JP2008169692A - Measuring device for sediment flow in chamber - Google Patents

Measuring device for sediment flow in chamber Download PDF

Info

Publication number
JP2008169692A
JP2008169692A JP2008090236A JP2008090236A JP2008169692A JP 2008169692 A JP2008169692 A JP 2008169692A JP 2008090236 A JP2008090236 A JP 2008090236A JP 2008090236 A JP2008090236 A JP 2008090236A JP 2008169692 A JP2008169692 A JP 2008169692A
Authority
JP
Japan
Prior art keywords
chamber
flow
measuring
mixture
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008090236A
Other languages
Japanese (ja)
Other versions
JP4769264B2 (en
Inventor
Makoto Kanai
誠 金井
Keizo Miki
慶造 三木
Makoto Goto
誠 後藤
Masaaki Sakamoto
公明 阪本
Masao Nakayama
正夫 中山
Kazuhiko Matoba
一彦 的場
Junichi Tanaka
淳一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Obayashi Corp
Mitsubishi Heavy Industries Tunneling Machinery and Geotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Mitsubishi Heavy Industries Tunneling Machinery and Geotechnology Co Ltd filed Critical Obayashi Corp
Priority to JP2008090236A priority Critical patent/JP4769264B2/en
Publication of JP2008169692A publication Critical patent/JP2008169692A/en
Application granted granted Critical
Publication of JP4769264B2 publication Critical patent/JP4769264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device capable of responding to a sudden change in properties of excavated ground. <P>SOLUTION: An excavator 12 has a measuring device 10a for finding a flowing direction and a size of a mixture in a chamber 20. The measuring device 10a has a measuring rod 50 installed retractably to the chamber 20; and the flowing direction and the size of the mixture can be estimated from an amount of deformation of the measuring rod 50. On the other hand, a machine model of the chamber is set in advance, and a plurality of results of fluid analysis with visualized size, direction and distribution of the velocity in the chamber 20 are predetermined based on the viscosity of the mixture. Further, good correlations between the estimate obtained by the measuring device 10a and the results of the fluid analysis are selected; and the results of fluid analysis selected are considered as a state of flow at a time when the estimate is obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、チャンバ内土砂流動の測定装置に関し、特に、泥土圧式シールド掘進機のチャンバ内土砂流動の測定装置に関するものである。 The present invention relates to a measurement device for sediment flow in a chamber, and more particularly to a measurement device for sediment flow in a chamber of a mud pressure shield machine.

シールドトンネルの構築工事に用いられる泥土圧式シールド掘進機による地盤土砂の掘削は、例えば、非特許文献1に開示されているように、カッターヘッドで掘削した土砂を、チャンバ内に取り込んで充満させ、チャンバ内土圧により切羽の安定を図りながら、スクリューコンベアで排土が行われる。 The excavation of the ground earth and sand by the mud pressure type shield machine used for the construction work of the shield tunnel is, for example, as disclosed in Non-Patent Document 1, the earth and sand excavated by the cutter head is taken into the chamber and filled, The soil is discharged by the screw conveyor while stabilizing the face by the earth pressure in the chamber.

この場合、実施工では、チャンバ内土圧は、シールド推力で切羽の安定に必要な程度に加圧しながら、推進量に見合った排土が行えるようスクリューコンベアの回転数や掘進速度を調整する。 In this case, in the construction work, the rotation speed of the screw conveyor and the excavation speed are adjusted so that the earth pressure in the chamber can be discharged in accordance with the propulsion amount while the shield thrust is applied to the extent necessary for the stability of the face.

このような方式で排土を行う泥土圧式シールド工法では、掘削土砂の流動性や止水性が、チャンバ内の土圧に大きく影響を及ぼすので、特に、重要な管理項目となる。ところが、このような従来の泥土圧式シールド掘進機には、以下に説明する技術的な課題があった。
「土木工法事典改訂V」 2001年9月産業調査会発行 639−640pp
In the mud pressure shield method that discharges soil in such a manner, the fluidity and water blocking properties of the excavated soil greatly affect the earth pressure in the chamber, and thus are particularly important management items. However, such conventional mud pressure shield machine has the following technical problems.
"Encyclopedia of Civil Engineering Law Revised V" September 2001, 639-640pp

すなわち、従来の泥土圧式シールド掘進機では、チャンバ内に土圧計などを設置して、チャンバ内の土圧を管理しているものの、チャンバ内での掘削土砂の流動方向などの状態が判らないので、掘削地盤の性状が急変した場合に、奮発や排土不能状態を引き起こし、復旧に多大の時間と労力とが掛かっていた。 That is, in the conventional mud pressure type shield machine, the earth pressure gauge is installed in the chamber to control the earth pressure in the chamber, but the state of the excavated sediment in the chamber is not known. When the properties of the excavated ground suddenly changed, it caused spoilage and inability to remove the soil, and it took a lot of time and labor to recover.

