JP2014009545A - Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator - Google Patents

Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator Download PDF

Info

Publication number
JP2014009545A
JP2014009545A JP2012148400A JP2012148400A JP2014009545A JP 2014009545 A JP2014009545 A JP 2014009545A JP 2012148400 A JP2012148400 A JP 2012148400A JP 2012148400 A JP2012148400 A JP 2012148400A JP 2014009545 A JP2014009545 A JP 2014009545A
Authority
JP
Japan
Prior art keywords
earth pressure
chamber
excavated soil
plastic fluidity
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012148400A
Other languages
Japanese (ja)
Other versions
JP5967426B2 (en
Inventor
Hirokazu Sugiyama
博一 杉山
Atsuo Shima
厚夫 島
Tadashi Hara
忠 原
Yosuke Watanabe
洋輔 渡邊
Toshimitsu Aso
利光 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2012148400A priority Critical patent/JP5967426B2/en
Publication of JP2014009545A publication Critical patent/JP2014009545A/en
Application granted granted Critical
Publication of JP5967426B2 publication Critical patent/JP5967426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively obtain and evaluate the plastic fluidity of excavated soil in a chamber, in an earth pressure shield construction method.SOLUTION: Earth pressure gauges for measuring the earth pressure of excavated earth at a plurality of positions in a chamber are installed at positions near passing loci of stirring blades, respectively. An index value which becomes an indication of variation situation of the earth pressure when the stirring blade passes near the earth pressure gauge is obtained from a measured value measured by each of the earth pressure gauges, and the plastic fluidity of the excavated earth at the plurality of positions in the chamber is evaluated on the basis of the index values. Measurement results are handled as waveform data and the index value is obtained on the basis of the variation situation of the waveform data. A deviation earth pressure and/or Fourier amplitude is used as the index value. Evaluation results are visually displayed in a display of a management computer. The management computer is provided as management means for calculating the index value from the measured value of the earth pressure gauge and evaluating/displaying the plastic fluidity.

Description

本発明は土圧式シールド工法に関わり、特に掘削時におけるチャンバー内掘削土の塑性流動性を評価するための評価方法、およびその評価方法を実施するための土圧式シールド掘削機に関する。   The present invention relates to an earth pressure shield method, and more particularly to an evaluation method for evaluating plastic fluidity of excavated soil in a chamber during excavation, and an earth pressure shield excavator for performing the evaluation method.

周知のように、土圧式シールド工法は、カッター装置の背後に掘削土を取り込むためのチャンバーを設けた土圧式シールド掘削機を用いて、チャンバー内に取り込んだ掘削土に対して加水ベントナイトや高分子材料等の薬液あるいは気泡等を添加して攪拌翼により攪拌することにより、掘削土に所定の塑性流動性を持たせてその土圧を切羽に作用させて切羽を安定に保持しつつ掘進を行うことを基本とする工法である。   As is well known, the earth pressure type shield method uses hydrostatic bentonite and polymer for the excavated soil taken into the chamber using an earth pressure type shield excavator provided with a chamber for taking the excavated soil behind the cutter device. By adding a chemical solution such as material or bubbles and stirring with a stirring blade, the excavated soil has a predetermined plastic fluidity, and the earth pressure is applied to the face to perform excavation while maintaining the face stably. It is a construction method based on this.

このような土圧式シールド工法においては、掘削土による土圧を切羽の全面に対して均一かつ安定に作用させることが重要であるから、チャンバー内における掘削土の塑性流動性を適切に設定しかつ安定に維持する必要がある。そして、そのためには掘削土がチャンバー内全体において均一に塑性流動化しているかどうかを掘削中に逐次確認する必要があり、特許文献1にはそのための方法についての提案がある。   In such earth pressure type shield method, it is important to apply the earth pressure by the excavated soil uniformly and stably to the entire face of the face, so that the plastic fluidity of the excavated soil in the chamber is appropriately set and It needs to be kept stable. For this purpose, it is necessary to sequentially check whether the excavated soil is uniformly plasticized in the entire chamber during excavation, and Patent Document 1 proposes a method for that purpose.

特許文献1に示される方法は、回転フラッパー式の測定装置をチャンバー内に突出させて設けてそれを掘削土中において回転させた際の回転トルクを測定することにより、測定装置が掘削土から受ける抵抗力に基づいて掘削土の塑性流動性(つまりは掘削土の硬軟の状況)を評価するというものである。   In the method disclosed in Patent Document 1, a rotating flapper type measuring device is provided so as to protrude into a chamber, and the measuring device receives from the excavated soil by measuring the rotational torque when the measuring device is rotated in the excavated soil. The plastic fluidity of the excavated soil (that is, the condition of the excavated soil) is evaluated based on the resistance force.

特開2007−191878号公報JP 2007-191878 A

上記従来の方法では、掘削時におけるチャンバー内における掘削土の塑性流動性をリアルタイムで直接的に把握し管理できるものではあるが、測定装置が掘削土から常に抵抗を受けるために頻繁に故障し易いものであり、その点で実用的ではなく広く普及するに至っていない。
また、測定装置をチャンバー内に突出させて設ける必要があるからその設置位置が制約されるものであり、通常はカッター装置や攪拌翼の回転と干渉しないようにチャンバー内の最外周縁部の1個所に設置するしかなく、したがってチャンバー内全体の塑性流動性を広範囲にわたって把握することは困難である。
In the above conventional method, the plastic fluidity of the excavated soil in the chamber during excavation can be directly grasped and managed in real time, but the measuring device is always subject to resistance from the excavated soil, and thus frequently fails. In that respect, it is not practical and has not become widespread.
Further, since it is necessary to provide the measuring device so as to protrude into the chamber, the installation position thereof is restricted, and usually one of the outermost peripheral portions in the chamber is not interfered with the rotation of the cutter device or the stirring blade. Therefore, it is difficult to grasp the entire plastic fluidity in the chamber over a wide range.

以上のように、現時点ではチャンバー内における掘削土の塑性流動性を精度良くしかも広範囲にわたって評価するための有効適切な手法は確立しておらず、それを可能とする有効適切な手段の開発が必要とされているのが実状である。   As described above, at present, an effective and appropriate method for accurately and extensively evaluating the plastic fluidity of excavated soil in the chamber has not been established, and it is necessary to develop an effective and appropriate means to enable it. It is said that it is the actual situation.

