JP2016075139A - Rotary penetration pile, and construction method for consolidated foundation using the rotary penetration pile - Google Patents

Rotary penetration pile, and construction method for consolidated foundation using the rotary penetration pile Download PDF

Info

Publication number
JP2016075139A
JP2016075139A JP2015089228A JP2015089228A JP2016075139A JP 2016075139 A JP2016075139 A JP 2016075139A JP 2015089228 A JP2015089228 A JP 2015089228A JP 2015089228 A JP2015089228 A JP 2015089228A JP 2016075139 A JP2016075139 A JP 2016075139A
Authority
JP
Japan
Prior art keywords
pile
outer cylinder
blade
rotating
rotated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015089228A
Other languages
Japanese (ja)
Other versions
JP6425267B2 (en
JP2016075139A5 (en
Inventor
耕之 吉田
Yasuyuki Yoshida
耕之 吉田
豊彦 小林
Toyohiko Kobayashi
豊彦 小林
篠原 敏雄
Toshio Shinohara
敏雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Geotech Co Ltd
Original Assignee
Chiyoda Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Geotech Co Ltd filed Critical Chiyoda Geotech Co Ltd
Publication of JP2016075139A publication Critical patent/JP2016075139A/en
Publication of JP2016075139A5 publication Critical patent/JP2016075139A5/ja
Application granted granted Critical
Publication of JP6425267B2 publication Critical patent/JP6425267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary penetration pile and a construction method for a consolidated foundation that enhance load bearing capacity of the pile and enable confirmation on protrusion of an expanded excavation blade in a ground from a periphery of a spiral vane.SOLUTION: A rotary penetration pile includes: a pile body 10 having a steel outer tube 11 and a steel inner tube 12 fitted inside of the outer tube at a tip part, with an edge of the inner tube closed by a bottom cover 13 exposed from the outer tube; a spiral vane 20 wound almost once on a peripheral surface of the inner tube; two expanded excavation blades 30 fitted on the spiral vane, the expanded excavation blades being open by 180° in a circumferential direction of the spiral blade and protruding outward in a radial direction of the pile body; and an injection nozzle 40 for curable fluid disposed on the peripheral surface of the inner tube. Detection is made possible of protrusion of the expanded excavation blade in the radial direction of the pile body from the periphery of the spiral vane, by an upward movement in an axial direction of the outer tube while rotating when rotation of the pile body in a reverse direction starts underground.SELECTED DRAWING: Figure 1

Description

本発明は、支持力(押し込み抵抗力及び引き抜き抵抗力)の増加を図った回転貫入杭及び回転貫入杭を使用する根固めされた回転貫入杭の施工方法に関する。   The present invention relates to a rotary penetrating pile that has increased support force (push-in resistance force and pull-out resistance force) and a construction method for a rooted rotary penetrating pile that uses the rotary penetrating pile.

土木、建設工事の基礎として杭を採用する施工では、杭の支持力を増加させるため、杭の先端部分に杭径よりも大きな径を有する拡大根固めを形成する工法が採用されている。例えば、地盤に杭径とほぼ同じ穴径の杭用の穴を掘削専用装置で掘削し、次いで杭先端付近の穴径が杭径の2倍程度になるように拡大掘削し、硬化性流動体を流し込み地盤の土砂と撹拌混合した後、掘削専用装置を杭用の穴から引き上げ、硬化性流動体が硬化する前に杭用の穴に杭を進入させ、杭の先端部分を硬化性流動体と土砂との混合体中に貫入させて固着させる拡大根固め工法が知られている。   In construction that employs a pile as a foundation for civil engineering and construction work, a method of forming an expanded root having a diameter larger than the pile diameter at the tip of the pile is employed in order to increase the bearing capacity of the pile. For example, a hole for a pile with the same hole diameter as the pile diameter is drilled in the ground using a dedicated drilling device, and then expanded so that the hole diameter near the pile tip is about twice the pile diameter. After pouring the soil and sand and mixing, the excavation equipment is pulled up from the hole for the pile, and before the curable fluid hardens, the pile is advanced into the hole for the pile, and the tip of the pile is set to the curable fluid. There is known an expanded root-setting method in which it is penetrated and fixed in a mixture of sand and earth.

しかし、上記拡大根固め工法では、杭用の穴の掘削工程と、杭を杭用の穴に埋設する杭埋設工程とに分割されていて、施工時間の短縮化を図ることが難しく、また掘削専用装置が必要となる課題を有している。   However, in the above-mentioned enlarged rooting method, it is divided into a drilling process for holes for piles and a pile embedding process for burying piles in the holes for piles, and it is difficult to shorten the construction time. There is a problem that a dedicated device is required.

上記課題を解決するため、例えば、杭先端部分の外周に杭径の2倍乃至3倍の外径を有する螺旋翼を設け且つ硬化性流動体の吐出穴を設けた回転貫入杭を使用し、この回転貫入杭を地表面から地盤中に回転貫入させ、その先端が地盤中の支持層に到達した時点で回転貫入鋼管杭の吐出孔からの硬化性流動体の外部への噴出を開始させ、正転と逆転を繰り返しつつ上下動させ、土砂と硬化性流動体とを撹拌混合させながら、最終深度まで回転貫入させ、鋼管杭本体の周囲に、螺旋翼とほぼ同径の円柱状をなした固化混合体を形成する拡大根固め工法が提案されている(特許文献1参照)。螺旋翼は地盤中へ回転貫入の推進の役割と支持地盤への支持力伝達の役割を担っている。この工法では、掘削専用装置を必要とせず、杭を地盤に回転貫入させる過程で拡大根固めを形成することが出来、施工時間の短縮化と施工コストの低廉化を図ることが可能である。   In order to solve the above-mentioned problem, for example, a rotary penetrating pile provided with a spiral blade having an outer diameter twice to three times the pile diameter on the outer periphery of the pile tip portion and provided with a discharge hole of a curable fluid is used. This rotary penetrating pile is rotated and penetrated from the ground surface into the ground, and when the tip reaches the support layer in the ground, the ejection of the curable fluid from the discharge hole of the rotary penetrating steel pipe pile is started, While rotating forwards and backwards repeatedly, moving up and down, stirring and mixing earth and sand and hardened fluid, it was rotated and penetrated to the final depth, forming a cylindrical shape with the same diameter as the spiral blade around the steel pipe pile body. An expanded rooting method for forming a solidified mixture has been proposed (see Patent Document 1). The spiral wing plays a role of propagating the rotation penetration into the ground and a role of transmitting the supporting force to the supporting ground. This construction method does not require a dedicated excavation device and can form an enlarged foundation in the process of rotating the pile into the ground, thereby shortening the construction time and lowering the construction cost.

また、別の施工方法として、杭先端部分の外周に設けた螺旋翼の周縁にその周方向に沿って適宜間隔をあけて周縁から杭の径方向に突出可能な複数の補助(拡大)掘削刃を配置した回転貫入杭を使用し、この回転貫入杭を地表面から地盤中に回転貫入させ、その先端が地盤中の支持層の上端付近に到達した時点で回転貫入鋼管杭の吐出孔からの硬化性流動体の外部への噴出を開始させ、正転と逆転を繰り返しつつ上下動させ、土砂と硬化性流動体とを撹拌混合させながら、最終深度まで回転貫入させ、鋼管杭本体の周囲に、螺旋翼の周縁から突出した拡大掘削刃と同径の円柱状をなした固化混合体を形成する拡大根固め工法が提案されている(特許文献2参照)。この工法では、上記回転貫入杭を使用した工法と同様に掘削専用装置を必要とせず、杭を地盤に回転貫入させる過程で拡大根固めを形成することが出来、施工時間の短縮化と施工コストの低廉化を図ることが可能である上に、螺旋翼で確保される地盤掘削寸法が、拡大掘削刃が突出した寸法分だけ大きくなり、螺旋翼のみの場合よりも径の大きい拡大根固めを形成することが可能である。   As another construction method, a plurality of auxiliary (enlarged) excavation blades that can protrude in the radial direction of the pile from the periphery at an appropriate interval along the circumferential direction of the peripheral edge of the spiral blade provided on the outer periphery of the tip portion of the pile Rotating penetrating piles are used, and this rotating penetrating pile is rotated into the ground from the ground surface.When the tip reaches the upper end of the support layer in the ground, Start the ejection of the curable fluid to the outside, move it up and down while repeating normal rotation and reverse rotation, rotate and penetrate to the final depth while stirring and mixing the earth and curable fluid, and around the steel pipe pile body An enlarged rooting method for forming a solidified mixture having a cylindrical shape with the same diameter as an enlarged excavating blade protruding from the periphery of a spiral blade has been proposed (see Patent Document 2). This construction method does not require a dedicated excavation device as in the construction method using the above-mentioned rotary penetrating pile, and it can form an expanded foundation in the process of rotating the pile into the ground, shortening construction time and construction cost. In addition, the ground excavation dimensions secured by the spiral blades are increased by the dimensions of the projections of the expanded excavation blades, making it possible to increase the size of the roots with a larger diameter than when only the spiral blades are used. It is possible to form.

