JP2017096049A - Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head - Google Patents

Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head Download PDF

Info

Publication number
JP2017096049A
JP2017096049A JP2015231640A JP2015231640A JP2017096049A JP 2017096049 A JP2017096049 A JP 2017096049A JP 2015231640 A JP2015231640 A JP 2015231640A JP 2015231640 A JP2015231640 A JP 2015231640A JP 2017096049 A JP2017096049 A JP 2017096049A
Authority
JP
Japan
Prior art keywords
cutter head
shear force
pressure
chamber
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015231640A
Other languages
Japanese (ja)
Other versions
JP6678438B2 (en
Inventor
幸司 粥川
Koji Kayukawa
幸司 粥川
圭祐 新原
Keisuke Niihara
圭祐 新原
浩 名倉
Hiroshi Nagura
浩 名倉
健 越田
Takeshi Koshida
健 越田
藤本 明生
Akio Fujimoto
明生 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2015231640A priority Critical patent/JP6678438B2/en
Publication of JP2017096049A publication Critical patent/JP2017096049A/en
Application granted granted Critical
Publication of JP6678438B2 publication Critical patent/JP6678438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To relatively evaluate and determine a property of excavated soil in a chamber.SOLUTION: In the method, an earth pressure gauge 16 and a shearing force measurement device 17 are disposed at various parts inside the chamber 12, closely to each other at an almost same position, for measuring pressure and shearing force exerted on various parts inside the chamber 12 with the earth pressure gauge 16 and the shearing force measurement device 17. A property of excavated sediment inside the chamber 12 is evaluated and determined based on a numeral obtained by dividing a value of shearing force by a value of earth and water pressure, measured at various parts inside the chamber 12.SELECTED DRAWING: Figure 1

Description

本発明は、土圧式シールド掘進機、泥土圧式シールド掘進機などの土圧系シールド掘進機を使用するシールド工法、土圧式掘進機、泥土圧式掘進機などの土圧系掘進機を使用する推進工法など各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法、及び土圧式シールド掘進機、泥土圧式シールド掘進機などの土圧系シールド掘進機、泥水式シールド掘進機を使用するシールド工法、土圧式掘進機、泥土圧式掘進機などの土圧系掘進機、泥水式掘進機を使用する推進工法など各種の掘削工法に用いるカッターヘッド前方の切羽の土質評価判定方法に関する。   The present invention relates to a shield method using earth pressure shield machine such as earth pressure shield machine, mud pressure shield machine, propulsion method using earth pressure machine such as earth pressure machine and mud pressure machine Properties evaluation judgment method of excavated sediment in the chamber used for various excavation methods, etc., earth pressure type shield excavator, earth pressure type shield excavator such as mud pressure type shield excavator, shield method using mud type shield excavator, The present invention relates to a soil quality evaluation and judgment method in front of a cutter head used in various excavation methods such as earth pressure type excavators, mud pressure excavators, etc., and propulsion methods using mud excavators.

本願発明者らは、先の出願(特許文献1)において、シールド掘進機を使用して掘削する地山の土砂の性質について、砂質土、砂礫は、粘着性がないが、土粒子のかみ合わせ効果やダイレイタンシーがあり、これがカッターの回転、土砂撹拌時の抵抗となり、粘性土は土粒子のかみ合わせ効果は少ないものの、粘着性、つまり土粒子間の吸着、土粒子とカッターや隔壁との吸着があり、これがカッターの回転、土砂撹拌時の抵抗となり、これらの抵抗の大きさは一般に土砂の硬軟によって異なることに着目し、これらの大きさを隔壁やカッタースポーク、又は撹拌翼、固定翼に設置するせん断力計により測定し、その測定値の大小によって土砂の性状を評価する方法を提案した。   In the previous application (Patent Document 1), the inventors of the present application are concerned with the nature of the earth and sand of the natural ground excavated using a shield machine, although sandy soil and gravel are not sticky, but the soil particles are engaged. There is an effect and dilatancy, and this becomes resistance during cutter rotation and sediment mixing. Although viscous soil has little effect on meshing of soil particles, it is sticky, that is, adsorption between soil particles, soil particles and cutters and partition walls. There is adsorption, and this becomes resistance during cutter rotation and soil agitation, and pay attention to the fact that the magnitude of these resistances generally varies depending on the hardness of the earth and sand, and the magnitude of these resistances is determined by partition walls, cutter spokes, agitation blades, fixed blades We proposed a method to evaluate the properties of earth and sand by measuring with a shear force meter installed in the area.

その他、この種の評価方法で土圧計を用いるものとして、例えば次のような文献(非特許文献(1)−(3))が公開されている。
(1)チャンバー内掘削土の塑性流動性評価と可視化ツールの開発 土木学会トンネル工学報告集,vol.22,pp.309-315,2012年11月 杉山博一ほか
(2)撹拌条件を考慮したチャンバー内塑性流動性評価方法(その1) 中谷篤史ほか
(3)撹拌条件を考慮したチャンバー内塑性流動性評価方法(その2) 杉山博一ほか
上記(2)、(3)はいずれも土木学会第70回年次学術講演会 平成27年9月
これらの報文では、土圧系シールドのチャンバー内塑性流動化の評価として、カッター側に付いている撹拌翼が隔壁に設置した土圧計の近傍を通過する際の土圧の変化、すなわち土圧計と撹拌翼の離隔や撹拌翼の通過速度に対する土圧の変化に着目し、土圧の大きさや振幅と対象土質の硬軟で塑性流動性を評価している。
In addition, for example, the following documents (Non-Patent Documents (1) to (3)) are disclosed as those using earth pressure gauges in this type of evaluation method.
(1) Plastic fluidity evaluation and visualization tool development of excavated soil in the chamber Japan Society of Civil Engineers Tunnel Engineering Report, vol.22, pp.309-315, November 2012 Hirokazu Sugiyama et al. (2) Considering mixing conditions In-chamber plastic fluidity evaluation method (Part 1) Atsushi Nakatani et al. (3) Intra-chamber plastic fluidity evaluation method considering stirring conditions (Part 2) Hirokazu Sugiyama et al. (2) and (3) are both civil engineering society The 70th Annual Scientific Lecture September 2015 In these reports, in the evaluation of the plastic fluidization in the chamber of the earth pressure shield, in the vicinity of the earth pressure gauge installed on the partition wall by the stirring blade attached to the cutter side Focusing on the change in earth pressure when passing through the earth, that is, the change in earth pressure with respect to the separation between the earth pressure gauge and the stirring blade and the passing speed of the stirring blade, the magnitude and amplitude of the earth pressure and the hardness and softness of the target soil are evaluated. doing.

特願2014−95192号Japanese Patent Application No. 2014-95192 杉山博一ほか チャンバー内掘削土の塑性流動性評価と可視化ツールの開発 土木学会トンネル工学報告集 vol.22,pp.309-315 2012年11月Sugiyama Hirokazu et al. Development of visualization tool and visualization of plastic fluidity of excavated soil in chamber Japan Society of Civil Engineers Tunnel Engineering Report vol.22, pp.309-315 Nov 2012 撹拌条件を考慮したチャンバー内塑性流動性評価方法(その1)中 谷篤史ほかIn-chamber plastic fluidity evaluation method considering mixing conditions (Part 1) Atsushi Nakatani and others 撹拌条件を考慮したチャンバー内塑性流動性評価方法(その2)杉 山博一ほかEvaluation method of plastic fluidity in chamber considering mixing conditions (Part 2) Hirokazu Sugiyama et al.

しかしながら、特許文献1の土圧式シールド工法に用いるチャンバー内掘削土の性状測定評価方法では、例えば土被り圧や地下水圧が略一定の場合には、特許文献1に示すせん断力のみの相対変化でチャンバー内の掘削土砂の性状を評価することができるものの、実際のシールド工事においては、シールド路線上で土被り圧や地下水圧が変化したり、地表やトンネル直上に重量物が存在したりするなど、シールド路線上で地山の土圧や水圧が変化する場合があり、このような場合、測定されるせん断力が土砂の性状によって変化するだけでなく、土砂の性状が同じでも、チャンバー内の圧力の状態によって値が変化する可能性があり、この場合、土砂性状の適正な評価を阻害する恐れがある、という問題がある。   However, in the method for measuring and evaluating the properties of the excavated soil in the chamber used in the earth pressure type shield construction method of Patent Document 1, for example, when the earth covering pressure and the groundwater pressure are substantially constant, the relative change of only the shearing force shown in Patent Document 1 is performed. Although the properties of excavated sediment in the chamber can be evaluated, in actual shield construction, soil covering pressure and groundwater pressure may change on the shield route, and heavy objects may exist directly above the ground surface or tunnel. The earth pressure and water pressure of the natural ground may change on the shield route. In such a case, not only the measured shear force changes depending on the property of the earth and sand, but also the property of the earth and sand is the same, There is a possibility that the value may change depending on the state of the pressure, and in this case, there is a problem that there is a possibility that proper evaluation of the sediment property may be hindered.

本発明は、このような従来の問題を解決するもので、土圧式シールド掘進機、泥土圧式シールド掘進機などの土圧系シールド掘進機を使用するシールド工法、土圧式掘進機、泥土圧式掘進機などの土圧系掘進機を使用する推進工法など、各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法において、掘進路線上で土被り圧や地下水圧が変化したり、地表やトンネル直上に重量物が存在したりして、掘進路線上で地山の土圧や水圧が変化する場合でも、同一路線内でチャンバー内の掘削土砂の性状を相対的に評価判定すること、併せて土圧式シールド掘進機、泥土圧式シールド掘進機などの土圧系シールド掘進機、泥水式シールド掘進機を使用するシールド工法、土圧式掘進機、泥土圧式掘進機などの土圧系掘進機、泥水式掘進機を使用する推進工法など、各種の掘削工法に用いるカッターヘッド前方の切羽の土質評価判定方法において、カッターヘッド前方の地山の土質を相対的に評価判定すること、を目的とする。   The present invention solves such a conventional problem, a shield method using earth pressure shield machine such as earth pressure type shield machine, mud pressure type shield machine, earth pressure type machine, mud pressure machine In the method for evaluating and judging the properties of excavated soil in the chamber used for various excavation methods, such as the propulsion method using earth pressure excavators, etc., the earth cover pressure and groundwater pressure change on the excavation route, the ground surface and the tunnel Even if there is a heavy object directly above, and the earth pressure or water pressure of the natural ground changes on the excavation route, the property of the excavated sediment in the chamber is relatively evaluated and judged on the same route, Earth pressure shield machine, earth pressure shield machine such as mud pressure shield machine, shield method using mud type shield machine, earth pressure machine, mud pressure machine, mud type Digging Promotion method of using machine, the soil evaluation method for determining the working face of the front cutter head used in various drilling method, be evaluated relatively determine soil of natural ground in front cutter head, for the purpose of.