上記事情に鑑み、請求項1記載の発明は、掘削土をチャンバー内において攪拌翼により攪拌して塑性流動性を持たせ、該掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法に適用され、前記チャンバー内における前記掘削土の塑性流動性を評価するための土圧式シールド工法におけるチャンバー内掘削土の塑性流動性評価方法であって、前記チャンバー内の複数個所において前記掘削土の土圧を計測するための複数の土圧計を前記攪拌翼の通過軌跡の近傍位置にそれぞれ設置しておき、前記土圧計による計測値から前記攪拌翼が前記土圧計の近傍位置を通過する際における土圧の変動状況の指標となる指標値をそれぞれ求めて、それら指標値に基づいて前記チャンバー内の複数個所における前記掘削土の塑性流動性を評価することを特徴とする。   In view of the above circumstances, the invention according to claim 1 stabilizes the face by stirring the excavated soil with a stirring blade in the chamber to impart plastic fluidity, and applying the earth pressure of the excavated soil to the face. A method for evaluating the plastic fluidity of excavated soil in a chamber in an earth pressure shield method for evaluating the plastic fluidity of the excavated soil in the chamber, which is applied to an earth pressure shield method of performing excavation, A plurality of earth pressure gauges for measuring the earth pressure of the excavated soil at a plurality of locations are respectively installed in the vicinity of the passage trajectory of the agitating blade, and the agitating blade is measured by the earth pressure gauge from the earth pressure gauge. Each of the index values to be an index of the earth pressure fluctuation status when passing through a nearby position, and based on those index values, the above-mentioned at a plurality of locations in the chamber And evaluating the plastic flow of Kezudo.

請求項2記載の発明は、請求項1記載の発明の評価方法であって、前記土圧計による土圧の計測を所定のサンプリングタイムで刻々と実施して、その計測結果を波形データとして取り扱い、該波形データの変動状況に基づいて前記指標値を求めることを特徴とする。   Invention of Claim 2 is the evaluation method of invention of Claim 1, Comprising: The earth pressure measurement by the earth pressure gauge is performed momentarily at a predetermined sampling time, the measurement result is handled as waveform data, The index value is obtained based on the fluctuation state of the waveform data.

請求項3記載の発明は、請求項2記載の発明の評価方法であって、前記指標値として、前記波形データから排土および掘進の影響を排除して求めた偏差土圧、及び/又は、前記偏差土圧からフーリエ解析により求めたフーリエ振幅を用いることを特徴とする。   Invention of Claim 3 is the evaluation method of invention of Claim 2, Comprising: The deviation earth pressure calculated | required by removing the influence of the earth removal and excavation from the waveform data as the index value, and / or A Fourier amplitude obtained by Fourier analysis from the deviation earth pressure is used.

請求項4記載の発明は、請求項3記載の発明の評価方法であって、前記チャンバー内における任意の位置における指標値を、前記土圧計の位置における前記指標値と、前記土圧計と前記任意の位置との間の距離に基づいて演算して推定値として求めて、該推定値に基づいて前記チャンバー内の全体における掘削土の塑性流動性を評価し、その結果を管理コンピュータのディスプレイに可視化表示することを特徴とする。   Invention of Claim 4 is the evaluation method of invention of Claim 3, Comprising: The index value in the arbitrary positions in the said chamber, the said index value in the position of the said earth pressure gauge, the said earth pressure gauge, and the said arbitrary Calculated based on the distance to the position of the position and obtained as an estimated value, based on the estimated value, evaluate the plastic fluidity of the excavated soil in the entire chamber, and visualize the result on the display of the management computer It is characterized by displaying.

請求項5記載の発明は、掘削土をチャンバー内において攪拌翼により攪拌して塑性流動性を持たせ、該掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う構成の土圧式シールド掘削機であって、前記チャンバー内の複数個所において前記掘削土の土圧を計測するための複数の土圧計を前記攪拌翼の通過軌跡の近傍位置にそれぞれ設置し、前記土圧計による計測値から前記攪拌翼が前記土圧計の近傍位置を通過する際における土圧の変動状況の指標となる指標値をそれぞれ求めるとともに、それら指標値に基づいて前記チャンバー内の複数個所における前記掘削土の塑性流動性を評価し表示するための管理手段を具備してなることを特徴とする。   The invention according to claim 5 is configured to perform excavation while stabilizing the face by agitating the excavated soil with a stirring blade in the chamber to impart plastic fluidity and applying the earth pressure of the excavated earth to the face. A soil pressure type shield excavator, wherein a plurality of earth pressure gauges for measuring the earth pressure of the excavated soil at a plurality of locations in the chamber are respectively installed in the vicinity of the passage trajectory of the stirring blade, and the earth pressure gauge From the measured values, index values serving as indices of fluctuations in earth pressure when the agitating blades pass near the earth pressure gauge are obtained, and the excavated soil at a plurality of locations in the chamber is obtained based on the index values. It is characterized by comprising management means for evaluating and displaying the plastic fluidity.

本発明によれば、攪拌翼が土圧計の近傍位置を通過する際における土圧の変動状態が掘削土の硬軟の状況をすなわち塑性流動性を反映することから、土圧計の計測値からその時点のその位置における掘削土の塑性流動性を有効に把握し評価することが可能である。
したがって本発明によれば、特許文献1に示される従来法による場合(チャンバー内に突出させた測定装置によって掘削土の塑性流動性を直接的に測定する場合)のように測定装置が頻繁に故障してしまう懸念はなく、またチャンバー内に複数の土圧計を支障なく設置することが可能であるから、チャンバー内全体の塑性流動性を広範囲にわたって把握し評価することが可能であり、それに基づき適切な施工管理を行いつつ掘削を行うことが可能である。
According to the present invention, since the fluctuation state of the earth pressure when the agitating blade passes through the position near the earth pressure gauge reflects the hard and soft state of the excavated earth, that is, the plastic fluidity, the measured value from the earth pressure gauge at that time It is possible to effectively grasp and evaluate the plastic fluidity of excavated soil at that position.
Therefore, according to the present invention, the measuring device frequently fails as in the case of the conventional method shown in Patent Document 1 (when the plastic fluidity of excavated soil is directly measured by the measuring device protruding into the chamber). It is possible to install multiple earth pressure gauges in the chamber without hindrance, and it is possible to grasp and evaluate the plastic fluidity of the entire chamber over a wide range. It is possible to excavate while performing proper construction management.