特開2013−57194号公報JP 2013-57194 A 特開2013−19249号公報JP2013-19249A

前者の工法では、杭の支持力を増加させるにはより径の大きい螺旋翼を設けることが必要となるが、そうすると施工現場への杭の搬送時に嵩張り、また地盤への回転貫入初期時に回転貫入抵抗が増加する課題がある。   In the former construction method, it is necessary to install a spiral blade with a larger diameter to increase the bearing capacity of the pile, but if this is done, it will be bulky when the pile is transported to the construction site, and will rotate at the initial stage of rotational penetration into the ground. There is a problem that penetration resistance increases.

後者の施工方法では、杭を地盤に回転貫入させる際に拡大掘削刃が地盤周囲の土砂に押されて螺旋翼の周縁から突出せずに螺旋翼に収まり、回転貫入杭を逆転させて上方に移動させる際に拡大掘削刃が地盤周囲の土砂により押し出されて螺旋翼の周縁から突出するようになっていることから、地盤への回転貫入初期抵抗が螺旋翼のみの場合とあまり変わらないものの、地盤中で拡大掘削刃が螺旋翼の周縁から突出していることを確認することが出来ない課題がある。   In the latter construction method, when the pile is rotated and penetrated into the ground, the enlarged excavation blade is pushed by the earth and sand around the ground and does not protrude from the periphery of the spiral wing, but fits into the spiral wing, and the rotary penetrating pile is reversed and moved upward. When moving, the expanded excavation blade is pushed out by the earth and sand around the ground and protrudes from the periphery of the spiral wing, so the initial resistance to rotation penetration into the ground is not much different from the case of only the spiral wing, There is a problem that it is not possible to confirm that the enlarged excavating blade protrudes from the periphery of the spiral blade in the ground.

本発明は、杭の支持力を増加させることが出来る上に、地盤中で拡大掘削刃が螺旋翼の周縁から突出していることを確認することが出来る、回転貫入杭及び同回転貫入杭を使用する根固めされた基礎の施工方法を提供することを目的とする。   The present invention uses a rotating penetrating pile and the rotating penetrating pile that can increase the bearing capacity of the pile and confirm that the enlarged excavating blade protrudes from the peripheral edge of the spiral blade in the ground. The purpose is to provide a method for constructing foundations that are solidified.

本発明の請求項1に記載の回転貫入杭は、外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、前記外筒から露出した前記内筒の先端寄りの周面に沿って設けられた螺旋翼と、前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、前記内筒の周面に設けられた硬化性流動体の噴出口と、を備え、前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転しつつ軸方向に所定距離移動可能に構成され、前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出するように構成され、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記外筒が前記内筒に対して軸方向に所定距離移動することを利用して前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したのを検知することを特徴とする。   A rotary penetrating pile according to claim 1 of the present invention is a pile main body including an outer cylinder and an inner cylinder disposed in a distal end portion of the outer cylinder with a closed tip exposed from the outer cylinder. And a spiral blade provided along the peripheral surface near the tip of the inner cylinder exposed from the outer cylinder, and an enlarged excavation blade provided on the spiral blade so as to protrude radially outward of the pile body, A curable fluid jet provided on the peripheral surface of the inner cylinder, and the outer cylinder rotates the inner cylinder in a direction opposite to the direction in which the pile main body rotates and penetrates into the ground. The enlarged excavation blade is housed on the peripheral side of the spiral wing when the pile main body is rotated and penetrated into the ground, and the pile main body is The outer cylinder that rotates relative to the inner cylinder when rotating in a direction opposite to the direction of rotation penetration The outer cylinder is configured to protrude outward from the periphery of the spiral wing in the radial direction of the pile main body, and the outer cylinder is rotated with respect to the inner cylinder when the pile main body is rotated in a direction opposite to the rotation penetrating direction. It is characterized by detecting that the enlarged excavating blade protrudes from the peripheral edge of the spiral blade to the outside in the radial direction of the pile body by using a predetermined distance in the axial direction.

本発明の請求項10に記載の、回転貫入杭を使用する根固めされた基礎の施工方法は、外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、前記内筒の周面に設けられた硬化性流動体の噴出口と、を備え、前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転しつつ軸方向に所定距離移動可能に構成され、前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出するように構成され、前記噴出口は、前記杭本体を地盤中に回転貫入させるときには前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときには前記外筒が前記内筒に対し回転して前記外筒により覆わられなくなる前記内筒の周面個所に設けられた、回転貫入杭を使用し、前記杭本体に硬化性流動体供給管を配置する準備工程と、前記杭本体を回転して前記螺旋翼の推進力により地盤中に所定深度まで回転貫入させる回転貫入工程と、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるその回転初期時において、前記外筒が前記内筒に対して軸方向に所定距離移動することを利用し、前記外筒の前記内筒に対する回転により前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したことを確認する確認工程と、前記確認工程後、前記杭本体を前記回転貫入させる方向と反対の方向に回転して前記所定深度から所定位置まで引き上げる間に、前記硬化性流動体供給管から前記外筒により覆わられなくなった前記噴出口を介して前記硬化性流動体を噴出しつつ、前記拡大掘削刃により前記螺旋翼の周辺の地盤を掘削する回転引上げ工程と、を備え、前記所定位置と前記所定深度との間で前記回転貫入工程と前記回転引上げ工程とを繰り返す間に、前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記噴出口から噴出された前記硬化性流動体とを撹拌混合させることを特徴とする。   According to a tenth aspect of the present invention, there is provided a method for constructing a solidified foundation using a rotary penetrating pile, wherein the outer cylinder and the closed tip are exposed from the outer cylinder, and the inside of the tip portion of the outer cylinder is exposed. A pile body provided with an inner cylinder disposed on the outer cylinder, a spiral wing provided along an outer peripheral surface near the tip of the inner cylinder exposed from the outer cylinder, and a radial outer side of the pile body on the spiral wing A digging blade provided in a projectable manner on the peripheral surface of the inner cylinder, and a jet of a curable fluid provided on the peripheral surface of the inner cylinder, wherein the outer cylinder rotates and penetrates the pile body into the ground When rotating in the opposite direction to the inner cylinder, it is configured to be movable by a predetermined distance in the axial direction while rotating with respect to the inner cylinder. The pile body is rotated in a direction opposite to the direction in which the pile body is rotated and penetrated. The outer cylinder that rotates with respect to the inner cylinder is configured to protrude radially outward of the pile body from the peripheral edge of the spiral wing, and the jet outlet rotates and penetrates the pile body into the ground The outer cylinder is covered with the outer cylinder, and the outer cylinder rotates with respect to the inner cylinder and is not covered with the outer cylinder when the pile main body is rotated in the direction opposite to the rotation penetration direction. A preparatory step using a rotating penetrating pile provided at a surface location, and placing a curable fluid supply pipe on the pile body, and rotating the pile body to a predetermined depth in the ground by the propulsive force of the spiral blade The outer cylinder moves a predetermined distance in the axial direction with respect to the inner cylinder at the initial stage of rotation of rotating the pile main body in a direction opposite to the direction of rotating and penetrating the pile body. Use A confirmation step of confirming that the enlarged excavation blade protrudes from the peripheral edge of the spiral blade to the radially outer side of the pile body by rotation of the outer cylinder with respect to the inner cylinder; and after the confirmation step, the pile body is rotated. While rotating in a direction opposite to the penetration direction and pulling up from the predetermined depth to a predetermined position, the curable fluid is removed from the curable fluid supply pipe through the jet nozzle that is no longer covered by the outer cylinder. A rotary pulling step of excavating the ground around the spiral blade with the enlarged excavating blade while spraying, and repeating the rotary penetration step and the rotary pulling step between the predetermined position and the predetermined depth In between, the earth and sand excavated by the spiral blade and the enlarged excavating blade and the curable fluid ejected from the ejection port are agitated and mixed.

