようになっている(図3参照)。   On the other hand, when the rod-shaped member 19 is rotated to change the direction of each orthogonal earth pressure gauge 20, the jack 25 is retracted and the rod-shaped member 19 is moved to a position where the rail 29 of the rod-shaped member 19 is detached from the guide 30 of the jack 25. Is moved rearward in the digging direction (see FIG. 3). With the rail 29 of the rod-shaped member 19 detached from the guide 30 of the jack 25 and the positioning pin 33 removed from the positioning hole 21b provided at the rear end portion of the cylindrical body 21 of the rod-shaped member 19, the jig 32 (FIG. 7). If the direction of each orthogonal earth pressure gauge 20 is changed by rotating the rod-shaped member 19 by a predetermined angle in the circumferential direction using the reference pin), the positioning pin 33 is inserted into the positioning hole 21b of the rod-shaped member 19. (See FIG. 3).

本実施形態では、直交方向土圧計20は、圧力を検知する検知部が棒状部材19(筒体21)の外周面から露出するように、棒状部材19の筒体21に取り付けられている。   In the present embodiment, the orthogonal earth pressure gauge 20 is attached to the cylindrical body 21 of the rod-shaped member 19 so that the detection unit for detecting pressure is exposed from the outer peripheral surface of the rod-shaped member 19 (cylindrical body 21).

本実施形態の土砂流動演算手段は、直交方向土圧計20の計測器34(図4参照)に接続された演算器35(図4参照)からなる。   The sediment flow calculation means of this embodiment includes a calculator 35 (see FIG. 4) connected to the measuring instrument 34 (see FIG. 4) of the orthogonal earth pressure gauge 20.

また、シールド掘進機1には、演算器35(土砂流動演算手段)で求めたチャンバ6内の土砂の流動方向及びその大きさに応じて、添加材注入口12からチャンバ6内に注入する添加材の注入量を決定する添加材注入量決定手段が設けられる。本実施形態の添加材注入量決定手段は、上記演算器35からなる。   In addition, the shield machine 1 is injected into the chamber 6 from the additive inlet 12 according to the direction and size of the sediment in the chamber 6 determined by the computing unit 35 (sediment flow computing means). An additive injection amount determining means for determining the injection amount of the material is provided. The additive injection amount determining means of the present embodiment includes the calculator 35.

また、本実施形態では、同一構成のチャンバ内土砂性状計測装置18(棒状部材19)が、バルクヘッド5の下部(スクリュコンベア7の左右)、バルクヘッド5の内周部、バルクヘッド5の上部に、計7つ配設されている(図2参照)。   Moreover, in this embodiment, the chamber internal sediment property measuring apparatus 18 (bar-shaped member 19) of the same structure is provided in the lower part of the bulkhead 5 (left and right of the screw conveyor 7), the inner peripheral part of the bulkhead 5, and the upper part of the bulkhead 5. In total, seven are arranged (see FIG. 2).

チャンバ6内の土砂流動を計測する際には、ジャッキ25を伸長させて、棒状部材19(直交方向土圧計20)をチャンバ6内の所定位置まで掘進方向前方側に移動させる。   When measuring the sediment flow in the chamber 6, the jack 25 is extended, and the rod-shaped member 19 (orthogonal earth pressure gauge 20) is moved to a predetermined position in the chamber 6 forward in the excavation direction.

演算器35は、チャンバ6内に位置する各直交方向土圧計20の計測値に基づいて、チャンバ6内の土砂の流動方向及びその大きさを求め、求めたチャンバ6内の土砂の流動方向及びその大きさに応じて、添加材の注入位置、添加材の注入量を決定するようになっている。   The computing unit 35 obtains the flow direction and size of the earth and sand in the chamber 6 based on the measurement values of the orthogonal earth pressure gauges 20 located in the chamber 6, and obtains the obtained flow direction of the earth and sand in the chamber 6 and According to the size, the injection position of the additive and the injection amount of the additive are determined.

本実施形態では、演算器35は、棒状部材19の周方向に間隔を隔てて配置した各直交方向土圧計20の計測値の差に基づいて、土砂の流動方向及びその大きさを決定するようになっている。   In the present embodiment, the calculator 35 determines the flow direction and size of the earth and sand based on the difference between the measured values of the orthogonal earth pressure gauges 20 arranged at intervals in the circumferential direction of the rod-shaped member 19. It has become.