本発明の実施形態を示すもので、(a)は本実施形態の土圧式シールド掘削機の先端部の概略構成を示す側面図、(b)は正面図((a)におけるb−b線視断面図)、(c)は土圧計と攪拌翼の位置関係を示すための要部拡大図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows an embodiment of the present invention, in which (a) is a side view showing a schematic configuration of a tip portion of the earth pressure shield excavator of the present embodiment, and (b) is a front view (viewed along line bb in (a)). (Cross sectional view), (c) is an enlarged view of the main part for showing the positional relationship between the earth pressure gauge and the stirring blade. 同、本発明の原理についての説明図であり、(a)は土圧計による計測値としての波形データを示す図、(b)はその波形データからジャッキ推力と排土の影響を除外した偏差土圧を示す図である。FIG. 4 is an explanatory diagram of the principle of the present invention, (a) is a diagram showing waveform data as a measurement value by a soil pressure gauge, and (b) is a deviation soil excluding the influence of jack thrust and soil removal from the waveform data. It is a figure which shows a pressure. 同、本発明における指標値を示すもので、(a)は偏差土圧を示す図、(b)はフーリエ振幅を示す図である。FIG. 4 shows index values in the present invention, where (a) shows a deviation earth pressure and (b) shows a Fourier amplitude. 同、任意の点の指標値を推定するための演算手法についての説明図である。It is explanatory drawing about the calculation method for estimating the index value of arbitrary points similarly. 同、管理コンピュータへの可視化表示パターンの例を示す図である。It is a figure which shows the example of the visualization display pattern to a management computer.

以下、図1〜図5を参照して、本発明の土圧式シールド工法におけるチャンバー内掘削土の塑性流動性評価方法および土圧式シールド工法の実施形態について説明する。
図1(a)〜(c)は本実施形態の評価方法を適用するために用いる土圧式シールド掘削機の概略構成を示すものである。
これは、基本的には通常の土圧式シールド工法において用いる土圧式シールド掘削機と同様に、(a)に示すようにスキンプレート1の先端部を隔壁2により区画形成して掘削土を取り込むためのチャンバー3を設け、カッター装置4により切羽を掘削することで生じる掘削土をチャンバー3内に取り込み、チャンバー3内の掘削土に対して加水ベントナイトや高分子材料等の薬液あるいは気泡等を添加して攪拌することにより掘削土に所定の塑性流動性を持たせ、その土圧を切羽に作用させて切羽を安定化しつつ掘進を行うように構成したものである。
Hereinafter, with reference to FIGS. 1-5, embodiment of the plastic fluidity | liquidity evaluation method of the excavation soil in a chamber in the earth pressure type shield method of this invention and earth pressure type shield method will be described.
1A to 1C show a schematic configuration of an earth pressure shield excavator used for applying the evaluation method of the present embodiment.
This is basically the same as the earth pressure type shield excavator used in the normal earth pressure type shield construction method, as shown in FIG. The chamber 3 is provided, and the excavated soil generated by excavating the face by the cutter device 4 is taken into the chamber 3, and a chemical solution such as hydrobentonite or a polymer material or bubbles is added to the excavated soil in the chamber 3. The excavated soil is given a predetermined plastic fluidity by stirring and the earth pressure is applied to the face so that the excavation is performed while stabilizing the face.

本実施形態では、チャンバー3内における掘削土の攪拌をカッター装置4の背部に設けた攪拌翼5により行うようにしており、かつ、その攪拌翼5の回転軌跡の近傍位置にチャンバー3内における掘削土の土圧を計測するための土圧計6を複数個所に設置しておいて、それら土圧計6による計測値に基づいて図示しない管理コンピュータ(管理手段)によってチャンバー3内における掘削土の塑性流動性を評価し表示しつつ掘削を行うようにしている。   In this embodiment, the excavated soil in the chamber 3 is agitated by the agitating blade 5 provided on the back of the cutter device 4, and the excavation in the chamber 3 is performed in the vicinity of the rotation trajectory of the agitating blade 5. The earth pressure gauges 6 for measuring the earth pressure of the soil are installed at a plurality of locations, and the plastic flow of the excavated earth in the chamber 3 is performed by a management computer (management means) (not shown) based on the measured values by the earth pressure gauges 6. Excavation is performed while evaluating and displaying the sex.

すなわち、(a)に示すようにカッター装置4の背部の外周縁部には回転中心である軸芯を挟んで両側の位置にそれぞれ攪拌翼5(本実施形態ではそれらの2つの攪拌翼5の形状と設置位置が異なっているので、それらを区別する場合には一方を攪拌翼5a、他方を攪拌翼5bとする)がチャンバー3内に突出する状態で設けられ、カッター装置4の回転とともにそれら攪拌翼5がチャンバー3内において円形の回転軌跡を描いて移動することによりチャンバー3内の掘削土を攪拌するようになっている。
それら攪拌翼5の設置位置は、チャンバー3内の全体において掘削土に対する効率的な攪拌効果が得られるように任意に設定すれば良く、その限りにおいて双方の攪拌翼5の回転軌跡を合致させる(つまり軸芯から等距離の位置に設置する)ことでも良いが、それよりも双方の位置を半径方向に若干ずらした方が全体にわたって広範囲に攪拌することができるのでより好ましい。図示例では(a)に示すように一方の攪拌翼5aよりも他方の攪拌翼5bをやや径方向外側に設置してある。
That is, as shown in (a), the stirring blades 5 (in the present embodiment, the two stirring blades 5 of the two agitating blades 5) are respectively disposed on both sides of the outer peripheral edge of the back of the cutter device 4 with the axis serving as the center of rotation. Since the shape and the installation position are different, in order to distinguish them, one is set as a stirring blade 5a and the other is set as a stirring blade 5b). The agitating blade 5 moves while drawing a circular rotation trajectory in the chamber 3, thereby agitating the excavated soil in the chamber 3.
The installation positions of the stirring blades 5 may be arbitrarily set so that an efficient stirring effect on the excavated soil can be obtained in the entire chamber 3, and as long as the rotation locus of both the stirring blades 5 is matched ( That is, it may be installed at a position equidistant from the shaft center). However, it is more preferable to slightly shift both positions in the radial direction because it can stir over a wide range. In the illustrated example, as shown in (a), the other stirring blade 5b is installed slightly outside in the radial direction from one stirring blade 5a.

