JPH06173583A - Earth pressure balanced shield machine - Google Patents

Earth pressure balanced shield machine

Info

Publication number
JPH06173583A
JPH06173583A JP35247292A JP35247292A JPH06173583A JP H06173583 A JPH06173583 A JP H06173583A JP 35247292 A JP35247292 A JP 35247292A JP 35247292 A JP35247292 A JP 35247292A JP H06173583 A JPH06173583 A JP H06173583A
Authority
JP
Japan
Prior art keywords
mud
cutter
sensor
properties
earth pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35247292A
Other languages
Japanese (ja)
Inventor
Katsuhiro Nagura
克博 名倉
Kenichi Hamamoto
健一 浜本
Masanori Hirachi
正憲 平地
Yuichi Higuchi
雄一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP35247292A priority Critical patent/JPH06173583A/en
Publication of JPH06173583A publication Critical patent/JPH06173583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To clarify the distribution of properties of mud and maintain the distribution uniformly by disposing a plurality of sensors for measuring mud resistance in front of a rotary cutter of a shield machine and providing additive injection holes at a plurality of points on a partition wall. CONSTITUTION:A plurality of resistance type sensors 4 are disposed at regular intervals on a cutter wing 15 in front of a rotary cutter 10. The sensor 4 comprises a resistor 42 which is erected in such a manner as to be slidable a certain distance in the rotational direction of the cutter wing 15, a displacement gauge 43 etc. Measured data from each of the sensors 4 are inputted into a central processing unit CPU, where resistance values of mud at a point where each sensor is located are computed based on predetermined calculation equations and processed to display distributing states of mud in front of a facing. Based on the distribution of properties of mud obtained, a required amount of additives is forced through the injection holes of the partition wall 12 into the mud where the additives are in short supply to obtain specified mud properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は土圧式シールド掘進機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earth pressure type shield machine.

【0002】[0002]

【従来の技術】土圧式シールド掘進機は、削土に一定の
圧力を与え、切羽の安定を図りながら掘進する装置で、
地山を掘削する掘削機構と、削土を攪拌する混練機構
と、削土に一定の拘束力を与える制御機構等を具備して
おり、土の内部摩擦角が大きくて流動性が悪く、かつ透
水性の高い砂層や礫層を主なる施工対象としている。こ
の種のシールド掘進機にあっては、カッタヘッドに放射
線状に配置した複数のカッタウィングを装備すると共
に、各カッタウィングに沿った混練翼を具備している。
砂礫地盤を施工する場合は切羽の安定状態を維持する必
要がある。そのため、切羽の土砂に添加剤(ベントナイ
ト、作泥工剤、気泡等)を加えて、カッタヘッドの回転
に伴い回転する混練翼によって切羽の土砂を混練して流
動性と不透水性を付与した泥土を作成し、この泥土をカ
ッタヘッド内に形成された泥土室内と排土用のスクリュ
ーコンベアに充填し、シールドの推進力やスクリューコ
ンベアの絞り効果等によって、泥土室内の一定の泥土圧
を発生させ、この泥土室内の泥土圧を切羽に作用させて
切羽の判定を図っている。
2. Description of the Related Art An earth pressure type shield excavator is a device that excavates while applying a constant pressure to the excavated soil to stabilize the cutting face.
It is equipped with an excavation mechanism for excavating the ground, a kneading mechanism for agitating the excavated soil, and a control mechanism for giving a constant restraining force to the excavated soil.The internal friction angle of the soil is large and the fluidity is poor, and The main construction targets are sand and gravel layers with high water permeability. In this type of shield machine, a cutter head is equipped with a plurality of cutter wings arranged in a radial pattern, and a kneading blade is provided along each cutter wing.
When constructing gravel ground, it is necessary to maintain a stable face. Therefore, additives (bentonite, mud making agents, bubbles, etc.) are added to the soil of the cutting face, and the soil of the cutting face is kneaded by a kneading blade that rotates with the rotation of the cutter head to provide fluidity and impermeability. This mud is filled in the mud chamber formed in the cutter head and the screw conveyor for soil discharge, and a constant mud pressure in the mud chamber is generated by the propulsive force of the shield and the throttling effect of the screw conveyor. By applying the mud pressure in the mud chamber to the face, the face is determined.