本発明によれば、杭の支持力を増加させることが出来る上に、杭本体を地盤に回転貫入させる方向と反対の方向に回転させるとき、外筒が内筒に対して軸方向に所定距離移動することを利用して拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出したのを検知するように構成してあるので、拡大掘削刃の突出をきわめて簡単な構成で確認することが可能である。   According to the present invention, the supporting force of the pile can be increased, and when the pile main body is rotated in a direction opposite to the direction in which the pile main body is rotated and penetrated, the outer cylinder is axially fixed with respect to the inner cylinder by a predetermined distance. It is configured to detect that the enlarged excavating blade protrudes from the peripheral edge of the spiral wing to the outside of the pile body in the radial direction by using the movement, so the protrusion of the enlarged excavating blade can be confirmed with a very simple configuration It is possible.

本発明の回転貫入杭の第1実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁に収まった状態を示す概略斜視図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態を示す概略斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Example of the rotation penetration pile of this invention, (a) is a schematic perspective view which shows the state which the expansion excavation blade was settled in the periphery of the spiral wing, (b) is a periphery of the spiral wing It is a schematic perspective view which shows the state which protruded from the radial direction outer side of the pile main body. 図1(a)に示す状態での回転貫入杭の詳細図で、(a)は一部省略した半裁縦断面図、(b)は一部省略した平面図、(c)は外筒と噴出口との関係を示す部分側面図である。1A is a detailed view of a rotary penetrating pile in the state shown in FIG. 1A, FIG. 1A is a partially cut half longitudinal sectional view, FIG. 1B is a partially omitted plan view, and FIG. It is a partial side view which shows the relationship with an exit. 図1(b)に示す状態での回転貫入杭の詳細図で、(a)は一部省略した半裁縦断面図、(b)は一部省略した平面図、(c)は外筒と噴出口との関係を示す部分側面図である。FIG. 1B is a detailed view of a rotating penetrating pile in the state shown in FIG. 1B, in which FIG. 1A is a partially cut half longitudinal sectional view, FIG. 1B is a partially omitted plan view, and FIG. It is a partial side view which shows the relationship with an exit. 本発明の回転貫入杭の第2実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁に収まった状態での半裁縦断面図、(b)は同状態での一部省略した平面図である。It is a figure which shows 2nd Example of the rotation penetration pile of this invention, (a) is a half cut longitudinal cross-sectional view in the state in which the expansion excavation blade was settled in the periphery of the spiral wing, (b) is a partly omission in the same state FIG. 図4に示す回転貫入杭の拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での図で、(a)は同状態での一部省略した半裁縦断面図、(b)は同状態での一部省略した平面図である。FIG. 4 is a diagram in a state in which the enlarged excavation blade of the rotary penetrating pile shown in FIG. 4 protrudes from the peripheral edge of the spiral blade to the outer side in the radial direction of the pile main body, and (a) is a partially cut longitudinal sectional view in the same state; b) is a plan view with a part omitted in the same state. 本発明の回転貫入杭を使用する根固めされた基礎の施工方法の第1実施例を示す工程説明図で、(a)は回転貫入杭の先端部分が地盤中の支持層に到達する前の状態を示す図、(b)は回転貫入杭の先端が地盤中の支持層底部に到達した状態を示す図、(c)は回転貫入杭を回転貫入時とは反対の方向に回転させて支持層底部から引上げを開始した状態を示す図、(d)は回転貫入杭が支持層上部に引き上げられた状態を示す図、(e)は回転貫入杭の先端が支持層底部に戻った状態を示す図である。It is process explanatory drawing which shows 1st Example of the construction method of the solidified foundation which uses the rotation penetration pile of this invention, (a) is before the front-end | tip part of a rotation penetration pile reaches the support layer in the ground. The figure which shows a state, (b) is a figure which shows the state which the front-end | tip of the rotation penetration pile reached | attained the bottom of the support layer in the ground, (c) is supported by rotating the rotation penetration pile in the direction opposite to the rotation penetration. The figure which shows the state which started pulling up from the layer bottom part, (d) is a figure which shows the state by which the rotation penetration pile was pulled up to the support layer upper part, (e) is the state which the front-end | tip of the rotation penetration pile returned to the support layer bottom part. FIG. 本発明の回転貫入杭の第3実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。It is a figure which shows 3rd Example of the rotation penetration pile of this invention, (a) is the top view which abbreviate | omitted partially in the state which the expansion excavation blade was settled in the peripheral side of the spiral blade, (b) is an expansion excavation blade It is the top view which abbreviate | omitted partially in the state protruded to the radial direction outer side of the pile main body from the periphery of a spiral wing | blade. 図7に示す本発明の回転貫入杭の第1変形例で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。FIG. 7 is a first modified example of the rotary penetrating pile of the present invention shown in FIG. 7, (a) is a partially omitted plan view in a state where the enlarged excavating blade is accommodated on the peripheral side of the spiral blade, and (b) is an enlarged excavating blade. It is the top view which abbreviate | omitted partially in the state which protruded to the radial direction outer side of the pile main body from the periphery of a spiral wing | blade. 図7に示す本発明の回転貫入杭の第2変形例で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。FIG. 7 is a second modification of the rotary penetrating pile of the present invention shown in FIG. 7, (a) is a partially omitted plan view in a state where the enlarged excavating blade is accommodated on the peripheral side of the spiral blade, and (b) is an enlarged excavating blade. It is the top view which abbreviate | omitted partially in the state which protruded to the radial direction outer side of the pile main body from the periphery of a spiral wing | blade. 本発明の回転貫入杭の第4実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まる一方、貫通部が閉じられた状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出する一方、貫通部が開かれた状態での一部省略した平面図である。It is a figure which shows 4th Example of the rotation penetration pile of this invention, (a) is a top view which abbreviate | omitted partially in the state in which the expansion excavation blade was settled in the peripheral side of the spiral wing, and the penetration part was closed, b) is a partially omitted plan view of the enlarged excavating blade protruding from the peripheral edge of the spiral wing to the radially outer side of the pile main body while the penetrating portion is opened. 本発明の回転貫入杭の第5実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。It is a figure which shows 5th Example of the rotation penetration pile of this invention, (a) is the top view which abbreviate | omitted partially in the state which the expansion excavation blade was settled in the peripheral side of the spiral blade, (b) is an expansion excavation blade It is the top view which abbreviate | omitted partially in the state protruded to the radial direction outer side of the pile main body from the periphery of a spiral wing | blade. 図11に示す本発明の回転貫入杭の変形例で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。FIG. 11 is a modified example of the rotary penetrating pile of the present invention shown in FIG. It is the top view which abbreviate | omitted partially in the state protruded to the radial direction outer side of the pile main body from the peripheral edge of the wing | blade. 本発明の回転貫入杭の第6実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まる一方、貫通部が閉じた状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出する一方、貫通部が開いた状態での一部省略した平面図である。It is a figure which shows 6th Example of the rotation penetration pile of this invention, (a) is a top view which abbreviate | omitted partially in the state where the enlarged excavation blade was settled in the peripheral side of the spiral wing, and the penetration part was closed, (b) ) Is a partially omitted plan view of the enlarged excavating blade protruding from the periphery of the spiral blade to the outside in the radial direction of the pile body while the penetrating portion is open. 掘削された土砂と硬化性流動体が貫通部を通って螺旋翼の一方の面側から他方の面側あるいは他方の面側から一方の面側に流動する状態を説明する説明図で、(a)は図7、図8又は図11に示す貫通部での掘削された土砂と硬化性流動体の流動状態の説明図、(b)は図9又は図12に示す貫通部での掘削された土砂と硬化性流動体の流動状態の説明図である。It is explanatory drawing explaining the state which the excavated earth and sand and a curable fluid flow through the penetration part from one surface side of a spiral blade to the other surface side or the other surface side to one surface side. ) Is an explanatory diagram of the flow state of the excavated earth and sand and the curable fluid in the penetrating portion shown in FIG. 7, FIG. 8, or FIG. 11, and (b) is the excavating portion in the penetrating portion shown in FIG. 9 or FIG. It is explanatory drawing of the fluid state of earth and sand and a curable fluid.