そして、(a)に示すように、上記のチャンバー3を区画形成している隔壁2には、チャンバー3内において攪拌される掘削土の土圧を計測するための複数の土圧計6がそれぞれ攪拌翼5の通過軌跡の近傍位置に対して設置されていて、カッター装置4の回転に伴ってその背部に設置されている攪拌翼5が(c)に示すようにそれぞれの土圧計6の近傍を自ずと通過するようになっている。
図示例では、(b)に示すように土圧計6の設置位置を、攪拌翼5の回転軌跡である仮想円を周方向にほぼ均等に6等分する位置としており、したがってチャンバー3内の頂部と底部および高さ方向の中間部にそれぞれ2個所ずつの計6個所に対して土圧計6が円形をなすようにほぼ等間隔で分散配置されている。
Then, as shown in (a), a plurality of earth pressure gauges 6 for measuring the earth pressure of the excavated soil agitated in the chamber 3 are respectively agitated in the partition wall 2 defining the chamber 3. The agitating blades 5 installed at positions near the trajectory of the blades 5 and at the back of the cutter device 4 as the cutter device 4 rotates are located near the respective earth pressure gauges 6 as shown in FIG. It is supposed to pass by itself.
In the illustrated example, as shown in (b), the earth pressure gauge 6 is installed at a position where the virtual circle that is the rotation trajectory of the stirring blade 5 is equally divided into six equally in the circumferential direction. The earth pressure gauges 6 are distributed at almost equal intervals so as to form a circle with respect to a total of six places, two places each at the bottom and the middle in the height direction.

本実施形態では、それぞれの土圧計6によってチャンバー3内の掘削土の土圧を各点において計測し、それらの計測値から攪拌翼5がそれぞれの土圧計6の近傍位置を通過する際における土圧の変動状況の指標となる指標値をそれぞれ求め、それら指標値に基づいてチャンバー3内の全体における掘削土の塑性流動性を評価するものである。
特に本実施形態では、掘削時における土圧計6による土圧計測を所定のサンプリングタイム(たとえば0.25秒間隔)で刻々とほぼ連続的に実施してその計測結果を波形データとして取り扱い、その波形データの変動状況に基づいて指標値としての偏差土圧およびフーリエ振幅を求め、それら偏差土圧やフーリエ振幅に基づいて塑性流動性を評価することを主眼とし、そのための管理手段としての管理コンピュータ(図示略)を具備したものとなっている。
In this embodiment, the earth pressure of the excavated earth in the chamber 3 is measured at each point by each earth pressure gauge 6, and the earth when the agitating blade 5 passes the position near each earth pressure gauge 6 from these measured values. Index values that are indicators of the pressure fluctuation state are obtained, and the plastic fluidity of the excavated soil in the entire chamber 3 is evaluated based on these index values.
In particular, in the present embodiment, earth pressure measurement by the earth pressure gauge 6 at the time of excavation is carried out almost continuously at a predetermined sampling time (for example, at intervals of 0.25 seconds), the measurement result is handled as waveform data, and the waveform data A management computer (not shown) as a management means for obtaining deviation earth pressure and Fourier amplitude as index values based on the fluctuation state and evaluating plastic fluidity on the basis of the deviation earth pressure and Fourier amplitude. ).

本発明の原理について図2〜図3を参照して説明する。
土圧計6により計測されるチャンバー3内全体の平均的な土圧は、掘進の際にはジャッキ推力の影響により大きく上昇するとともに、チャンバー3から排土がなされた際には大きく低下するので、上記のようにごく短いサンプリングタイムでほぼ連続的に計測することで得られる計測値は基本的には図2(a)に示すように全体として上昇と低下を繰り返すような波形を呈するものとなる。
The principle of the present invention will be described with reference to FIGS.
The average earth pressure in the entire chamber 3 measured by the earth pressure gauge 6 greatly increases due to the influence of jack thrust during excavation, and greatly decreases when the earth is discharged from the chamber 3. The measurement value obtained by measuring almost continuously with a very short sampling time as described above basically exhibits a waveform that repeatedly rises and falls as shown in FIG. 2 (a). .

そのような基本的な波形に対して、攪拌翼5が任意の土圧計6の近傍位置を通過した際には、攪拌翼5によって掘削土が直近の土圧計6に対して押圧される影響を受けてその土圧計6による計測値が一時的に僅かに上昇する。
その際の土圧の上昇の度合いは常に一定ではなく、土圧計6の近傍位置におけるその時点の掘削土の塑性流動性に応じて変動するものとなり、掘削土の塑性流動性が低い場合(掘削土が硬くて流動し難い場合)には計測値は顕著に上昇するが、塑性流動性が高い場合(掘削土が柔らかくて十分に流動する場合)には計測値はあまり上昇しないという相関関係にある。
With respect to such a basic waveform, when the agitating blade 5 passes a position in the vicinity of an arbitrary earth pressure gauge 6, there is an effect that the excavated soil is pressed against the nearest earth pressure gauge 6 by the agitating blade 5. In response, the measured value by the earth pressure gauge 6 temporarily rises slightly.
The degree of increase in earth pressure at that time is not always constant, and varies depending on the plastic fluidity of the excavated soil at the position near the earth pressure gauge 6, and the excavated soil has low plastic fluidity (excavation) The measured value rises remarkably when the soil is hard and difficult to flow), but the measured value does not increase so much when the plastic fluidity is high (when the excavated soil is soft and flows sufficiently). is there.

そこで本発明はその際の上昇の度合いを精度良く把握するべく、まず図2(a)に示すような土圧計6の計測値としての波形データからジャッキ推力と排土の影響を排除して、(b)に示すような偏差土圧のデータを求める(具体的には土圧計6の計測値から全土圧平均値を差し引けば良い)。   Therefore, the present invention eliminates the effects of jack thrust and soil removal from the waveform data as the measured value of the earth pressure gauge 6 as shown in FIG. Data on the deviation earth pressure as shown in (b) is obtained (specifically, the total earth pressure average value may be subtracted from the measured value of the earth pressure gauge 6).

この偏差土圧のデータは、攪拌翼5が通過するたびにピークを生じるものとなり、そのピークの大きさと掘削土の硬軟との間には図3(a)に示すように明白な相関関係がある(上述したようにピークの値は掘削土が硬い場合ほど大きくなり、柔らかいほど小さくなる)から、この偏差土圧のデータにおけるピーク値を指標値として掘削土の硬軟つまりは塑性流動性を把握し評価することが可能である。   The deviation earth pressure data has a peak every time the stirring blade 5 passes, and there is a clear correlation between the magnitude of the peak and the hardness of the excavated soil as shown in FIG. Yes (as described above, the peak value increases as the excavated soil is harder, and decreases as the excavated soil is softer). Therefore, the hardness value of the excavated soil, that is, plastic fluidity, is grasped using the peak value in this deviation soil pressure data as an index value. And can be evaluated.