また、従来のシールドトンネルの構築工事では、掘削土砂の流動性の評価は、排土された土砂の性状、マシンデータ(カッタートルクや推力の大きさ)に頼るところが大きく、礫地盤や互層地盤などの場合、適切な添加材の選定、および、注入率の設定が困難であった。 In addition, in the conventional construction of shield tunnels, the evaluation of fluidity of excavated soil depends largely on the properties of the soil removed and machine data (cutter torque and magnitude of thrust), such as gravel ground and alternate ground. In this case, it was difficult to select an appropriate additive and to set the injection rate.

本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、チャンバ内の土砂流動方向を把握することで、掘削地盤の性状の急変に対応することが可能で、かつ、適切な添加材の選択と注入率とを設定することができるチャンバ内流動の測定装置を提供することにある。 The present invention has been made in view of such conventional problems, and the object of the present invention is to respond to sudden changes in the properties of excavated ground by grasping the direction of sediment flow in the chamber. An object of the present invention is to provide an apparatus for measuring the flow in a chamber, which is capable of setting the selection of an appropriate additive and the injection rate.

上記目的を達成するために、本発明は、掘削土砂と加泥材との攪拌混合物が収容された泥土圧式シールド掘進機のチャンバ内における前記混合物の流動性の測定装置において、前記測定装置は、前記チャンバを隔成する隔壁を貫通して、前記チャンバ内に出没可能に設置される計測ロッドを備え、前記混合物が流動する際の前記計測ロッドの変形量から、前記混合物の流動方向とその大きさとを推定する測定装置であって、予め設定する前記チャンバの機械モデルと、前記チャンバ内の混合物の粘土式とに基づいて、前記チャンバ内の前記混合物の流速の大きさ,方向,分布の可視化された複数の流動解析結果を求めておき、前記測定装置により得られた推定値と前記流動解析結果との相関関係の良好なものを選択して、選択された流動解析結果を前記推定値が得られた時点の流動状態とするようにした。 In order to achieve the above object, the present invention provides a fluidity measuring device for the mixture in a chamber of a mud pressure shield machine that contains a stirring mixture of excavated earth and mud, and the measuring device comprises: A measuring rod that penetrates a partition wall that separates the chamber and is installed so as to be able to appear and retract in the chamber is provided. From the deformation amount of the measuring rod when the mixture flows, the flow direction and the size of the mixture And a visualization of the magnitude, direction, and distribution of the flow velocity of the mixture in the chamber based on a preset mechanical model of the chamber and a clay equation of the mixture in the chamber. A plurality of flow analysis results obtained are obtained, and the flow analysis selected by selecting a good correlation between the estimated value obtained by the measurement device and the flow analysis result. The results were such that the flow state at the time of the estimated value is obtained.

このように構成したチャンバ内土砂流動の測定装置によれば、チャンバを隔成する隔壁を貫通して、チャンバ内に出没可能に設置される計測ロッドを備え、混合物が流動する際の計測ロッドの変形量から、混合物の流動方向とその大きさとを推定するので、チャンバ内における混合物の流動方向が把握され、掘削地盤の性状の急変に対応することが可能で、かつ、適切な添加材の選択と注入率とを設定することが可能になる。 According to the measuring device for sediment flow in the chamber configured as described above, the measuring rod is provided so as to pass through the partition walls separating the chamber and be installed in the chamber so as to be able to appear and retract. Since the flow direction and size of the mixture are estimated from the amount of deformation, the flow direction of the mixture in the chamber can be grasped, and it is possible to cope with sudden changes in the properties of the excavated ground, and selection of appropriate additives And the injection rate can be set.

この場合、本発明の測定装置によれば、予め設定するチャンバの機械モデルと、チャンバ内の混合物の粘土式とに基づいて、チャンバ内の流速の大きさ,方向,分布の可視化された複数の流動解析結果を求めておき、測定装置により得られた推定値と流動解析結果との相関関係の良好なものを選択して、選択された流動解析結果を推定値が得られた時点の流動状態とするので、チャンバ内の全域における流動分布などが可視化され、実施工現場において、掘削地盤の性状の急変に対応することが容易に行え、かつ、適切な添加材の選択と注入率とを設定することも簡単に行える。   In this case, according to the measuring apparatus of the present invention, based on a mechanical model of the chamber set in advance and the clay equation of the mixture in the chamber, a plurality of flow velocity magnitudes, directions, and distributions visualized are visualized. Obtain the flow analysis result, select the one with a good correlation between the estimated value obtained by the measuring device and the flow analysis result, and select the flow analysis result at the time when the estimated value was obtained. Therefore, it is possible to visualize the flow distribution in the entire area of the chamber, to easily cope with sudden changes in the properties of the excavation ground at the construction site, and to set the appropriate additive selection and injection rate. It is easy to do.