本発明の回転貫入杭の第1実施例について、図1(a)、(b)を参照してその概略を説明する。本実施例の回転貫入杭Aは、鋼管製の外筒11と、底蓋13で閉塞された先端が該外筒11から露出した状態で該外筒11の先端部分内に配置される鋼管製の内筒12を有する杭本体10と、外筒11から露出した内筒12の先端寄りの外周面に沿って設けられた略一巻の螺旋翼20と、螺旋翼20にその周方向に180°の開き角度をあけて配置された、杭本体10の径方向外側に突出可能な2枚の拡大掘削刃30と、内筒12の周面に設けられた硬化性流動体の噴出口40と、底蓋13に配置された先端掘削刃50と、を備える。地盤中で杭本体10を回転推進させる方向と反対の方向(地盤中から引き上げる方向)に回転させたとき、その回転初期時に外筒11が内筒12に対して所定角度回転しつつ所定距離軸方向(所定距離上方向)に移動する。地盤中への回転推進方向と反対の方向への回転初期時以降は、外筒11と内筒12は一体となって回転する。本実施例の回転貫入杭Aでは、この回転初期時に、外筒11が内筒12に対して所定角度回転することを利用して拡大掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出し、また外筒11の内筒12に対する回転で外筒11が内筒12に対して所定距離軸方向に移動することを利用して拡大掘削刃30が杭本体10の径方向外側に突出したことを検知するようにしている。なお、外筒11は、施工時に回転貫入杭Aの地盤中への貫入深さに応じて継ぎ足される。硬化性流動体は、施工時に流動性を有し施工後は時間の経過に伴い硬化するもので、例えばセメントや地盤固化材を水で溶いたミルク状のもの、あるいはこれに砂を加えたモルタルなどである。   About the 1st Example of the rotation penetration pile of this invention, the outline is demonstrated with reference to Fig.1 (a), (b). The rotary penetrating pile A of the present embodiment is made of a steel pipe that is disposed in the distal end portion of the outer cylinder 11 with the outer cylinder 11 made of steel pipe and the tip closed by the bottom lid 13 exposed from the outer cylinder 11. The pile main body 10 having the inner cylinder 12, the substantially one-turn spiral wing 20 provided along the outer peripheral surface near the tip of the inner cylinder 12 exposed from the outer cylinder 11, and the spiral wing 20 in the circumferential direction 180. Two enlarged excavation blades 30 that can be protruded radially outward of the pile body 10 and are arranged with an opening angle of °, and a curable fluid jet 40 provided on the peripheral surface of the inner cylinder 12 A tip excavation blade 50 disposed on the bottom lid 13. When the pile body 10 is rotated in the ground in a direction opposite to the direction in which the pile main body 10 is rotated and propelled (the direction in which the pile body 10 is pulled up from the ground), the outer cylinder 11 rotates at a predetermined angle with respect to the inner cylinder 12 at the initial stage of rotation. Move in the direction (up a predetermined distance). After the initial rotation in the direction opposite to the direction of propulsion into the ground, the outer cylinder 11 and the inner cylinder 12 rotate together. In the rotary penetrating pile A of the present embodiment, the diameter of the pile main body 10 is extended from the peripheral edge of the spiral blade 20 by utilizing the fact that the outer cylinder 11 rotates by a predetermined angle with respect to the inner cylinder 12 at the initial stage of the rotation. The enlarged excavating blade 30 is moved radially outward of the pile body 10 by utilizing the fact that the outer cylinder 11 is moved in the axial direction by a predetermined distance with respect to the inner cylinder 12 by pushing the outer cylinder 11 outward. It is intended to detect that it has protruded. In addition, the outer cylinder 11 is added according to the penetration depth in the ground of the rotation penetration pile A at the time of construction. A curable fluid has fluidity at the time of construction and hardens over time after construction. For example, a milk-like material in which cement or ground solidification material is dissolved in water, or a mortar with sand added thereto. Etc.

図1(a)に示すように、前記外筒11の先端は略螺旋状に切り欠けられており、この切欠き部14を介して前記内筒12の先端寄りの外周面が外筒11から露出している。切欠き部14には、拡大掘削刃30が螺旋翼20の周縁に収まっている、図1(a)に示す状態において、螺旋翼20の一端部20aが係止する段部14aが設けられ、また拡大掘削刃30を構成する支持片32の内端部分32a(図2(b)参照)が収まる凹部14bが設けられる。   As shown in FIG. 1 (a), the distal end of the outer cylinder 11 is notched in a substantially spiral shape, and the outer peripheral surface near the distal end of the inner cylinder 12 is separated from the outer cylinder 11 through the notch 14. Exposed. The cutout portion 14 is provided with a stepped portion 14a to which the one end portion 20a of the spiral blade 20 is locked in the state shown in FIG. Moreover, the recessed part 14b in which the inner end part 32a (refer FIG.2 (b)) of the support piece 32 which comprises the expansion excavation blade 30 is provided is provided.

前記内筒12の内部は、図2(a)、図3(a)に示すように、仕切板15を介して上下2つの部屋15a、15bに区画されていて、下方の部屋15bの周壁に前記噴出口40が設けられ、上方の部屋15aに硬化性流動体供給管60の先端部分を着脱可能に受け入れる受入管61が設けられる。受入管61の下端は仕切板15の中央部分に設けた穴15cに接続される。硬化性流動体供給管60から受入れ管61と穴15cを介して下方の部屋15bに硬化性流動体が供給され、噴出口40から杭本体10の径方向外側に向けて噴出される。なお、受入管61の内周面には軸方向に適宜間隔をあけて弾性リング62が複数個(図2(a)、図3(a)では3個)配置され、硬化性流動体供給管60と受入管61との隙間から硬化性流動体が漏れないようにしている。   As shown in FIGS. 2 (a) and 3 (a), the inner cylinder 12 is partitioned into two upper and lower rooms 15a and 15b via a partition plate 15, and is formed on the peripheral wall of the lower room 15b. The jet port 40 is provided, and a receiving pipe 61 is provided in the upper chamber 15a to removably receive the distal end portion of the curable fluid supply pipe 60. The lower end of the receiving pipe 61 is connected to a hole 15 c provided in the central portion of the partition plate 15. The curable fluid is supplied from the curable fluid supply pipe 60 to the lower chamber 15b through the receiving pipe 61 and the hole 15c, and is ejected from the ejection port 40 toward the radially outer side of the pile body 10. A plurality of elastic rings 62 (three in FIG. 2 (a) and FIG. 3 (a)) are arranged on the inner peripheral surface of the receiving pipe 61 with an appropriate interval in the axial direction, and a curable fluid supply pipe. The curable fluid is prevented from leaking from the gap between 60 and the receiving pipe 61.

前記外筒11の先端部分の内周面とこの内周面に覆われる前記内筒12の外周面には、図2(a)、図3(a)に示すように、前記螺旋翼20と同一ピッチのねじ部16、ねじ部17が設けられ、これらねじ部16,17を介して内筒12が外筒11の先端部分内に螺合して配置される。外筒11の内周面には、ねじ部16の近傍位置に抜け止めストッパー18が設けられ、外筒11が内筒12に対して回転することに伴って外筒11が軸方向に移動すると抜け止めストッパー18が内筒12のねじ部17に当たり、外筒11がそれ以上移動しないようにしている。本実施例では、抜け止めストッパー18により外筒11が内筒12に対し1回転して外筒11が軸方向に1ピッチ分移動したらそこで止まるように設定している。   As shown in FIGS. 2 (a) and 3 (a), the spiral blade 20 and the inner peripheral surface of the distal end portion of the outer cylinder 11 and the outer peripheral surface of the inner cylinder 12 covered by the inner peripheral surface A screw portion 16 and a screw portion 17 having the same pitch are provided, and the inner cylinder 12 is screwed into the distal end portion of the outer cylinder 11 via the screw portions 16 and 17. On the inner peripheral surface of the outer cylinder 11, a stopper 18 is provided in the vicinity of the screw portion 16. When the outer cylinder 11 moves in the axial direction as the outer cylinder 11 rotates with respect to the inner cylinder 12. The stopper stopper 18 hits the threaded portion 17 of the inner cylinder 12 so that the outer cylinder 11 does not move any further. In this embodiment, the stopper 18 is set so that the outer cylinder 11 is rotated once relative to the inner cylinder 12 and the outer cylinder 11 stops by one pitch when moved in the axial direction.