さらに、上記の偏差土圧のデータに対してさらにフーリエ解析を実施して、土圧変動の特性を周期と関連させて示すためのパワースペクトルを求め、そのパワースペクトルから図3(b)に示すようなフーリエ振幅を求めれば、このフーリエ振幅のデータも攪拌翼5が通過する際に掘削土の硬軟に応じたピークが生じるものとなるから、このデータもチャンバー3内における掘削土の塑性流動性を反映した指標値とすることができ、これから塑性流動性を評価することができる。   Further, Fourier analysis is further performed on the above-mentioned data of the earth pressure, and a power spectrum for showing the characteristics of earth pressure fluctuation in relation to the period is obtained, and the power spectrum is shown in FIG. 3B. If such Fourier amplitude is obtained, the Fourier amplitude data also has a peak corresponding to the hardness of the excavated soil when the stirring blade 5 passes through. Therefore, this data is also the plastic fluidity of the excavated soil in the chamber 3. Can be used as an index value, and plastic fluidity can be evaluated from this.

したがって、本実施形態によれば、図3(a)に示す偏差土圧のデータ及び/又は図3(b)に示すフーリエ振幅のデータを指標値として(換言すれば、偏差土圧とフーリエ振幅のいずれか一方または双方のデータを指標値として)、それら指標値としての偏差土圧やフーリエ振幅におけるピーク値と塑性流動性との定性的および定量的な関係を予め実験的にあるいは理論的に求めておけば、それらの指標値から掘削時におけるチャンバー3内のそれぞれの土圧計6の位置での掘削土の塑性流動性を管理コンピュータにより刻々と把握し評価することが可能であり、その結果を施工管理に有効に利用することが可能となる。   Therefore, according to the present embodiment, the deviation earth pressure data shown in FIG. 3A and / or the Fourier amplitude data shown in FIG. 3B are used as index values (in other words, deviation earth pressure and Fourier amplitude). ) Qualitative and quantitative relationship between the peak value in the deviation earth pressure and Fourier amplitude as the index value and the plastic fluidity as an index value in advance or theoretically If obtained, it is possible to grasp and evaluate the plastic fluidity of the excavated soil at the position of each earth pressure gauge 6 in the chamber 3 at the time of excavation from the index value by the management computer. Can be effectively used for construction management.

このような本実施形態の評価方法による場合には、土圧計をチャンバー3に面して設置するだけで良いから、特許文献1に示される従来法による場合のように測定装置が頻繁に故障してしまう懸念はないし、またチャンバー3内の所望位置に複数(多数)の土圧計6を支障なく設置することが可能であるから、チャンバー3内全体の塑性流動性を広範囲に評価することも可能であり、その点で従来法に比べて格段に有効である。   In the case of the evaluation method of this embodiment, the earth pressure gauge only needs to be installed facing the chamber 3, so that the measurement apparatus frequently fails as in the case of the conventional method shown in Patent Document 1. In addition, since it is possible to install a plurality of (many) earth pressure gauges 6 at a desired position in the chamber 3 without hindrance, it is possible to evaluate the plastic fluidity of the entire chamber 3 over a wide range. In that respect, it is much more effective than the conventional method.

なお、本実施形態の評価方法によりチャンバー3内全体における掘削土の塑性流動性を評価するためには、土圧計6による土圧計測点を可及的に多く設定することが好ましいことは当然であるが、あまり多くの土圧計6を設置することは現実的ではないので、上記実施形態のように6個所程度とすることが現実的であるし、少なくとも4個所程度とすることでもチャンバー3内全体の塑性流動性を実用的な程度で把握し評価することが可能である。
また、本実施形態では攪拌翼5が通過する際の土圧変動を検出することを基本とすることから、土圧計6の設置位置は可及的に攪拌翼5の通過位置の近傍とすることが好ましいことが当然ではあるが、攪拌翼5が通過する際の土圧変動を有意に検出し得る位置であれば土圧計6の設置位置は厳密に規定する必要はない。
いずれにしても、土圧計6によるデータのサンプリングタイムは、実質的に連続的な波形データを得るようにごく短くする(たとえば上記実施形態のように0.25秒間隔程度とする)ことが好ましいが、施工管理上において必要なデータを採取し得る限りにおいて任意に設定すれば良い。
In order to evaluate the plastic fluidity of the excavated soil in the entire chamber 3 by the evaluation method of the present embodiment, it is naturally preferable to set as many earth pressure measurement points as possible with the earth pressure gauge 6. However, since it is not realistic to install too many earth pressure gauges 6, it is practical to have about 6 places as in the above embodiment, or even at least about 4 places in the chamber 3. It is possible to grasp and evaluate the entire plastic fluidity to a practical level.
Moreover, in this embodiment, since it is based on detecting the earth pressure fluctuation | variation when the stirring blade 5 passes, the installation position of the earth pressure gauge 6 shall be as close as possible to the passage position of the stirring blade 5 Of course, it is preferable that the position of the earth pressure gauge 6 is not strictly defined as long as the fluctuation of the earth pressure when the stirring blade 5 passes can be detected significantly.
In any case, the sampling time of the data by the earth pressure gauge 6 is preferably very short so as to obtain substantially continuous waveform data (for example, about 0.25 second intervals as in the above embodiment) What is necessary is just to set arbitrarily, as long as data required in construction management can be collected.

さらに、チャンバー3内全体における塑性流動性をより直観的に把握し評価するためには、土圧計6の設置位置における指標値に基づいて任意の位置における指標値を以下の手法により推定することにより、土圧計6の設置位置のみならずチャンバー3内全体での塑性流動性を推定し評価することが好ましい。   Furthermore, in order to grasp and evaluate the plastic fluidity in the whole chamber 3 more intuitively, the index value at an arbitrary position is estimated by the following method based on the index value at the installation position of the earth pressure gauge 6. It is preferable to estimate and evaluate the plastic fluidity not only in the installation position of the earth pressure gauge 6 but also in the entire chamber 3.