前記計測ロッドは、基端側に設けられた複数の歪ゲージを備え、前記歪ゲージの検出信号から、前記変形量を求めることができる。 The measuring rod includes a plurality of strain gauges provided on the proximal end side, and the deformation amount can be obtained from detection signals of the strain gauges.

前記チャンバ内土砂流動の測定装置は、前記チャンバに対して、同一円周上に、周方向に沿って所定の間隔を隔てて複数配置することができる。 A plurality of the apparatus for measuring the sediment flow in the chamber may be arranged on the same circumference with a predetermined interval along the circumferential direction with respect to the chamber.

前記測定装置は、前記回転板が前記チャンバ内から退避した際に、隔壁開口部を閉塞するシャッタ装置を設けることができる。 The measuring device may be provided with a shutter device that closes the partition wall opening when the rotating plate is retracted from the chamber.

本発明にかかるチャンバ内土砂流動の計測装置によれば、チャンバ内の土砂流動の方向および大きさを把握することで、掘削地盤の性状の急変に対応することが可能で、かつ、適切な添加材の選択と注入率とを設定することができる。 According to the measurement device for sediment flow in the chamber according to the present invention, it is possible to cope with a sudden change in the properties of the excavated ground by grasping the direction and size of the sediment flow in the chamber, and appropriate addition. Material selection and injection rate can be set.

以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.

図1から図5は、本発明にかかるチャンバ内土砂流動の測定装置の実施例1を示している。図1は、本発明の測定装置10を設置した泥土式シールド掘進機12を示している。 FIG. 1 to FIG. 5 show Embodiment 1 of an apparatus for measuring sediment flow in a chamber according to the present invention. FIG. 1 shows a mud type shield machine 12 equipped with a measuring device 10 of the present invention.

同図に示したシールド掘進機12は、円筒状のスキンプレート14を備え、スキンプレート14の前端には、カッタ16が配置されている。カッタ16は、図2のその正面詳細図を示すように、中心から外方に向けて放射状の延設されたスポーク状のカッタフェイス16aと、カッタフェイス16aの前面に設けられた多数のカッタビット16bと、カッタフェイス16aの背面中心に固設された中心軸16cとを備えている。 The shield machine 12 shown in the figure includes a cylindrical skin plate 14, and a cutter 16 is disposed at the front end of the skin plate 14. 2, the cutter 16 includes a spoke-like cutter face 16a extending radially outward from the center and a number of cutter bits provided on the front face of the cutter face 16a. 16b and a center axis 16c fixed to the center of the back surface of the cutter face 16a.

スキンプレート14の前端側には、外周縁をスキンプレート14の内面に固設した円板状の隔壁18が設けられ、カッタ16は、この隔壁18を中心軸16cが貫通するようにして、回転自在に支持されており、このようにカッタ16を配置することにより、カッタフェイス16aの背面と隔壁18とで概略円盤状に隔成されたチャンバ20が設けられている。 On the front end side of the skin plate 14, a disk-shaped partition wall 18 having an outer peripheral edge fixed to the inner surface of the skin plate 14 is provided, and the cutter 16 rotates so that the central axis 16c passes through the partition wall 18. By arranging the cutter 16 in this manner, the chamber 20 is provided that is separated in a substantially disk shape by the back surface of the cutter face 16a and the partition wall 18.

カッタフェイス16aの背面側には、チャンバ20内に突出する複数の攪拌翼16dが設けられ、また、カッタフェイス16aの背面には、隔壁18に当接する複数の支持ステー16eが突設されている。 A plurality of stirring blades 16d projecting into the chamber 20 are provided on the back side of the cutter face 16a, and a plurality of support stays 16e that abut against the partition wall 18 are provided on the back surface of the cutter face 16a. .

中心軸16cの側面には、チャンバ20に設置されたアジテータ16fが設けられており、このアジテータ16fは、隔壁18の外側に設置された駆動モータ16gにより、カッタフェイス16aと独立した形態で中心軸16cとともに、回転駆動される。 An agitator 16f installed in the chamber 20 is provided on the side surface of the central shaft 16c, and this agitator 16f is independent of the cutter face 16a by a drive motor 16g installed outside the partition wall 18. It is rotationally driven together with 16c.