前記螺旋翼20は、前記外筒11の外径の2倍乃至3倍の外径を有する。回転貫入杭A(杭本体10)を地盤中に回転貫入させる方向に回転(正回転)している間、螺旋翼20の一端部20aと前記切欠き部14の段部14aとは、その係止状態が維持され(図1(a)参照)、外筒11が内筒12に対して回転するのを防止する。したがって、杭本体10を正回転させて地盤中に回転貫入させる間は外筒11と内筒12が一体となって回転して地盤中に貫入する。   The spiral blade 20 has an outer diameter that is two to three times the outer diameter of the outer cylinder 11. While the rotary penetrating pile A (pile main body 10) is rotating (forward rotating) in a direction to rotate and penetrate into the ground, the one end portion 20a of the spiral blade 20 and the stepped portion 14a of the notch portion 14 are related to each other. The stopped state is maintained (see FIG. 1A), and the outer cylinder 11 is prevented from rotating with respect to the inner cylinder 12. Therefore, the outer cylinder 11 and the inner cylinder 12 rotate together and penetrate into the ground while the pile body 10 is rotated forward and rotated into the ground.

一方、杭本体10を地盤中に回転貫入させる方向と反対の方向に回転(逆回転)させると、その回転初期時において外筒11が内筒12に対して1回転してねじ部16、ねじ部17の1ピッチ分軸方向上方に移動するが、前記抜け止めストッパー18が外筒11の内筒12に対する1ピッチ分以上の移動を防止し、その後は外筒11と内筒12とが一体となって回転し、地盤中から後退する(引き上げられる)。   On the other hand, when the pile body 10 is rotated (reversely rotated) in a direction opposite to the direction in which the pile body 10 is rotated and penetrated into the ground, the outer cylinder 11 rotates once with respect to the inner cylinder 12 at the initial stage of the rotation, and the screw portion 16, screw The part 17 moves upward by one pitch in the axial direction, but the stopper 18 prevents the outer cylinder 11 from moving more than one pitch relative to the inner cylinder 12, and then the outer cylinder 11 and the inner cylinder 12 are integrated. Rotate and retreat from the ground (pulled up).

前記拡大掘削刃30は、図2(a)、図3(a)等に示すように、前記杭本体10の軸方向に延びる掘削刃片31と、この掘削刃片31を前記螺旋翼20に取り付ける1対の支持片32とを備える。1対の支持片32は、螺旋翼20の面部を挟み込み且つ前記内筒12寄りの内端側が螺旋翼20の面部を軸方向に貫通する枢軸33により螺旋翼20に搖動可能に取り付けられる。1対の支持片33の螺旋翼20の周縁側の外端部に掘削刃片31が固定(溶接)される。掘削刃片31は、枢軸33を支点として螺旋翼20に対して搖動(回動)し、螺旋翼20の周縁から杭本体10の径方向外側の突出可能である。   As shown in FIG. 2A, FIG. 3A, etc., the enlarged excavation blade 30 includes an excavation blade piece 31 extending in the axial direction of the pile body 10 and the excavation blade piece 31 to the spiral blade 20. And a pair of support pieces 32 to be attached. The pair of support pieces 32 are slidably attached to the spiral blade 20 by a pivot 33 that sandwiches the surface portion of the spiral blade 20 and whose inner end near the inner cylinder 12 penetrates the surface portion of the spiral blade 20 in the axial direction. The excavation blade piece 31 is fixed (welded) to the outer end of the pair of support pieces 33 on the peripheral side of the spiral blade 20. The excavation blade piece 31 can swing (rotate) with respect to the spiral blade 20 with the pivot 33 as a fulcrum, and can protrude from the peripheral edge of the spiral blade 20 on the radially outer side of the pile body 10.

前記杭本体10を正回転させて地盤中に回転貫入させる際には、前記螺旋翼20に作用する地盤の摩擦力は、図2(b)の矢印Bに示すように、前記拡大掘削刃30を螺旋翼20の周縁側に押圧するように作用する。このため、図2(b)、(c)に示すように、拡大掘削刃30は、その支持片32の内端部分32aが前記外筒11の切欠き部14に設けた凹部14b内に止まり、掘削刃片31が螺旋翼20の周縁側に収まっている。一方、杭本体10を逆回転させて地盤中から引き上げる際には、螺旋翼20に作用する地盤の摩擦力は、図3(b)の矢印Cに示すように、拡大掘削刃30を螺旋翼20の周縁から杭本体10の周縁から径方向外側に押し出す方向に作用する。この逆回転の回転初期時には、外筒11が前記内筒12に対して回転し、支持片32はその内端部分32aが、図1(b)、図3(b)に示すように、外筒11の切欠き部14の凹部14bに押されて枢軸33を支点として回転し、掘削刃片31が螺旋翼20の周縁から杭本体10の径方向外側に突出する。すなわち、逆回転の回転初期時に、拡大掘削刃30には、外筒11から杭本体10の径方向外側への押し出し力が作用する。拡大掘削刃30は、地盤からの摩擦力と外筒11からの押し出し力とが相俟ってその掘削刃片31が杭本体10の径方向外側に確実に突出する。   When the pile main body 10 is rotated forward and penetrated into the ground, the ground friction force acting on the spiral blade 20 is the enlarged excavating blade 30 as shown by an arrow B in FIG. Acts on the peripheral side of the spiral blade 20. For this reason, as shown in FIGS. 2B and 2C, the enlarged excavation blade 30 has the inner end portion 32 a of the support piece 32 stopped in the recess 14 b provided in the notch portion 14 of the outer cylinder 11. The excavating blade piece 31 is accommodated on the peripheral side of the spiral blade 20. On the other hand, when the pile body 10 is reversely rotated and pulled up from the ground, the frictional force of the ground acting on the spiral blade 20 causes the enlarged excavation blade 30 to move the spiral blade as indicated by an arrow C in FIG. It acts in the direction which extrudes from the periphery of 20 to the radial direction outer side from the periphery of the pile main body 10. At the beginning of the reverse rotation, the outer cylinder 11 rotates with respect to the inner cylinder 12, and the support piece 32 has an inner end portion 32a as shown in FIGS. 1 (b) and 3 (b). It is pushed by the recess 14 b of the notch 14 of the cylinder 11 and rotates with the pivot 33 as a fulcrum, and the excavation blade piece 31 protrudes from the peripheral edge of the spiral blade 20 to the outside in the radial direction of the pile body 10. In other words, at the initial stage of reverse rotation, an extruding force from the outer cylinder 11 to the radially outer side of the pile body 10 acts on the enlarged excavation blade 30. The expanded excavating blade 30 is coupled with the frictional force from the ground and the pushing force from the outer cylinder 11, so that the excavating blade piece 31 reliably projects outward in the radial direction of the pile body 10.

前記拡大掘削刃30は、前記杭本体10を正回転させて地盤中に回転貫入させる際には螺旋翼20の周縁側に収まっているので、ほとんど回転貫入抵抗にはならない。また、拡大掘削刃30は、杭本体10を地盤中で逆回転させるときその掘削刃片31が杭本体10の径方向外側に突出して掘削面積を拡大させる。したがって、杭本体10を地盤中で正回転と逆回転を繰り返して上下動させると、螺旋翼20単独の場合に比して螺旋翼20の周囲の土砂をより多く掘削軟化させることが出来る。   Since the enlarged excavating blade 30 is accommodated on the peripheral side of the spiral blade 20 when the pile main body 10 is rotated forward and rotated into the ground, it hardly causes rotational penetration resistance. Moreover, when the pile excavation blade 30 rotates the pile main body 10 reversely in the ground, the excavation blade piece 31 projects outward in the radial direction of the pile main body 10 to enlarge the excavation area. Therefore, when the pile main body 10 is moved up and down by repeating forward rotation and reverse rotation in the ground, the soil around the spiral blade 20 can be more excavated and softened than in the case of the spiral blade 20 alone.