【0003】[0003]

【発明が解決しようとする問題点】前記した従来の土圧
式シールド技術には次のような問題点がある。
The above-mentioned conventional earth pressure type shield technique has the following problems.

【0004】<イ> 混練翼がカッタウィングに取り付
けられていて、混練翼の回転数を任意に変化できないか
ら、泥土性状の変化に対応した混練がし難い。
<A> Since the kneading blade is attached to the cutter wing and the rotation speed of the kneading blade cannot be changed arbitrarily, it is difficult to carry out kneading corresponding to changes in the properties of mud.

【0005】<ロ> カッタウィングに沿って配置され
た混練翼の周速度が回転中心と中心から離れた位置で異
なるために、混練翼の混練効果にばらつきを生じる。そ
の結果、泥土室内の泥土性状が不均等ととなる。
<B> Since the peripheral speeds of the kneading blades arranged along the cutter wing are different between the center of rotation and the position away from the center, the kneading effect of the kneading blades varies. As a result, the mud properties in the mud chamber become uneven.

【0006】<ハ> 泥土性状はスクリューコンベアか
ら排出される泥土から確認しているが、泥土室内におけ
る泥土性状の分布は知ることができない。
<C> The mud property is confirmed from the mud discharged from the screw conveyor, but the distribution of the mud property in the mud chamber cannot be known.

【0007】<ニ> 平均的な泥土性状を調整すること
はできるが、泥土室内の泥土性状を均等にすることはで
きない。
<D> The average mud properties can be adjusted, but the mud properties in the mud chamber cannot be made uniform.

【0008】[0008]

【本発明の目的】本発明は以上の点に鑑みて成されたも
ので、その目的とするところは、つぎのような土圧式シ
ールド掘進機を提供することにある。 <イ> 泥土室内における泥土性状の分布を把握でき
る、土圧式シールド掘進機 。<ロ> 泥土室内の泥土性状を均等に維持できる、土
圧式シールド掘進機。 <ハ> 泥土室内の適切な位置に適量の添加剤を注入で
きる、土圧式シールド掘進機。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to provide the following earth pressure type shield machine. <a> An earth pressure type shield excavator capable of grasping the distribution of mud properties in the mud chamber. <B> An earth pressure type shield excavator that can maintain the mud properties in the mud chamber evenly. <C> An earth pressure type shield machine capable of injecting an appropriate amount of additive into an appropriate position in the mud chamber.

【0009】[0009]

【問題点を解決するための手段】本発明は、地山を掘削
する回転カッタと、削土を攪拌する混練機構と、削土に
一定の拘束力を与える制御機構等とを具備し、切羽側の
泥土に泥土室内の泥土圧を伝えて切羽の安定を図りなが
ら掘進する土圧シールド掘進機において、回転カッタの
前面に泥土抵抗を測定する複数のセンサを配備したこと
を特徴とする、土圧式シールド掘進機である。
The present invention comprises a rotary cutter for excavating the ground, a kneading mechanism for stirring the soil, a control mechanism for giving a constant restraining force to the soil, and the like. In an earth pressure shield machine that excavates while transmitting the mud pressure in the mud chamber to the mud on the side to stabilize the cutting face, a plurality of sensors for measuring the mud resistance are provided in front of the rotating cutter. It is a pressure shield machine.

【0010】[0010]

【実施例1】以下図面を参照しながら本発明の実施例に
ついて説明する。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings.

【0011】<イ>全体の構成 図1に本発明にかかるシールド掘進機の一例を示す。本
発明に係る土圧式のシールド掘進機は、前面に回転カッ
タ10を具備し、回転カッタ10と隔壁12の間に泥土
室2を有し、さらに泥土室2に連通したスクリューコン
ベア13を有する。回転カッタ10はその前面に放射状
に向けて配置した複数のカッタウィング15を有すると
共に、切羽側土砂に向けて前記した添加剤を吐出するた
めの吐出口を複数位置に有し、さらに回転カッタ10の
前面と泥土室2との間を連通する開口を備えている。そ
の他、シールド掘進機は掘進用ジャッキ14や図示しな
い覆工材(セグメント)3の組立用のエレクタ装置等を
具備している。以上の構成は従来の土圧式のシールド掘
進機と従来の構造である。尚、本発明では同津式シール
ド掘進機は、土圧バランス型、泥土加圧型、密閉加泥
型、高濃度泥水加圧型のシールド掘進機を含む概念で使
用する。本発明では以下の点が従来のシールド掘進機と
異なる。
<B> Overall Configuration FIG. 1 shows an example of a shield machine according to the present invention. The earth pressure type shield machine according to the present invention includes a rotary cutter 10 on the front surface, a mud chamber 2 between the rotary cutter 10 and a partition wall 12, and a screw conveyor 13 communicating with the mud chamber 2. The rotary cutter 10 has a plurality of cutter wings 15 arranged radially on the front surface thereof, and has discharge ports for discharging the above-mentioned additive toward the face side earth and sand at a plurality of positions. It has an opening communicating between the front surface of the and the mud chamber 2. In addition, the shield machine includes a jack 14 for excavation, an erector device for assembling a lining material (segment) 3 (not shown), and the like. The above structure is a conventional earth pressure type shield machine and a conventional structure. In the present invention, the Dotsu type shield excavator is used as a concept including earth pressure balance type, mud pressure type, closed mud type and high concentration mud pressure type shield excavator. The present invention differs from the conventional shield machine in the following points.