すなわち、本実施形態においては、図4に示すように、チャンバー3内における任意の点Pにおける指標値の推定値Vpを、土圧計6の計測値に基づいて実際に演算した各点における指標値V1〜V6と、土圧計6の設置位置と任意の点Pとの間の距離L1〜L6に基づいて、(1)式により演算することで求めることができる。
(1)式における係数α1〜α6は、任意の点Pに対する土圧計6の位置における指標値V1〜V6からの影響度を示す重み付けの係数であり、これらの係数α1〜α6はそれぞれ(2)式で求められる。(2)式における指数nはn=1とすれば良いが、距離による影響をより重視する場合にはn=2あるいはn=3とすることでも良い。
That is, in this embodiment, as shown in FIG. 4, the index value at each point obtained by actually calculating the estimated value Vp of the index value at an arbitrary point P in the chamber 3 based on the measured value of the earth pressure gauge 6. Based on V1 to V6 and distances L1 to L6 between the installation position of the earth pressure gauge 6 and an arbitrary point P, it can be obtained by calculation according to the equation (1).
The coefficients α 1 to α 6 in the equation (1) are weighting coefficients indicating the degree of influence from the index values V 1 to V 6 at the position of the earth pressure gauge 6 with respect to an arbitrary point P. These coefficients α 1 to α 6 are Each is obtained by equation (2). The index n in equation (2) may be n = 1, but n = 2 or n = 3 may be used when the influence of distance is more important.

そして、上記の点Pをチャンバー3内の全体にわたって多数個所に設定してそれら各点での指標値を推定値Vpとしてそれぞれ求め(そのためには各点の位置(座標)に対応するL1〜L6の値をパラメータとして(2)式および(1)式による演算を繰り返せば良い)、その結果を管理コンピュータのディスプレイに刻々と可視化表示することにより、作業員がディスプレイを目視監視することでチャンバー3内全体の塑性流動状態を直観的にかつ容易に評価することが可能となり、それに基づいて適切な施工管理を行うことが可能となる。
その場合のディスプレイでの可視化表示の形式は任意であるが、たとえば図5に示すようにチャンバー3を示す領域を塑性流動性に応じて色別表示したり濃淡を分けて表示することが考えられる。具体的には、たとえば掘削土が過度に硬い領域を赤く表示し、過度に柔らかい領域を青く表示し、適切な領域を白く表示したり、あるいは塑性流動性が悪い領域ほど濃く良い領域ほど薄く表示するようなことも考えられる。
Then, the point P is set at many points throughout the chamber 3, and index values at these points are respectively obtained as estimated values Vp (for this purpose, L1 to L6 corresponding to the positions (coordinates) of each point. (2) and (1) can be repeated using the value of the parameter as a parameter), and the results are visualized and displayed on the display of the management computer every moment, so that the operator can visually monitor the display, and the chamber 3 It is possible to intuitively and easily evaluate the plastic flow state of the entire inside, and it is possible to perform appropriate construction management based on it.
In this case, the form of visualization display on the display is arbitrary. For example, as shown in FIG. 5, it is conceivable that the region indicating the chamber 3 is displayed by color according to the plastic fluidity or displayed in different shades. . Specifically, for example, an area where the excavated soil is excessively hard is displayed in red, an excessively soft area is displayed in blue, an appropriate area is displayed in white, or an area with poor plastic fluidity is displayed in a darker area with a higher density. It is also possible to do this.

以上で本発明の実施形態について説明したが、上記実施形態はあくまで好適な一例であって本発明は上記実施形態に限定されるものでは勿論なく、本発明の評価方法の具体的な手法、たとえば土圧計の計測値から指標値を演算するための具体的な演算手法や、指標値に基づいて塑性流動性を評価し表示するための具体的な評価手法や表示手法、また本発明の評価方法を実施するために用いる土圧式シールド掘削機の各部の具体的な構成については、本発明の要旨を逸脱しない範囲内において適宜の設計的変更や応用が可能であることは当然である。   Although the embodiment of the present invention has been described above, the above embodiment is merely a preferable example, and the present invention is not limited to the above embodiment, and a specific method of the evaluation method of the present invention, for example, Specific calculation method for calculating the index value from the measured value of the earth pressure gauge, specific evaluation method and display method for evaluating and displaying the plastic fluidity based on the index value, and the evaluation method of the present invention As for the specific configuration of each part of the earth pressure shield excavator used for carrying out the above, it is natural that appropriate design changes and applications can be made without departing from the scope of the present invention.

1 スキンプレート
2 隔壁
3 チャンバー
4 カッター装置
5 攪拌翼
6 土圧計
DESCRIPTION OF SYMBOLS 1 Skin plate 2 Bulkhead 3 Chamber 4 Cutter apparatus 5 Stirring blade 6 Earth pressure gauge

Claims (5)