上記目的を達成するために、本発明は、先端にカッターヘッドを有し、前記カッターヘッドの後部にチャンバーを備え、前記カッターヘッドで前記カッターヘッド前方の地山の掘削面である切羽を掘削し掘削土砂を前記チャンバーに取り込み、前記チャンバー内で撹拌混合して、当該土砂の土圧を切羽に作用させることにより切羽を安定化させ、地山を掘進する形式の土圧式、泥土圧式の各掘進機を含む土圧系掘進機を使用する各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法であって、
掘削土砂による圧力及びせん断力が作用する前記チャンバー内の各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、
前記チャンバー内の各部に作用する圧力及びせん断力を前記土圧計及び前記せん断力計、又は前記センサにより測定し、
前記チャンバー内の各部におけるせん断力の値を土水圧力の値で除して得た数値によって、前記チャンバー内の掘削土砂の性状を評価判定する、
ことを要旨とする。
また、このチャンバー内の掘削土砂の性状評価判定方法は、次のように具体化される。
(1)チャンバー内における土圧計及びせん断力計、又はセンサの配置位置は、前記チャンバーをなすバルクヘッド及びスキンプレートの内面、撹拌翼の表面、固定翼の表面、アジテータの表面、前記カッターヘッドの前記チャンバーに対向する背面から適宜選定する。
(2)チャンバー内の各部において得られた土水圧力、せん断力、前記せん断力/前記土水圧力の各値を、カッターヘッドの回転角度に基づく前記チャンバー内の土圧計及びせん断力計、又はセンサの位置とともに、コンター図にして表す。
In order to achieve the above object, the present invention has a cutter head at a tip, a chamber at a rear portion of the cutter head, and excavates a face that is an excavation surface of a natural ground in front of the cutter head with the cutter head. The excavated earth and sand is taken into the chamber, stirred and mixed in the chamber, the earth pressure of the earth and sand is applied to the face, the face is stabilized, and each type of earth pressure type and mud pressure type excavation of natural ground It is a property evaluation judgment method of excavated soil in a chamber used for various excavation methods using earth pressure system excavators including machines,
Soil pressure gauge and shear force meter are placed close to each other in the chamber where pressure and shear force due to excavated soil are applied, or soil pressure and shear force can be measured simultaneously. With a simple sensor
Measure the pressure and shear force acting on each part in the chamber with the earth pressure gauge and the shear force meter, or the sensor,
By the numerical value obtained by dividing the value of the shear force in each part in the chamber by the value of soil water pressure, the property of the excavated soil in the chamber is evaluated and determined.
This is the gist.
Moreover, the property evaluation judgment method of the excavation earth and sand in this chamber is actualized as follows.
(1) The position of the earth pressure gauge and shear force meter or sensor in the chamber is as follows: the inner surface of the bulkhead and skin plate, the surface of the stirring blade, the surface of the fixed blade, the surface of the agitator, the surface of the cutter head. It selects suitably from the back surface facing the said chamber.
(2) The earth pressure and shear force gauges in the chamber based on the rotation angle of the cutter head, and the earth water pressure, shear force, and each value of the shear force / the earth water pressure obtained in each part in the chamber, or Contour figure with sensor position.

また、上記目的を達成するために、本発明は、先端にカッターヘッドを有し、前記カッターヘッドの後部にチャンバーを備え、前記カッターヘッドで前記カッターヘッド前方の地山の掘削面である切羽を掘削するとともに、前記チャンバーに泥水を供給して切羽に泥水を送り加圧することにより切羽を安定化させ、地山を掘進する形式の泥水式掘進機を使用する各種の掘削工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法であって、
地山の切羽による圧力及びせん断力が作用する前記カッターヘッドの各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、
前記カッターヘッドの各部に作用する圧力及びせん断力を前記土圧計及び前記せん断力計、又は前記センサにより測定し、
前記カッターヘッドの各部におけるせん断力の値を土水圧力の値で除して得た数値によって、前記カッターヘッド前方の切羽の土質を評価判定する、
ことを要旨とする。
さらに、上記目的を達成するために、本発明は、先端にカッターヘッドを有し、前記カッターヘッドの後部にチャンバーを備え、前記カッターヘッドで前記カッターヘッド前方の地山の掘削面である切羽を掘削し掘削土砂を前記チャンバーに取り込み、前記チャンバー内で撹拌混合して、当該土砂の土圧を切羽に作用させることにより切羽を安定化させ、地山を掘進する形式の土圧式、泥土圧式の各掘進機を含む土圧系掘進機を使用する各種の掘削工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法であって、
地山の切羽による圧力及びせん断力が作用する前記カッターヘッドの各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、
前記カッターヘッドの各部に作用する圧力及びせん断力を前記土圧計及び前記せん断力計、又は前記センサにより測定し、
前記カッターヘッドの各部におけるせん断力の値を土水圧力の値で除して得た数値によって、前記カッターヘッド前方の切羽の土質を評価判定する、
ことを要旨とする。
また、これらカッターヘッド前方の地山切羽の土質評価判定方法は、次のように具体化される。
(1)カッターヘッドにおける土圧計及びせん断力計、又はセンサの配置位置は、カッタスポークの前面、面盤の表面、コピーカッターの先端から適宜選定する。
(2)カッターヘッドの各部において得られた土水圧力、せん断力、前記せん断力/前記土水圧力の各値を、カッターヘッドの回転角度に基づく前記カッターヘッドの土圧計及びせん断力計、又はセンサの位置とともに、コンター図にして表す。
In order to achieve the above object, the present invention includes a cutter head at the tip, a chamber at the rear of the cutter head, and a cutting face that is a ground excavation surface in front of the cutter head. The front of the cutter head used for various excavation methods using the mud type excavator of the type that excavates and stabilizes the face by supplying mud water to the chamber, pressurizing the mud and pressurizing it, and excavating the natural ground It is a soil quality evaluation judgment method of the natural mountain face,
A soil pressure gauge and a shear force meter are arranged close to each other so that the pressure and shear force due to the face of the natural ground act on each part of the cutter head, or the soil water pressure and the shear force are simultaneously applied. Place measurable sensors,
Measure the pressure and shear force acting on each part of the cutter head with the earth pressure gauge and the shear force meter, or the sensor,
According to the numerical value obtained by dividing the value of the shear force in each part of the cutter head by the value of soil water pressure, the soil quality of the face in front of the cutter head is evaluated and determined.
This is the gist.
Furthermore, in order to achieve the above object, the present invention has a cutter head at the tip, a chamber at the rear of the cutter head, and a face that is a drilling surface of a natural ground in front of the cutter head. The excavated soil is taken into the chamber, mixed and stirred in the chamber, the earth pressure of the earth and sand is applied to the face, the face is stabilized, and the earth pressure type, mud pressure type of the type of excavating the natural ground It is a soil evaluation method for determining the soil surface in front of the cutter head used in various excavation methods using earth pressure system excavators including each excavator,
A soil pressure gauge and a shear force meter are arranged close to each other so that the pressure and shear force due to the face of the natural ground act on each part of the cutter head, or the soil water pressure and the shear force are simultaneously applied. Place measurable sensors,
Measure the pressure and shear force acting on each part of the cutter head with the earth pressure gauge and the shear force meter, or the sensor,
According to the numerical value obtained by dividing the value of the shear force in each part of the cutter head by the value of soil water pressure, the soil quality of the face in front of the cutter head is evaluated and determined.
This is the gist.
Further, the soil quality evaluation and determination method for the ground face in front of the cutter head is embodied as follows.
(1) The arrangement position of the earth pressure gauge and shear force meter or sensor in the cutter head is appropriately selected from the front surface of the cutter pork, the surface of the face plate, and the tip of the copy cutter.
(2) The earth pressure and shear force meter of the cutter head based on the rotation angle of the cutter head, and the values of earth water pressure, shear force, and shear force / the earth water pressure obtained at each part of the cutter head, or Contour figure with sensor position.

(1)本発明の各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法によれば、掘削土砂による圧力及びせん断力が作用するチャンバー内の各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、チャンバー内の各部に作用する圧力及びせん断力を土圧計及びせん断力計、又はセンサにより測定し、チャンバー内の各部におけるせん断力の値を土水圧力の値で除して得た数値によって、チャンバー内の掘削土砂の性状を評価判定するようにしたので、掘進路線上で土被り圧や地下水圧が変化したり、地表やトンネル直上に重量物が存在したりして、掘進路線上で地山の土圧や水圧が変化する場合でも、同一路線内でチャンバー内の掘削土砂の性状を相対的に評価判定することができる、という本発明独自の格別な効果を奏する。
この場合、チャンバー内の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッドの回転角度に基づくチャンバー内の土圧計及びせん断力計、又はセンサの位置とともに、コンター図にして表すことで、チャンバー内の掘削土砂の性状を可視化して容易に確認することができる、という利点を有する。
(2)本発明の各種の掘削工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法によれば、地山の切羽による圧力及びせん断力が作用するカッターヘッドの各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、カッターヘッドの各部に作用する圧力及びせん断力を土圧計及びせん断力計、又はセンサにより測定し、カッターヘッドの各部におけるせん断力の値を土水圧力の値で除して得た数値によって、カッターヘッド前方の切羽の土質を評価判定するようにしたので、カッターヘッド前方の地山の土質を相対的に評価判定することができる、という本発明独自の格別な効果を奏する。
この場合、カッターヘッドの各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッドの回転角度に基づくカッターヘッドの土圧計及びせん断力計、又はセンサの位置とともに、コンター図にして表すことで、地山の切羽の土質を可視化して容易に確認することができる、という利点を有する。
(1) According to the method for evaluating and determining the properties of excavated sediment in the chamber used in the various excavation methods of the present invention, earth pressure gauges and shear force meters are generally provided in each part of the chamber where the pressure and shear force of the excavated sediment are applied. Arranged in close proximity so as to be in the same position, or arranged a sensor capable of measuring soil water pressure and shear force at the same time, the pressure and shear force acting on each part in the chamber are measured by earth pressure meter and shear force meter. Or, by measuring with a sensor and dividing the value of shear force at each part in the chamber by the value of soil water pressure, the property of the excavated soil in the chamber is evaluated and judged. Even if the earth pressure or water pressure of the natural ground changes on the excavation route due to changes in soil cover pressure or groundwater pressure, or heavy objects on the ground surface or tunnel, the inside of the chamber within the same route Excavated soil Properties can be evaluated relatively determine the achieves the present invention own particular effect that.
In this case, the earth pressure, shear force, and shear force / earth pressure values obtained at each part in the chamber are determined based on the earth pressure gauge and shear force meter in the chamber based on the rotation angle of the cutter head, or the position of the sensor. At the same time, the contour diagram is advantageous in that the properties of the excavated sediment in the chamber can be visualized and easily confirmed.
(2) According to the soil quality evaluation and judgment method of the ground cutting face in front of the cutter head used in various excavation methods of the present invention, the earth pressure gauge and shear are applied to each part of the cutter head where the pressure and shear force by the ground cutting face are applied. Arrange the force meter close to each other at approximately the same position, or arrange sensors that can measure soil water pressure and shear force at the same time, and measure the pressure and shear force acting on each part of the cutter head. And the shear force meter or sensor, and the value of the shear force at each part of the cutter head divided by the value of soil water pressure was used to evaluate and determine the soil quality of the face in front of the cutter head. The present invention has a special effect that the soil quality of the natural ground in front of the cutter head can be relatively evaluated and determined.
In this case, the soil pressure, shear force, and shear force / soil pressure values obtained at each part of the cutter head are determined based on the cutter head earth pressure gauge and shear force meter, or sensor position based on the rotation angle of the cutter head. At the same time, the contour map has the advantage that the soil texture of the natural mountain face can be visualized and easily confirmed.