【0012】<ロ>泥土性状の測定手段 本実施例では切羽の泥土性状を測定するために、各カッ
タウィング15の前面に一定の距離を隔てて複数のセン
サ4を配備した。このセンサ4の一例を図3及び図4に
示す。このセンサ4は抗力型のセンサで、カッタウィン
グ15に固定される固定板41と、固定板41に対しカ
ッタウィング15の回転方向に向け一定の摺動を許容す
る状態で垂直方向に立設した板状又は棒状の抵抗体42
と、抵抗体42の下部に接続した変位計43と、変位計
43の他端側で抵抗体42の下部に配設したばね44と
よりなる。変位計43は抵抗体42の変異量を測定し、
切羽泥土の抵抗力を求めるための計器で、ばね44は抵
抗体42を回転カッタ10の回転方向に向けてに付勢す
る押圧部材で、ばね以外の流体を使用することもでき
る。センサ4による測定原理について説明すると、泥土
の密度をρ、周速をv、抵抗体42の受圧面積をA、抵
抗体42の取付角度をθとすると、抵抗体42に生じる
抗力Dは、次の数1で表される。
<B> Muddy property measuring means In this embodiment, a plurality of sensors 4 are arranged at a certain distance in front of each cutter wing 15 in order to measure the muddy property of the face. An example of this sensor 4 is shown in FIGS. The sensor 4 is a drag-type sensor, and is vertically installed in a state in which a fixed plate 41 fixed to the cutter wing 15 and a fixed sliding on the fixed plate 41 in the rotational direction of the cutter wing 15 are allowed. Plate-shaped or rod-shaped resistor 42
A displacement gauge 43 connected to the lower portion of the resistor 42, and a spring 44 disposed on the lower end of the resistor 42 at the other end of the displacement gauge 43. The displacement meter 43 measures the mutation amount of the resistor 42,
A spring 44 is a pressure member for urging the resistor 42 in the rotation direction of the rotary cutter 10, and a fluid other than the spring can be used. Explaining the principle of measurement by the sensor 4, assuming that the density of mud is ρ, the peripheral speed is v, the pressure receiving area of the resistor 42 is A, and the mounting angle of the resistor 42 is θ, the drag force D generated in the resistor 42 is It is represented by the number 1.

【数1】 周速vはセンサ4とカッタウィング15中心間の距離r
に比例するから、抗力Dは、次の数2で表される。
[Equation 1] The peripheral speed v is the distance r between the sensor 4 and the center of the cutter wing 15.
Therefore, the drag force D is expressed by the following equation 2.

【数2】 したがって、抵抗体42は、抵抗体42の受圧面積Aと
取付角度θの正弦値sinθの積が、カッタウィング1
5の中心からの距離の二乗r2 に反比例するように設置
する。(数3参照)
[Equation 2] Therefore, in the resistor 42, the product of the pressure receiving area A of the resistor 42 and the sine value sin θ of the mounting angle θ is the cutter wing 1
5 is installed so as to be inversely proportional to the square r 2 of the distance from the center. (See formula 3)

【数3】 この方法により、泥土性状が均等な時はどのセンサ4に
生じる抵抗値も等しくなる。この抗力型のセンサ4は泥
土がニュートン流体の場合に好適である。
[Equation 3] By this method, when the mud properties are uniform, the resistance values generated in all the sensors 4 become equal. This drag type sensor 4 is suitable when the mud is a Newtonian fluid.