掘削土をチャンバー内において攪拌翼により攪拌して塑性流動性を持たせ、該掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法に適用され、前記チャンバー内における前記掘削土の塑性流動性を評価するための方法であって、
前記チャンバー内の複数個所において前記掘削土の土圧を計測するための複数の土圧計を前記攪拌翼の通過軌跡の近傍位置にそれぞれ設置しておき、前記土圧計による計測値から前記攪拌翼が前記土圧計の近傍位置を通過する際における土圧の変動状況の指標となる指標値をそれぞれ求めて、それら指標値に基づいて前記チャンバー内の複数個所における前記掘削土の塑性流動性を評価することを特徴とする土圧式シールド工法におけるチャンバー内掘削土の塑性流動性評価方法。
The excavated soil is agitated by a stirring blade in a chamber to give plastic fluidity, and is applied to an earth pressure type shield method for excavating while stabilizing the face by applying the earth pressure of the excavated soil to the face. A method for evaluating the plastic fluidity of the excavated soil in
A plurality of earth pressure gauges for measuring the earth pressure of the excavated soil at a plurality of locations in the chamber are respectively installed in the vicinity of the passing trajectory of the stirring blades, and the stirring blades are determined from the measured values by the earth pressure gauges. An index value serving as an index of the fluctuation state of earth pressure when passing through a position near the earth pressure gauge is obtained, and the plastic fluidity of the excavated soil at a plurality of locations in the chamber is evaluated based on the index value. A method for evaluating the plastic fluidity of excavated soil in a chamber in the earth pressure type shield method.
前記土圧計による土圧の計測を所定のサンプリングタイムで刻々と実施して、その計測結果を波形データとして取り扱い、該波形データの変動状況に基づいて前記指標値を求めることを特徴とする請求項1記載の土圧式シールド工法におけるチャンバー内掘削土の塑性流動性評価方法。   The earth pressure is measured by the earth pressure gauge every moment at a predetermined sampling time, the measurement result is handled as waveform data, and the index value is obtained based on the fluctuation state of the waveform data. The plastic fluidity | liquidity evaluation method of the excavation soil in a chamber in the earth pressure type shield construction method of 1 description. 前記指標値として、前記波形データから排土および掘進の影響を排除して求めた偏差土圧、及び/又は、前記偏差土圧からフーリエ解析により求めたフーリエ振幅を用いることを特徴とする請求項2記載の土圧式シールド工法におけるチャンバー内掘削土の塑性流動性評価方法。   The deviation earth pressure obtained by excluding the influence of soil removal and excavation from the waveform data and / or the Fourier amplitude obtained by Fourier analysis from the deviation earth pressure is used as the index value. The plastic fluidity | liquidity evaluation method of the excavation soil in a chamber in the earth pressure type shield construction method of 2 description. 前記チャンバー内における任意の位置における指標値を、前記土圧計の位置における前記指標値と、前記土圧計と前記任意の位置との間の距離に基づいて演算して推定値として求めて、該推定値に基づいて前記チャンバー内の全体における掘削土の塑性流動性を評価し、その結果を管理コンピュータのディスプレイに可視化表示することを特徴とする請求項3記載の土圧式シールド工法におけるチャンバー内掘削土の塑性流動性評価方法。   An index value at an arbitrary position in the chamber is calculated based on the index value at the position of the earth pressure gauge and a distance between the earth pressure gauge and the arbitrary position, and is obtained as an estimated value. 4. The excavated soil in the chamber in the earth pressure shield method according to claim 3, wherein the plastic fluidity of the excavated soil in the entire chamber is evaluated based on the value, and the result is visualized on a display of a management computer. Plastic fluidity evaluation method. 掘削土をチャンバー内において攪拌翼により攪拌して塑性流動性を持たせ、該掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う構成の土圧式シールド掘削機であって、
前記チャンバー内の複数個所において前記掘削土の土圧を計測するための複数の土圧計を前記攪拌翼の通過軌跡の近傍位置にそれぞれ設置し、前記土圧計による計測値から前記攪拌翼が前記土圧計の近傍位置を通過する際における土圧の変動状況の指標となる指標値をそれぞれ求めるとともに、それら指標値に基づいて前記チャンバー内の複数個所における前記掘削土の塑性流動性を評価し表示するための管理手段を具備してなることを特徴とする土圧式シールド掘削機。
An earth pressure shield excavator configured to perform excavation while stabilizing the face by agitating the excavated soil with a stirring blade in the chamber to impart plastic fluidity and applying the earth pressure of the excavated earth to the face. ,
A plurality of earth pressure gauges for measuring the earth pressure of the excavated soil at a plurality of locations in the chamber are installed in the vicinity of the passing trajectory of the stirring blade, respectively, and the stirring blade is measured by the earth pressure gauge based on the measured value by the earth pressure gauge. Each index value that is an index of the fluctuation state of earth pressure when passing through a position near the pressure gauge is obtained, and the plastic fluidity of the excavated soil at a plurality of locations in the chamber is evaluated and displayed based on the index values. The earth pressure type shield excavator characterized by comprising the management means for this.
JP2012148400A 2012-07-02 2012-07-02 Plastic fluidity evaluation method for excavated soil in chamber and earth pressure shield excavator in earth pressure shield method Active JP5967426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012148400A JP5967426B2 (en) 2012-07-02 2012-07-02 Plastic fluidity evaluation method for excavated soil in chamber and earth pressure shield excavator in earth pressure shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148400A JP5967426B2 (en) 2012-07-02 2012-07-02 Plastic fluidity evaluation method for excavated soil in chamber and earth pressure shield excavator in earth pressure shield method

Publications (2)

Publication Number Publication Date
JP2014009545A true JP2014009545A (en) 2014-01-20
JP5967426B2 JP5967426B2 (en) 2016-08-10

Family

ID=50106479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148400A Active JP5967426B2 (en) 2012-07-02 2012-07-02 Plastic fluidity evaluation method for excavated soil in chamber and earth pressure shield excavator in earth pressure shield method

Country Status (1)

Country Link
JP (1) JP5967426B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212476A (en) * 2014-05-02 2015-11-26 株式会社安藤・間 Property measurement evaluation method of excavated soil in chamber for use in earth pressure shield tunneling, shield machine, and plastic fluidity test device of earth and sand
JP2017025480A (en) * 2015-07-16 2017-02-02 清水建設株式会社 Plastic fluidity assessment method for excavated soil inside chamber in earth pressure-type shield construction method, assessment device, and earth pressure-type shield excavator
JP2017096049A (en) * 2015-11-27 2017-06-01 株式会社安藤・間 Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
JP2018071182A (en) * 2016-10-28 2018-05-10 清水建設株式会社 Construction management method of soil pressure type shield construction method, construction management device and soil pressure type shield drilling machine
JP2020193437A (en) * 2019-05-24 2020-12-03 日立造船株式会社 Shield excavator

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2745215A1 (en) * 1977-10-07 1979-04-12 Hitachi Construction Machinery Advancing shield tunnelling machine - uses electronic control system to monitor pressure of excavated mud and to control speed of advance
US4167289A (en) * 1977-09-29 1979-09-11 Hitachi Construction Machinery Co., Ltd. Method and system for controlling earth pressure in tunnel boring or shield machine
JPS5854199A (en) * 1981-09-25 1983-03-31 富士通株式会社 Shield excavator
JPS6085195A (en) * 1983-10-17 1985-05-14 日立建機株式会社 Shield drilling apparatus
US4607889A (en) * 1984-11-29 1986-08-26 Daiho Construction Co., Ltd. Shield tunnel boring machine
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPS6341692U (en) * 1986-08-30 1988-03-18
JPH04198587A (en) * 1990-11-28 1992-07-17 Okumura Corp Slush impregnation control method in shield method
JP2003097181A (en) * 2001-09-21 2003-04-03 Daiho Constr Co Ltd Plastic fluidization measuring method of mud and shield machine having plastic fluidization measuring device
JP2005090174A (en) * 2003-09-19 2005-04-07 Ohbayashi Corp Measuring device of earth/sand flow in chamber
JP2006016934A (en) * 2004-07-05 2006-01-19 Okumura Corp Shield excavator
JP2007191877A (en) * 2006-01-17 2007-08-02 Ohbayashi Corp Design method of shield machine
JP2007217926A (en) * 2006-02-15 2007-08-30 Ohbayashi Corp Propulsion control system for sealed type shield machine, and propulsion control method using the propulsion control system
JP2008169692A (en) * 2008-03-31 2008-07-24 Ohbayashi Corp Measuring device for sediment flow in chamber
JP2008202321A (en) * 2007-02-21 2008-09-04 Kajima Corp Shield machine and method of controlling closure of interior of chamber
JP2010013895A (en) * 2008-07-07 2010-01-21 Ihi Corp Measuring device for sediment property in chamber and shield excavator