支持ステー16eは、一端側が隔壁18を貫通して、その外部に突出し、この突出した部分にリングギア16hが設けられ、このリングギア16hには、カッタ駆動モータ16iが連結されており、このモータ16iを駆動すると、リングギア16hを介して、カッタフェイス16aが回転駆動されて、地盤の掘削がカッタビット16bにより行われる。 One end of the support stay 16e penetrates the partition wall 18 and protrudes to the outside. A ring gear 16h is provided at the protruding portion, and a cutter drive motor 16i is connected to the ring gear 16h. When 16i is driven, the cutter face 16a is rotationally driven via the ring gear 16h, and excavation of the ground is performed by the cutter bit 16b.

カッタビット16bで掘削された掘削土砂は、カッタフェイス16aの開口部を介して、チャンバ20内に取り込まれる。この際に、掘削土砂には、粘土,ベントナイト,高吸水性樹脂,増粘材などの加泥材が添加され、掘削土砂と加泥材は、チャンバ20内で攪拌翼16dやアジテータ16fにより攪拌混合されることで、流動性を有する混合物とされて、チャンバ20内に充満されて、切羽に対抗させる。 The excavated earth and sand excavated by the cutter bit 16b is taken into the chamber 20 through the opening of the cutter face 16a. At this time, clay, bentonite, a highly water-absorbing resin, a thickening material such as a thickener is added to the excavated soil, and the excavated sediment and the mud material are agitated in the chamber 20 by the stirring blade 16d and the agitator 16f. By being mixed, it is made into a mixture having fluidity and is filled in the chamber 20 to counter the face.

そして、このような混合物は、切羽の安定を確保しながら、隔壁18を貫通するようにして設けられている排土機構(スクリューコンベア)22を介して、外部に排出される。なお、図1に符号24で示した部材は、シールド掘進機12の後部側に組立てられるセグメント26に反力を取って、掘進機12を前方に推進させるシールドジャッキである。 And such a mixture is discharged | emitted outside through the earth removal mechanism (screw conveyor) 22 provided so that the partition 18 might be penetrated, ensuring the stability of a face. In addition, the member shown with the code | symbol 24 in FIG. 1 is a shield jack which takes the reaction force to the segment 26 assembled in the rear part side of the shield machine 12 and propels the machine 12 forward.

以上のような泥土式シールド掘進機12としての基本的構成は、この種の従来機と同様であるが、本実施例の掘進機12は、以下に説明する点に顕著な特徴がある。 The basic configuration of the mud shield shield machine 12 as described above is the same as that of the conventional machine of this type, but the drill machine 12 of the present embodiment has remarkable features in the following points.

すなわち、本実施例のシールド掘進機12は、掘削土砂と加泥材との攪拌混合物が収容された泥土圧式シールド掘進機12のチャンバ20内における混合物の流動方向と流動速度とを把握する測定装置10aが設置されている。 That is, the shield machine 12 of the present embodiment is a measuring device that grasps the flow direction and flow rate of the mixture in the chamber 20 of the mud pressure shield machine 12 in which the agitated mixture of excavated earth and mud is accommodated. 10a is installed.

図3に測定装置10aの詳細を示している。同図に示した測定装置10aは、泥土式シールド掘進機に適用されるものであって、測定装置10aは、チャンバ20を隔成する隔壁18を貫通して、チャンバ20内に出没可能に設置される計測ロッド50を備え、混合物が流動する際の計測ロッド50の変形量から、混合物の流動方向とその大きさとを推定する。 FIG. 3 shows details of the measuring apparatus 10a. The measuring apparatus 10a shown in the figure is applied to a mud type shield excavator, and the measuring apparatus 10a is installed so as to be able to appear in the chamber 20 through the partition wall 18 separating the chamber 20. The measurement rod 50 is provided, and the flow direction and the size of the mixture are estimated from the deformation amount of the measurement rod 50 when the mixture flows.

また、本実施例の場合、図2に示すように、同一構成の4個の測定装置10aが、チャンバ20に対して、同一円周上にあって、周方向に所定の間隔を隔てて配置されている。これらの測定装置10aの配置位置は、回転板28をチャンバ20内に突出させた際に、攪拌翼16dやアジテータ16fとの相互干渉を避ける位置に設けられている。 In the case of the present embodiment, as shown in FIG. 2, four measuring devices 10a having the same configuration are arranged on the same circumference with respect to the chamber 20, and are arranged at predetermined intervals in the circumferential direction. Has been. These measuring devices 10a are arranged at positions where mutual interference with the stirring blade 16d and the agitator 16f is avoided when the rotating plate 28 is protruded into the chamber 20.