【0013】<ハ>他のセンサ例 図5,図6に剪断型のセンサ4aを示す。このセンサ4
aは、カッタウィング15の回転方向に向け、相対抗し
て平行に配置した一対の固定板41a、41aと、各固
定板41aの対向面にカッタウィング15の回転方向の
摺動を許容した状態で取り付けた板状または棒状の抵抗
体42aと、固定板41a内に配設し抵抗体42aと接
続した変位計43と、ばね44とよりなる。この剪断型
のセンサ4aによる測定原理について説明すると、カッ
タウィング15の回転によりセンサ4aを構成する荷枚
の抵抗体42a、42a間に挟まれた泥土が剪断抵抗を
生じる。抵抗体42a、42aは泥土の抵抗により変位
する。変位計43が抵抗体42a、42aの変位量を計
測し、以下の要領で抵抗力を求める。抵抗体42aの剪
断抵抗力τは、泥土の粘土ηと剪断ひずみ速度γの積で
表される。(数4参照)
<C> Another example of sensor FIG. 5 and FIG. 6 show a shear type sensor 4a. This sensor 4
a is a state in which the pair of fixing plates 41a, 41a arranged parallel to each other and facing each other in the rotation direction of the cutter wing 15 and the facing surfaces of the respective fixing plates 41a permit sliding of the cutter wing 15 in the rotation direction. It is composed of a plate-shaped or rod-shaped resistor 42a attached in 1., a displacement gauge 43 arranged in the fixed plate 41a and connected to the resistor 42a, and a spring 44. The principle of measurement by the shear type sensor 4a will be described. The rotation of the cutter wing 15 causes the shear resistance of the mud sandwiched between the load-bearing resistors 42a, 42a constituting the sensor 4a. The resistors 42a, 42a are displaced by the resistance of the mud. The displacement meter 43 measures the amount of displacement of the resistors 42a, 42a and determines the resistance force in the following manner. The shear resistance τ of the resistor 42a is represented by the product of clay η of mud and shear strain rate γ. (See formula 4)

【数4】 剪断ひずみ速度γはセンサ4aの取り付け位置での周速
vを抵抗体42a、42aの間隔dで割った値である。
(数5)
[Equation 4] The shear strain rate γ is a value obtained by dividing the peripheral speed v at the mounting position of the sensor 4a by the distance d between the resistors 42a and 42a.
(Equation 5)

【数5】 周速vはセンサ4aとカッタウィング15の中心間の距
離に比例するから、泥土の剪断抵抗力τは、次の数6で
表される。
[Equation 5] Since the peripheral speed v is proportional to the distance between the center of the sensor 4a and the center of the cutter wing 15, the shear resistance force τ of mud is expressed by the following equation 6.

【数6】 したがって、各センサ4aはカッタウィング15の回転
中心からの距離に比例して2つの抵抗体42a、42a
の間隔dが大きくなるように配置する。(数7参照)
[Equation 6] Therefore, each sensor 4a has two resistors 42a, 42a in proportion to the distance from the rotation center of the cutter wing 15.
Are arranged such that the distance d between them becomes large. (See formula 7)

【数7】 この方法により、どの位置のセンサ4aにも等しい大き
さの剪断ひずみ速度γを与えることが可能となり、泥土
性状が均等な時はどのセンサ4a生じる剪断抵抗値も等
しくなる。この抗力型のセンサ4は泥土が非ニュートン
流体の場合に好適である。
[Equation 7] With this method, it is possible to apply the same shear strain rate γ to the sensor 4a at any position, and when the mud property is uniform, the shear resistance value generated at any sensor 4a becomes equal. This drag type sensor 4 is suitable when the mud is a non-Newtonian fluid.

【0014】<ニ>データの処理方法 図1に示すように、各センサ4(4a)で計測データは
中央演算ユニットCPUへ入力され、中央演算ユニット
CPUが上記の計算式に基づいて各センサ4(4a)の
位置する泥土の抵抗値を算出し、さらにこれらの各位置
のデータを基に切羽前面の泥土分布状態を表示する。各
センサ4(4a)からのデータの解析方法や、泥土性状
の分布の表示方法については従来と同様である。
<D> Data Processing Method As shown in FIG. 1, the measurement data of each sensor 4 (4a) is input to the central processing unit CPU, and the central processing unit CPU uses each of the sensors 4 based on the above calculation formula. The resistance value of the mud at the position (4a) is calculated, and the distribution of the mud on the front face of the face is displayed based on the data at these positions. The method of analyzing the data from each sensor 4 (4a) and the method of displaying the distribution of mud properties are the same as the conventional one.