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167289A (en) * 1977-09-29 1979-09-11 Hitachi Construction Machinery Co., Ltd. Method and system for controlling earth pressure in tunnel boring or shield machine
DE2745215A1 (en) * 1977-10-07 1979-04-12 Hitachi Construction Machinery Advancing shield tunnelling machine - uses electronic control system to monitor pressure of excavated mud and to control speed of advance
JPS5854199A (en) * 1981-09-25 1983-03-31 富士通株式会社 Shield excavator
JPS6085195A (en) * 1983-10-17 1985-05-14 日立建機株式会社 Shield drilling apparatus
US4607889A (en) * 1984-11-29 1986-08-26 Daiho Construction Co., Ltd. Shield tunnel boring machine
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPS6341692U (en) * 1986-08-30 1988-03-18
JPH04198587A (en) * 1990-11-28 1992-07-17 Okumura Corp Slush impregnation control method in shield method
JP2003097181A (en) * 2001-09-21 2003-04-03 Daiho Constr Co Ltd Plastic fluidization measuring method of mud and shield machine having plastic fluidization measuring device
JP2005090174A (en) * 2003-09-19 2005-04-07 Ohbayashi Corp Measuring device of earth/sand flow in chamber
JP2006016934A (en) * 2004-07-05 2006-01-19 Okumura Corp Shield excavator
JP2007191877A (en) * 2006-01-17 2007-08-02 Ohbayashi Corp Design method of shield machine
JP2007217926A (en) * 2006-02-15 2007-08-30 Ohbayashi Corp Propulsion control system for sealed type shield machine, and propulsion control method using the propulsion control system
JP2008202321A (en) * 2007-02-21 2008-09-04 Kajima Corp Shield machine and method of controlling closure of interior of chamber
JP2008169692A (en) * 2008-03-31 2008-07-24 Ohbayashi Corp Measuring device for sediment flow in chamber
JP2010013895A (en) * 2008-07-07 2010-01-21 Ihi Corp Measuring device for sediment property in chamber and shield excavator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011026362; 小西由人、松原健太、高橋寛、守屋洋一、北山篤: '泥土圧シールドにおけるチャンバー内の土砂流動管理技術の実施工への適用' 土木学会第61回年次学術講演概要集 , 20060901, 第203頁、第204頁, 土木学会 *
JPN6011026364; 松原健太、櫻井裕一、猪瀬研一、北山篤: '大断面泥土圧シールドにおけるチャンバー内可視化技術' 土木学会第60回年次学術講演概要集 , 20050820, 第201頁、第202頁, 土木学会 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212476A (en) * 2014-05-02 2015-11-26 株式会社安藤・間 Property measurement evaluation method of excavated soil in chamber for use in earth pressure shield tunneling, shield machine, and plastic fluidity test device of earth and sand
JP2017025480A (en) * 2015-07-16 2017-02-02 清水建設株式会社 Plastic fluidity assessment method for excavated soil inside chamber in earth pressure-type shield construction method, assessment device, and earth pressure-type shield excavator
JP2017096049A (en) * 2015-11-27 2017-06-01 株式会社安藤・間 Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
JP2018071182A (en) * 2016-10-28 2018-05-10 清水建設株式会社 Construction management method of soil pressure type shield construction method, construction management device and soil pressure type shield drilling machine
JP2020193437A (en) * 2019-05-24 2020-12-03 日立造船株式会社 Shield excavator
JP7287834B2 (en) 2019-05-24 2023-06-06 地中空間開発株式会社 shield machine

Also Published As

Publication number Publication date
JP5967426B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5967426B2 (en) Plastic fluidity evaluation method for excavated soil in chamber and earth pressure shield excavator in earth pressure shield method
CN103136102B (en) The fluency test method and device of a kind of Android platform
EP2434266B1 (en) Sideband energy ratio method for gear mesh fault detection
JP6905364B2 (en) Plastic fluidity evaluation method, evaluation device and soil pressure type shield excavator of excavated soil in the chamber in the earth pressure type shield method
JP4854538B2 (en) Shielding machine and chamber blockage management method
JP6416496B2 (en) Method for measuring and evaluating the properties of excavated soil in the chamber used for earth pressure shield method, shield excavator and earth and sand plastic fluidity test equipment
JP7311244B2 (en) Ground evaluation system and ground evaluation method
JP4770472B2 (en) Promotion management method of earth pressure type shield method
CN104903542A (en) Monitor and control of directional drilling operations and simulations
JP2016003430A (en) Discrimination method for soil distribution using shield machine
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
WO2018018661A1 (en) Display method of interactive stability display system for rock slope
CN108024748B (en) Monitoring parameter threshold setting method and monitoring system
JP2016130406A (en) Shear force meter, measurement and evaluation method using the same for excavated soil property in chamber used with earth pressure shield tunneling, shield machine, and plastic fluidity testing device for earth and sand
Chung et al. Relating mobile sensor soil strength to penetrometer cone index
EP3505901A1 (en) Method for diagnosing rotation device by means of rotor-bearing-foundation model
JP2019143387A (en) Operation estimation device and operation estimation method
JP2017096049A (en) Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head
US9041716B2 (en) Multivalue bar graph displays and methods of implementing same
JP2016089623A (en) Ground improvement system and ground improvement method
JP2018156340A (en) Diagnosis device, diagnosis system, diagnosis method and program
JP6342723B2 (en) Discrimination system of face soil distribution by shield machine
JP2017218781A (en) Method and device for plastic fluidity evaluation of excavated soil inside chamber in earth pressure-type shield construction method, and earth pressure-type shield excavator
JP6524523B2 (en) Method of evaluating plasticity of excavated soil in chamber in earth pressure type shield method, evaluation device and earth pressure type shield drilling machine
JP2017020188A (en) Method and apparatus for evaluating plastic fluidity of excavated soil in chamber in earth pressure balanced shield method, and earth pressure balanced shield excavator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5967426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150