計測ロッド50は、ガイド筒36a内に設置されたスライダ38aに支持され、先端が閉塞された中空管であって、その基端側の内面に設けられた複数の歪ゲージ52を備えている。歪ゲージ52は、周方向に等角度間隔で複数配置され、放射方向にも複数配置されている。 The measuring rod 50 is a hollow tube supported by a slider 38a installed in the guide tube 36a and closed at the tip, and includes a plurality of strain gauges 52 provided on the inner surface on the base end side. . A plurality of strain gauges 52 are arranged at equiangular intervals in the circumferential direction, and a plurality of strain gauges 52 are also arranged in the radial direction.

スライダ38aは、シリンダ40a伸縮動作に伴って、ガイド筒36aに沿ってスライド移動する。ガイド筒36aは、計測ロッド50がチャンバ20から退避した際に、シャッタ装置42により閉塞される。本実施例の場合、計測ロッド50に設置された歪ゲージ52の検出信号から、計測ロッド50に発生する変形量を求める。 The slider 38a slides along the guide cylinder 36a along with the expansion and contraction operation of the cylinder 40a. The guide cylinder 36 a is closed by the shutter device 42 when the measuring rod 50 is retracted from the chamber 20. In the case of the present embodiment, the deformation amount generated in the measuring rod 50 is obtained from the detection signal of the strain gauge 52 installed on the measuring rod 50.

このシャッタ装置42は、測定装置10の下方に設置され、ガイド筒36を閉塞する上下移動自在なシャッタ板42aと、シャッタ板42aの駆動シリンダ42bとを有している。 The shutter device 42 is installed below the measuring device 10 and includes a shutter plate 42a that can move up and down to close the guide cylinder 36, and a drive cylinder 42b of the shutter plate 42a.

以上のように構成された測定装置10では、チャンバ20内の土砂流動の測定を行わない場合には、計測ロッド50がガイド筒36aの後部側に位置していて、ガイド筒36aは、シャッタ装置42により閉塞されている。 In the measuring apparatus 10 configured as described above, when the sediment flow in the chamber 20 is not measured, the measuring rod 50 is positioned on the rear side of the guide cylinder 36a, and the guide cylinder 36a is a shutter device. 42 is occluded.

チャンバ20内の土砂流動を測定する際には、シャッタ装置42のガイド筒36aの閉塞状態を開放して、シリンダ40aを駆動させて、計測ロッド50をチャンバ20内の所定位置まで突出させる。 When measuring the sediment flow in the chamber 20, the closed state of the guide cylinder 36 a of the shutter device 42 is opened, the cylinder 40 a is driven, and the measuring rod 50 is projected to a predetermined position in the chamber 20.

この際の計測ロッド50に発生する変形量は、チャンバ20内を流動する掘削土砂との加泥材の混合物の衝突により発生し、変形量の大きさは、流動方向に対応するので、変計量が最も大きい方向を、混合物の流動方向とし、その個所の変計量を流動方向の大きさと推定する。 The deformation amount generated in the measuring rod 50 at this time is generated by the collision of the mixture of mud with the excavated earth and sand flowing in the chamber 20, and the magnitude of the deformation amount corresponds to the flow direction. Is the direction of flow of the mixture, and the variation at that point is estimated as the size of the flow direction.

以上のように構成したチャンバ内土砂流動の測定装置によれば、チャンバ20を隔成する隔壁18を貫通して、チャンバ20内に出没可能に設置される計測ロッド50を備え、混合物が流動する際の計測ロッド50の変形量から、混合物の流動方向とその大きさとを推定するので、チャンバ20内における混合物の流動方向が把握され、掘削地盤の性状の急変に対応することが可能で、かつ、適切な添加材の選択と注入率とを設定することが可能になる。 According to the chamber earth and sand flow measuring device configured as described above, the measuring rod 50 that penetrates the partition wall 18 separating the chamber 20 and is installed in the chamber 20 so as to be able to appear and retract is provided, and the mixture flows. Since the flow direction and size of the mixture are estimated from the deformation amount of the measuring rod 50 at the time, the flow direction of the mixture in the chamber 20 is grasped, and it is possible to cope with a sudden change in the properties of the excavated ground, and It is possible to select an appropriate additive and set an injection rate.

また、本実施例の測定装置では、流動解析の手法を採用している。図4及び図5は、本実施例で採用する流動解析の一例を示している。これらの図は、例えば、非特許文献2,3(非特許文献2、「シールドチャンバ内の泥土・泥水の流動解析」1994年8月「トンネルと地下」35−39pp、非特許文献3、「シールドチャンバ内における掘削土砂流動解析」大林組技術研究所報、No.48 1994年)に開示されているシールドチャンバ内の流動解析に基づく解析結果を、実際のシールド掘進機に適用する際の例を示している。 Further, the measurement apparatus of the present embodiment employs a flow analysis technique. 4 and 5 show an example of flow analysis employed in this embodiment. These figures are shown in, for example, Non-Patent Documents 2 and 3 (Non-Patent Document 2, “Analysis of Mud and Mud Flow in a Shield Chamber” August 1994 “Tunnel and Underground” 35-39pp, Non-Patent Document 3, “ Example of applying the analysis result based on the flow analysis in the shield chamber disclosed in "Obayashi Institute of Technology Research Report, No. 48, 1994) to the actual shield machine" Show.