【0015】<ホ>添加剤の注入手段 本発明のシールド掘進機は泥土室2内の任意の位置に添
加剤を注入できるように、図2に示すように隔壁12に
放射状に複数の注入孔16が開設してある。
<E> Additive Injecting Means In the shield machine of the present invention, a plurality of injection holes are radially provided in the partition wall 12 as shown in FIG. 2 so that the additive can be injected at any position in the mud chamber 2. 16 are open.

【0016】<ヘ>独立攪拌翼 また本発明のシールド掘進機は泥土室2内の任意の範囲
を攪拌できるように、隔壁12に同心円状に複数の独立
攪拌翼17が配備してある。尚、独立攪拌翼17を省略
する場合がある。
<F> Independent stirring blades Further, in the shield machine of the present invention, a plurality of independent stirring blades 17 are concentrically provided on the partition wall 12 so as to stir an arbitrary range in the mud chamber 2. The independent stirring blade 17 may be omitted.

【0017】[0017]

【作用】つぎにシールド掘進機の作用について説明す
る。
Next, the operation of the shield machine will be described.

【0018】<イ>掘削 図1に示すように回転カッタ10を所定の方向に回転さ
せて切羽を掘削し、掘削した土砂を泥土室2内に取り込
み、泥土室2内の泥土をシールドの推進力又はスクリュ
ーコンベア13の絞り効果等により一定圧に加圧するこ
とは従来と同様である。
<A> Excavation As shown in FIG. 1, the rotary cutter 10 is rotated in a predetermined direction to excavate the face, the excavated earth and sand is taken into the mud chamber 2, and the mud in the mud chamber 2 is propelled by the shield. Pressurization to a constant pressure by force or the throttling effect of the screw conveyor 13 is the same as in the prior art.

【0019】<ロ>泥土性状の把握 回転カッタ10の前面のカッタウィング15にら設けた
各センサ4(4a)が切羽土砂の抵抗値を測定する。測
定したデータは静止系へ送られ、データ処理を施されて
切羽泥土室2内の泥土性状の分布が得られる。各センサ
4(4a)により得られるデータは、切羽側の泥土性状
の情報であるが、回転カッタ10の前面と泥土室2の間
が連通しているため、切羽泥土と泥土室2内の泥土は実
質的にぼけ同一の条件となるから、切羽側の泥土情報を
泥土室2内の泥土情報としてに扱っても特別問題はな
い。
<B> Grasp of mud properties The respective sensors 4 (4a) provided on the cutter wing 15 on the front surface of the rotary cutter 10 measure the resistance value of the cutting soil. The measured data is sent to a stationary system and subjected to data processing to obtain a distribution of mud properties in the face mud chamber 2. The data obtained by each sensor 4 (4a) is information on the mud property of the cutting face, but since the front face of the rotary cutter 10 and the mud chamber 2 are in communication with each other, the cutting mud and the mud in the mud chamber 2 are in communication. Is substantially the same as the blur condition, so there is no special problem even if the mud information on the face side is treated as the mud information in the mud chamber 2.

【0020】<ハ>添加剤の注入 泥土性状の分布を基に、添加剤の不足箇所に図2に示す
任意の注入孔16を通じて添加剤を注入する。これによ
り必要最少量の添加剤の注入により、所定の泥土性状を
得ることができる。
<C> Additive Injection Based on the distribution of the mud properties, the additive is injected into the insufficient portion of the additive through the optional injection hole 16 shown in FIG. This makes it possible to obtain a desired mud property by injecting the necessary minimum amount of additive.

【0021】<ニ>部分攪拌 シールド掘進機が部分攪拌翼17を装備している場合
は、添加剤の注入位置の近傍に位置する部分攪拌翼17
を一定時間回転させて部分的に泥土を攪拌する。尚、す
べての部分攪拌翼17を常時可動させておく場合もあ
る。
<D> Partial agitation When the shield machine is equipped with a partial agitation blade 17, the partial agitation blade 17 located near the additive injection position.
Rotate for a certain time to partially stir the mud. In addition, all the partial stirring blades 17 may be always movable.