本発明の一実施の形態による泥土圧式シールド工法に用いるチャンバー内掘削土砂の性状評価判定方法を示す図The figure which shows the property evaluation judgment method of the excavation sediment in the chamber used for the mud pressure type shield construction method by one embodiment of this invention 同方法の効果を説明するための図で、縦軸にせん断力S(せん断応力τ)、横軸に直力N(直応力σ)をとったMohrの応力場を表す図(砂質土の場合)FIG. 6 is a diagram for explaining the effect of the method, and is a diagram showing a Mohr stress field in which the vertical axis indicates the shear force S (shear stress τ) and the horizontal axis indicates the direct force N (direct stress σ). If) 同方法の効果を説明するための図で、縦軸にせん断力S(せん断応力τ)、横軸に直力N(直応力σ)をとったMohrの応力場を表す図(粘性土の場合)This is a diagram for explaining the effect of this method, and shows the Mohr stress field with the shear force S (shear stress τ) on the vertical axis and the direct force N (direct stress σ) on the horizontal axis (in the case of cohesive soil) ) 同方法に関する実験に用いる掘進機の要部の構成を示す図The figure which shows the structure of the principal part of the excavator used for the experiment regarding the method 同方法に関する実験の概要を示す図Diagram showing the outline of the experiment related to this method 同方法に関する実験のケースを示す図Figure showing the case of experiment related to this method 同方法に関する実験の結果を示す図The figure which shows the result of the experiment regarding this method 本発明の一実施の形態による泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法を示す図The figure which shows the soil quality evaluation judgment method of the natural mountain face in front of the cutter head used for the muddy water type shield construction method by one embodiment of this invention

次に、この発明を実施するための形態について図を用いて説明する。図1に泥土圧式シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法を示している。   Next, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows a property evaluation judgment method for excavated soil in the chamber used in the mud pressure shield method.

図1に示すように、先端にカッターヘッド11を有し、カッターヘッド11の後部にチャンバー12を備える泥土圧式シールド掘進機1(以下、単に掘進機1という。)を使用して行う泥土圧式シールド工法では、カッターヘッド11前方の地山の掘削面である切羽Gを掘削し、掘削した土砂をチャンバー12に取り込み、加泥材を注入して、カッターヘッド11並びにチャンバー12内に配置される撹拌翼131、固定翼132により撹拌混合することにより、掘削土砂を塑性流動性と不透水性を有する泥土に変換し、この泥土をチャンバー12内とチャンバー12から後方に延びるスクリューコンベア14などからなる排土装置内に充満させ、この状態を維持しながらシールドジャッキ15の推力によりチャンバー12内の泥土に泥土圧を発生させて、この土砂の土圧を切羽に作用させることにより切羽Gの土圧と地下水圧に対抗して、切羽Gを安定化させ、掘進機1をその推進量と排土量のバランスを図りながら地山を掘進することが行われる。
このような泥土圧式シールド工法においては、切羽Gの安定を適切に保つために、チャンバー12内の掘削土砂を良好に塑性流動化する必要があり、このため、チャンバー12内掘削土砂の性状の適切な評価が重要となる。
そして、このチャンバー12内の掘削土砂の性状評価判定方法では、掘削土砂による圧力及びせん断力が作用するチャンバー12内の各部に、土圧計16及びせん断力計17を略同一の位置となるように近接配置し、それぞれの受圧面、受感面を基本的にチャンバー12の内側に向けて取り付け、チャンバー12内の各部に作用する圧力及びせん断力を土圧計16及びせん断力計17により測定し、チャンバー12内の各部におけるせん断力の値を土水圧力の値で除して得た数値によって、チャンバー12内の掘削土砂の性状を評価判定する。
なお、ここで土圧計16は、チャンバー12内の各部で発生する土圧(圧力)を検知する略平板形状の計測機材で、片側一方の面が圧力を受け反応(受圧)する受圧面になっている。せん断力計17はチャンバー12内の各部、各部材と掘削土砂との間で発生するせん断力を感知する略平板形状の計測機材で、片側一方の面が圧力を受け反応(感知)する受感面になっている。
As shown in FIG. 1, a mud pressure shield shield is used using a mud pressure shield machine 1 (hereinafter simply referred to as “dig machine 1”) having a cutter head 11 at the tip and a chamber 12 at the rear of the cutter head 11. In the construction method, a face G, which is a ground excavation surface in front of the cutter head 11, is excavated, the excavated earth and sand is taken into the chamber 12, a mud material is injected, and the agitation disposed in the cutter head 11 and the chamber 12 is performed. By stirring and mixing with the blades 131 and the fixed blades 132, the excavated sediment is converted into mud with plastic fluidity and water impermeability, and the mud is discharged from the chamber 12 and the screw conveyor 14 extending backward from the chamber 12, and the like. The soil device is filled and the mud pressure in the mud in the chamber 12 is maintained by the thrust of the shield jack 15 while maintaining this state. The earth pressure of this earth and sand is applied to the face to stabilize the face G against the earth pressure and groundwater pressure of the face G, and the excavator 1 balances the amount of propulsion and the amount of soil removed. The excavation of the natural ground is carried out while planning.
In such a mud pressure type shield construction method, in order to keep the face G properly stable, it is necessary to plastically fluidize the excavated sediment in the chamber 12 appropriately. Evaluation is important.
And in this property evaluation judgment method of the excavated earth and sand in the chamber 12, the earth pressure gauge 16 and the shear force gauge 17 are placed at substantially the same position in each part in the chamber 12 where the pressure and shear force by the excavated earth and sand are applied. Closely arranged, each pressure-receiving surface and sensor-sensitive surface are basically attached to the inside of the chamber 12, and the pressure and shear force acting on each part in the chamber 12 are measured by the earth pressure gauge 16 and the shear force meter 17, The property of the excavated soil in the chamber 12 is evaluated and determined by a numerical value obtained by dividing the value of the shear force at each part in the chamber 12 by the value of the soil water pressure.
Here, the earth pressure gauge 16 is a substantially flat measuring instrument for detecting earth pressure (pressure) generated at each part in the chamber 12, and one surface on one side is a pressure receiving surface that receives pressure and reacts (receives pressure). ing. The shear force meter 17 is a measuring device having a substantially flat plate shape that senses the shear force generated between each part and each member in the chamber 12 and the excavated earth and sand, and is sensitive to one side receiving and reacting (sensing). It is a surface.