シールド掘進機のチャンバ内における掘削土砂と加泥材の混合物の流動解析は、上記非特許文献2,3に開示されているように、シールド掘進機のチャンバの機械モデルと、混合物の粘土式(μ=C1+C2/γ)が与えられると、チャンバ内における流速の大きさ,方向,分布などの詳細な解析結果が得られることが知られている。 As disclosed in Non-Patent Documents 2 and 3 above, the flow analysis of the mixture of excavated earth and mud in the chamber of the shield machine is performed using the mechanical model of the chamber of the shield machine and the clay equation ( (μ = C1 + C2 / γ) is given, it is known that detailed analysis results such as the magnitude, direction, and distribution of the flow velocity in the chamber can be obtained.

ここに、μ:土砂と加泥材(気泡)との混合流体に対する粘度
γ:ひずみ速度
,C:土砂およびαに依存する(物質)定数
α:土砂と加泥材(気泡)との混合流体中の加泥材の体積占有率(0≦α≦1)
上粘度式中の定数、C,Cについては、土砂の種類ごとに、加泥材の包含率(体積占有率)αの関数として、流体計測実験と対応する流動解析により決定する。
Here, μ: Viscosity for mixed fluid of earth and sand and mud material (bubbles) γ: Strain rate C 1 , C 2 : (Material) constant depending on earth and α α: Earth and sand and mud material (bubbles) Volume occupancy of mud in mixed fluid (0 ≦ α ≦ 1)
The constants C 1 and C 2 in the upper viscosity formula are determined by a flow analysis corresponding to a fluid measurement experiment as a function of the inclusion ratio (volume occupation ratio) α of the mud material for each kind of earth and sand.

ところが、このような解析は、あくまでもシミュレーションであって、実際のシールド掘進機でどのようになっているのかは、確認されていない。そこで、本実施例では、図1に示したシールド掘進機のチャンバ20に関する機械モデルを図4に示すように設定し、混合物の粘土式を、現場掘削土,砂地盤,粘土地盤など各種地質に応じて設定し、流動解析を予め行い、図5にその一例を示すような複数の可視化された流動解析結果を求めておく。 However, such an analysis is only a simulation, and it has not been confirmed how it is actually performed by a shield machine. Therefore, in this embodiment, a machine model related to the chamber 20 of the shield machine shown in FIG. 1 is set as shown in FIG. 4, and the clay formula of the mixture is changed to various geological features such as on-site excavated soil, sand ground, clay ground. Accordingly, flow analysis is performed in advance, and a plurality of visualized flow analysis results as shown in FIG. 5 are obtained.

そして、上述した測定装置10aにより、上述した手段により、混合物の流動方向とその大きさを推定し、これと流動解析の結果とを照合して、測定装置10aの設置個所(図5に丸印A〜Dで示した個所)において、最も相関のよいものを選択して、その流動解析結果を、測定装置10aでの測定時点における流動状態とする。 Then, the measuring device 10a described above estimates the flow direction and size of the mixture by the above-described means, collates this with the result of the flow analysis, and installs the measuring device 10a (circled in FIG. 5). In the parts A to D), the one having the best correlation is selected, and the flow analysis result is set as the flow state at the time of measurement by the measuring apparatus 10a.

このようにして流動解析結果を利用すると、チャンバ20内の全域における流動分布などが可視化されるので、実施工現場において、掘削地盤の性状の急変に対応することが容易に行え、かつ、適切な添加材の選択と注入率とを設定することも簡単に行える。 When the flow analysis result is used in this way, the flow distribution and the like in the entire region within the chamber 20 is visualized, so that it is possible to easily cope with a sudden change in the properties of the excavated ground at the construction site, and an appropriate The selection of the additive and the injection rate can also be easily set.

本発明にかかるチヤンバ内土砂流動の測定装置は、泥土式シールド掘進機に適用すると、施工の安全性や経済性を確保する上で有効に活用することができる。 When the apparatus for measuring the sediment flow in the chamber according to the present invention is applied to a mud type shield excavator, it can be effectively used to ensure the safety and economics of construction.