例えば、演算器35は、棒状部材19の周方向に間隔を隔てて配置した各直交方向土圧計20の内、最大値を得た直交方向土圧計20の計測値とその他の直交方向土圧計20の計測値との差に基づいて、土砂の流動方向及びその大きさを決定する。或いは、演算器35は、棒状部材19の周方向に間隔を隔てて配置した各直交方向土圧計20の内、最小値を得た直交方向土圧計20の計測値とその他の直交方向土圧計20の計測値との差に基づいて、土砂の流動方向及びその大きさを決定する。   For example, the computing unit 35 includes the measured value of the orthogonal soil pressure gauge 20 that has obtained the maximum value among the orthogonal soil pressure gauges 20 arranged at intervals in the circumferential direction of the rod-shaped member 19 and the other orthogonal soil pressure gauges 20. Based on the difference from the measured value, the direction and size of the sediment flow are determined. Alternatively, the computing unit 35 may measure the measured value of the orthogonal soil pressure gauge 20 that has obtained the minimum value of the orthogonal soil pressure gauges 20 arranged at intervals in the circumferential direction of the rod-shaped member 19 and the other orthogonal soil pressure gauges 20. Based on the difference from the measured value, the direction and size of the sediment flow are determined.

また、本実施形態では、演算器35は、土砂流動の大きさが所定値を超えている場合、又は土砂の流動化が十分で土砂が流動していると認められる場合(棒状部材19の周方向に間隔を隔てて配置した各直交方向土圧計20の計測値に所定値を超える差が生じる場合)に、チャンバ6内の土砂が十分に流動化していると判断し、チャンバ6内に注入する添加材の注入量を減少させるようになっている。   Further, in the present embodiment, the computing unit 35 is used when the magnitude of the sediment flow exceeds a predetermined value, or when the sediment is sufficiently fluidized and the sediment is flowing (the circumference of the rod-shaped member 19). When the measured values of the orthogonal earth pressure gauges 20 arranged at intervals in the direction are different from each other by a predetermined value), it is determined that the sediment in the chamber 6 is sufficiently fluidized and injected into the chamber 6 The amount of the additive to be injected is reduced.

一方、演算器35は、土砂流動の大きさが所定値以下である場合、又は土砂の流動化が不十分で土砂が流動していると認められない場合(棒状部材19の周方向に間隔を隔てて配置した各直交方向土圧計20の計測値に所定値を超える差が生じない場合)に、チャンバ6内の土砂が十分に流動化していない(閉塞している)と判断し、チャンバ6内に注入する添加材の量を増加させるようになっている。   On the other hand, when the magnitude of the sediment flow is equal to or less than a predetermined value, or when the sediment 35 is not sufficiently fluidized and the sediment 35 is not recognized to flow (the interval in the circumferential direction of the rod-shaped member 19). When there is no difference between the measured values of the orthogonal earth pressure gauges 20 arranged apart from each other in a predetermined value), it is determined that the sediment in the chamber 6 is not sufficiently fluidized (closed), and the chamber 6 The amount of additive to be injected into the inside is increased.

さらには、演算器35は、複数のチャンバ内土砂性状計測装置18により決定されるチャンバ6内の土砂流動(土砂の流動方向)が適正と思われる土砂流動(土砂の流動方向)と異なっている場合には、チャンバ6内に注入する添加材の量を増加させ、その後、複数のチャンバ内土砂性状計測装置18により決定されるチャンバ6内の土砂流動(土砂の流動方向)が適正と思われる土砂流動(土砂の流動方向)と相似したときに、チャンバ6内に注入する添加材の量を減少させるようになっている。   Further, the computing unit 35 is different from the sediment flow (sediment flow direction) in which the sediment flow (sediment flow direction) within the chamber 6 determined by the plurality of chamber sediment property measuring devices 18 is considered appropriate. In this case, the amount of the additive to be injected into the chamber 6 is increased, and then the sediment flow (the sediment flow direction) in the chamber 6 determined by the plurality of chamber sediment property measuring devices 18 seems to be appropriate. When similar to the sediment flow (the direction of sediment flow), the amount of additive injected into the chamber 6 is reduced.