この評価判定方法においては、特にチャンバー12内の土圧計16及びせん断力計17の配置位置として、チャンバー12の内面、撹拌翼131の表面、固定翼132の表面、アジテータの表面(不図示)、カッターヘッド11のチャンバー12に対向する背面にそれぞれ、土圧計16及びせん断力計17を略同一の位置となるように近接して設置して、泥土がチャンバー12の内面、撹拌翼131の表面、固定翼132の表面、アジテータの表面、カッターヘッド11の背面に作用する圧力及びせん断力を計測する。
この場合、チャンバー12の内面はチャンバー12の底となるバルクヘッド(隔壁)121、及びチャンバー12の内周面となるシールドスキンプレート10の前端部側内周面であり、このチャンバー12に設置する土圧計16及びせん断力計17は、土圧計16の受圧面、せん断力計17の受感面がチャンバー12のバルクヘッド121とシールドスキンプレート10の前端部側内周面に略同一面となるように、チャンバー12のバルクヘッド121とシールドスキンプレート10の前端部側内周面の適宜の計測位置に埋め込み設置する。
撹拌翼131の表面は、カッターヘッド(カッタースポーク)11の背面に突設されてチャンバー12に向けて延び、カッターヘッド11とともに回転される撹拌翼131の周面であり、固定翼132の表面は、チャンバー12のバルクヘッド121に固定されてシールドスキンプレート10の前端部に向けて延びる固定翼132の周面であり、この撹拌翼131、固定翼132に設置する土圧計16及びせん断力計17は、土圧計16の受圧面、せん断力計17の受感面をカッターヘッド11の回転方向に対して略直交する方向に向けて、すなわち土圧計16の受圧面、せん断力計17の受感面がチャンバー12内の掘削土砂の流れに略対向するように、又はカッターヘッド11の回転方向と略平行にして、すなわち土圧計16の受圧面、せん断力計17の受感面がチャンバー12内の掘削土砂の流れに略沿うように設置する。
なお、この場合、カッターヘッド11は正転方向又は逆転方向に回転可能になっているので、いずれの方向の回転に対しても撹拌翼131、固定翼132の土圧計16、せん断力計17が掘削土砂に反応できるように、2方向の土圧計16、せん断力計17を設置してもよい。また、この場合、土圧計16、せん断力計17はその受圧面、受感面をシールド掘進機1の軸芯に向けて設置してもよく、シールド掘進機1の周面(シールドスキンプレート10の内周面)に向けて設置してもよく、さらに、2方向の土圧計16、せん断力計17を設置してもよい。また、土圧計16、せん断力計17はその受圧面、受感面をシールド掘進機1の後方、すなわちチャンバー12のバルクヘッド121に向けて設置してもよく、シールド掘進機1の前方、すなわちカッターヘッド11の背面に向けて設置してもよく、さらに、その2方向の土圧計16、せん断力計17を設置してもよい。また、土圧計16、せん断力計17は上記各種の設置形式を組み合せて設置してもよい。さらに、この土圧計16、せん断力計17は撹拌翼131、固定翼132の先端に設置されてもよく、この場合、受圧面、受感面をカッターヘッド11の回転方向と略平行に向ければよい。
アジテータについては特に図示していないが、アジテータの表面に設置する土圧計、せん断力計はその受圧面、受感面をアジテータの回転方向に対して略直交する方向に向けて又は略平行に設置する。
なお、この場合、アジテータは正転方向又は逆転方向に回転可能になっているので、いずれの方向の回転に対してもアジテータの土圧計、せん断力計が掘削土砂に反応できるように、2方向の土圧計、せん断力計を設置してもよい。
カッターヘッド(カッタースポーク)11の背面に設置する土圧計16、せん断力計17はその受圧面、受感面をカッターヘッド11の回転方向に対して略直交する方向に向けて又は略平行に設置する。
なお、この場合、カッターヘッド11は正転方向又は逆転方向に回転可能になっているので、いずれの方向の回転に対してもカッターヘッド11の土圧計16、せん断力計17が掘削土砂に反応できるように、2方向の土圧計16、せん断力計17を設置してもよい。
In this evaluation and determination method, the positions of the earth pressure gauge 16 and the shear force meter 17 in the chamber 12 are arranged as the inner surface of the chamber 12, the surface of the stirring blade 131, the surface of the fixed blade 132, the surface of the agitator (not shown), The earth pressure gauge 16 and the shear force meter 17 are installed close to each other on the back surface of the cutter head 11 facing the chamber 12, so that the mud is on the inner surface of the chamber 12, the surface of the stirring blade 131, The pressure and shear force acting on the surface of the fixed wing 132, the surface of the agitator, and the back surface of the cutter head 11 are measured.
In this case, the inner surface of the chamber 12 is a bulkhead (partition wall) 121 serving as the bottom of the chamber 12 and the inner peripheral surface of the shield skin plate 10 serving as the inner peripheral surface of the chamber 12. In the earth pressure gauge 16 and the shear force meter 17, the pressure receiving surface of the earth pressure meter 16 and the sensitive surface of the shear force meter 17 are substantially flush with the bulkhead 121 of the chamber 12 and the inner peripheral surface of the shield skin plate 10 on the front end side. In this manner, the bulkhead 121 of the chamber 12 and the front end portion side inner peripheral surface of the shield skin plate 10 are embedded and installed at appropriate measurement positions.
The surface of the stirring blade 131 is a peripheral surface of the stirring blade 131 that protrudes from the back surface of the cutter head (cutter spoke) 11 and extends toward the chamber 12 and rotates together with the cutter head 11. , A peripheral surface of a fixed blade 132 fixed to the bulkhead 121 of the chamber 12 and extending toward the front end portion of the shield skin plate 10, and the earth pressure gauge 16 and the shear force meter 17 installed on the stirring blade 131, the fixed blade 132. The pressure-receiving surface of the earth pressure gauge 16 and the sensitivity surface of the shear force meter 17 are directed in a direction substantially orthogonal to the rotation direction of the cutter head 11, that is, the pressure-receiving surface of the earth pressure gauge 16 and the sensitivity of the shear force meter 17. The surface of the earth pressure gauge 16 is substantially opposite to the flow of excavated earth and sand in the chamber 12 or substantially parallel to the rotational direction of the cutter head 11, that is, the pressure receiving surface of the earth pressure gauge 16; N sensitive surface of the shear force gauge 17 is installed along substantially the flow of drilling sediment in the chamber 12.
In this case, since the cutter head 11 can rotate in the forward direction or the reverse direction, the earth pressure gauge 16 of the stirring blade 131, the fixed blade 132, and the shear force meter 17 are capable of rotating in any direction. A two-direction earth pressure gauge 16 and a shear force gauge 17 may be installed so as to respond to the excavated earth and sand. In this case, the earth pressure gauge 16 and the shear force gauge 17 may be installed with their pressure-receiving surface and sensing surface facing the axis of the shield machine 1, and the peripheral surface (shield skin plate 10) of the shield machine 1. Of the earth pressure gauge 16 and the shear force meter 17 in two directions. Further, the earth pressure gauge 16 and the shear force meter 17 may be installed with the pressure receiving surface and the sensing surface facing the back of the shield machine 1, that is, toward the bulkhead 121 of the chamber 12, or in front of the shield machine 1, that is, You may install toward the back surface of the cutter head 11, Furthermore, you may install the earth pressure gauge 16 and the shear force meter 17 of the 2 directions. Further, the earth pressure gauge 16 and the shear force gauge 17 may be installed in combination with the above various installation types. Further, the earth pressure gauge 16 and the shear force gauge 17 may be installed at the tips of the stirring blade 131 and the fixed blade 132. In this case, if the pressure receiving surface and the sensing surface are oriented substantially parallel to the rotation direction of the cutter head 11. Good.
The agitator is not specifically shown, but the earth pressure gauge and shear force meter installed on the surface of the agitator are installed so that the pressure receiving surface and the sensing surface thereof are oriented in a direction substantially orthogonal to the rotational direction of the agitator or substantially parallel to it. To do.
In this case, since the agitator can rotate in the forward direction or the reverse direction, the agitator's earth pressure gauge and shear force meter can react to the excavated soil in any direction. An earth pressure gauge or shear force meter may be installed.
The earth pressure gauge 16 and the shear force meter 17 installed on the back surface of the cutter head (cutter spoke) 11 are installed so that the pressure receiving surface and the sensing surface thereof are oriented in a direction substantially orthogonal to the rotation direction of the cutter head 11 or substantially parallel thereto. To do.
In this case, since the cutter head 11 is rotatable in the forward direction or the reverse direction, the earth pressure gauge 16 and the shear force meter 17 of the cutter head 11 react to the excavated soil with respect to rotation in any direction. A two-direction earth pressure gauge 16 and a shear force gauge 17 may be installed so as to be able to do so.

このようにしてこのチャンバー12内の掘削土砂の性状評価判定方法では、掘進機1のカッターヘッド11で掘削した土砂をカッターヘッド11後部に設けたチャンバー12に取り込み、加泥材を注入して、チャンバー12内の撹拌翼131、固定翼132、アジテータにより撹拌混合する間、この撹拌混合時の土砂の流動により、チャンバー12を構成するバルクヘッド121及びシールドスキンプレート10の内面、撹拌翼131及び固定翼132の表面、アジテータの表面、カッターヘッド11の背面にそれぞれ圧力、せん断力が発生し、その大きさは一般に土砂の硬軟によって異なるので、その大きさを各土圧計16及び各せん断力計17により測定し、これにより得たせん断力の値を土水圧力の値で除した数値(「せん断力/土水圧力」で算出される掘削土砂とバルクヘッドなどチャンバー内の各部との摩擦係数に相当)の大きさ(大小)で、掘削土砂の性状を評価する。このようにせん断力の値を土水圧力の値で除して無次元化することで、土被り圧や地下水圧、さらに重量物などによる土圧の変化に影響されることなしに、チャンバー12内の掘削土砂の性状を相対評価することが可能となる。
図2,図3は縦軸にせん断力S(せん断応力τ)、横軸に直力N(直応力σ)をとったMohrの応力場を表す。せん断力計17はS1,S2,S3を測定するものであり、土圧計16は測定される土水圧に当該受圧面積を乗ずることで直力Nを算出するものである。直力Nの大きさは土被り圧や地下水圧、さらに重量物などによって変化する。
図2は砂質土の場合で、状態(1)はある粘着力C(一般にはほとんど0に近い)と内部摩擦角φ1を有する原地盤の状態とする。これに加泥材を添加し撹拌すると、砂粒子のかみ合わせの抵抗が減少し、状態(2)(内部摩擦角φ2)、または状態(3)(内部摩擦角φ3)の性状となる(φ123)。
一方,理論上ある直力場N(直応力場σ)において、状態(1),(2),(3)でそれぞれせん断力S1,S2,S3(またはせん断応力τ1,τ2,τ3)が表される(S1,S2,S3は状態(1),(2),(3)を表す直線と直応力場Nを通り縦軸に平行な直線との交点をも表す)。また、せん断力/土水圧力は,ある直力場N(直応力場σ)において、状態(1),(2),(3)に応じてS1/N,S2/N,S3/Nを表すもので、これは原点OとそれぞれS1,S2,S3を結ぶ直線の勾配を表す(S1/N>S2/N>S3/N)。
すなわち,S1/N,S2/N,S3/Nを算出評価することは状態(1),(2),(3)の内部摩擦角φ1,φ2,φ3を評価することと同値であるので、掘削土砂の性状を相対評価できると言える。
図3は粘性土の場合で、状態(1)はある内部摩擦角φ(一般にはほとんど0に近い)と粘着力C1を有する原地盤の状態とする。これに加泥材を添加し撹拌すると、土粒子間の分子間力が減少し、状態(2)(粘着力C2),または状態(3)(粘着力C3)の性状となる(C1>C2>C3)。
一方,理論上ある直力場N(直応力場σ)において,状態(1),(2),(3)でそれぞれせん断力S1,S2,S3(またはせん断応力τ1,τ2,τ3)が表される(S1,S2,S3は状態(1),(2),(3)を表す直線と直応力場Nを通り縦軸に平行な直線との交点をも表す)。また、せん断力/土水圧力は、ある直力場N(直応力場σ)において、状態(1),(2),(3)に応じてS1/N,S2/N,S3/Nを表すもので、これは原点OとそれぞれS1,S2,S3を結ぶ直線の勾配を表す(S1/N>S2/N>S3/N)。
すなわち,S1/N,S2/N,S3/Nを算出評価することは状態(1),(2),(3)の粘着力C1,C2,C3を評価することと同値であるので,掘削土砂の性状を相対評価できると言える。
In this way, in the property evaluation judgment method of the excavated earth and sand in the chamber 12, the earth and sand excavated by the cutter head 11 of the excavating machine 1 is taken into the chamber 12 provided at the rear part of the cutter head 11, and the mud is injected. During the stirring and mixing by the stirring blade 131, the fixed blade 132, and the agitator in the chamber 12, the inner surface of the bulkhead 121 and the shield skin plate 10 constituting the chamber 12, the stirring blade 131 and the fixed member are caused by the flow of earth and sand during the stirring and mixing. Pressure and shear force are generated on the surface of the wing 132, the surface of the agitator, and the back surface of the cutter head 11, respectively, and their sizes generally vary depending on the hardness of the earth and sand. The value obtained by dividing the shear force value obtained by this by the soil pressure value ("shear force / soil water The size of the corresponding coefficient of friction of the respective parts of the chamber such as excavation soil and bulkhead calculated by force ") (magnitude), to evaluate the properties of the drilling soil. By dividing the shear force value by the soil water pressure value and making it dimensionless in this way, the chamber 12 is not affected by changes in soil pressure due to soil covering pressure, groundwater pressure, or heavy objects. It is possible to relatively evaluate the properties of the excavated sediment.
2 and 3 show the Mohr stress field in which the vertical axis represents the shear force S (shear stress τ) and the horizontal axis represents the direct force N (direct stress σ). The shear force meter 17 measures S 1 , S 2 , and S 3 , and the earth pressure gauge 16 calculates the direct force N by multiplying the measured soil water pressure by the pressure receiving area. The magnitude of the direct force N varies depending on the earth pressure, the groundwater pressure, and a heavy object.
FIG. 2 shows the case of sandy soil, and the state (1) is a state of an original ground having a certain adhesive force C (generally almost 0) and an internal friction angle φ 1 . When added to this and agitated, stirring resistance of the sand particles decreases, and the state (2) (internal friction angle φ 2 ) or state (3) (internal friction angle φ 3 ) is obtained ( φ 1 > φ 2 > φ 3 ).
On the other hand, in the theoretical direct force field N (direct stress field σ), shear forces S 1 , S 2 , S 3 (or shear stress τ 1 , τ 2 ) in states (1), (2), (3), respectively. , Τ 3 ) (S 1 , S 2 , S 3 are the intersections of the straight line representing the states (1), (2), (3) and the straight line passing through the direct stress field N and parallel to the vertical axis. Also represents). Further, the shear force / earth water pressure is S 1 / N, S 2 / N, S 3 depending on the states (1), (2), (3) in a certain force field N (direct stress field σ). / N, which represents the slope of the straight line connecting the origin O and S 1 , S 2 , S 3 respectively (S 1 / N> S 2 / N> S 3 / N).
That is, calculating and evaluating S 1 / N, S 2 / N, and S 3 / N means evaluating the internal friction angles φ 1 , φ 2 , and φ 3 in states (1), (2), and (3). Therefore, it can be said that the properties of excavated soil can be evaluated relative to each other.
FIG. 3 shows a case of cohesive soil, and state (1) is a state of an original ground having a certain internal friction angle φ (generally close to 0) and an adhesive force C 1 . When a mud is added and stirred, the intermolecular force between the soil particles decreases, and the state (2) (adhesive strength C 2 ) or state (3) (adhesive strength C 3 ) is obtained (C 1> C 2> C 3) .
On the other hand, in the theoretical direct force field N (direct stress field σ), shear forces S 1 , S 2 , S 3 (or shear stress τ 1 , τ 2 ) in states (1), (2), (3), respectively. , Τ 3 ) (S 1 , S 2 , S 3 are the intersections of the straight line representing the states (1), (2), (3) and the straight line passing through the direct stress field N and parallel to the vertical axis. Also represents). Further, the shear force / earth water pressure is S 1 / N, S 2 / N, S 3 depending on the states (1), (2), (3) in a certain force field N (direct stress field σ). / N, which represents the slope of the straight line connecting the origin O and S 1 , S 2 , S 3 respectively (S 1 / N> S 2 / N> S 3 / N).
That is, calculating and evaluating S 1 / N, S 2 / N, and S 3 / N means evaluating adhesive forces C 1 , C 2 , and C 3 in states (1), (2), and (3). Since the values are equivalent, it can be said that the properties of excavated sediment can be evaluated relative to each other.