本発明にかかるチヤンバ内土砂流動の測定装置が適用されるシールド掘進機の断面図である。It is sectional drawing of the shield machine which the measuring apparatus of the sediment movement in a chamber concerning this invention is applied. 図1の正面図である。It is a front view of FIG. 本発明にかかるチヤンバ内土砂流動の測定装置の一例を示す側面図である。It is a side view which shows an example of the measuring apparatus of the earth sand sand flow concerning this invention. 本発明にかかるチヤンバ内土砂流動の測定装置に用いる解析の機械モデルの説明図である。It is explanatory drawing of the mechanical model of the analysis used for the measuring apparatus of the sediment flow in the chamber concerning this invention. 本発明にかかるチヤンバ内土砂流動の測定装置に用いる流動解析結果の説明図である。It is explanatory drawing of the flow-analysis result used for the measuring apparatus of the earth-sand flow in a chamber concerning this invention.

符号の説明Explanation of symbols

10a 測定装置
12 シールド掘進機
20 チャンバ
50 測定ロッド
10a Measuring device 12 Shield machine 20 Chamber 50 Measuring rod

Claims (4)

掘削土砂と加泥材との攪拌混合物が収容された泥土圧式シールド掘進機のチャンバ内における前記混合物の流動性の測定装置において、
前記測定装置は、前記チャンバを隔成する隔壁を貫通して、前記チャンバ内に出没可能に設置される計測ロッドを備え、
前記混合物が流動する際の前記計測ロッドの変形量から、前記混合物の流動方向とその大きさとを推定する測定装置であって、
予め設定する前記チャンバの機械モデルと、前記チャンバ内の混合物の粘土式とに基づいて、前記チャンバ内の前記混合物の流速の大きさ,方向,分布の可視化された複数の流動解析結果を求めておき、
前記測定装置により得られた推定値と前記流動解析結果との相関関係の良好なものを選択して、選択された流動解析結果を前記推定値が得られた時点の流動状態とすることを特徴とするチャンバ内土砂流動の測定装置。
In the apparatus for measuring the fluidity of the mixture in a chamber of a mud pressure shield machine that contains a stirring mixture of excavated earth and mud,
The measuring device includes a measuring rod that is installed so as to be able to appear and retract in the chamber through a partition wall that separates the chamber.
From the amount of deformation of the measuring rod when the mixture flows, a measuring device for estimating the flow direction and the size of the mixture,
Based on a mechanical model of the chamber set in advance and a clay equation of the mixture in the chamber, a plurality of flow analysis results in which the magnitude, direction, and distribution of the flow velocity of the mixture in the chamber are visualized are obtained. Every
Selecting an estimated value obtained by the measuring device and a good correlation between the flow analysis result and setting the selected flow analysis result to a flow state at the time when the estimated value is obtained. Measuring device for sediment flow in the chamber.
前記計測ロッドは、基端側に設けられた複数の歪ゲージを備え、
前記歪ゲージの検出信号から、前記変形量を求めることを特徴とする請求項1記載のチャンバ内土砂流動の測定装置。
The measuring rod includes a plurality of strain gauges provided on the proximal end side,
The apparatus for measuring sediment flow in a chamber according to claim 1, wherein the deformation amount is obtained from a detection signal of the strain gauge.
請求項1記載のチャンバ内土砂流動の測定装置は、前記チャンバに対して、同一円周上に、周方向に沿って所定の間隔を隔てて複数配置することを特徴とするチャンバ内土砂流動の測定装置。 The apparatus for measuring the sediment flow in a chamber according to claim 1 is characterized in that a plurality of the sediment flows in the chamber are arranged on the same circumference at predetermined intervals along the circumferential direction. measuring device. 前記測定装置は、前記回転板が前記チャンバ内から退避した際に、隔壁開口部を閉塞するシャッタ装置を有することを特徴とする請求項1から3のいずれか1項記載のチャンバ内土砂流動の測定装置。 The said measuring apparatus has a shutter apparatus which obstruct | occludes a partition opening part, when the said rotary plate retracts | saves from the inside of the said chamber, The sediment movement of the chamber internal sand of Claim 1 characterized by the above-mentioned. measuring device.
JP2008090236A 2008-03-31 2008-03-31 Measuring device for sediment flow in chamber Expired - Fee Related JP4769264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090236A JP4769264B2 (en) 2008-03-31 2008-03-31 Measuring device for sediment flow in chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090236A JP4769264B2 (en) 2008-03-31 2008-03-31 Measuring device for sediment flow in chamber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003328089A Division JP4156480B2 (en) 2003-09-19 2003-09-19 Measuring device for sediment flow in chamber

Publications (2)

Publication Number Publication Date
JP2008169692A true JP2008169692A (en) 2008-07-24
JP4769264B2 JP4769264B2 (en) 2011-09-07