【0022】[0022]

【その他の適用例】本発明は、泥土以外に複数の材料を
練り混ぜて作成する、比較的粘性の高い材料(地盤改良
剤、埋戻材、重点材、生コンクリート、食品、油脂等)
を混練するための攪拌槽や貯蔵槽において、センサや注
入孔を組み込むことで、均等な性状の混練物を得ること
ができる。
[Other application examples] The present invention is a material having a relatively high viscosity, which is prepared by kneading a plurality of materials in addition to mud (ground improvement agent, backfill material, priority material, ready-mixed concrete, food, oil and fat, etc.)
By incorporating a sensor or an injection hole in a stirring tank or a storage tank for kneading, it is possible to obtain a kneaded product having uniform properties.

【0023】[0023]

【発明の効果】本発明は以上説明したようになるから次
のような効果を得ることができる。
Since the present invention is as described above, the following effects can be obtained.

【0024】<イ> 切羽泥土室内の泥土性状の分布を
知ることができる。
<a> It is possible to know the distribution of mud properties in the face mud chamber.

【0025】<ロ> 切羽泥土室内の泥土性状を均等に
保つことができる。特に大断面シールドや双設シールド
では、泥土の均等性を保つことが困難であるから、ん発
明の効果は大きい。
<B> It is possible to keep the mud properties in the face mud chamber uniform. In particular, with a large-section shield or twin shield, it is difficult to maintain the uniformity of mud, so the effect of the invention is great.

【0026】<ハ> 泥土性状の分布に応じ、隔壁に開
設した注入孔を通じて適量の添加剤を注入できるので、
添加剤の注入作業を効率よくしかも経済的に行うことが
できる。
<C> Since an appropriate amount of additive can be injected through the injection hole formed in the partition wall according to the distribution of the mud properties,
The additive injection work can be carried out efficiently and economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るシールド掘進機の説明図FIG. 1 is an explanatory view of a shield machine according to the present invention.

【図2】 図1のII−IIの断面図2 is a sectional view taken along line II-II in FIG.

【図3】 抗力型のセンサの斜視図FIG. 3 is a perspective view of a drag-type sensor.

【図4】 抗力型のセンサの断面図FIG. 4 is a sectional view of a drag-type sensor.

【図5】 剪断型のセンサの斜視図FIG. 5 is a perspective view of a shear type sensor.

【図6】 剪断型のセンサの平面図FIG. 6 is a plan view of a shear type sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 雄一 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yuichi Higuchi 1-25-1 Nishishinjuku, Shinjuku-ku, Tokyo Taisei Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地山を掘削する回転カッタと、削土を
攪拌する混練機構と、削土に一定の拘束力を与える制御
機構等とを具備し、切羽側の泥土に泥土室内の泥土圧を
伝えて切羽の安定を図りながら掘進する土圧シールド掘
進機において、 回転カッタの前面に泥土抵抗を測定す
る複数のセンサを配備したことを特徴とする、 土圧式シールド掘進機。
1. A rotary cutter for excavating the ground, a kneading mechanism for stirring the excavated soil, a control mechanism for giving a constant restraining force to the excavated soil, etc., and the mud pressure in the mud chamber in the mud on the cutting face side. An earth pressure shield excavator that is equipped with a plurality of sensors for measuring mud resistance in front of a rotating cutter in an earth pressure shield excavator that travels while stabilizing the face.
【請求項2】 泥土室を画成する隔壁に添加剤注入用
の注入孔を開設したことを特徴とする、請求項1に記載
の土圧式シールド掘進機。
2. The earth pressure type shield machine according to claim 1, wherein an injection hole for injecting an additive is opened in a partition wall defining the mud chamber.
【請求項3】 泥土室を画成する隔壁に,泥土室内を
部分的に攪拌する複数の攪拌翼を配備したことを特徴と
する、請求項1又は請求項2に記載の土圧式シールド掘
進機。
3. The earth pressure type shield excavator according to claim 1, wherein a plurality of agitating blades for partially agitating the mud chamber are provided on a partition wall defining the mud chamber. .
JP35247292A 1992-12-11 1992-12-11 Earth pressure balanced shield machine Pending JPH06173583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35247292A JPH06173583A (en) 1992-12-11 1992-12-11 Earth pressure balanced shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35247292A JPH06173583A (en) 1992-12-11 1992-12-11 Earth pressure balanced shield machine