そして、チャンバー12内の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド11の回転角度に基づくチャンバー12内の土圧計16及びせん断力計17の位置とともに、一般のPC(パーソナルコンピュータ)で既存のソフトウェアを用いてデータ処理し、その結果をPCのディスプレイ上にコンター図化して表すことにより、チャンバー12内の掘削土の性状を可視化することが可能である。   Then, the values of the earth water pressure, shear force, and shear force / earth water pressure obtained in each part in the chamber 12 are used to determine the values of the earth pressure gauge 16 and the shear force gauge 17 in the chamber 12 based on the rotation angle of the cutter head 11. It is possible to visualize the properties of the excavated soil in the chamber 12 by processing the data using existing software on a general PC (personal computer) along with the position, and displaying the result as a contour diagram on the PC display. Is possible.

本願発明者らはこの性状評価判定方法に関する実験を行った。この実験では、実際の工事に供した直径2m級の泥土圧式シールド掘進機を利用し、図4に示すように、チャンバー12のバルクヘッド121に土圧計16とせん断計17とを略同一の位置となるように取り付け、図5に示すように、土槽T内に砂質土又は粘性土の地盤Sを作製して、この地盤Sに掘進機1を掘進させた。そして、その土圧、せん断力を測定し、せん断力/土水圧力の評価を試みた。
実験のケースは、図6に示すとおり、合計8ケースで、砂質土では、加泥材の種類、撹拌機構(この場合、固定翼の有無)の相違、カッター回転速度、掘進速度の変化により実験を実施して、その相対比較を行い、粘性土では、加泥材は1種類で、撹拌機構(この場合、固定翼の有無)の相違、掘進速度の変化により実験を実施して、その相対比較を行った。
図7に代表的な実験結果を示す。図7の横軸は掘進機1を掘進させた距離を表す。図7の左縦軸は「せん断力/土水圧力」を表す。この場合、「せん断力/土水圧力」の正負はカッターヘッド11の回転方向の右、左に相当する。図7の右縦軸は砂質土での実験における地下水位の推移を表す。この場合、図5の土槽の天端をGL−0として表記した。
図7(a)のケース1は、掘進機1を砂質土で加泥材を用いずに掘進させた場合で、せん断力が最も大きくなるケースである。この場合、掘進距離0〜500mmの範囲は掘進の初期段階で、掘進距離に対する排土量の制御が適切でなくチャンバー12内の塑性流動が不適切であると考えられるので、掘進距離600〜1500mmの値を以降の比較の基準とする。
図7(b)のケース2は、掘進機1を砂質土で加泥材に高分子系材料を用いて掘進させた場合で、高分子系材料の効果により、土粒子間のかみ合わせ効果がケース1と比べて小さくなっている。
図7(c)のケース6は、掘進機1を砂質土で加泥材に気泡を用いて掘進させた場合で、ケース1の加泥材を用いていない砂のみの場合、ケース2の加泥材に高分子系材料を用いた場合よりもさらに土粒子間のかみ合わせ効果が小さくなり、「せん断力/土水圧力」が小さくなっている。砂のみ>高分子系材料>気泡の順で値が小さくなっていることから、加泥材による塑性流動の良否を表していると考えられる。
図7(d)のケース4は、固定翼のない掘進機を砂質土でケース2と同様に加泥材に高分子系材料を用いて掘進させた場合で、このケースでは、「せん断力/土水圧力」が大きく、また変動している。これはバルクヘッド121に固定翼がなく、チャンバー12内の掘削土砂がカッターヘッド11とともに供回りし、適切に撹拌されなかった可能性が考えられる。また、排土を確認したところ、一部で砂のみが排出され、加泥材が適切に混合撹拌されていなかったことから、チャンバー12内で塑性流動化が適切に行われなかったと考えられる。
図7(e)のケース8は、掘進機1を粘性土で加泥材に水を用いて掘進させた場合である。この場合、掘進距離0〜200mmは切羽圧のバランス、排土量の制御が適切でなかったので、掘進距離300〜1500mmで評価すると、ケース1と同レベルの「せん断力/土水圧力」で、かつ値の振れが大きくなっている。これは粘性土の粘着力により土粒子がバルクヘッド121に固結しようとすることが可能性として考えられる。
今回の実験は数限られたものであり、チャンバー12内の圧力が実工事の場合よりも小さいので、「せん断力/土水圧力」も微少であり、少しの土質の変化でその大きさや振れが変化する。実工事では切羽圧である土水圧力も大きくなり、せん断力も大きくなるので、より明確な指標判断が可能になると考えられる。
The inventors of the present application conducted an experiment on this property evaluation and determination method. In this experiment, a mud pressure shield machine with a diameter of 2 m used for actual construction was used, and as shown in FIG. 4, the earth pressure gauge 16 and the shear gauge 17 were placed at substantially the same position on the bulkhead 121 of the chamber 12. As shown in FIG. 5, a ground S made of sandy or cohesive soil was produced in the soil tank T, and the excavator 1 was dug on the ground S. Then, the earth pressure and shear force were measured, and the shear force / earth water pressure was evaluated.
As shown in FIG. 6, there are a total of 8 test cases. In sandy soil, the type of mud, the difference in the stirring mechanism (in this case, the presence or absence of fixed blades), the cutter rotation speed, and the excavation speed change. We conducted an experiment and made a relative comparison. In the case of clay soil, there was only one kind of mud, and the experiment was carried out according to the difference in the stirring mechanism (in this case, the presence or absence of fixed wings) and the change in the excavation speed. A relative comparison was made.
FIG. 7 shows representative experimental results. The horizontal axis of FIG. 7 represents the distance that the excavator 1 is dug. The left vertical axis in FIG. 7 represents “shear force / earth pressure”. In this case, the sign of “shear force / earth pressure” corresponds to the right and left in the direction of rotation of the cutter head 11. The right vertical axis in FIG. 7 represents the transition of the groundwater level in the experiment with sandy soil. In this case, the top end of the earth tub in FIG. 5 is indicated as GL-0.
Case 1 in FIG. 7A is a case where the excavating machine 1 is dug without sand using sandy soil, and the shearing force is the largest. In this case, the range of the excavation distance of 0 to 500 mm is an initial stage of excavation, and it is considered that the control of the amount of soil with respect to the excavation distance is not appropriate and the plastic flow in the chamber 12 is inappropriate, so the excavation distance is 600 to 1500 mm. The value of is used as a reference for subsequent comparisons.
Case 2 in FIG. 7 (b) is a case where the excavator 1 is dug with sandy soil using a polymer material as a mud, and due to the effect of the polymer material, the effect of meshing between soil particles is achieved. It is smaller than Case 1.
Case 6 in FIG. 7 (c) is a case where the excavator 1 is dug with sandy soil using air bubbles in the mud material. Compared with the case where a polymer material is used as the mud material, the effect of meshing between the soil particles is further reduced, and the “shear force / soil pressure” is reduced. Since the values decrease in the order of sand only> polymeric material> bubbles, it is considered that the plastic flow by the vulcanized material is expressed.
Case 4 in FIG. 7 (d) is a case where the excavator without fixed wings is dug with sandy soil using a polymer material as in the case 2, and in this case, “shear force” / Soil pressure "is large and fluctuates. It is conceivable that the bulkhead 121 does not have fixed blades, and the excavated earth and sand in the chamber 12 is brought together with the cutter head 11 and not properly stirred. In addition, when the soil removal was confirmed, only sand was partially discharged, and the vulcanized material was not properly mixed and stirred. Therefore, it is considered that plastic fluidization was not properly performed in the chamber 12.
The case 8 of FIG.7 (e) is a case where the excavator 1 is dug using viscous soil and water for the mud material. In this case, since the balance of the face pressure and the control of the amount of soil removal were not appropriate at the excavation distance of 0 to 200 mm, when evaluated at the excavation distance of 300 to 1500 mm, “shearing force / soil pressure” at the same level as the case 1 And the fluctuation of the value is large. This is considered as a possibility that the soil particles try to solidify to the bulkhead 121 due to the adhesive force of the viscous soil.
This experiment was limited in number, and since the pressure in the chamber 12 was smaller than that in actual construction, the “shear force / soil water pressure” was also very small, and the size and fluctuation of the soil changed slightly. Changes. In actual construction, the soil pressure, which is the face pressure, increases and the shearing force also increases, so it is considered that a clearer indicator can be determined.