図1(a)、(b)等に示すように、前記外筒11の杭頭部上端に位置する前記硬化性流動体供給管60の外周面の個所にはペイントなどでマーク70が付けられている。外筒11が前記内筒11に対して前記ねじ部16、17の1ピッチ分軸方向上方に移動したときにマーク70が外筒11の杭頭部内に隠れる。これは外筒11が内筒12に対して1回転した結果であり、上述したように、この外筒11の1回転によって前記拡大掘削刃30が前記螺旋翼20の周縁から杭本体10の径方向外側に突出する。したがって、マーク70が外筒11の杭頭部内に隠れたことを観測することにより拡大掘削刃30が杭本体10の径方向外側に突出したことを検知することが出来る。   As shown in FIGS. 1A, 1B, etc., a mark 70 is marked with paint or the like on the outer peripheral surface of the curable fluid supply pipe 60 positioned at the upper end of the pile head of the outer cylinder 11. ing. When the outer cylinder 11 is moved upward in the axial direction by one pitch of the screw portions 16 and 17 with respect to the inner cylinder 11, the mark 70 is hidden in the pile head of the outer cylinder 11. This is a result of the outer cylinder 11 rotating once with respect to the inner cylinder 12, and as described above, the rotation of the outer excavating blade 30 causes the diameter of the pile main body 10 from the periphery of the spiral blade 20 by one rotation of the outer cylinder 11. Projects outward in the direction. Therefore, by observing that the mark 70 is hidden in the pile head of the outer cylinder 11, it is possible to detect that the enlarged excavation blade 30 protrudes radially outward of the pile body 10.

本実施例では、地盤中で杭本体10を逆回転させたとき、その回転初期時に外筒11が内筒12に対しねじ部16、17の1ピッチ分軸方向上方に移動することを利用して、拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知するのに、硬化性流動体供給管60の外周面にマーク70を付した場合を示したが、これに限定されるものではない。例えば、地盤から露出した外筒11の杭頭部上端に定規などを当てて杭頭部の高さの変化を計測することにより検知するようにしてもよい。   In this embodiment, when the pile main body 10 is rotated in reverse in the ground, the outer cylinder 11 moves upward in the axial direction by one pitch of the screw portions 16 and 17 with respect to the inner cylinder 12 at the initial rotation. Thus, in order to detect that the enlarged excavating blade 30 protrudes from the peripheral edge of the spiral blade 20 to the radially outer side of the pile body 10, the case where the mark 70 is attached to the outer peripheral surface of the curable fluid supply pipe 60 is shown. However, the present invention is not limited to this. For example, it may be detected by measuring a change in the height of the pile head by applying a ruler or the like to the upper end of the pile head exposed from the ground.

前記噴出口40は、例えば逆止弁などから構成されていて、前記部屋15bから地盤中の掘削された土砂に硬化性流動体を噴出させることが出来るが、地盤中の掘削された土砂が部屋15b内に流入するのを防止する機能を有する。噴出口40は、図1(b)、図3(c)に示すように前記内筒12の周面の前記螺旋翼20の一端部20aと他端部20bとの間に位置している。噴出口40は、杭本体10を地盤中に回転貫入させる正回転時には図1(a)、図2(c)に示すように外筒11により覆われて(外筒11が閉じて)保護され、杭本体10を地盤中から引き上げる逆回転時には図1(b)、図3(c)に示すように外筒11により覆われなくなり(外筒11が開き)、硬化性流動体の噴出が可能となる。   The spout 40 is composed of, for example, a check valve and the like, and the curable fluid can be ejected from the room 15b to the excavated soil in the ground. 15b has a function of preventing inflow. As shown in FIGS. 1B and 3C, the jet nozzle 40 is located between the one end 20 a and the other end 20 b of the spiral blade 20 on the peripheral surface of the inner cylinder 12. The spout 40 is covered and protected by the outer cylinder 11 (the outer cylinder 11 is closed) as shown in FIGS. 1 (a) and 2 (c) at the time of forward rotation in which the pile body 10 is rotated and penetrated into the ground. When the pile main body 10 is pulled up from the ground, it is not covered by the outer cylinder 11 (the outer cylinder 11 opens) as shown in FIGS. 1B and 3C, and the curable fluid can be ejected. It becomes.

以上説明したように、本第1実施例の回転貫入杭Aによれば、拡大掘削刃30により支持力を増加させることが出来る上に、外筒11の杭頭部上端に位置する硬化性流動体供給管60の外周面の個所にマーク70を付し、このマーク70を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、検知手段としてのマーク70はペイントなどで簡単に付すことができてコストがかからずに済む。また、杭本体10を地盤中で逆回転させる際、その回転初期時に外筒11が内筒12に対し回転して、拡大掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出す力が作用し、この押し出し力と地盤から螺旋翼20に作用する摩擦力(図3(b)の矢印C参照)とが相俟って掘削刃片31を杭本体10の径方向外側に確実に突出させることが出来る。さらに、噴出口40は、杭本体10を正回転させて地盤中に回転貫入させる際には外筒11に覆われて螺旋翼20の周囲の土砂から保護されるので、噴出口40を構成する逆止弁として汎用品を使用することが出来、コストダウンを図ることが可能である。さらにまた、杭本体10を地盤中で逆回転させると外筒11が開き、何ら支障なく硬化性流動体供給管60から供給された硬化性流動体を螺旋翼20の周囲にある掘削された土砂に向けて噴出することが出来る。   As described above, according to the rotary penetrating pile A of the first embodiment, the support force can be increased by the enlarged excavating blade 30, and the curable flow located at the upper end of the pile head of the outer cylinder 11 By attaching a mark 70 to the outer peripheral surface of the body supply pipe 60 and observing the mark 70, the enlarged excavation blade 30 protrudes from the peripheral edge of the spiral blade 20 to the radially outer side of the pile body 10 in the ground. Can be detected. Further, the mark 70 as the detection means can be easily attached with paint or the like, so that it does not cost much. Further, when the pile body 10 is reversely rotated in the ground, the outer cylinder 11 is rotated with respect to the inner cylinder 12 at the initial stage of rotation, and the enlarged excavating blade 30 is moved outward from the periphery of the spiral blade 20 in the radial direction of the pile body 10. The pushing force acts, and the pushing force and the frictional force (see arrow C in FIG. 3B) acting on the spiral blade 20 from the ground combine to bring the excavating blade piece 31 outward in the radial direction of the pile body 10. It can be reliably projected. Further, the spout 40 is covered with the outer cylinder 11 and protected from the earth and sand around the spiral blade 20 when the pile main body 10 is rotated forward and inserted into the ground, so that the spout 40 is configured. A general-purpose product can be used as a check valve, and the cost can be reduced. Furthermore, when the pile body 10 is rotated in the reverse direction in the ground, the outer cylinder 11 is opened, and the curable fluid supplied from the curable fluid supply pipe 60 is excavated around the spiral blade 20 without any trouble. Can erupt towards

図4(a)、(b)、図5(a)、(b)は、本発明の回転貫入杭の第2実施例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   4 (a), 4 (b), 5 (a), and 5 (b) show a second embodiment of the rotary penetrating pile of the present invention. 1 (a), (b), FIGS. 2 (a), (b), (c), and the same parts as those shown in FIGS. 3 (a), (b), (c). The detailed description is omitted.