また、本実施形態のチャンバ内土砂性状計測装置18は、棒状部材19の先端(先端部22の先端)に配設され、棒状部材19の軸方向の圧力を計測する軸方向土圧計36と、棒状部材19をチャンバ6内の土砂に貫入させた際の棒状部材19の移動速度と軸方向土圧計36の測定値とにより、チャンバ6内の土砂の性状(硬さ)を求める土砂性状演算手段とを備える。   Further, the chamber earth and sand property measuring device 18 of the present embodiment is disposed at the tip of the rod-shaped member 19 (tip of the tip portion 22), and an axial earth pressure gauge 36 for measuring the axial pressure of the rod-shaped member 19; Sediment property calculation means for determining the property (hardness) of the soil in the chamber 6 based on the moving speed of the rod-shaped member 19 when the rod-shaped member 19 is inserted into the soil in the chamber 6 and the measured value of the axial earth pressure gauge 36. With.

本実施形態では、軸方向土圧計36は、圧力を検知する検知部が棒状部材19(先端部22)の先端面から露出するように、棒状部材19の先端部22に取り付けられている。   In the present embodiment, the axial earth pressure gauge 36 is attached to the distal end portion 22 of the rod-shaped member 19 so that the detection portion for detecting pressure is exposed from the distal end surface of the rod-shaped member 19 (the distal end portion 22).

本実施形態の土砂性状演算手段は、直交方向土圧計36の計測器37(図9、図10参照)に接続された演算器38(図9、図10参照)からなる。   The earth and sand property calculating means of the present embodiment includes a calculator 38 (see FIGS. 9 and 10) connected to a measuring device 37 (see FIGS. 9 and 10) of the orthogonal earth pressure gauge 36.

また、シールド掘進機1には、演算器38(土砂性状演算手段)で求めたチャンバ6内の土砂の性状に応じて、添加材注入口12からチャンバ6内に注入する添加材の注入量を決定する添加材注入量決定手段が設けられる。本実施形態の添加材注入量決定手段は、上記演算器38からなる。   Further, the shield machine 1 has an injection amount of the additive material injected into the chamber 6 from the additive material inlet 12 according to the property of the soil and sand in the chamber 6 obtained by the calculator 38 (sediment property calculation means). An additive injection amount determining means for determining is provided. The additive injection amount determining means of the present embodiment is composed of the calculator 38.

図9及び図10にそれぞれ、チャンバ6内の土砂性状を計測するシステム構成の一例を示す。   FIG. 9 and FIG. 10 each show an example of a system configuration for measuring the sediment property in the chamber 6.

図9に示すシステム構成では、ジャッキ25のヘッド側油室39に供給する油量が一定油量となるようにジャッキ25のパワーユニット40を制御して、棒状部材19を一定の移動速度でチャンバ6内の土砂に貫入させる。   In the system configuration shown in FIG. 9, the power unit 40 of the jack 25 is controlled so that the amount of oil supplied to the head side oil chamber 39 of the jack 25 becomes a constant amount of oil, and the rod-shaped member 19 is moved at a constant moving speed in the chamber 6. It penetrates the earth and sand inside.

図9に示すシステム構成にあっては、演算器38は、棒状部材19を一定の移動速度でチャンバ6内の土砂に貫入させた際の各貫入距離での軸方向土圧計36の計測値、貫入距離に対する軸方向土圧計36の計測値の変化パターンから、チャンバ6内の土砂の性状(硬さ)を決定するようになっている。棒状部材19の貫入距離及び移動速度は、棒状部材19のストロークセンサ41の検出値に基づいて求める。   In the system configuration shown in FIG. 9, the computing unit 38 measures the measured value of the axial earth pressure gauge 36 at each penetration distance when the rod-like member 19 penetrates the earth and sand in the chamber 6 at a constant moving speed. The property (hardness) of the earth and sand in the chamber 6 is determined from the change pattern of the measured value of the axial earth pressure gauge 36 with respect to the penetration distance. The penetration distance and moving speed of the rod-shaped member 19 are obtained based on the detection value of the stroke sensor 41 of the rod-shaped member 19.

そして、図9に示すシステム構成にあっては、演算器38は、各貫入距離での軸方向土圧計36の計測値が所定値を下回っている場合に、チャンバ6内の土砂の性状(硬さ)が適正な性状(硬さ)よりも軟らかいと判断し、チャンバ6内に注入する添加材の量を減少させ、一方、各貫入距離での軸方向土圧計36の計測値が所定値以上である場合に、チャンバ6内の土砂の性状(硬さ)が適正な性状(硬さ)よりも硬いと判断し、チャンバ6内に注入する添加材の量を増加させるようになっている。   In the system configuration shown in FIG. 9, the computing unit 38 determines the property (hardness) of the soil in the chamber 6 when the measured value of the axial earth pressure gauge 36 at each penetration distance is below a predetermined value. Is determined to be softer than the appropriate property (hardness), and the amount of additive to be injected into the chamber 6 is reduced, while the measured value of the axial earth pressure gauge 36 at each penetration distance exceeds a predetermined value. In this case, it is determined that the property (hardness) of the earth and sand in the chamber 6 is harder than the appropriate property (hardness), and the amount of the additive to be injected into the chamber 6 is increased.