以上説明したように、この泥土圧シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法によれば、掘削土砂による圧力及びせん断力が作用するチャンバー12内の各部に、土圧計16及びせん断力計17を略同一の位置となるように近接して設置し、チャンバー12内の各部に作用する圧力及びせん断力を土圧計16及びせん断力計17により測定し、チャンバー12内の各部におけるせん断力の値を土水圧力の値で除して得た数値(「せん断力/土水圧力」で算出される掘削土砂とバルクヘッドなどチャンバー内の各部との摩擦係数に相当)の大きさ(大小)によって、チャンバー12内の掘削土砂の性状を評価判定するようにしたので、掘進路線上で土被り圧や地下水圧が変化したり、地表やトンネル直上に重量物が存在したりして、掘進路線上で地山の土圧や水圧が変化する場合でも、同一路線内でチャンバー12内の掘削土砂の性状を相対的に評価判定することができる。
そして、チャンバー12内の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド11の回転角度に基づくチャンバー12内の土圧計16及びせん断力計17の位置とともに、コンター図にして表すことで、チャンバー12内の掘削土砂の性状を可視化して容易に確認することができる。
As explained above, according to the property evaluation judgment method of the excavated sediment in the chamber used in this mud pressure shield method, the earth pressure gauge 16 and the shear force are applied to each part in the chamber 12 where the pressure and shear force of the excavated sediment act. The meters 17 are installed close to each other at substantially the same position, and the pressure and shear force acting on each part in the chamber 12 are measured by the earth pressure gauge 16 and the shear force meter 17, and the shear force in each part in the chamber 12 is measured. The value (corresponding to the coefficient of friction between the excavated earth and sand and the parts in the chamber such as the bulkhead calculated by “shear force / earth water pressure”) ), The nature of the excavated soil in the chamber 12 is evaluated and judged, so that the earth cover pressure and groundwater pressure change on the excavation route, and there are heavy objects directly on the ground surface and tunnel. Rishite, even if a change in earth pressure and water pressure natural ground on excavation route can be relatively evaluated determining the properties of the drilling soil in the chamber 12 in the same route.
Then, the values of the earth water pressure, shear force, and shear force / earth water pressure obtained in each part in the chamber 12 are used to determine the values of the earth pressure gauge 16 and the shear force gauge 17 in the chamber 12 based on the rotation angle of the cutter head 11. By representing the contour map together with the position, the properties of the excavated soil in the chamber 12 can be visualized and easily confirmed.

なお、この実施の形態では、掘削土砂による圧力及びせん断力が作用するチャンバー内の各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置したものとして例示したが、土圧計及びせん断力計に代えて、土水圧力とせん断力とを同時に測定可能なセンサを配置してもよい。このようにしても上記実施の形態と同様の作用効果を奏することができる。
また、この実施の形態では、泥土圧式シールド掘進機を使用する泥土圧式シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法について例示したが、土圧式シールド掘進機を使用する土圧式シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法にも同様に適用することができ、この場合でも、上記実施の形態と同様の作用効果を奏することができる。
In this embodiment, the earth pressure gauge and the shear force meter are illustrated as being disposed close to each other in the chamber where the pressure and shear force due to the excavated earth and sand are applied, so that they are substantially in the same position. Instead of the earth pressure gauge and the shear force meter, a sensor capable of simultaneously measuring the earth water pressure and the shear force may be arranged. Even if it does in this way, there can exist an effect similar to the said embodiment.
In this embodiment, the method for evaluating the property of the excavated soil in the chamber used for the mud pressure shield method using the mud pressure shield machine is illustrated, but the earth pressure type shield method using the earth pressure type shield machine is used. The present invention can be similarly applied to the property evaluation and determination method for excavated earth and sand in the chamber to be used, and even in this case, the same effects as those of the above-described embodiment can be achieved.

さらに、この実施の形態で例示した泥土圧式シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法は、土圧式シールド掘進機を使用する土圧式シールド工法、泥土圧式シールド掘進機を使用する泥土圧式シールド工法、泥水式シールド掘進機を使用する泥水式シールド工法において、カッターヘッド前方の地山切羽の土質評価判定方法にも利用することができる。   Furthermore, the property evaluation judgment method of excavated earth and sand in the chamber used in the mud pressure shield method exemplified in this embodiment is the earth pressure type shield method using the earth pressure type shield machine, the mud pressure type using the mud pressure type shield machine. In the shield method and the muddy water shield method using a muddy water shield machine, it can also be used for the soil quality evaluation and judgment method in front of the cutter head.

次に、これらの工法のうち、泥水式シールド掘進機を使用する泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法について、図8を用いて説明する。   Next, among these methods, a soil quality evaluation and determination method for the ground face in front of the cutter head used in the muddy water shield method using a muddy water shield machine will be described with reference to FIG.

図8に示すように、先端にカッターヘッド21を有し、カッターヘッド21の後部にチャンバー22を備える泥水式シールド掘進機2(以下、単に掘進機2という。)を使用して行う泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法では、カッターヘッド21でカッターヘッド21前方の地山の掘削面である切羽Gを掘削するとともに、チャンバー22に泥水を供給して切羽Gに泥水を送り加圧することにより切羽Gを安定化させ、地山を掘進することが行われる。
そして、このカッターヘッド21の地山切羽の土質評価判定方法では、地山の切羽Gによる圧力及びせん断力が作用するカッターヘッド21の各部に、土圧計26及びせん断力計27を略同一の位置となるように近接配置し、それぞれの受圧面、受感面を基本的に地山の切羽に向けて取り付け、カッターヘッド21の各部に作用する圧力及びせん断力を土圧計26及びせん断力計27により測定し、カッターヘッド21の各部におけるせん断力の値を土水圧力の値で除して得た数値によって、カッターヘッド21前方の切羽Gの土質を評価判定する。
As shown in FIG. 8, a muddy water type shield machine having a cutter head 21 at the tip and a muddy water type shield machine 2 (hereinafter simply referred to as “dig machine 2”) having a chamber 22 at the rear of the cutter head 21. In the soil evaluation and determination method for the ground face in front of the cutter head used in the construction method, the cutter head 21 excavates the face G, which is the excavation surface of the ground in front of the cutter head 21, and supplies muddy water to the chamber 22 to supply the face G. The face G is stabilized by sending muddy water and pressurizing, and excavating the natural ground.
Then, in this soil head evaluation method of the ground face of the cutter head 21, the earth pressure gauge 26 and the shear force gauge 27 are placed at substantially the same position on each part of the cutter head 21 where the pressure and shear force of the ground face G acts. The pressure receiving surface and the sensitive surface are basically attached to the face of the natural mountain, and the pressure and shear force acting on each part of the cutter head 21 are applied to the earth pressure gauge 26 and the shear force gauge 27, respectively. And the soil quality of the face G in front of the cutter head 21 is evaluated and determined by the numerical value obtained by dividing the value of the shear force at each part of the cutter head 21 by the value of the earth water pressure.

この評価判定方法においては、特にカッターヘッド21における土圧計26及びせん断力計27の配置位置として、カッターヘッド21の面盤211の最外周部、コピーカッター212の先端などから適宜選定する。   In this evaluation determination method, the arrangement positions of the earth pressure gauge 26 and the shear force meter 27 in the cutter head 21 are selected as appropriate from the outermost peripheral portion of the face plate 211 of the cutter head 21, the tip of the copy cutter 212, and the like.

このようにしてこのカッターヘッド21前方の地山切羽の土質評価判定方法では、掘進機2の掘進停止中に、カッターヘッド21を1回転以上回転させ、同時に、土水圧力及びせん断力を測定し、これにより得たせん断力の値を土水圧力の値で除した数値(「せん断力/土水圧力」で算出される切羽G外周とカッターヘッド21の面盤211の最外周部、コピーカッター212の先端との摩擦係数に相当)の大きさ(大小)で、地山切羽Gの土質を評価判定する。このようにせん断力の値を土水圧力の値で除して無次元化することで、土被り圧や地下水圧、さらに重量物などによる土圧の変化に影響されることなしに、カッターヘッド21前方の地山切羽Gの土質を相対評価することが可能となる。
そして、カッターヘッド21の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド21の回転角度に基づくカッターヘッド21各部の土圧計26及びせん断力計27の位置とともに、一般のPC(パーソナルコンピュータ)で既存のソフトウェアを用いてデータ処理し、その結果をPCのディスプレイ上にコンター図化して表すことにより、カッターヘッド21前方の地山切羽Gの土質を可視化することが可能である。
In this way, in the soil quality evaluation and determination method for the ground face in front of the cutter head 21, the cutter head 21 is rotated one or more times while the excavator 2 is stopped, and simultaneously the soil water pressure and shear force are measured. A numerical value obtained by dividing the shear force value thus obtained by the soil water pressure value (the outer periphery of the face G calculated by “shear force / earth water pressure”, the outermost peripheral portion of the face plate 211 of the cutter head 21, and the copy cutter The soil quality of the ground face G is evaluated and determined with a size (corresponding to the coefficient of friction with the tip of 212). By dividing the shear force value by the soil water pressure and making it dimensionless in this way, the cutter head is not affected by changes in earth pressure due to soil covering pressure, groundwater pressure, and heavy objects. It becomes possible to make a relative evaluation of the soil quality of the natural ground face G 21 ahead.
Then, the earth pressure, shear force, and shear force / soil pressure values obtained at each part of the cutter head 21 are used as the earth pressure gauge 26 and the shear force gauge 27 at each part of the cutter head 21 based on the rotation angle of the cutter head 21. In addition to the position of, the data is processed using existing software on a general PC (personal computer), and the result is shown in a contour map on the PC display, so that the soil texture of the ground face G in front of the cutter head 21 can be expressed. It is possible to visualize.

以上説明したように、この泥水式シールド掘進機を使用する泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法によれば、地山の切羽Gによる圧力及びせん断力が作用するカッターヘッド21の各部に、土圧計26及びせん断力計27を略同一の位置となるように近接して設置し、掘進停止中にカッターヘッド21を1回転以上回転して、カッターヘッド21の各部に作用する圧力及びせん断力を土圧計26及びせん断力計27により測定し、カッターヘッド21の各部におけるせん断力の値を土水圧力の値で除して得た数値(「せん断力/土水圧力」で算出される切羽Gとカッターヘッド21の各部との摩擦係数に相当)の大きさ(大小)によって、カッターヘッド21前方の切羽Gの土質を評価判定するようにしたので、カッターヘッド21前方の地山Gの土質を相対的に評価判定することができる。
そして、この場合、カッターヘッド21の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド21の回転角度に基づくカッターヘッド21の各部の土圧計26及びせん断力計27の位置とともに、コンター図にして表すことで、地山の切羽Gの土質を可視化して容易に確認することができる。
As explained above, according to the soil quality evaluation method for determining the soil face in front of the cutter head used in the muddy water type shield method using this muddy type shield machine, pressure and shear force due to the ground face G are applied. The earth pressure gauge 26 and the shear force gauge 27 are installed close to each part of the cutter head 21 so as to be in substantially the same position, and the cutter head 21 is rotated one or more times while the excavation is stopped. The pressure and shear force acting on the earth are measured by the earth pressure gauge 26 and the shear force gauge 27, and the value obtained by dividing the shear force value at each part of the cutter head 21 by the earth water pressure value ("shear force / earth water" The soil quality of the face G in front of the cutter head 21 is evaluated and determined according to the size (corresponding to the friction coefficient between the face G calculated by “pressure” and each part of the cutter head 21). Since the can relative evaluation determining the soil cutter head 21 in front of the natural ground G.
In this case, the values of earth water pressure, shear force, shear force / earth water pressure obtained at each part of the cutter head 21 are obtained by using the earth pressure gauges 26 of each part of the cutter head 21 based on the rotation angle of the cutter head 21 and By representing the contour map together with the position of the shear force meter 27, the soil texture of the face G of the natural ground can be visualized and easily confirmed.

なお、この実施の形態では、切羽による圧力及びせん断力が作用するカッターヘッドの各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置したものとして例示したが、土圧計及びせん断力計に代えて、土水圧力とせん断力とを同時に測定可能なセンサを配置してもよい。このようにしても上記実施の形態と同様の作用効果を奏することができる。
また、この実施の形態では、泥水式シールド掘進機を使用する泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法について例示したが、土圧式シールド掘進機を使用する土圧式シールド工法や泥土圧式シールド掘進機を使用する泥土圧式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法にも同様に適用することができ、この場合でも、上記実施の形態と同様の作用効果を奏することができる。
In this embodiment, the earth pressure gauge and the shear force meter are illustrated as being arranged close to each other so as to be in substantially the same position on each part of the cutter head to which the pressure and shear force by the face acts, Instead of the pressure gauge and shear force meter, a sensor capable of simultaneously measuring soil water pressure and shear force may be arranged. Even if it does in this way, there can exist an effect similar to the said embodiment.
Moreover, in this embodiment, although the soil quality evaluation judgment method of the ground face in front of the cutter head used for the muddy water shield method using the muddy water shield machine is illustrated, the earth pressure type shield using the earth pressure type shield machine This method can also be applied to the soil quality evaluation method of the ground cutting face in front of the cutter head used in the mud pressure shield method using the mud pressure shield machine, and even in this case, the same action as in the above embodiment There is an effect.

1 泥土圧式シールド掘進機
10 シールドスキンプレート
11 カッターヘッド
110 カッターモーター
12 チャンバー
121 バルクヘッド(隔壁)
131 撹拌翼
132 固定翼
14 スクリューコンベア(排土装置)
15 シールドジャッキ
16 土圧計
17 せん断力計
G 切羽(地山)
T 土槽
S 地盤
2 泥水式シールド掘進機
21 カッターヘッド
211 面盤
212 コピーカッター
22 チャンバー
26 土圧計
27 せん断力計
G 切羽(地山)
1 Mud pressure shield machine 10 Shield skin plate 11 Cutter head 110 Cutter motor 12 Chamber 121 Bulkhead (bulk)
131 Stirring blades 132 Fixed blades 14 Screw conveyor (soil removal equipment)
15 Shield jack 16 Earth pressure gauge 17 Shear force gauge G Face (ground)
T soil tank S ground 2 muddy water type shield machine 21 cutter head 211 face plate 212 copy cutter 22 chamber 26 earth pressure gauge 27 shear force meter G face

Claims (7)

先端にカッターヘッドを有し、前記カッターヘッドの後部にチャンバーを備え、前記カッターヘッドで前記カッターヘッド前方の地山の掘削面である切羽を掘削し掘削土砂を前記チャンバーに取り込み、前記チャンバー内で撹拌混合して、当該土砂の土圧を切羽に作用させることにより切羽を安定化させ、地山を掘進する形式の土圧式、泥土圧式の各掘進機を含む土圧系掘進機を使用する各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法であって、
掘削土砂による圧力及びせん断力が作用する前記チャンバー内の各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、
前記チャンバー内の各部に作用する圧力及びせん断力を前記土圧計及び前記せん断力計、又は前記センサにより測定し、
前記チャンバー内の各部におけるせん断力の値を土水圧力の値で除して得た数値によって、前記チャンバー内の掘削土砂の性状を評価判定する、
ことを特徴とする各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法。
A cutter head is provided at the tip, and a chamber is provided at the rear of the cutter head. The cutter head excavates a face that is an excavation surface of a natural ground in front of the cutter head and takes excavated earth and sand into the chamber. Various types of earth pressure type excavators including earth pressure type and mud pressure type excavators of the type that excavate the natural ground by stabilizing the face by stirring and mixing and applying the earth pressure of the earth and sand to the face It is a property evaluation judgment method of excavated soil in the chamber used for the excavation method of
Soil pressure gauge and shear force meter are placed close to each other in the chamber where pressure and shear force due to excavated soil are applied, or soil pressure and shear force can be measured simultaneously. With a simple sensor
Measure the pressure and shear force acting on each part in the chamber with the earth pressure gauge and the shear force meter, or the sensor,
By the numerical value obtained by dividing the value of the shear force in each part in the chamber by the value of soil water pressure, the property of the excavated soil in the chamber is evaluated and determined.
The property evaluation judgment method of the excavation soil in the chamber used for various excavation methods characterized by this.
チャンバー内における土圧計及びせん断力計、又はセンサの配置位置は、前記チャンバーをなすバルクヘッド及びスキンプレートの内面、撹拌翼の表面、固定翼の表面、アジテータの表面、前記カッターヘッドの前記チャンバーに対向する背面から適宜選定する請求項1に記載の各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法。   The location of the earth pressure gauge and shear force meter or sensor in the chamber is the inner surface of the bulkhead and skin plate, the surface of the stirring blade, the surface of the fixed blade, the surface of the agitator, the surface of the agitator, and the chamber of the cutter head. The property evaluation judgment method of excavated earth and sand in a chamber used for various excavation methods according to claim 1, which is appropriately selected from opposing back surfaces. チャンバー内の各部において得られた土水圧力、せん断力、前記せん断力/前記土水圧力の各値を、カッターヘッドの回転角度に基づく前記チャンバー内の土圧計及びせん断力計、又はセンサの位置とともに、コンター図にして表す請求項1又は2に記載の各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法。   The position of the earth pressure gauge and shear force meter in the chamber based on the rotation angle of the cutter head and the values of the earth water pressure, shear force, and shear force / earth water pressure obtained at each part in the chamber And the property evaluation judgment method of the excavation soil in the chamber used for the various excavation methods of Claim 1 or 2 represented with a contour figure. 先端にカッターヘッドを有し、前記カッターヘッドの後部にチャンバーを備え、前記カッターヘッドで前記カッターヘッド前方の地山の掘削面である切羽を掘削するとともに、前記チャンバーに泥水を供給して切羽に泥水を送り加圧することにより切羽を安定化させ、地山を掘進する形式の泥水式掘進機を使用する各種の掘削工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法であって、
地山の切羽による圧力及びせん断力が作用する前記カッターヘッドの各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、
前記カッターヘッドの各部に作用する圧力及びせん断力を前記土圧計及び前記せん断力計、又は前記センサにより測定し、
前記カッターヘッドの各部におけるせん断力の値を土水圧力の値で除して得た数値によって、前記カッターヘッド前方の切羽の土質を評価判定する、
ことを特徴とする各種の掘削工法に用いるカッターヘッド前方の切羽の土質評価判定方法。
A cutter head is provided at the tip, and a chamber is provided at the rear of the cutter head. The cutter head excavates a face that is an excavation surface of a natural ground in front of the cutter head, and supplies muddy water to the chamber. It is a soil quality evaluation and judgment method of the rock face in front of the cutter head used for various excavation methods using a mud type excavator of the type that stabilizes the face by sending muddy water and pressurizing and excavating the natural ground,
A soil pressure gauge and a shear force meter are arranged close to each other so that the pressure and shear force due to the face of the natural ground act on each part of the cutter head, or the soil water pressure and the shear force are simultaneously applied. Place measurable sensors,
Measure the pressure and shear force acting on each part of the cutter head with the earth pressure gauge and the shear force meter, or the sensor,
According to the numerical value obtained by dividing the value of the shear force in each part of the cutter head by the value of soil water pressure, the soil quality of the face in front of the cutter head is evaluated and determined.
A method for determining and evaluating the soil quality of the face in front of the cutter head used in various excavation methods.
先端にカッターヘッドを有し、前記カッターヘッドの後部にチャンバーを備え、前記カッターヘッドで前記カッターヘッド前方の地山の掘削面である切羽を掘削し掘削土砂を前記チャンバーに取り込み、前記チャンバー内で撹拌混合して、当該土砂の土圧を切羽に作用させることにより切羽を安定化させ、地山を掘進する形式の土圧式、泥土圧式の各掘進機を含む土圧系掘進機を使用する各種の掘削工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法であって、
地山の切羽による圧力及びせん断力が作用する前記カッターヘッドの各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、又は土水圧力とせん断力とを同時に測定可能なセンサを配置して、
前記カッターヘッドの各部に作用する圧力及びせん断力を前記土圧計及び前記せん断力計、又は前記センサにより測定し、
前記カッターヘッドの各部におけるせん断力の値を土水圧力の値で除して得た数値によって、前記カッターヘッド前方の切羽の土質を評価判定する、
ことを特徴とする各種の掘削工法に用いるカッターヘッド前方の切羽の土質評価判定方法。
A cutter head is provided at the tip, and a chamber is provided at the rear of the cutter head. The cutter head excavates a face that is an excavation surface of a natural ground in front of the cutter head and takes excavated earth and sand into the chamber. Various types of earth pressure type excavators including earth pressure type and mud pressure type excavators of the type that excavate the natural ground by stabilizing the face by stirring and mixing and applying the earth pressure of the earth and sand to the face It is a soil quality evaluation judgment method of a natural mountain face in front of the cutter head used in the excavation method of
A soil pressure gauge and a shear force meter are arranged close to each other so that the pressure and shear force due to the face of the natural ground act on each part of the cutter head, or the soil water pressure and the shear force are simultaneously applied. Place measurable sensors,
Measure the pressure and shear force acting on each part of the cutter head with the earth pressure gauge and the shear force meter, or the sensor,
According to the numerical value obtained by dividing the value of the shear force in each part of the cutter head by the value of soil water pressure, the soil quality of the face in front of the cutter head is evaluated and determined.
A method for determining and evaluating the soil quality of the face in front of the cutter head used in various excavation methods.
カッターヘッドにおける土圧計及びせん断力計、又はセンサの配置位置は、カッタスポークの前面、面盤の表面、コピーカッターの先端から適宜選定する請求項4又は5に記載の各種の掘削工法に用いるカッターヘッド前方の切羽の土質評価判定方法。   The cutter used for various excavation methods according to claim 4 or 5, wherein the arrangement position of the earth pressure gauge and shear force meter or sensor in the cutter head is appropriately selected from the front surface of the cutter pork, the surface of the face plate, and the tip of the copy cutter. A soil quality evaluation method for the face in front of the head. カッターヘッドの各部において得られた土水圧力、せん断力、前記せん断力/前記土水圧力の各値を、カッターヘッドの回転角度に基づく前記チャンバー内の土圧計及びせん断力計、又はセンサの位置とともに、コンター図にして表す請求項4乃至6のいずれかに記載の各種の掘削工法に用いるカッターヘッド前方の切羽の土質評価判定方法。   The position of the earth pressure gauge and shear force meter in the chamber based on the rotation angle of the cutter head and the values of the earth water pressure, shear force, and shear force / the earth water pressure obtained at each part of the cutter head. In addition, a method for determining and evaluating the soil quality of the face in front of the cutter head used in various excavation methods according to any one of claims 4 to 6 represented in a contour diagram.
JP2015231640A 2015-11-27 2015-11-27 Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head Active JP6678438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231640A JP6678438B2 (en) 2015-11-27 2015-11-27 Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231640A JP6678438B2 (en) 2015-11-27 2015-11-27 Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head

Publications (2)

Publication Number Publication Date
JP2017096049A true JP2017096049A (en) 2017-06-01
JP6678438B2 JP6678438B2 (en) 2020-04-08

Family

ID=58803358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231640A Active JP6678438B2 (en) 2015-11-27 2015-11-27 Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head

Country Status (1)

Country Link
JP (1) JP6678438B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027121A (en) * 2017-07-28 2019-02-21 株式会社奥村組 Method of determining face ground in shield machine
JP2020169559A (en) * 2017-07-28 2020-10-15 株式会社奥村組 Bit vibration testing machine
JP2020193437A (en) * 2019-05-24 2020-12-03 日立造船株式会社 Shield excavator
JP2021001461A (en) * 2019-06-20 2021-01-07 鹿島建設株式会社 Plastic fluidity evaluation device and shield boring machine equipped with the same
CN113775352A (en) * 2021-06-11 2021-12-10 厦门厦工中铁重型机械有限公司 Automatic control system for multiple screw machines of large-section rectangular pipe jacking machine
WO2022128532A1 (en) * 2020-12-14 2022-06-23 Herrenknecht Aktiengesellschaft Device and method for driving a tunnel

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167289A (en) * 1977-09-29 1979-09-11 Hitachi Construction Machinery Co., Ltd. Method and system for controlling earth pressure in tunnel boring or shield machine
JPS5751397A (en) * 1980-09-09 1982-03-26 Ishikawajima Harima Heavy Ind Shielded excavator
JPS5833594U (en) * 1981-08-25 1983-03-04 株式会社小松製作所 Rock collapse detection device for shield excavator
JPS60104492U (en) * 1983-12-17 1985-07-16 石川島播磨重工業株式会社 shield tunneling machine
JPS611796A (en) * 1984-06-13 1986-01-07 石川島播磨重工業株式会社 Apparatus for detecting tuyree state
JPS6136498A (en) * 1984-07-27 1986-02-21 株式会社小松製作所 Method of detecting state of face of underground excavator
JPS6138098A (en) * 1984-07-30 1986-02-24 株式会社小松製作所 Method of detecting state of face of underground excavator
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPH0243493A (en) * 1988-08-03 1990-02-14 Ohbayashi Corp Earth-pressure shield tunneling method using high water-absorbing resin
JPH055397A (en) * 1991-06-26 1993-01-14 Mitsubishi Heavy Ind Ltd External force measuring device of shield excavator
JPH06173583A (en) * 1992-12-11 1994-06-21 Taisei Corp Earth pressure balanced shield machine
JPH0711887A (en) * 1993-06-28 1995-01-13 Fujita Corp Fluidizing method of excavated earth in earth pressure type shielding construction
JPH0711868A (en) * 1993-06-28 1995-01-13 Fujita Corp Fluidizing method of shield excavated soil
JPH08199160A (en) * 1995-01-27 1996-08-06 Mitsui Cytec Kk Excavation additive
JP2003056276A (en) * 2001-08-09 2003-02-26 Mitsubishi Heavy Ind Ltd Controlling system of construction of tunnel and controlling method thereof
JP2007108073A (en) * 2005-10-14 2007-04-26 Railway Technical Res Inst Ground stress measuring device and ground stress measuring method
JP2007217926A (en) * 2006-02-15 2007-08-30 Ohbayashi Corp Propulsion control system for sealed type shield machine, and propulsion control method using the propulsion control system
JP2008202321A (en) * 2007-02-21 2008-09-04 Kajima Corp Shield machine and method of controlling closure of interior of chamber
JP2010013894A (en) * 2008-07-07 2010-01-21 Ihi Corp Measuring device for sediment flow in chamber and shield excavator
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
JP2015212476A (en) * 2014-05-02 2015-11-26 株式会社安藤・間 Property measurement evaluation method of excavated soil in chamber for use in earth pressure shield tunneling, shield machine, and plastic fluidity test device of earth and sand
JP2016130406A (en) * 2015-01-13 2016-07-21 株式会社安藤・間 Shear force meter, measurement and evaluation method using the same for excavated soil property in chamber used with earth pressure shield tunneling, shield machine, and plastic fluidity testing device for earth and sand

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167289A (en) * 1977-09-29 1979-09-11 Hitachi Construction Machinery Co., Ltd. Method and system for controlling earth pressure in tunnel boring or shield machine
JPS5751397A (en) * 1980-09-09 1982-03-26 Ishikawajima Harima Heavy Ind Shielded excavator
JPS5833594U (en) * 1981-08-25 1983-03-04 株式会社小松製作所 Rock collapse detection device for shield excavator
JPS60104492U (en) * 1983-12-17 1985-07-16 石川島播磨重工業株式会社 shield tunneling machine
JPS611796A (en) * 1984-06-13 1986-01-07 石川島播磨重工業株式会社 Apparatus for detecting tuyree state
JPS6136498A (en) * 1984-07-27 1986-02-21 株式会社小松製作所 Method of detecting state of face of underground excavator
JPS6138098A (en) * 1984-07-30 1986-02-24 株式会社小松製作所 Method of detecting state of face of underground excavator
JPS6221994A (en) * 1985-07-22 1987-01-30 日立建機株式会社 Determination system of property of sediment of shielding excavator
JPH0243493A (en) * 1988-08-03 1990-02-14 Ohbayashi Corp Earth-pressure shield tunneling method using high water-absorbing resin
JPH055397A (en) * 1991-06-26 1993-01-14 Mitsubishi Heavy Ind Ltd External force measuring device of shield excavator
JPH06173583A (en) * 1992-12-11 1994-06-21 Taisei Corp Earth pressure balanced shield machine
JPH0711887A (en) * 1993-06-28 1995-01-13 Fujita Corp Fluidizing method of excavated earth in earth pressure type shielding construction
JPH0711868A (en) * 1993-06-28 1995-01-13 Fujita Corp Fluidizing method of shield excavated soil
JPH08199160A (en) * 1995-01-27 1996-08-06 Mitsui Cytec Kk Excavation additive
JP2003056276A (en) * 2001-08-09 2003-02-26 Mitsubishi Heavy Ind Ltd Controlling system of construction of tunnel and controlling method thereof
JP2007108073A (en) * 2005-10-14 2007-04-26 Railway Technical Res Inst Ground stress measuring device and ground stress measuring method
JP2007217926A (en) * 2006-02-15 2007-08-30 Ohbayashi Corp Propulsion control system for sealed type shield machine, and propulsion control method using the propulsion control system
JP2008202321A (en) * 2007-02-21 2008-09-04 Kajima Corp Shield machine and method of controlling closure of interior of chamber
JP2010013894A (en) * 2008-07-07 2010-01-21 Ihi Corp Measuring device for sediment flow in chamber and shield excavator
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
JP2015212476A (en) * 2014-05-02 2015-11-26 株式会社安藤・間 Property measurement evaluation method of excavated soil in chamber for use in earth pressure shield tunneling, shield machine, and plastic fluidity test device of earth and sand
JP2016130406A (en) * 2015-01-13 2016-07-21 株式会社安藤・間 Shear force meter, measurement and evaluation method using the same for excavated soil property in chamber used with earth pressure shield tunneling, shield machine, and plastic fluidity testing device for earth and sand

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027121A (en) * 2017-07-28 2019-02-21 株式会社奥村組 Method of determining face ground in shield machine
JP2020169559A (en) * 2017-07-28 2020-10-15 株式会社奥村組 Bit vibration testing machine
JP2020193437A (en) * 2019-05-24 2020-12-03 日立造船株式会社 Shield excavator
JP7287834B2 (en) 2019-05-24 2023-06-06 地中空間開発株式会社 shield machine
JP2021001461A (en) * 2019-06-20 2021-01-07 鹿島建設株式会社 Plastic fluidity evaluation device and shield boring machine equipped with the same
JP7280122B2 (en) 2019-06-20 2023-05-23 鹿島建設株式会社 Plastic fluidity evaluation device and shield machine equipped with the same
WO2022128532A1 (en) * 2020-12-14 2022-06-23 Herrenknecht Aktiengesellschaft Device and method for driving a tunnel
CN113775352A (en) * 2021-06-11 2021-12-10 厦门厦工中铁重型机械有限公司 Automatic control system for multiple screw machines of large-section rectangular pipe jacking machine
CN113775352B (en) * 2021-06-11 2024-02-06 厦门厦工中铁重型机械有限公司 Automatic control system of multi-screw machine of large-section rectangular pipe jacking machine

Also Published As

Publication number Publication date
JP6678438B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6678438B2 (en) Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head
JP6416496B2 (en) Method for measuring and evaluating the properties of excavated soil in the chamber used for earth pressure shield method, shield excavator and earth and sand plastic fluidity test equipment
JP6522954B2 (en) Shear force meter, method of measuring and evaluating the properties of excavated soil in a chamber used for earth pressure shield method using the same, shield machine, and plastic flowability test apparatus for soil
Lauder The performance of pipeline ploughs
JP4854538B2 (en) Shielding machine and chamber blockage management method
JP6590368B2 (en) Soil pressure and shear force measurement sensor
JP5715819B2 (en) Method and system for optimizing straw
JP4770472B2 (en) Promotion management method of earth pressure type shield method
JP2016003430A (en) Discrimination method for soil distribution using shield machine
JP6905364B2 (en) Plastic fluidity evaluation method, evaluation device and soil pressure type shield excavator of excavated soil in the chamber in the earth pressure type shield method
Ask New developments in the integrated stress determination method and their application to rock stress data at the Äspö HRL, Sweden
JP6686710B2 (en) Cutter bit wear amount estimation method
Yang et al. Assessing clogging potential and optimizing driving parameter of slurry shield tunneling in clay stratum assisted with CFD-DEM modeling
JP6342723B2 (en) Discrimination system of face soil distribution by shield machine
JP6153591B2 (en) Ground survey method and ground survey device
Park et al. A Comparative Analysis of Automated Machine Guidance and Control Systems for Trench Excavation
KR20160034563A (en) Coordinate Measuring System for Excavating Work and Method Thereof
JP2023013173A (en) Chamber internal pressure control system for mud pressure shield machine and chamber internal pressure control method
JP7287834B2 (en) shield machine
Werkhoven et al. A pseudo-analytical model CSD spillage due to rotational velocity-induced flow
JP6584311B2 (en) How to understand plastic fluidity
JP2021031996A (en) Device control system and device control method
JP7280122B2 (en) Plastic fluidity evaluation device and shield machine equipped with the same
JP2016169561A (en) Plastic fluidity evaluation method for in-chamber excavated soil in soil pressure type shield tunneling method and soil pressure type shield excavator
JP3531537B2 (en) Prediction method of slack in front of tunnel face

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250