本第2実施例の回転貫入杭Aaでは、前記拡大掘削刃30を前記杭本体10の径方向外側に突出させる機構が上述した第1実施例の回転貫入杭Aと相違し、これ以外の部分については同一である。この突出させる機構は、前記外筒11側に設けられたピン80とこのピン80が摺動可能に係合する前記拡大掘削刃30側に設けられた溝部81とから構成され、杭本体10を逆回転させる回転初期時に外筒11が内筒12に対して回転するのに伴ってピン80が溝部81内を摺動することにより前記枢軸33を支点として拡大掘削刃30を回動して杭本体10の径方向外側に突出させる。ピン80は、1対の拡大掘削刃30に対応する、外筒11の先端部分の外周面個所にそれぞれ設けられた略扇形状の支持突起82に、外筒11の軸方向に延びるように取り付けられる。溝部81は、前記1対の支持片32のうち、螺旋翼20の表面(上面)側の支持片32の内端部に、前記枢軸33方向に延びるように設けられる。   In the rotary penetrating pile Aa of the second embodiment, the mechanism for projecting the enlarged excavating blade 30 outward in the radial direction of the pile body 10 is different from the rotary penetrating pile A of the first embodiment described above, and the other parts Is the same. The projecting mechanism includes a pin 80 provided on the outer cylinder 11 side and a groove 81 provided on the enlarged excavation blade 30 side on which the pin 80 is slidably engaged. As the outer cylinder 11 rotates with respect to the inner cylinder 12 at the initial stage of reverse rotation, the pin 80 slides in the groove 81 to rotate the enlarged excavating blade 30 with the pivot 33 serving as a fulcrum. The main body 10 is protruded radially outward. The pins 80 are attached to substantially fan-shaped support protrusions 82 provided on the outer peripheral surface portions of the distal end portion of the outer cylinder 11 corresponding to the pair of enlarged excavating blades 30 so as to extend in the axial direction of the outer cylinder 11. It is done. The groove portion 81 is provided at the inner end portion of the support piece 32 on the surface (upper surface) side of the spiral blade 20 of the pair of support pieces 32 so as to extend in the direction of the pivot 33.

前記杭本体10を正回転させて地盤中に回転貫入させる際には、前記螺旋翼20に作用する地盤の摩擦力は、図4(b)の矢印Dに示すように、前記拡大掘削刃30を螺旋翼20の周縁側に押圧するように作用し、拡大掘削刃30はその掘削刃片31が螺旋翼20の周縁側に収まっている。一方、杭本体10を逆回転させて地盤中から引き上げる際には、螺旋翼20に作用する地盤の摩擦力は、図5(b)の矢印Eに示すように、拡大掘削刃30を螺旋翼20の周縁から杭本体10の周縁から径方向外側に押し出す方向に作用する。この逆回転の回転初期時には、外筒11が前記内筒12に対して回転し、この回転に伴ってピン80が溝部81内を摺動することにより前記枢軸33を支点として拡大掘削刃30を回動させて杭本体10の径方向外側に突出させる力が作用する。拡大掘削刃30は、地盤からの摩擦力とピン80と溝部81を介して伝達される外筒11からの力とが相俟ってその掘削刃片31が杭本体10の径方向外側に確実に突出する。   When the pile main body 10 is rotated forward and penetrated into the ground, the ground friction force acting on the spiral blade 20 is the enlarged excavating blade 30 as shown by an arrow D in FIG. , And the enlarged excavating blade 30 has its excavating blade piece 31 located on the peripheral side of the spiral blade 20. On the other hand, when the pile body 10 is reversely rotated and pulled up from the ground, the ground frictional force acting on the spiral blade 20 causes the expanded excavation blade 30 to move the spiral blade as indicated by an arrow E in FIG. It acts in the direction which extrudes from the periphery of 20 to the radial direction outer side from the periphery of the pile body 10. At the initial stage of the reverse rotation, the outer cylinder 11 rotates with respect to the inner cylinder 12, and the pin 80 slides in the groove 81 along with this rotation, so that the enlarged excavating blade 30 is moved with the pivot 33 as a fulcrum. The force which rotates and makes it protrude to the radial direction outer side of the pile main body 10 acts. The enlarged excavating blade 30 is configured such that the friction force from the ground and the force from the outer cylinder 11 transmitted through the pin 80 and the groove 81 combine to ensure that the excavating blade piece 31 is radially outward of the pile body 10. Protrusively.

本第2実施例の回転貫入杭Aaも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   Similarly to the rotary penetration pile A of the first embodiment described above, the rotary penetration pile Aa of the second embodiment can increase the supporting force by the enlarged excavating blade 30 and observe the mark 70. Thus, it is possible to detect that the enlarged excavating blade 30 protrudes from the peripheral edge of the spiral blade 20 to the radially outer side of the pile body 10 in the ground. In addition, the enlarged excavation blade 30 can be reliably projected outward in the radial direction of the pile body 10 at the initial stage of rotation in which the pile body 10 is rotated in the reverse direction.

なお、前記杭本体10を逆回転させる回転初期時に、前記外筒11が前記内筒12に対して回転することを利用して前記拡大掘削刃30を前記螺旋翼20の周縁から杭本体10の径方向外側に突出させる機構は、図1(a)、(b)乃至図5(a)、(b)に示す2つの実施例の機構に限定されるものではない。   In addition, at the initial stage of rotation for rotating the pile main body 10 in the reverse direction, the outer excavation blade 30 is rotated from the peripheral edge of the spiral blade 20 to the pile main body 10 by utilizing the rotation of the outer cylinder 11 with respect to the inner cylinder 12. The mechanism for projecting radially outward is not limited to the mechanisms of the two embodiments shown in FIGS. 1 (a), 1 (b) to 5 (a), (b).

次に、図6(a)乃至(e)を参照して本発明の回転貫入杭を使用する根固めされた基礎の施工方法の一実施例を説明する。本実施例の施工方法では、図1(a)、(b)乃至図3(a)、(b)、(c)に示す第1実施例の回転貫入杭Aを使用している。図中、図1(a)、(b)乃至図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Next, an embodiment of a method for constructing a solidified foundation using the rotary penetrating pile of the present invention will be described with reference to FIGS. 6 (a) to 6 (e). In the construction method of the present embodiment, the rotary penetrating pile A of the first embodiment shown in FIGS. 1 (a), 1 (b) to 3 (a), (b), (c) is used. In the figure, the same parts as those shown in FIGS. 1 (a), 1 (b) to 3 (a), (b), (c) are denoted by the same reference numerals, and detailed description thereof is omitted.

まず、回転貫入杭Aを地盤中に回転貫入する前に硬化性流動体供給管60の先端部分を受入管61(図2(a)等参照)に差し込むなどの準備をしておく。この準備工程後、図6(a)、(b)に示す回転貫入工程に移る。   First, preparations are made such as inserting the distal end portion of the curable fluid supply pipe 60 into the receiving pipe 61 (see FIG. 2 (a), etc.) before the rotary penetrating pile A rotates and penetrates into the ground. After this preparatory step, the process proceeds to the rotary penetration step shown in FIGS. 6 (a) and 6 (b).

図6(a)は、回転貫入工程において、回転貫入杭Aの先端部分が地盤中の支持層Sに到達する前の状態を示す。同図に示すように、回転駆動装置を搭載した地上の杭打機(図示せず)により杭本体10は回転駆動(正回転)されて螺旋翼20のねじ込み作用(推進力)を利用して地中に回転貫入する。この回転貫入の際、先端掘削刃50が地盤を掘削しつつ杭本体10が貫入するので、地盤が固い場合でも杭本体10の貫入がスムーズに行われる。なお、地盤が余り固くない場合には先端掘削刃50を設けなくても支障なく杭本体10を地盤中に貫入させることが出来る。   Fig.6 (a) shows the state before the front-end | tip part of the rotation penetration pile A arrives at the support layer S in the ground in the rotation penetration process. As shown in the figure, the pile main body 10 is rotationally driven (forward rotation) by a ground pile driver (not shown) equipped with a rotational drive device, and utilizes the screwing action (propulsive force) of the spiral blade 20. Penetration into the ground. At the time of this rotation penetration, the pile main body 10 penetrates while the tip excavation blade 50 excavates the ground, so that the pile main body 10 can be smoothly penetrated even when the ground is hard. In addition, when the ground is not so hard, the pile main body 10 can be penetrated into the ground without any trouble without providing the tip excavation blade 50.