また、図10に示すシステム構成では、ジャッキ25のヘッド側油圧室39とパワーユニット40とを結ぶ油圧供給ライン42に制御弁43が設けられており、棒状部材19をチャンバ6内の土砂に貫入させる際に軸方向土圧計36の計測値が一定となるように、制御弁43によりジャッキ25のヘッド側油室39に供給する油量を調整して、棒状部材19を一定の圧力でチャンバ6内の土砂に貫入させる。   Further, in the system configuration shown in FIG. 10, a control valve 43 is provided in a hydraulic pressure supply line 42 that connects the head side hydraulic chamber 39 of the jack 25 and the power unit 40, and allows the rod-shaped member 19 to penetrate into the earth and sand in the chamber 6. At this time, the amount of oil supplied to the head side oil chamber 39 of the jack 25 is adjusted by the control valve 43 so that the measured value of the axial earth pressure gauge 36 becomes constant, and the rod-shaped member 19 is kept in the chamber 6 at a constant pressure. To penetrate the earth and sand.

図10に示すシステム構成では、演算器38は、棒状部材19を一定の圧力でチャンバ6内の土砂に貫入させた際の各貫入距離での棒状部材19の移動速度、貫入距離に対する棒状部材19の移動速度の変化パターンから、チャンバ6内の土砂の性状(硬さ)を決定するようになっている。棒状部材19の貫入距離及び移動速度は、棒状部材19のストロークセンサ41の検出値に基づいて求める。   In the system configuration shown in FIG. 10, the calculator 38 has the rod-shaped member 19 corresponding to the penetration speed and the moving speed of the rod-shaped member 19 at each penetration distance when the rod-shaped member 19 is penetrated into the earth and sand in the chamber 6 with a constant pressure. The property (hardness) of the earth and sand in the chamber 6 is determined from the change pattern of the moving speed. The penetration distance and moving speed of the rod-shaped member 19 are obtained based on the detection value of the stroke sensor 41 of the rod-shaped member 19.

そして、図10に示すシステム構成にあっては、演算器38は、各貫入距離での棒状部材19の移動速度が所定値を超えている場合に、チャンバ6内の土砂の性状(硬さ)が適正な性状(硬さ)よりも軟らかいと判断し、チャンバ6内に注入する添加材の量を減少させ、一方、各貫入距離での棒状部材19の移動速度が所定値以下である場合に、チャンバ6内の土砂の性状(硬さ)が適正な性状(硬さ)よりも硬いと判断し、チャンバ6内に注入する添加材の量を増加させるようになっている。   In the system configuration shown in FIG. 10, the computing unit 38 determines the property (hardness) of the earth and sand in the chamber 6 when the moving speed of the rod-shaped member 19 at each penetration distance exceeds a predetermined value. Is determined to be softer than the appropriate property (hardness), and the amount of additive to be injected into the chamber 6 is reduced, while the moving speed of the rod-shaped member 19 at each penetration distance is not more than a predetermined value. The property (hardness) of the earth and sand in the chamber 6 is determined to be harder than the appropriate property (hardness), and the amount of the additive to be injected into the chamber 6 is increased.

本実施形態では、バルクヘッド5にチャンバ6内に出没自在に支持された棒状部材19の先端に、軸方向土圧計36を配設したので、棒状部材19をチャンバ6内の土砂に貫入させた際の貫入抵抗を検知することができ、チャンバ6内の土砂の性状(硬さ)を知ることができる。上記貫入抵抗は、棒状部材19を一定速度でチャンバ6内の土砂に貫入させた際に棒状部材19(軸方向土圧計36)が受ける圧力(軸方向土圧計36の計測値)に対応し、或いは棒状部材19を一定圧力でチャンバ6内の土砂に貫入させた際の棒状部材19の移動速度に対応するので、図9に示すシステム構成にあっては、棒状部材19を一定速度でチャンバ6内の土砂に貫入させた際の各貫入距離での軸方向土圧計36の計測値から求めることができ、図10に示すシステム構成にあっては、棒状部材19を一定圧力でチャンバ6内の土砂に貫入させた際の各貫入距離での棒状部材19の移動速度から求めることができる。   In the present embodiment, since the axial earth pressure gauge 36 is disposed at the tip of the rod-shaped member 19 that is supported by the bulkhead 5 so as to be able to move in and out of the chamber 6, the rod-shaped member 19 is inserted into the earth and sand in the chamber 6. The penetration resistance at the time can be detected, and the property (hardness) of the earth and sand in the chamber 6 can be known. The penetration resistance corresponds to the pressure (measured value of the axial earth pressure gauge 36) received by the rod-like member 19 (axial earth pressure gauge 36) when the rod-like member 19 penetrates the earth and sand in the chamber 6 at a constant speed. Alternatively, since the rod-shaped member 19 corresponds to the moving speed of the rod-shaped member 19 when the rod-shaped member 19 is penetrated into the earth and sand in the chamber 6 at a constant pressure, the rod-shaped member 19 is moved at a constant speed in the system configuration shown in FIG. 10 can be obtained from the measured values of the axial earth pressure gauge 36 at each penetration distance when penetrating into the earth and sand. In the system configuration shown in FIG. 10, the rod-like member 19 is kept in the chamber 6 at a constant pressure. It can be determined from the moving speed of the rod-shaped member 19 at each penetration distance when penetrating the earth and sand.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず他の様々な実施形態を採ることが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various other embodiments can be adopted.

例えば、上述の実施形態では、棒状部材19がバルクヘッド5に回転自在に支持されるとしたが、棒状部材19の側面に周方向に間隔を隔てて複数直交方向土圧計20を配設しており、棒状部材19を回転させることなくチャンバ6内の土砂の流動方向を検知することができるので、棒状部材19を必ずしもバルクヘッド5に回転自在に支持させる必要はない。   For example, in the above-described embodiment, the rod-shaped member 19 is rotatably supported by the bulkhead 5, but a plurality of orthogonal earth pressure gauges 20 are arranged on the side surface of the rod-shaped member 19 at intervals in the circumferential direction. In addition, since the flow direction of the earth and sand in the chamber 6 can be detected without rotating the rod-shaped member 19, the rod-shaped member 19 does not necessarily need to be rotatably supported by the bulkhead 5.

上述の実施形態では、棒状部材19の側面に周方向に間隔を隔てて直交方向土圧計20を複数設けるとしたが、棒状部材19の側面に直交方向土圧計20を一つだけ設けても良い。その場合、棒状部材19を所定角度ずつ回転させて直交方向土圧計20の検知部が向く方向を変え、その都度棒状部材19をチャンバ6内の土砂に貫入させて所定角度毎にチャンバ6内の土圧を直交方向土圧計20で計測し、各角度における直交方向土圧計20の計測値に基づいて、チャンバ6内の土砂の流動方向及びその大きさを求める。   In the above-described embodiment, a plurality of orthogonal earth pressure gauges 20 are provided on the side surface of the rod-shaped member 19 at intervals in the circumferential direction. However, only one orthogonal earth pressure gauge 20 may be provided on the side surface of the rod-shaped member 19. . In that case, the rod-shaped member 19 is rotated by a predetermined angle to change the direction in which the detection unit of the orthogonal earth pressure gauge 20 is directed, and each time the rod-shaped member 19 is penetrated into the earth and sand in the chamber 6 and the chamber 6 The earth pressure is measured by the orthogonal earth pressure gauge 20, and the flow direction and size of the earth and sand in the chamber 6 are obtained based on the measurement values of the orthogonal earth pressure gauge 20 at each angle.

また、土砂流動演算手段(演算器35)で求めたチャンバ6内の土砂の流動方向及びその大きさ、土砂性状演算手段(演算器38)で求めたチャンバ6内の土砂の性状(硬さ)に基づいて、シールド掘進機1の掘進速度、回転カッタ3の回転数や添加材の材質等を決定するようにしても良い。   Further, the flow direction and size of the earth and sand in the chamber 6 obtained by the earth and sand flow calculating means (calculator 35), and the property (hardness) of the earth and sand in the chamber 6 obtained by the earth and sand property calculating means (calculator 38). Based on the above, the excavation speed of the shield machine 1, the rotational speed of the rotary cutter 3, the material of the additive, and the like may be determined.

図1は、本発明の一実施形態に係るシールド掘進機の側断面図である。FIG. 1 is a side sectional view of a shield machine according to an embodiment of the present invention. 図2は、図1のII−II線矢視図である。2 is a view taken along the line II-II in FIG. 図3は、本発明の一実施形態に係るチャンバ内土砂性状計測装置の側断面図である。FIG. 3 is a side cross-sectional view of the in-chamber sediment property measuring apparatus according to one embodiment of the present invention. 図4は、本発明の一実施形態に係るチャンバ内土砂性状計測装置の側断面図であり、棒状部材をチャンバ内に貫入させた状態を示す。FIG. 4 is a side cross-sectional view of the in-chamber sediment property measuring apparatus according to one embodiment of the present invention, showing a state in which a bar-like member is inserted into the chamber. 図5は、図3のV−V線矢視図である。FIG. 5 is a view taken along the line VV in FIG. 図6は、図3のVI−VI線矢視図である。6 is a view taken along the line VI-VI in FIG. 図7は、図3のVII−VII線矢視図である。7 is a view taken along the line VII-VII in FIG. 図8は、図3のVIII−VIII線矢視図である。8 is a view taken along the line VIII-VIII in FIG. 図9は、チャンバ内の土砂性状を計測するシステム構成の一例を示す概略図である。FIG. 9 is a schematic diagram showing an example of a system configuration for measuring the sediment property in the chamber. 図10は、チャンバ内の土砂性状を計測するシステム構成の一例を示す概略図である。FIG. 10 is a schematic diagram showing an example of a system configuration for measuring the sediment property in the chamber.

符号の説明Explanation of symbols

1 シールド掘進機
4 カッタヘッド
5 バルクヘッド
6 チャンバ
18 チャンバ内土砂性状計測装置
19 棒状部材
36 軸方向土圧計
38 演算器(土砂性状演算手段、添加材注入量決定手段)
DESCRIPTION OF SYMBOLS 1 Shield machine 4 Cutter head 5 Bulk head 6 Chamber 18 Sediment property measuring device 19 in chamber 19 Bar-shaped member 36 Axial earth pressure gauge 38 Calculator (Sediment property calculation means, additive injection amount determination means)

Claims (4)

シールド掘進機のカッタヘッドとバルクヘッドとの間に形成されたチャンバ内の土砂性状を計測する装置であって、
上記バルクヘッドに、上記チャンバ内に出没自在に支持される棒状部材と、該棒状部材の先端に配設され、上記棒状部材の軸方向の圧力を計測する軸方向土圧計と、上記棒状部材を上記チャンバ内の土砂に貫入させた際の上記棒状部材の移動速度と上記軸方向土圧計の測定値とにより、上記チャンバ内の土砂性状を求める土砂性状演算手段とを備えたことを特徴とするチャンバ内土砂性状計測装置。
An apparatus for measuring sediment properties in a chamber formed between a cutter head and a bulk head of a shield machine,
A rod-like member supported in the bulkhead so as to be able to appear and retract in the chamber, an axial earth pressure gauge disposed at a tip of the rod-like member and measuring an axial pressure of the rod-like member, and the rod-like member And a sediment property calculating means for determining the sediment property in the chamber based on the moving speed of the rod-shaped member when penetrating the sediment in the chamber and the measured value of the axial earth pressure gauge. In-chamber sediment property measuring device.
上記土砂性状演算手段は、上記棒状部材を一定の移動速度で上記チャンバ内の土砂に貫入させた際の上記軸方向土圧計の測定値に基づいて、上記チャンバ内の土砂性状を求める請求項1に記載のチャンバ内土砂性状計測装置。   2. The earth and sand property calculating means obtains the earth and sand property in the chamber based on a measured value of the axial earth pressure gauge when the rod-shaped member is penetrated into the earth and sand in the chamber at a constant moving speed. The soil sediment property measuring apparatus in a chamber described in 1. 上記土砂性状演算手段は、上記棒状部材を一定の圧力で上記チャンバ内の土砂に貫入させた際の上記棒状部材の移動速度に基づいて、上記チャンバ内の土砂性状を求める請求項1に記載のチャンバ内土砂性状計測装置。   The sand and sand property calculating means obtains the sand and sand property in the chamber based on a moving speed of the rod member when the rod member is penetrated into the sand and sand in the chamber at a constant pressure. In-chamber sediment property measuring device. 請求項1から3のいずれかに記載のチャンバ内土砂性状計測装置を備えたシールド掘進機であって、
上記土砂性状演算手段で求めた上記チャンバ内の土砂の性状に応じて、上記チャンバ内に注入する添加材の注入量を決定する添加材注入量決定手段を備えたことを特徴とすることを特徴とするシールド掘進機。
A shield machine equipped with the in-chamber sediment property measuring device according to any one of claims 1 to 3,
According to the present invention, there is provided an additive injection amount determining means for determining an injection amount of the additive to be injected into the chamber according to the property of the sediment in the chamber obtained by the sediment property calculating means. And a shield machine.
JP2008176929A 2008-07-07 2008-07-07 Measuring device for sediment property in chamber and shield excavator Pending JP2010013895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176929A JP2010013895A (en) 2008-07-07 2008-07-07 Measuring device for sediment property in chamber and shield excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176929A JP2010013895A (en) 2008-07-07 2008-07-07 Measuring device for sediment property in chamber and shield excavator

Publications (1)

Publication Number Publication Date
JP2010013895A true JP2010013895A (en) 2010-01-21

Family

ID=41700237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176929A Pending JP2010013895A (en) 2008-07-07 2008-07-07 Measuring device for sediment property in chamber and shield excavator

Country Status (1)

Country Link
JP (1) JP2010013895A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225131A (en) * 2011-04-22 2012-11-15 Taisei Corp Soil pressure management apparatus
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
DE102020133386A1 (en) 2020-12-14 2022-06-15 Herrenknecht Aktiengesellschaft Apparatus and method for driving a tunnel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189495A (en) * 1982-04-27 1983-11-05 三菱重工業株式会社 Drilling of shield tunnel
JP2007191878A (en) * 2006-01-17 2007-08-02 Ohbayashi Corp Jacking management method for earth pressure type shield method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189495A (en) * 1982-04-27 1983-11-05 三菱重工業株式会社 Drilling of shield tunnel
JP2007191878A (en) * 2006-01-17 2007-08-02 Ohbayashi Corp Jacking management method for earth pressure type shield method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225131A (en) * 2011-04-22 2012-11-15 Taisei Corp Soil pressure management apparatus
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
DE102020133386A1 (en) 2020-12-14 2022-06-15 Herrenknecht Aktiengesellschaft Apparatus and method for driving a tunnel
WO2022128532A1 (en) 2020-12-14 2022-06-23 Herrenknecht Aktiengesellschaft Device and method for driving a tunnel

Similar Documents

Publication Publication Date Title
CN203362170U (en) Shield heading machine for specially-shaped-section tunnel
JP4495114B2 (en) Tunnel excavator and tunnel excavation method
JP7337454B2 (en) shield machine
JP5189866B2 (en) Drilling section soil layer judgment device and judgment method for shield machine
JP5048601B2 (en) Sediment flow measuring device in chamber and shield machine
JP6703448B2 (en) Pressure measurement method when constructing a shield tunnel, and pressure measurement segment
JP2010013895A (en) Measuring device for sediment property in chamber and shield excavator
JP2006233677A (en) Boring machine and measuring instrument
JP2008169692A (en) Measuring device for sediment flow in chamber
JP6681775B2 (en) Face pressure control rotary excavator
JP6887842B2 (en) Ground exploration method and penetration tester
JP6898890B2 (en) Shield excavator
JP2008156995A (en) Improvement method of non-excavating soil directly below existing structure
JP2005090174A (en) Measuring device of earth/sand flow in chamber
JP6608272B2 (en) Tunnel excavation method and shield excavator
JP5417232B2 (en) Exploration system, shield machine and shield machine excavation method
JP3353036B2 (en) Excavator for renewing existing buried pipelines and excavation method when renewing existing buried pipelines
JP2002038883A (en) Shield machine and possible excavation distance estimating method therefor
JP7069450B2 (en) Digger and its operation method
JP4878359B2 (en) Cutter head
JP6864211B2 (en) Pile hole construction method, pile hole construction system and excavation rod
JP2023085026A (en) tunnel excavator
JP6396824B2 (en) Shield tunnel forward exploration device and method
JP2020094432A (en) Tunnel boring machine and fatigue measuring method on bearing part
JP2023015919A (en) Face soil water pressure measuring method and face soil water pressure measuring device for shield machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002