Family

ID=39698031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090236A Expired - Fee Related JP4769264B2 (en) 2008-03-31 2008-03-31 Measuring device for sediment flow in chamber

Country Status (1)

Country Link
JP (1) JP4769264B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162945A (en) * 2011-02-08 2012-08-30 Ohbayashi Corp Flowability measuring apparatus in shield machine, and shield machine equipped with the measuring apparatus
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
JP2017020188A (en) * 2015-07-07 2017-01-26 清水建設株式会社 Method and apparatus for evaluating plastic fluidity of excavated soil in chamber in earth pressure balanced shield method, and earth pressure balanced shield excavator
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
JP2017218781A (en) * 2016-06-07 2017-12-14 清水建設株式会社 Method and device for plastic fluidity evaluation of excavated soil inside chamber in earth pressure-type shield construction method, and earth pressure-type shield excavator
CN112432678A (en) * 2020-11-23 2021-03-02 西安航天动力研究所 Be used for thrust chamber circumference equipartition haplopore flow automatic synchronization detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097181A (en) * 2001-09-21 2003-04-03 Daiho Constr Co Ltd Plastic fluidization measuring method of mud and shield machine having plastic fluidization measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097181A (en) * 2001-09-21 2003-04-03 Daiho Constr Co Ltd Plastic fluidization measuring method of mud and shield machine having plastic fluidization measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162945A (en) * 2011-02-08 2012-08-30 Ohbayashi Corp Flowability measuring apparatus in shield machine, and shield machine equipped with the measuring apparatus
JP2014009545A (en) * 2012-07-02 2014-01-20 Shimizu Corp Plastic fluidity evaluation method of excavated soil in chamber in earth pressure type shield construction method, and earth pressure type shield excavator
JP2017020188A (en) * 2015-07-07 2017-01-26 清水建設株式会社 Method and apparatus for evaluating plastic fluidity of excavated soil in chamber in earth pressure balanced shield method, and earth pressure balanced shield excavator
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
JP2017218781A (en) * 2016-06-07 2017-12-14 清水建設株式会社 Method and device for plastic fluidity evaluation of excavated soil inside chamber in earth pressure-type shield construction method, and earth pressure-type shield excavator
CN112432678A (en) * 2020-11-23 2021-03-02 西安航天动力研究所 Be used for thrust chamber circumference equipartition haplopore flow automatic synchronization detection device
CN112432678B (en) * 2020-11-23 2023-06-23 西安航天动力研究所 Be used for thrust chamber circumference equipartition single hole flow automatic synchronization detection device

Also Published As

Publication number Publication date
JP4769264B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4769264B2 (en) Measuring device for sediment flow in chamber
JP4156480B2 (en) Measuring device for sediment flow in chamber
JP6416496B2 (en) Method for measuring and evaluating the properties of excavated soil in the chamber used for earth pressure shield method, shield excavator and earth and sand plastic fluidity test equipment
JP5033257B1 (en) Shield tunneling machine
JP6266335B2 (en) Wear detection device for roller cutter
JP2009243186A (en) Precast pile erection construction management device
JP4495114B2 (en) Tunnel excavator and tunnel excavation method
JP2016130406A (en) Shear force meter, measurement and evaluation method using the same for excavated soil property in chamber used with earth pressure shield tunneling, shield machine, and plastic fluidity testing device for earth and sand
JPH1061384A (en) Wear diagnosis method of cutter of tunnel excavating equipment
JP6763655B2 (en) Ground improvement system and ground improvement method
JP2021067059A (en) Shield machine
JP4770471B2 (en) Shield machine design method
KR101874148B1 (en) A system for measuring thrust
JP5048601B2 (en) Sediment flow measuring device in chamber and shield machine
JP2002038883A (en) Shield machine and possible excavation distance estimating method therefor
JP2016075139A (en) Rotary penetration pile, and construction method for consolidated foundation using the rotary penetration pile
JP6638894B2 (en) Evaluation method of plastic fluidity of excavated soil in chamber in earth pressure shield method and earth pressure shield excavator
JP6035649B2 (en) Ground investigation device, continuous wall construction device and continuous wall construction method
JP2010013895A (en) Measuring device for sediment property in chamber and shield excavator
JP2021107656A (en) Shield excavator and method for determining sediment properties of shield excavator
US3308893A (en) Downhole horizontal slotting tool
JP5417232B2 (en) Exploration system, shield machine and shield machine excavation method
KR102002525B1 (en) Vertical shaft ring cut excavating system
NL2027127B1 (en) Ground Drill for Drilling a Bore Hole
JP2019143383A (en) Operation estimation device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees