JP2007108073A - Ground stress measuring device and ground stress measuring method - Google Patents

Ground stress measuring device and ground stress measuring method Download PDF

Info

Publication number
JP2007108073A
JP2007108073A JP2005300621A JP2005300621A JP2007108073A JP 2007108073 A JP2007108073 A JP 2007108073A JP 2005300621 A JP2005300621 A JP 2005300621A JP 2005300621 A JP2005300621 A JP 2005300621A JP 2007108073 A JP2007108073 A JP 2007108073A
Authority
JP
Japan
Prior art keywords
stress
receiving member
force receiving
ground
rubber film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300621A
Other languages
Japanese (ja)
Inventor
Kenji Watanabe
健治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2005300621A priority Critical patent/JP2007108073A/en
Publication of JP2007108073A publication Critical patent/JP2007108073A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground stress measuring device and a ground stress measuring method capable of protecting a load cell or the like from getting wet with water and detecting each strain (stress) of a structure. <P>SOLUTION: A tunnel model ground stress measuring device 101 comprises a load cell 10 having a base section 11 attached with a perpendicular strain gauge 15 and a shearing strain gauge 16 and an inside pressure plate 13, a rubber film 61 arranged outside the inside pressure plate 13, an outside pressure plate 20 that is arranged outside the rubber film 61 at an arrangement place of the inside pressure plate 13 and is fixed to the inside pressure plate 13 with a joint screw 50, and a sealing material or sealing agent that is arranged in a clearance or the like around the joint screw 50 and prevents water or the like of external model ground 301 from intruding into a space V1 in the rubber film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤が構造物の外表面に作用する応力である地盤応力を計測する装置、及び方法に係り、特に、構造物の外表面の周囲に水が存在する場合にも支障無く地盤応力を計測し得る装置、及び方法に関するものである。   The present invention relates to an apparatus and method for measuring ground stress, which is the stress acting on the outer surface of a structure, and more particularly to ground stress without trouble even when water is present around the outer surface of the structure. The present invention relates to an apparatus and a method that can measure the above.

従来、図3に示すような装置を用いたトンネル模型試験が公知である(例えば、特許文献1参照)。このトンネル模型試験では、振動台装置201の上に土容器202を載置し、土容器202の中に土や砂等を詰めて模型地盤301を形成するとともに、模型地盤301の内部にトンネル模型401を埋設して、地盤中のトンネルを模擬し、トンネル模型401の表面にロードセル501を貼り付け、ロードセル501からの電気的出力をリード線(図示せず)等により外部に取り出し、このロードセル501からの電気的出力を検出することにより、トンネル模型401の外表面に作用する応力(以下、「模型地盤応力」という。)を検知し、模型と実際の地盤及び構造物との間の「相似則」を考慮しつつ、現実の地盤での地盤応力の性状を解析しようとするものである。振動台装置201の内部には、図示はしていないが、駆動源と、駆動源の動力により振動を発生する振動発生器などが備えられている。   Conventionally, a tunnel model test using an apparatus as shown in FIG. 3 is known (for example, see Patent Document 1). In this tunnel model test, a soil container 202 is placed on the vibration table device 201, and a soil model 202 is formed by filling the soil container 202 with soil or sand, and a tunnel model is formed inside the model ground 301. 401 is embedded to simulate a tunnel in the ground, a load cell 501 is attached to the surface of the tunnel model 401, and an electrical output from the load cell 501 is taken out by a lead wire (not shown) or the like. By detecting the electrical output from the tunnel, the stress acting on the outer surface of the tunnel model 401 (hereinafter referred to as “model ground stress”) is detected, and the “similarity” between the model and the actual ground and structure is detected. It is intended to analyze the nature of the ground stress in the actual ground while considering the “law”. Although not shown in the figure, the vibration table device 201 includes a drive source and a vibration generator that generates vibration by the power of the drive source.

上記したロードセル501としては、各種の構造の物が公知である。図4は、上記した従来のトンネル模型試験に使用可能なロードセルの一例の構成を示したものである。図4に示すロードセル30は、トンネル模型の表面S1に垂直な方向の応力σ(以下、「垂直応力」という。)と、トンネル模型の表面S1に平行な方向の応力τ(以下、「せん断応力」という。)の両方を同時に検出可能な形式のロードセルである。図4(A)は、このロードセル30の正面図を、図4(B)は、このロードセル30の上面図を、それぞれ示している。   As the above-described load cell 501, various structures are known. FIG. 4 shows an example of the configuration of a load cell that can be used in the conventional tunnel model test described above. The load cell 30 shown in FIG. 4 includes a stress σ (hereinafter referred to as “normal stress”) in a direction perpendicular to the surface S1 of the tunnel model and a stress τ (hereinafter referred to as “shear stress” in a direction parallel to the surface S1 of the tunnel model. It is a type of load cell that can detect both of them simultaneously. FIG. 4A shows a front view of the load cell 30, and FIG. 4B shows a top view of the load cell 30.

図4(A)に示すように、このロードセル30は、2つの脚部31を有し、2つの脚部31の底面が接着剤(図示せず)等によりトンネル模型表面S1に貼り付けられている。2つの脚部31、31は、略梁状の胴体部32を支持しており、2つの脚部31、31と、胴体部32により、略「逆U字」状の支持構造体が形成されている。この支持構造体の略中央部からは、略柱状の首部34が直立しており、首部34の上端には、略帯板状の受圧板33の略中央部付近が支持されている。   As shown in FIG. 4A, the load cell 30 has two leg portions 31 and the bottom surfaces of the two leg portions 31 are attached to the tunnel model surface S1 with an adhesive (not shown) or the like. Yes. The two legs 31, 31 support a substantially beam-shaped body part 32, and a substantially “inverted U-shaped” support structure is formed by the two legs 31, 31 and the body part 32. ing. A substantially columnar neck 34 stands upright from a substantially central portion of the support structure, and the upper end of the neck 34 supports the vicinity of the substantially central portion of a substantially strip-shaped pressure receiving plate 33.

上記した胴体部32の側部には、首部34の取付位置(胴体部32の略中央部)の両側に、胴体部32の側部を貫通する2つの開口部32a、32aが形成されている。この開口部32a、32aのそれぞれには、開口部32aの直上となる胴体部32の上面に、ひずみゲージ35が接着剤(図示せず)等により貼り付けられている(図4(A)参照)。   Two openings 32a and 32a penetrating the side portion of the body portion 32 are formed on both sides of the attachment portion of the neck portion 34 (substantially central portion of the body portion 32) on the side portion of the body portion 32 described above. . In each of the openings 32a and 32a, a strain gauge 35 is attached to the upper surface of the body part 32 directly above the opening 32a with an adhesive (not shown) or the like (see FIG. 4A). ).

また、
上記した受圧板33の上面には、首部34の取付位置(胴体部32の略中央部)の両側に、受圧板33の上下面を貫通する2つの開口部33a、33aが形成されている(図4(A)参照)。この開口部33a、33aのそれぞれには、開口部33aの横側となる受圧板33の側面に、ひずみゲージ36が接着剤(図示せず)等により貼り付けられている(図4(B)参照)。
Also,
On the upper surface of the pressure receiving plate 33, two openings 33a and 33a penetrating the upper and lower surfaces of the pressure receiving plate 33 are formed on both sides of the attachment position of the neck portion 34 (substantially central portion of the body portion 32) ( (See FIG. 4A). In each of the openings 33a and 33a, a strain gauge 36 is attached to the side surface of the pressure receiving plate 33 on the side of the opening 33a with an adhesive (not shown) or the like (FIG. 4B). reference).

図5は、ロードセルにおけるひずみゲージ(例えば図4における35又は36)の詳細な構成を示す図である。図5に示すように、このひずみゲージ35は、ゲージベース41と、抵抗部42と、リード線43及び44を有して構成されている。ゲージベース41は、紙、ポリエステル樹脂等の電気絶縁材料からなり、薄膜状に形成されている。抵抗部42は、金属や半導体等からなり、線状又は箔状に形成されている。抵抗部42の長さLGはゲージ長と呼ばれる。ひずみゲージ35は、接着剤等により被測定物の表面に貼り付けて使用される。   FIG. 5 is a diagram showing a detailed configuration of a strain gauge (for example, 35 or 36 in FIG. 4) in the load cell. As shown in FIG. 5, the strain gauge 35 includes a gauge base 41, a resistance portion 42, and lead wires 43 and 44. The gauge base 41 is made of an electrically insulating material such as paper or polyester resin, and is formed in a thin film shape. The resistance portion 42 is made of metal, semiconductor, or the like, and is formed in a linear shape or a foil shape. The length LG of the resistance portion 42 is called a gauge length. The strain gauge 35 is used by being attached to the surface of an object to be measured with an adhesive or the like.

被測定物に外力が加わると、ひずみゲージ35の貼り付け位置である被測定物の表面に応力が発生し、これに伴って抵抗部42のゲージ長LGに伸び又は縮み量ΔLが発生する。ΔLとLGの比(ΔL/LG)を「ひずみ」といい、被測定物の表面に発生する「表面ひずみ」と等しい。金属等の抵抗は、ひずみに比例して変化する。ひずみゲージ35の抵抗値をRとし、ひずみをε(=ΔL/LG)とし、ひずみεによるひずみゲージ35の抵抗値の変化をΔRとすると、下式(1)の関係が成立する。

ΔR/R=K×ε ………(1)

ここに、Kは、比例定数であり、ゲージ率と呼ばれる。
When an external force is applied to the object to be measured, a stress is generated on the surface of the object to be measured at which the strain gauge 35 is attached, and accordingly, an elongation or shrinkage amount ΔL is generated in the gauge length LG of the resistance portion 42. The ratio of ΔL to LG (ΔL / LG) is called “strain” and is equal to “surface strain” generated on the surface of the object to be measured. Resistance of metal or the like changes in proportion to strain. When the resistance value of the strain gauge 35 is R, the strain is ε (= ΔL / LG), and the change in the resistance value of the strain gauge 35 due to the strain ε is ΔR, the relationship of the following equation (1) is established.

ΔR / R = K × ε (1)

Here, K is a proportionality constant and is called a gauge factor.

リード線43及び44は、金属等の導体で形成され、外部の電気回路等との接続に用いられ、上記したゲージの抵抗変化を電圧等の変化として外部に出力する。   The lead wires 43 and 44 are formed of a conductor such as metal and are used for connection to an external electric circuit or the like, and output the above-described resistance change of the gauge as a change in voltage or the like.

なお、ひずみゲージ35、36は、図5に示すようなゲージ単体だけで使用されることは少なく、4個のひずみゲージを、略菱形状となるように接続して、いわゆる「ホイートストンブリッジ回路(図示せず)」を構成し、この「ホイートストンブリッジ回路(図示せず)」からの電気的出力により、ゲージに作用する外力に伴う「ひずみ」を測定することができる。   Note that the strain gauges 35 and 36 are rarely used alone as shown in FIG. 5, and four strain gauges are connected so as to have a substantially rhombus shape, so-called “Wheatstone bridge circuit ( The “strain” accompanying the external force acting on the gauge can be measured by the electrical output from the “Wheatstone bridge circuit (not shown)”.

しかしながら、上記した従来のトンネル模型試験においては、以下に述べるような各種の問題点があった。   However, the conventional tunnel model test described above has various problems as described below.

地盤中に水が含まれる場合には、地震等の大きな外力が地盤に作用すると、水を含んだ地盤は、あたかも液体状となったような性状(以下、「液状化」という。)を示す。図3に示すトンネル模型試験装置を用いて、液状化を生じている模型地盤301内でのトンネル模型401の挙動を観測、データ測定を行いたい場合がある。しかしながら、そのような液状化の場合には、トンネル模型401に貼り付けられたロードセル501やひずみゲージが、液状化した土に直接接触する。ひずみゲージは、電気的出力(例えば電圧値)を取り出して「ひずみ」に相当する値を得る機器であり、液体の水に接触すると、ショート等が発生し、好ましくない、という問題があった。また、図3におけるロードセル501として、図4に示すロードセル30を用いる場合には、液状化した土が受圧板33の下面と胴体部32の上面の間の空間に侵入すると、侵入した土粒子と水が受圧板33の下面に外部(例えば図4における上方)へ向かう力を加える。このような状態となると、本来計測したい値であるトンネル模型401の外表面に作用する応力(例えば、図4において受圧板33の上面から下方に向かって作用する垂直応力σ)から、侵入した土粒子と水が受圧板33の下面から外部(例えば図4における上方)に向かって作用する応力が差し引かれてしまい、トンネル模型401の外表面に作用する応力の正確な値が計測できない、という問題もあった。   In the case where water is contained in the ground, when a large external force such as an earthquake acts on the ground, the ground containing water exhibits a property as if it became liquid (hereinafter referred to as “liquefaction”). . In some cases, the tunnel model test apparatus shown in FIG. 3 is used to observe the behavior of the tunnel model 401 in the model ground 301 where liquefaction occurs and to perform data measurement. However, in the case of such liquefaction, the load cell 501 and the strain gauge attached to the tunnel model 401 are in direct contact with the liquefied soil. The strain gauge is a device that obtains a value corresponding to “strain” by taking out an electrical output (for example, a voltage value), and has a problem that a short circuit occurs when it comes into contact with liquid water, which is not preferable. Further, when the load cell 30 shown in FIG. 4 is used as the load cell 501 in FIG. 3, when the liquefied soil enters the space between the lower surface of the pressure receiving plate 33 and the upper surface of the body portion 32, Water applies a force toward the outside (for example, upward in FIG. 4) on the lower surface of the pressure receiving plate 33. In such a state, the infiltrated soil is caused by the stress acting on the outer surface of the tunnel model 401 (for example, the vertical stress σ acting downward from the upper surface of the pressure receiving plate 33 in FIG. 4), which is a value to be originally measured. The problem that the stress acting on the outer surface of the tunnel model 401 cannot be measured because the stress acting on the outer surface of the tunnel model 401 is subtracted from the lower surface of the pressure receiving plate 33 (for example, upward in FIG. 4). There was also.

これを解決するため、ロードセル501を貼り付けたトンネル模型401の全体をゴム膜等で被覆する、という対策が施された。しかし、トンネル模型401の全体をゴム膜等で被覆すると、トンネル模型401の表面に平行に作用するせん断応力が計測できない、という問題があった。
特開平08−029297号公報
In order to solve this, a countermeasure has been taken in which the entire tunnel model 401 to which the load cell 501 is attached is covered with a rubber film or the like. However, when the entire tunnel model 401 is covered with a rubber film or the like, there is a problem that the shear stress acting in parallel with the surface of the tunnel model 401 cannot be measured.
Japanese Patent Laid-Open No. 08-029297

本発明は上記の問題を解決するためになされたものであり、本発明の解決しようとする課題は、ロードセル等を水に濡れないように防護する一方、構造物の各ひずみ(応力)を検出可能な地盤応力計測装置、及び地盤応力計測方法を提供することにある。   The present invention has been made to solve the above problems, and the problem to be solved by the present invention is to protect each load cell and the like from getting wet, while detecting each strain (stress) of the structure. An object of the present invention is to provide a possible ground stress measuring device and a ground stress measuring method.

上記課題を解決するため、本発明の請求項1に係る地盤応力計測装置は、
地盤が構造物の外表面に作用する応力である地盤応力を計測する装置であって、
前記構造物外表面と平行に支持される第1受力部材と、
作用する応力を電気量に変換して出力する第1応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に垂直な垂直応力を計測する垂直応力計測手段と、
作用する応力を電気量に変換して出力する第2応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に平行なせん断応力を計測するせん断応力計測手段と、
前記第1受力部材と前記垂直応力計測手段と前記せん断応力計測手段を被覆し、すべての端縁が前記構造物外表面に接着されるゴム膜と、
前記ゴム膜の外部で前記構造物外表面と平行となるように配置される第2受力部材と、
前記第2受力部材を前記ゴム膜を介して前記第1受力部材に結合する受力部材結合手段と、
前記受力部材結合手段の周囲を水に対して密閉する防水手段を備え、
前記地盤応力を前記第2受力部材で受けたのちに前記受力部材結合手段によって前記第1受力部材に伝達し前記垂直応力計測手段により前記垂直応力を計測するとともに前記せん断応力計測手段により前記せん断応力を計測し、前記第2受力部材の外部から前記受力部材結合手段の周囲を通って前記ゴム膜の内部へ水が侵入することを防止すること
を特徴とする。
In order to solve the above-described problem, a ground stress measurement device according to claim 1 of the present invention includes:
A device for measuring ground stress, which is the stress that the ground acts on the outer surface of the structure,
A first force receiving member supported in parallel with the outer surface of the structure;
A first stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the first stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A normal stress measuring means for measuring a normal stress perpendicular to the outer surface of the structure,
A second stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the second stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A shear stress measuring means for measuring a shear stress parallel to the outer surface of the structure,
A rubber film covering the first force receiving member, the normal stress measuring means, and the shear stress measuring means, and having all edges bonded to the outer surface of the structure;
A second force receiving member disposed outside the rubber film so as to be parallel to the outer surface of the structure;
Force receiving member coupling means for coupling the second force receiving member to the first force receiving member via the rubber film;
A waterproof means for sealing the periphery of the force receiving member coupling means against water;
After the ground stress is received by the second force receiving member, the force receiving member coupling means transmits the ground stress to the first force receiving member, and the vertical stress measuring means measures the vertical stress and the shear stress measuring means. The shear stress is measured, and water is prevented from entering the rubber film from the outside of the second force receiving member through the periphery of the force receiving member coupling means.

また、本発明の請求項2に係る地盤応力計測方法は、
地盤が構造物の外表面に作用する応力である地盤応力を計測する方法であって、
前記構造物外表面と平行に支持される第1受力部材と、
作用する応力を電気量に変換して出力する第1応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に垂直な垂直応力を計測する垂直応力計測手段と、
作用する応力を電気量に変換して出力する第2応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に平行なせん断応力を計測するせん断応力計測手段と、
前記第1受力部材と前記垂直応力計測手段と前記せん断応力計測手段を被覆し、すべての端縁が前記構造物外表面に接着されるゴム膜と、
前記ゴム膜の外部で前記構造物外表面と平行となるように配置される第2受力部材と、
前記第2受力部材を前記ゴム膜を介して前記第1受力部材に結合する受力部材結合手段と、
前記受力部材結合手段の周囲を水に対して密閉する防水手段を用い、
前記地盤応力を前記第2受力部材で受けたのちに前記受力部材結合手段によって前記第1受力部材に伝達し前記垂直応力計測手段により前記垂直応力を計測するとともに前記せん断応力計測手段により前記せん断応力を計測し、前記第2受力部材の外部から前記受力部材結合手段の周囲を通って前記ゴム膜の内部へ水が侵入することを防止すること
を特徴とする。
In addition, the ground stress measurement method according to claim 2 of the present invention,
A method of measuring ground stress, which is the stress that the ground acts on the outer surface of the structure,
A first force receiving member supported in parallel with the outer surface of the structure;
A first stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the first stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A normal stress measuring means for measuring a normal stress perpendicular to the outer surface of the structure,
A second stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the second stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A shear stress measuring means for measuring a shear stress parallel to the outer surface of the structure,
A rubber film covering the first force receiving member, the normal stress measuring means, and the shear stress measuring means, and having all edges bonded to the outer surface of the structure;
A second force receiving member disposed outside the rubber film so as to be parallel to the outer surface of the structure;
Force receiving member coupling means for coupling the second force receiving member to the first force receiving member via the rubber film;
Using waterproof means for sealing the periphery of the force receiving member coupling means against water,
After the ground stress is received by the second force receiving member, the force receiving member coupling means transmits the ground stress to the first force receiving member, and the vertical stress measuring means measures the vertical stress and the shear stress measuring means. The shear stress is measured, and water is prevented from entering the rubber film from the outside of the second force receiving member through the periphery of the force receiving member coupling means.

本発明に係る地盤応力計測装置及び地盤応力計測方法によれば、第1応力検出器が取り付けられた垂直応力計測手段と、第2応力検出器が取り付けられたせん断応力計測手段と、第1受力部材と、第1受力部材の外部に配置されるゴム膜と、第1受力部材の配置箇所のゴム膜の外部に配置されるとともに受力部材結合手段によって第1受力部材の外側に固定される第2受力部材と、受力部材結合手段の周囲の隙間等に配置されて外部の水が内部に侵入することを防止する防水手段を備えるように構成したので、外部の地盤から構造物に作用する地盤応力を第2受力部材で受けたのちに、受力部材結合手段によって第1受力部材に伝達し、垂直応力計測手段により垂直応力を計測するとともに、せん断応力計測手段によりせん断応力を計測することができ、かつ第2受力部材の外部の地盤から受力部材結合手段の周囲を通ってゴム膜の内部へ水が侵入することを、防水手段により防止することができる、という利点を有している。   According to the ground stress measurement device and the ground stress measurement method according to the present invention, the vertical stress measurement means to which the first stress detector is attached, the shear stress measurement means to which the second stress detector is attached, and the first receiver. A force member, a rubber film disposed outside the first force receiving member, and an outer surface of the first force receiving member by the force receiving member coupling means and disposed outside the rubber film at a location where the first force receiving member is disposed. Since the second force receiving member fixed to the force receiving member and the waterproofing means disposed in the gap around the force receiving member coupling means and the like to prevent the outside water from entering the inside are provided. After receiving the ground stress acting on the structure from the second force receiving member, it is transmitted to the first force receiving member by the force receiving member coupling means, and the vertical stress is measured by the vertical stress measuring means, and the shear stress is measured. Measure shear stress by means The waterproof means can prevent water from entering from the ground outside the second force receiving member through the periphery of the force receiving member coupling means to the inside of the rubber film. is doing.

以下に説明する第1実施例又は第2実施例は、垂直ひずみゲージ15とせん断ひずみゲージ16が取り付けられた基部11と内側受圧板13を有するロードセル10と、内側受圧板13の外部に配置されるゴム膜61又は62と、内側受圧板13の配置箇所のゴム膜61の外部に配置されるとともに結合ネジ50によって内側受圧板13に固定される外側受圧板20と、結合ネジ50の周囲の隙間等に配置されて外部の模型地盤301の水などがゴム膜内空間V1又はV2の内部に侵入することを防止するシーリング材又はシーリング剤を備えてトンネル模型地盤応力計測装置101を構成するようにしたものであり、模型地盤301からトンネル模型401に作用する模型地盤応力を外側受圧板20で受けたのちに、結合ネジ50によって内側受圧板13に伝達し、ロードセル10の基部11により垂直応力とせん断応力を計測することができ、かつ外側受圧板20の外部の模型地盤301から結合ネジ50の周囲を通ってゴム膜61の内部の空間V1へ水が侵入することを、シーリング材又はシーリング剤により防止することができ、本発明を実現するための構成として最良の形態である。   In the first or second embodiment described below, the load cell 10 having a base 11 and an inner pressure plate 13 to which a vertical strain gauge 15 and a shear strain gauge 16 are attached, and the inner pressure plate 13 are arranged outside. A rubber film 61 or 62, an outer pressure receiving plate 20 that is disposed outside the rubber film 61 at a position where the inner pressure receiving plate 13 is disposed, and is fixed to the inner pressure receiving plate 13 by a coupling screw 50; The tunnel model ground stress measuring apparatus 101 is configured to include a sealing material or a sealing agent that is disposed in a gap or the like and prevents water or the like of the external model ground 301 from entering the rubber film space V1 or V2. After the model ground stress acting on the tunnel model 401 from the model ground 301 is received by the outer pressure receiving plate 20, The vertical stress and shear stress can be measured by the base 11 of the load cell 10 and transmitted to the side pressure plate 13, and from the model ground 301 outside the outer pressure plate 20 through the periphery of the coupling screw 50, It is possible to prevent water from entering the internal space V1 with a sealing material or a sealing agent, which is the best mode for realizing the present invention.

以下、本発明の実施例について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1実施例であるトンネル模型地盤応力計測装置の構成を示す図である。   FIG. 1 is a diagram showing a configuration of a tunnel model ground stress measuring apparatus according to a first embodiment of the present invention.

図1に示すように、このトンネル模型地盤応力計測装置101は、ロードセル10と、ゴム膜61と、外側受圧板20と、結合ネジ50と、後述するシーリング材又はシーリング剤を備えて構成されている。   As shown in FIG. 1, the tunnel model ground stress measuring device 101 includes a load cell 10, a rubber film 61, an outer pressure plate 20, a coupling screw 50, and a sealing material or a sealing agent described later. Yes.

ロードセル10は、構造物であるトンネル模型401の表面S1に、その下端11aが接着剤(図示せず)により貼り付けられ、金属材料(例えばアルミニウム合金、鋼材など)からなる基部11と、基部11の上端11bに取り付けられて支持され、金属材料(例えばアルミニウム合金、鋼材など)からなる板状の部材である内側受圧板13を有し、全体として、略「T字」状の断面形状の構造体を構成している。ここに、内側受圧板13は、構造物表面であるトンネル模型表面S1に対して略平行となるように支持されている。この内側受圧板13は、特許請求の範囲における第1受力部材に相当している。内側受圧板13には、その上面と下面とを連通する貫通孔13aが形成されており、この貫通孔13aの内壁には雌ネジが形成されている。以下、この貫通孔13aを「雌ネジ孔」という。この雌ネジ孔13aの内壁の雌ネジは、後述する結合ネジ50の軸部50bの外周円筒面に形成された雄ネジと螺合するようになっている。   The load cell 10 has a base 11 made of a metal material (for example, an aluminum alloy, a steel, etc.) having a lower end 11a attached to the surface S1 of the tunnel model 401, which is a structure, with an adhesive (not shown), and a base 11 The inner pressure receiving plate 13 is a plate-like member made of a metal material (for example, an aluminum alloy, a steel material, etc.) and is attached to and supported by the upper end 11b, and has a substantially “T-shaped” cross-sectional structure as a whole. Make up body. Here, the inner pressure plate 13 is supported so as to be substantially parallel to the tunnel model surface S1, which is the surface of the structure. The inner pressure plate 13 corresponds to the first force receiving member in the claims. The inner pressure receiving plate 13 is formed with a through hole 13a communicating the upper surface and the lower surface thereof, and a female screw is formed on the inner wall of the through hole 13a. Hereinafter, the through hole 13a is referred to as “female screw hole”. The female screw on the inner wall of the female screw hole 13a is screwed with a male screw formed on the outer peripheral cylindrical surface of a shaft portion 50b of the coupling screw 50 described later.

ロードセル10の基部11の表面には、垂直ひずみゲージ15と、せん断ひずみゲージ16が取り付けられている。垂直ひずみゲージ15は、内側受力板13の面に垂直な方向のひずみを検出することにより、トンネル模型表面S1に対して垂直な方向の応力σ(以下、「垂直応力」という。)を電気量(例えば電圧値)に変換して出力することができ、特許請求の範囲における第1応力検出器に相当している。また、せん断ひずみゲージ16は、内側受力板13の面に平行な方向のひずみを検出することにより、トンネル模型表面S1に平行な方向の応力τ(以下、「せん断応力」という。)を電気量(例えば電圧値)に変換して出力することができ、特許請求の範囲における第2応力検出器に相当している。   A vertical strain gauge 15 and a shear strain gauge 16 are attached to the surface of the base 11 of the load cell 10. The vertical strain gauge 15 detects a strain in a direction perpendicular to the surface of the inner force receiving plate 13, thereby causing a stress σ (hereinafter referred to as “vertical stress”) in a direction perpendicular to the tunnel model surface S 1 to be electric. It can be converted into a quantity (for example, a voltage value) and output, and corresponds to the first stress detector in the claims. Further, the shear strain gauge 16 detects a strain in a direction parallel to the surface of the inner force receiving plate 13, thereby generating a stress τ (hereinafter referred to as “shear stress”) in a direction parallel to the tunnel model surface S 1. It can be converted into a quantity (for example, a voltage value) and output, and corresponds to the second stress detector in the claims.

また、ゴム膜61は、構造物であるトンネル模型401の表面に接着剤71によって貼り付けられ、構造物であるトンネル模型401を被覆している部分を有している。また、ロードセル10の設置箇所においては、ゴム膜61には、ゴム膜孔61aが形成されている。このゴム膜孔61aは、後述する結合ネジ50の軸部50bの外直径よりも小さな内直径を有する略円形断面の孔であり、ゴム膜61の外部と内部を連通する貫通孔である。   The rubber film 61 has a portion that is attached to the surface of the tunnel model 401 that is a structure by an adhesive 71 and covers the tunnel model 401 that is a structure. Further, at the place where the load cell 10 is installed, the rubber film 61 has a rubber film hole 61a. The rubber film hole 61 a is a hole having a substantially circular cross section having an inner diameter smaller than the outer diameter of a shaft portion 50 b of the coupling screw 50 described later, and is a through hole that communicates the outside and the inside of the rubber film 61.

ゴム膜61は、ロードセル10の設置箇所においては、内側受圧板13の上面を被覆するように配置されている。この場合、内側受圧板13の雌ネジ孔13aの上面開口位置と、ゴム膜61のゴム膜孔61aの位置が合致するように配設されている。   The rubber film 61 is disposed so as to cover the upper surface of the inner pressure receiving plate 13 at the installation location of the load cell 10. In this case, the upper surface opening position of the female screw hole 13 a of the inner pressure receiving plate 13 and the position of the rubber film hole 61 a of the rubber film 61 are arranged to coincide with each other.

この箇所のゴム膜61の外部には、外側受圧板20が配置されている。外側受圧板20は、金属材料(例えばアルミニウム合金、鋼材など)からなる板状の部材であり、内側受圧板13の上面と略等しい形状の下面を有し、内側受圧板13の雌ネジ孔13aの開口位置と等しい位置には、雌ネジ孔13aと等しい内径と同一構成の雌ネジ山と雌ネジ谷を有する雌ネジ孔20aが形成されている。また、雌ネジ孔20aの外部開口位置には、雌ネジ孔20aよりも大径で雌ネジの形成されていない凹部(又は外部からの孔)であるネジ頭収容凹部20bが形成されている。   The outer pressure receiving plate 20 is disposed outside the rubber film 61 at this location. The outer pressure plate 20 is a plate-like member made of a metal material (for example, an aluminum alloy, a steel material, etc.), has a lower surface that is substantially the same as the upper surface of the inner pressure plate 13, and has a female screw hole 13 a in the inner pressure plate 13. A female screw hole 20a having a female screw thread and a female screw valley having the same inner diameter as that of the female screw hole 13a is formed at a position equal to the opening position. In addition, a screw head housing recess 20b, which is a recess (or a hole from the outside) that is larger in diameter than the female screw hole 20a and has no female screw formed, is formed at the external opening position of the female screw hole 20a.

このような構成により、図1のように、内側受圧板13の外側をゴム膜61が被覆している箇所に、外側受圧板20を当接し、結合ネジ50の軸部50bをねじ込めば、軸部50bは、雌ネジ孔20aと螺合するとともに、結合ネジ50の下降により、軸部50bの下端は、ゴム膜孔61aから、ゴム膜61の内部の空間V1に入り込み、内側受圧板13の雌ネジ孔13aと螺合する。これにより、外側受圧板20は、ゴム膜61を挟んだ状態で、結合ネジ50によって内側受圧板13に固定される。このため、外側受圧板20に作用する外力は、結合ネジ50及び内側受圧板13を介して、ロードセル10の基部11に伝達される。また、ゴム膜61は、トンネル模型401の全部の外表面を被覆しており、ロードセル10の箇所では、内側受圧板13と基部11の全体を被覆している。   With such a configuration, as shown in FIG. 1, if the outer pressure plate 20 is brought into contact with the portion where the outer side of the inner pressure plate 13 is covered with the rubber film 61 and the shaft portion 50 b of the coupling screw 50 is screwed, The shaft portion 50b is screwed into the female screw hole 20a, and the lower end of the shaft portion 50b enters the space V1 inside the rubber film 61 from the rubber film hole 61a due to the lowering of the coupling screw 50. And the female screw hole 13a. Thus, the outer pressure plate 20 is fixed to the inner pressure plate 13 by the coupling screw 50 with the rubber film 61 interposed therebetween. For this reason, the external force acting on the outer pressure plate 20 is transmitted to the base 11 of the load cell 10 via the coupling screw 50 and the inner pressure plate 13. The rubber film 61 covers the entire outer surface of the tunnel model 401, and covers the entire inner pressure plate 13 and the base portion 11 at the load cell 10.

ここに、ロードセル10の基部11は、その一部である下端11aが構造物外表面であるトンネル模型表面S1に固定されるとともに、他の一部である上端11bが第1受力部材である内側受圧板13の下面に固定され、かつ、ゴム膜61を挟んだ状態で、結合ネジ50によって外側受圧板20に固定されているので、地盤応力のうち、構造物外表面であるトンネル模型表面S1に垂直な応力である垂直応力を計測する構成となっており、特許請求の範囲における垂直応力計測手段を構成している。   Here, the base 11 of the load cell 10 has a lower end 11a which is a part thereof fixed to the tunnel model surface S1 which is an outer surface of the structure, and an upper end 11b which is another part is a first force receiving member. The surface of the tunnel model which is fixed to the lower surface of the inner pressure receiving plate 13 and is fixed to the outer pressure receiving plate 20 by the coupling screw 50 with the rubber film 61 interposed therebetween. It is configured to measure a normal stress that is a stress perpendicular to S1, and constitutes a normal stress measuring means in the claims.

また、ロードセル10の基部11は、その一部である下端11aが構造物外表面であるトンネル模型表面S1に固定されるとともに、他の一部である上端11bが第1受力部材である内側受圧板13の下面に固定され、かつ、ゴム膜61を挟んだ状態で、結合ネジ50によって外側受圧板20に固定されているので、地盤応力のうち、構造物外表面であるトンネル模型表面S1に平行な応力であるせん断応力を計測する構成となっており、特許請求の範囲におけるせん断応力計測手段を構成している。   Further, the base 11 of the load cell 10 has a lower end 11a which is a part thereof fixed to a tunnel model surface S1 which is an outer surface of the structure, and an upper end 11b which is another part is an inner side which is a first force receiving member. Since it is fixed to the outer pressure plate 20 with the coupling screw 50 in a state of being fixed to the lower surface of the pressure plate 13 and sandwiching the rubber film 61, the tunnel model surface S1 that is the outer surface of the structure out of the ground stress. It is the structure which measures the shear stress which is a stress parallel to this, and comprises the shear stress measurement means in a claim.

また、外側受圧板20は、ロードセル10の設置箇所において、ゴム膜61の外部に配置され、構造物外表面であるトンネル模型外表面S1と平行となるように配置されており、特許請求の範囲における第2受力部材に相当している。   Further, the outer pressure plate 20 is disposed outside the rubber film 61 at the place where the load cell 10 is installed, and is disposed so as to be parallel to the tunnel model outer surface S1, which is the outer surface of the structure. Corresponds to the second force receiving member.

また、結合ネジ50は、第2受力部材である外側受圧板20を、ゴム膜61を介して、第1受力部材である内側受圧板13に結合しており、特許請求の範囲における受力部材結合手段に相当している。   The coupling screw 50 couples the outer pressure receiving plate 20 as the second force receiving member to the inner pressure receiving plate 13 as the first force receiving member via the rubber film 61. It corresponds to a force member coupling means.

また、受力部材結合手段である結合ネジ50の周囲、例えば、ゴム膜孔61aの付近の結合ネジ50の周囲、あるいは、外側受圧板20におけるネジ頭収容凹部20bと結合ネジ頭部50aの間の隙間箇所20b1(以下、「防水シール箇所」という。)等には、外部の模型地盤301に含まれる水などが、ゴム膜内空間V1の内部に侵入することを防止し得るシーリング材(例えば、Oリングなど)や、シーリング剤(例えば、グリースなど)が配置されている。これらのシーリング材又はシーリング剤は、水に対して密閉する手段であり、特許請求の範囲における防水手段に相当している。   Further, around the coupling screw 50 as the force receiving member coupling means, for example, around the coupling screw 50 in the vicinity of the rubber film hole 61a, or between the screw head accommodating recess 20b and the coupling screw head 50a in the outer pressure receiving plate 20. In the gap portion 20b1 (hereinafter, referred to as “waterproof seal portion”) or the like, a sealing material (for example, water) included in the external model ground 301 can be prevented from entering the rubber film inner space V1. , O-ring, etc.) and a sealing agent (for example, grease) are disposed. These sealing materials or sealing agents are means for sealing against water and correspond to waterproof means in the claims.

上記のような構成により、このトンネル模型地盤応力計測装置101では、模型地盤301からトンネル模型401に作用する模型地盤応力を、第2受力部材である外側受圧板20で受けたのちに、受力部材結合手段である結合ネジ50によって、第1受力部材である内側受圧板13に伝達し、垂直応力計測手段であるロードセル10の基部11により垂直応力を計測するとともに、せん断応力計測手段であるロードセル10の基部11によりせん断応力を計測することができる。この際、第2受力部材である外側受圧板20の外部の模型地盤301から、受力部材結合手段である結合ネジ50の周囲を通ってゴム膜61の内部の空間V1へ水が侵入することは、防水手段であるシーリング材又はシーリング剤により防止されている。ここに、模型地盤応力は、特許請求の範囲における地盤応力に相当している。   With the configuration as described above, in this tunnel model ground stress measuring apparatus 101, after receiving the model ground stress acting on the tunnel model 401 from the model ground 301 by the outer pressure receiving plate 20 which is the second force receiving member, the tunnel model ground stress measuring apparatus 101 receives the model ground stress. The force is transmitted to the inner pressure receiving plate 13 as the first force receiving member by the connecting screw 50 as the force member connecting means, and the vertical stress is measured by the base portion 11 of the load cell 10 as the vertical stress measuring means, and the shear stress measuring means is used. The shear stress can be measured by the base 11 of a certain load cell 10. At this time, water enters the space V1 inside the rubber film 61 from the model ground 301 outside the outer pressure receiving plate 20 that is the second force receiving member, through the periphery of the connecting screw 50 that is the force receiving member connecting means. This is prevented by a sealing material or a sealing agent which is a waterproof means. Here, the model ground stress corresponds to the ground stress in the claims.

本発明は、上記した第1実施例以外の構成によっても実現可能である。図2は、本発明の第2実施例であるトンネル模型地盤応力計測装置の構成を示す図である。   The present invention can also be realized by configurations other than the first embodiment described above. FIG. 2 is a diagram showing a configuration of a tunnel model ground stress measuring apparatus according to the second embodiment of the present invention.

図2に示すように、第2実施例のトンネル模型地盤応力計測装置102は、ロードセル10と、ゴム膜62と、外側受圧板20と、結合ネジ50と、第1実施例101の場合と同様なシーリング材又はシーリング剤(図2における結合ネジ50の周囲、例えば、ゴム膜孔62aの付近の結合ネジ50の周囲、あるいは、外側受圧板20におけるネジ頭収容凹部20bと結合ネジ頭部50aの間の隙間箇所である防水シール箇所20b1等に配置される資材)を備えて構成されている。第2実施例のトンネル模型地盤応力計測装置102においては、ゴム膜62は、トンネル模型401の全体を被覆しておらず、ロードセル10の設置箇所付近のみを被覆しており、ゴム膜62のすべての端縁がトンネル模型表面S1(特許請求の範囲における構造物外表面)に接着剤72によって接着されている点で、第1実施例のトンネル模型地盤応力計測装置101と異なっている。その他の構成要素の構成と作用は、第1実施例のトンネル模型地盤応力計測装置101の場合とまったく同様である。   As shown in FIG. 2, the tunnel model ground stress measuring device 102 of the second embodiment is the same as in the case of the load cell 10, the rubber film 62, the outer pressure plate 20, the coupling screw 50, and the first embodiment 101. 2. A sealing material or sealing agent (around the coupling screw 50 in FIG. 2, for example, around the coupling screw 50 in the vicinity of the rubber film hole 62a, or between the screw head receiving recess 20b and the coupling screw head 50a in the outer pressure plate 20). Material provided in a waterproof seal portion 20b1 or the like that is a gap portion between them. In the tunnel model ground stress measuring device 102 of the second embodiment, the rubber film 62 does not cover the entire tunnel model 401, and covers only the vicinity of the installation location of the load cell 10. Is different from the tunnel model ground stress measuring apparatus 101 of the first embodiment in that the edge of the tunnel model is bonded to the tunnel model surface S1 (the outer surface of the structure in the claims) by an adhesive 72. The configuration and operation of the other components are the same as those of the tunnel model ground stress measuring apparatus 101 of the first embodiment.

上記のような構成により、このトンネル模型地盤応力計測装置102においても、模型地盤301からトンネル模型401に作用する模型地盤応力を、第2受力部材である外側受圧板20で受けたのちに、受力部材結合手段である結合ネジ50によって、第1受力部材である内側受圧板13に伝達し、垂直応力計測手段であるロードセル10の基部11により垂直応力を計測するとともに、せん断応力計測手段であるロードセル10の基部11によりせん断応力を計測することができる。この際、第2受力部材である外側受圧板20の外部の模型地盤301から、受力部材結合手段である結合ネジ50の周囲を通ってゴム膜61の内部の空間V2へ水が侵入することは、防水手段であるシーリング材又はシーリング剤により防止されている。   With the configuration as described above, also in this tunnel model ground stress measuring apparatus 102, after receiving the model ground stress acting on the tunnel model 401 from the model ground 301 by the outer pressure receiving plate 20 which is the second force receiving member, The force is transmitted to the inner pressure receiving plate 13 as the first force receiving member by the coupling screw 50 as the force receiving member coupling means, and the vertical stress is measured by the base 11 of the load cell 10 as the vertical stress measuring means, and the shear stress measuring means. The shear stress can be measured by the base 11 of the load cell 10. At this time, water enters the space V2 inside the rubber film 61 from the model ground 301 outside the outer pressure receiving plate 20 that is the second force receiving member, through the periphery of the connecting screw 50 that is the force receiving member connecting means. This is prevented by a sealing material or a sealing agent which is a waterproof means.

なお、本発明は、上記した各実施例に限定されるものではない。上記各実施例は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   In addition, this invention is not limited to each above-mentioned Example. Each of the above-described embodiments is an exemplification, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same operational effects can be used. It is included in the technical scope of the present invention.

例えば、上記各実施例においては、トンネル模型試験に使用可能なトンネル模型地盤応力計測装置について説明したが、本発明はトンネル模型地盤応力計測装置だけでなく、現実の地盤の応力計測装置にも適用可能である。   For example, in each of the above embodiments, a tunnel model ground stress measuring device that can be used for a tunnel model test has been described, but the present invention is applicable not only to a tunnel model ground stress measuring device but also to an actual ground stress measuring device. Is possible.

本発明は、地盤応力の測定を行う計測サービス業、地盤応力の測定を行う計測器を製造する計測器製造業、トンネル等の地盤内構造物の施工や保守等を行う土木・建築業等で実施可能であり、これらの産業で利用可能である。   The present invention is a measurement service industry that measures ground stress, a measuring instrument manufacturing industry that manufactures measuring instruments that measure ground stress, and a civil engineering / building industry that performs construction and maintenance of ground structures such as tunnels. It can be implemented and used in these industries.

本発明の第1実施例であるトンネル模型地盤応力計測装置の構成を示す図である。It is a figure which shows the structure of the tunnel model ground stress measuring apparatus which is 1st Example of this invention. 本発明の第2実施例であるトンネル周辺地盤応力計測装置の構成を示す図である。It is a figure which shows the structure of the tunnel surrounding ground stress measuring apparatus which is 2nd Example of this invention. 従来のトンネル模型試験を説明する図である。It is a figure explaining the conventional tunnel model test. 従来のトンネル模型試験に用いるロードセルの一例の構成を示す図である。It is a figure which shows the structure of an example of the load cell used for the conventional tunnel model test. ロードセルにおけるひずみゲージの詳細な構成を示す図である。It is a figure which shows the detailed structure of the strain gauge in a load cell.

符号の説明Explanation of symbols

10 ロードセル
11 基部
11a 下端
11b 上端
13 内側受圧板
13a 雌ネジ孔
15 垂直ひずみゲージ
16 せん断ひずみゲージ
20 外側受圧板
20a 雌ネジ孔
20b ネジ頭収容凹部
20b1 防水シール箇所
30 ロードセル
31 脚部
32 胴体部
32a 開口部
33 受圧板
33a 開口部
34 首部
35、36 ひずみゲージ
41 ゲージベース
42 抵抗部
43、44 リード線
50 結合ネジ
50a 頭部
50b 軸部
61 ゴム膜
61a ゴム膜孔
62 ゴム膜
62a ゴム膜孔
71、72 接着剤
101、102 トンネル模型地盤応力計測装置
201 振動台装置
202 土容器
301 模型地盤
401 トンネル模型
501 ロードセル
LG ゲージ長
S1 トンネル模型表面
V1、V2 ゴム膜内空間
σ 垂直応力
τ せん断応力
DESCRIPTION OF SYMBOLS 10 Load cell 11 Base 11a Lower end 11b Upper end 13 Inner pressure receiving plate 13a Female screw hole 15 Vertical strain gauge 16 Shear strain gauge 20 Outer pressure receiving plate 20a Female screw hole 20b Screw head accommodation recessed part 20b1 Waterproof seal location 30 Load cell 31 Leg part 32 Body part 32a Opening 33 Pressure receiving plate 33a Opening 34 Neck 35, 36 Strain gauge 41 Gauge base 42 Resistor 43, 44 Lead wire 50 Coupling screw 50a Head 50b Shaft 61 Rubber film 61a Rubber film hole 62 Rubber film 62a Rubber film hole 71 , 72 Adhesives 101, 102 Tunnel model ground stress measurement device 201 Shaking table device 202 Earth container 301 Model ground 401 Tunnel model 501 Load cell LG Gauge length S1 Tunnel model surface V1, V2 Rubber film space σ Vertical stress τ Shear stress

Claims (2)

地盤が構造物の外表面に作用する応力である地盤応力を計測する装置であって、
前記構造物外表面と平行に支持される第1受力部材と、
作用する応力を電気量に変換して出力する第1応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に垂直な垂直応力を計測する垂直応力計測手段と、
作用する応力を電気量に変換して出力する第2応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に平行なせん断応力を計測するせん断応力計測手段と、
前記第1受力部材と前記垂直応力計測手段と前記せん断応力計測手段を被覆し、すべての端縁が前記構造物外表面に接着されるゴム膜と、
前記ゴム膜の外部で前記構造物外表面と平行となるように配置される第2受力部材と、
前記第2受力部材を前記ゴム膜を介して前記第1受力部材に結合する受力部材結合手段と、
前記受力部材結合手段の周囲を水に対して密閉する防水手段を備え、
前記地盤応力を前記第2受力部材で受けたのちに前記受力部材結合手段によって前記第1受力部材に伝達し前記垂直応力計測手段により前記垂直応力を計測するとともに前記せん断応力計測手段により前記せん断応力を計測し、前記第2受力部材の外部から前記受力部材結合手段の周囲を通って前記ゴム膜の内部へ水が侵入することを防止すること
を特徴とする地盤応力計測装置。
A device for measuring ground stress, which is the stress that the ground acts on the outer surface of the structure,
A first force receiving member supported in parallel with the outer surface of the structure;
A first stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the first stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A normal stress measuring means for measuring a normal stress perpendicular to the outer surface of the structure,
A second stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the second stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A shear stress measuring means for measuring a shear stress parallel to the outer surface of the structure,
A rubber film covering the first force receiving member, the normal stress measuring means, and the shear stress measuring means, and having all edges bonded to the outer surface of the structure;
A second force receiving member disposed outside the rubber film so as to be parallel to the outer surface of the structure;
Force receiving member coupling means for coupling the second force receiving member to the first force receiving member via the rubber film;
A waterproof means for sealing the periphery of the force receiving member coupling means against water;
After the ground stress is received by the second force receiving member, the force receiving member coupling means transmits the ground stress to the first force receiving member, and the vertical stress measuring means measures the vertical stress and the shear stress measuring means. A ground stress measuring device that measures the shear stress and prevents water from entering the rubber film from the outside of the second force receiving member through the periphery of the force receiving member coupling means. .
地盤が構造物の外表面に作用する応力である地盤応力を計測する方法であって、
前記構造物外表面と平行に支持される第1受力部材と、
作用する応力を電気量に変換して出力する第1応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に垂直な垂直応力を計測する垂直応力計測手段と、
作用する応力を電気量に変換して出力する第2応力検出器を有し、一部が前記構造物外表面に固定され他の一部が前記第1受力部材に固定され、前記地盤応力のうち前記構造物外表面に平行なせん断応力を計測するせん断応力計測手段と、
前記第1受力部材と前記垂直応力計測手段と前記せん断応力計測手段を被覆し、すべての端縁が前記構造物外表面に接着されるゴム膜と、
前記ゴム膜の外部で前記構造物外表面と平行となるように配置される第2受力部材と、
前記第2受力部材を前記ゴム膜を介して前記第1受力部材に結合する受力部材結合手段と、
前記受力部材結合手段の周囲を水に対して密閉する防水手段を用い、
前記地盤応力を前記第2受力部材で受けたのちに前記受力部材結合手段によって前記第1受力部材に伝達し前記垂直応力計測手段により前記垂直応力を計測するとともに前記せん断応力計測手段により前記せん断応力を計測し、前記第2受力部材の外部から前記受力部材結合手段の周囲を通って前記ゴム膜の内部へ水が侵入することを防止すること
を特徴とする地盤応力計測方法。
A method of measuring ground stress, which is the stress that the ground acts on the outer surface of the structure,
A first force receiving member supported in parallel with the outer surface of the structure;
A first stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the first stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A normal stress measuring means for measuring a normal stress perpendicular to the outer surface of the structure,
A second stress detector that converts an acting stress into an electrical quantity and outputs the same; a part of the second stress detector is fixed to the outer surface of the structure; the other part is fixed to the first force receiving member; A shear stress measuring means for measuring a shear stress parallel to the outer surface of the structure,
A rubber film covering the first force receiving member, the normal stress measuring means, and the shear stress measuring means, and having all edges bonded to the outer surface of the structure;
A second force receiving member disposed outside the rubber film so as to be parallel to the outer surface of the structure;
Force receiving member coupling means for coupling the second force receiving member to the first force receiving member via the rubber film;
Using waterproof means for sealing the periphery of the force receiving member coupling means against water,
After the ground stress is received by the second force receiving member, the force receiving member coupling means transmits the ground stress to the first force receiving member, and the vertical stress measuring means measures the vertical stress and the shear stress measuring means. The ground stress measurement method characterized by measuring the shear stress and preventing water from entering the rubber film from the outside of the second force receiving member through the periphery of the force receiving member coupling means. .
JP2005300621A 2005-10-14 2005-10-14 Ground stress measuring device and ground stress measuring method Pending JP2007108073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300621A JP2007108073A (en) 2005-10-14 2005-10-14 Ground stress measuring device and ground stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300621A JP2007108073A (en) 2005-10-14 2005-10-14 Ground stress measuring device and ground stress measuring method