Publications (1)

Publication Number Publication Date
JPH06173583A true JPH06173583A (en) 1994-06-21

Family

ID=18424303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35247292A Pending JPH06173583A (en) 1992-12-11 1992-12-11 Earth pressure balanced shield machine

Country Status (1)

Country Link
JP (1) JPH06173583A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021340A (en) * 2013-07-22 2015-02-02 株式会社奥村組 Shield machine
JP2016169561A (en) * 2015-03-13 2016-09-23 清水建設株式会社 Plastic fluidity evaluation method for in-chamber excavated soil in soil pressure type shield tunneling method and soil pressure type shield excavator
JP2016172955A (en) * 2015-03-16 2016-09-29 清水建設株式会社 Method for evaluating plastic fluidity of excavated soil in chamber in soil pressure shield method, and soil pressure shield excavator
JP2017096049A (en) * 2015-11-27 2017-06-01 株式会社安藤・間 Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021340A (en) * 2013-07-22 2015-02-02 株式会社奥村組 Shield machine
JP2016169561A (en) * 2015-03-13 2016-09-23 清水建設株式会社 Plastic fluidity evaluation method for in-chamber excavated soil in soil pressure type shield tunneling method and soil pressure type shield excavator
JP2016172955A (en) * 2015-03-16 2016-09-29 清水建設株式会社 Method for evaluating plastic fluidity of excavated soil in chamber in soil pressure shield method, and soil pressure shield excavator
JP2017096049A (en) * 2015-11-27 2017-06-01 株式会社安藤・間 Property evaluation and determination method for excavated sediment in chamber used with various types of excavation methods, and property evaluation and determination method for soil at working face in front of cutter head

Similar Documents

Publication Publication Date Title
JP4478187B2 (en) Ground improvement machine
Galli et al. Rheological characterisation of foam-conditioned sands in EPB tunneling
JP6416496B2 (en) Method for measuring and evaluating the properties of excavated soil in the chamber used for earth pressure shield method, shield excavator and earth and sand plastic fluidity test equipment
Lee et al. Effect of foam conditioning on performance of EPB shield tunnelling through laboratory excavation test
JP6522954B2 (en) Shear force meter, method of measuring and evaluating the properties of excavated soil in a chamber used for earth pressure shield method using the same, shield machine, and plastic flowability test apparatus for soil
JP6678438B2 (en) Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head
JP6905364B2 (en) Plastic fluidity evaluation method, evaluation device and soil pressure type shield excavator of excavated soil in the chamber in the earth pressure type shield method
Talebi et al. Modeling of soil movement in the screw conveyor of the earth pressure balance machines (EPBM) using computational fluid dynamics
Hu et al. Evaluating rheology of conditioned soil using commercially available surfactants (foam) for simulation of material flow through EPB machine
KR20160090696A (en) Apparatus and method for soft soil improving ungi automated management system
JPH06173583A (en) Earth pressure balanced shield machine
Wang et al. Soil disturbance induced by EPB shield tunnelling in multilayered ground with soft sand lying on hard rock: A model test and DEM study
KR20180083472A (en) Test apparatus for measuring shear strength of foam mixed soil for design optimum foam mix factor
JP5670044B2 (en) Surface ground improvement method and backhoe
JP6664704B2 (en) Method and apparatus for evaluating plastic fluidity of excavated soil in chamber in earth pressure shield method, and earth pressure shield excavator
JP2000160548A (en) Solidifying material injection control method in mechanically agitating deep layer mixing processing work
CN1095012C (en) Operation control system of digging machine for cement wall groover
JP4992318B2 (en) Method for calculating the amount of injected liquid mixture, apparatus for calculating the amount of injected liquid mixture, method for managing the ratio of injected liquid mixture, method for constructing soil cement
JP3753240B2 (en) Management method for ground improvement method and management device for ground improvement machine
JP2021031996A (en) Device control system and device control method
JP5139406B2 (en) Ground improvement machine
JPH058318B2 (en)
JP3260337B2 (en) Ground improvement device and ground improvement method
KR102683859B1 (en) calculating method for flowresistance and torque using concrete mixing apparatus capable of calculating real time flowresistance and torque
JP2789527B2 (en) Construction method and apparatus of columnar consolidated body in ground improvement