Publications (1)

Publication Number Publication Date
JP2007108073A true JP2007108073A (en) 2007-04-26

Family

ID=38034033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300621A Pending JP2007108073A (en) 2005-10-14 2005-10-14 Ground stress measuring device and ground stress measuring method

Country Status (1)

Country Link
JP (1) JP2007108073A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133150A1 (en) 2007-04-17 2008-11-06 Nissan Motor Co., Ltd. Device and method for estimating frictional condition of ground contact surface of wheel
CN101487836B (en) * 2009-02-06 2012-03-28 煤炭科学研究总院重庆研究院 Simulated ground stress apparatus for coal and gas burst experiment
CN101487834B (en) * 2009-02-06 2012-03-28 煤炭科学研究总院重庆研究院 Combined test apparatus for coal and gas burst
KR101529098B1 (en) * 2014-02-19 2015-06-16 한국건설기술연구원 Test apparatus for shield tunnel mock-up considering both underground earth pressure and pore water pressure according to draining condition, and method for the same
CN105136370A (en) * 2015-07-13 2015-12-09 北京工业大学 Earth pressure load determination method of deeply-buried asymmetric multiple-arch tunnel
JP2017096049A (en) * 2015-11-27 2017-06-01 株式会社安藤・間 Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head
JP2017101436A (en) * 2015-12-01 2017-06-08 株式会社安藤・間 Earth water pressure-shear force measurement sensor
CN107024575A (en) * 2017-06-08 2017-08-08 浙江工业大学 Simulate experimental rig and test method that tunneling boring constructing tunnel triggers earth's surface deformation
CN107036515A (en) * 2017-06-08 2017-08-11 浙江工业大学 Simulate experimental rig and test method that benching tunnelling method constructing tunnel triggers earth's surface deformation
CN107588877A (en) * 2017-10-15 2018-01-16 安徽理工大学 A kind of recyclable geostress survey device
JP2018009820A (en) * 2016-07-11 2018-01-18 東京電力ホールディングス株式会社 Structural strain sensor and method of detecting structural strain
CN110714769A (en) * 2019-10-24 2020-01-21 中铁北京工程局集团城市轨道交通工程有限公司 Installation device and installation method for monitoring meter
CN114485380A (en) * 2022-02-24 2022-05-13 应急管理部国家自然灾害防治研究院 Indoor simulation self-checking device of component type drilling strain gauge

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133150A1 (en) 2007-04-17 2008-11-06 Nissan Motor Co., Ltd. Device and method for estimating frictional condition of ground contact surface of wheel
CN101487836B (en) * 2009-02-06 2012-03-28 煤炭科学研究总院重庆研究院 Simulated ground stress apparatus for coal and gas burst experiment
CN101487834B (en) * 2009-02-06 2012-03-28 煤炭科学研究总院重庆研究院 Combined test apparatus for coal and gas burst
KR101529098B1 (en) * 2014-02-19 2015-06-16 한국건설기술연구원 Test apparatus for shield tunnel mock-up considering both underground earth pressure and pore water pressure according to draining condition, and method for the same
CN105136370A (en) * 2015-07-13 2015-12-09 北京工业大学 Earth pressure load determination method of deeply-buried asymmetric multiple-arch tunnel
JP2017096049A (en) * 2015-11-27 2017-06-01 株式会社安藤・間 Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head
JP2017101436A (en) * 2015-12-01 2017-06-08 株式会社安藤・間 Earth water pressure-shear force measurement sensor
JP2018009820A (en) * 2016-07-11 2018-01-18 東京電力ホールディングス株式会社 Structural strain sensor and method of detecting structural strain
CN107024575A (en) * 2017-06-08 2017-08-08 浙江工业大学 Simulate experimental rig and test method that tunneling boring constructing tunnel triggers earth's surface deformation
CN107036515A (en) * 2017-06-08 2017-08-11 浙江工业大学 Simulate experimental rig and test method that benching tunnelling method constructing tunnel triggers earth's surface deformation
CN107588877A (en) * 2017-10-15 2018-01-16 安徽理工大学 A kind of recyclable geostress survey device
CN110714769A (en) * 2019-10-24 2020-01-21 中铁北京工程局集团城市轨道交通工程有限公司 Installation device and installation method for monitoring meter
CN110714769B (en) * 2019-10-24 2020-11-06 中铁北京工程局集团城市轨道交通工程有限公司 Installation device and installation method for monitoring meter
CN114485380A (en) * 2022-02-24 2022-05-13 应急管理部国家自然灾害防治研究院 Indoor simulation self-checking device of component type drilling strain gauge

Similar Documents

Publication Publication Date Title
JP2007108073A (en) Ground stress measuring device and ground stress measuring method
US9383277B2 (en) Force sensor
US20090087253A1 (en) Ball and socket joint with sensor device, process for load measurement and process for wear measurement
US8186232B2 (en) Displacement sensor
US10151655B2 (en) Pressure sensor containing mechanically deforming elements
CA2644875C (en) Measurement of wheel and/or axle load of road vehicles
US10668988B2 (en) Porch mounted variable reluctance measurement technology tendon tension monitoring system
US8020449B2 (en) Pressure sensor with secondary seal
CN104931112B (en) Sensor
US7694577B2 (en) Strain gauge
CN109716088A (en) Pressure sensor
CN212452834U (en) Device for protecting bridge circuit for steel plate surface strain test
JP2007113973A (en) Apparatus and method for measuring axial displacement
US8408076B2 (en) Weight sensor device
CN109716086A (en) Pressure sensor
KR102002324B1 (en) Explosion-proof load cell device
JP7300635B2 (en) Deflection measuring device using a pipe
CN116558693A (en) Sensor for measuring shear force of bolt
CN215573510U (en) Tunnel contact pressure&#39;s testing arrangement
CN202938957U (en) Piezoelectric sensor, and transmitter adopting the same
CA2638664C (en) Pressure sensor
US20230366705A1 (en) Apparatus and method for the detection of properties of a pipe
CN113483934A (en) Tunnel contact pressure testing device and method
JPH07268895A (en) Method and equipment for measuring deformability of rock core
CN109716087A (en) Pressure sensor