回転貫入工程は、図6(b)に示すように、杭本体10の先端部分が、支持層S中の根固め体F(図6(c)乃至(e)参照)の下端が位置する予定の深度(支持層Sの底部)に到達するまで続行する。支持層Sの底部に到達したら、外筒11の杭頭部上端に位置する硬化性流動体供給管60の外周面の個所にペイントなどでマーク70を付す。回転貫入工程では、螺旋翼20の周囲の土砂から螺旋翼20に作用する摩擦力により拡大掘削刃30が螺旋翼20の周縁側に収められており、拡大掘削刃30が杭本体10の回転貫入抵抗になることがない。   In the rotational penetration step, as shown in FIG. 6 (b), the tip of the pile main body 10 is scheduled to be positioned at the lower end of the solidified body F (see FIGS. 6 (c) to (e)) in the support layer S. Continue until the depth of (the bottom of the support layer S) is reached. When the bottom of the support layer S is reached, the mark 70 is marked with paint or the like on the outer peripheral surface of the curable fluid supply pipe 60 located at the upper end of the pile head of the outer cylinder 11. In the rotary penetration process, the enlarged excavation blade 30 is accommodated on the peripheral side of the spiral blade 20 by the frictional force that acts on the spiral blade 20 from the earth and sand around the spiral blade 20, and the enlarged excavation blade 30 rotates and penetrates the pile body 10. There is no resistance.

上記回転貫入工程後、杭本体10を回転貫入時と反対の方向に回転(逆回転)させるその回転初期時において、外筒11が内筒12に対して回転するので、これを利用して拡大掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出し、またこの回転に伴って外筒11が内筒12に対して所定距離軸方向に移動するので、これを利用して拡大掘削刃30が杭本体10の径方向外側に突出したことを確認する。すなわち、この確認工程では、外筒11が内筒12に対して回転しつつ所定距離軸方向に移動することを利用して掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出す一方で、拡大掘削刃30が杭本体10の径方向外側に突出したことを確認する。本実施例では、地盤表面上に位置する外筒11の杭頭部上端に位置していた硬化性流動体供給管60の外周面のマーク70が外筒11の杭頭部内に隠れたことを観測することで拡大掘削刃30が杭本体10の径方向外側に突出したことを確認している(図6(c)参照)。   After the rotational penetration step, the outer cylinder 11 rotates relative to the inner cylinder 12 at the initial stage of rotation in which the pile body 10 is rotated (reversely rotated) in the opposite direction to that during rotational penetration. The excavating blade 30 is pushed out from the peripheral edge of the spiral blade 20 to the outside in the radial direction of the pile body 10, and the outer cylinder 11 moves in the axial direction with respect to the inner cylinder 12 along with this rotation. It is confirmed that the enlarged excavation blade 30 protrudes outward in the radial direction of the pile body 10. That is, in this confirmation step, the excavating blade 30 is moved from the peripheral edge of the spiral blade 20 to the radially outer side of the pile body 10 by utilizing the fact that the outer cylinder 11 rotates relative to the inner cylinder 12 and moves in the axial direction. While extruding, it is confirmed that the enlarged excavation blade 30 protrudes radially outward of the pile body 10. In this example, the mark 70 on the outer peripheral surface of the curable fluid supply pipe 60 located at the upper end of the pile head of the outer cylinder 11 located on the ground surface was hidden in the pile head of the outer cylinder 11. It is confirmed that the enlarged excavation blade 30 protrudes radially outward of the pile body 10 by observing (see FIG. 6C).

上記確認工程において、硬化性流動体供給管60の外周面のマーク70が、外筒11の杭頭部内に隠れたときには、外筒11により拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したこと、また外筒11が噴出口40を覆わず開いたことを示すので、この確認工程後に杭本体10をさらに逆回転させて支持層S中で引き上げる回転引上げ工程に移る。この回転引上げ工程では、図6(c)に示すように、杭本体10を逆回転させつつ、噴出口40から硬化性流動体を噴出する。杭本体10は支持層Sの底部から上方に移動し、その移動の過程で杭本体10の径方向外側に突出した拡大掘削刃30により螺旋翼20の周囲の地盤を掘削する。すなわち、拡大掘削しつつ、掘削された土砂と噴出された硬化性流動体とを撹拌混合する。   In the above confirmation step, when the mark 70 on the outer peripheral surface of the curable fluid supply pipe 60 is hidden in the pile head of the outer cylinder 11, the enlarged excavation blade 30 is moved from the peripheral edge of the spiral blade 20 to the pile body by the outer cylinder 11. 10 indicates that the outer cylinder 11 has been projected outside and the opening 10 has been opened without covering the spout 40. Therefore, after this confirmation process, the pile body 10 is further rotated in the reverse direction and pulled up in the support layer S. Move on. In this rotational pulling step, as shown in FIG. 6C, the curable fluid is ejected from the ejection port 40 while the pile body 10 is rotated in the reverse direction. The pile main body 10 moves upward from the bottom of the support layer S, and the ground around the spiral blade 20 is excavated by the enlarged excavation blade 30 protruding outward in the radial direction of the pile main body 10 in the process of movement. That is, the excavated earth and sand and the ejected curable fluid are agitated and mixed while expanding and excavating.

上記回転引上げ工程は、図6(d)に示すように、杭本体10の先端部分が、根固め体Fの上端が位置する予定の深度(支持層Sの上部)に達するまで行う。杭本体10の先端部分が支持層Sの上部に達したら、杭本体10を正回転するが、この杭本体10の正回転は既に掘削された支持層Sの個所で行われることから、拡大掘削刃30を螺旋翼20の周縁に押し付ける地盤の摩擦力は弱く、拡大掘削刃30は杭本体10の径方向外側に突出したままである。支持層S中で杭本体10を正回転しながら拡大掘削及び撹拌混合を行う。この回転貫入,拡大掘削及び撹拌混合は、図6(e)に示すように、杭本体10の先端部分が支持層Sの底部に達するまで行う。   As shown in FIG. 6 (d), the rotary pulling process is performed until the tip portion of the pile body 10 reaches a depth (upper part of the support layer S) where the upper end of the root-solidified body F is located. When the front end portion of the pile body 10 reaches the upper part of the support layer S, the pile body 10 is rotated forward. However, since the forward rotation of the pile body 10 is performed at the location of the already-excavated support layer S, the expanded excavation is performed. The frictional force of the ground that presses the blade 30 against the peripheral edge of the spiral blade 20 is weak, and the enlarged excavating blade 30 remains protruding outward in the radial direction of the pile body 10. Enlarging excavation and agitation mixing are performed while the pile body 10 is rotated forward in the support layer S. This rotation penetration, expansion excavation, and stirring and mixing are performed until the tip of the pile body 10 reaches the bottom of the support layer S as shown in FIG.

杭本体10の先端部分が支持層Sの底部に達したら、回転貫入工程(図6(e)参照)から回転引上げ工程(図6(d)参照)に移る。回転貫入工程の後、回転引上げ工程と拡大掘削及び撹拌混合を繰り返して杭本体10を支持層S内で複数回上下動させる。これにより、螺旋翼20と拡大掘削刃30で掘削された土砂は、噴出口40から噴出された硬化性流動体と螺旋翼20と拡大掘削刃30を使って撹拌混合される。この撹拌混合は、掘削された土砂の性状や使用する硬化性流動体の性状などにより異なるが、例えば、回転貫入工程の後、杭本体10の上下動による撹拌混合を十数回繰り返して行う。   When the tip end portion of the pile body 10 reaches the bottom of the support layer S, the process moves from the rotation penetration step (see FIG. 6 (e)) to the rotation pulling step (see FIG. 6 (d)). After the rotation penetration step, the pile body 10 is moved up and down a plurality of times in the support layer S by repeating the rotation pulling step, the expansion excavation, and the stirring and mixing. Thereby, the earth and sand excavated by the spiral blade 20 and the enlarged excavating blade 30 are agitated and mixed by using the curable fluid ejected from the ejection port 40, the spiral blade 20 and the enlarged excavating blade 30. This agitation and mixing varies depending on the properties of the excavated earth and sand and the properties of the curable fluid to be used. For example, after the rotary penetration step, agitation and mixing by vertically moving the pile body 10 is repeated ten times.

以上のようにして地盤中の掘削された土砂を硬化性流動体で固化した根固め体Fが支持層S内に完成する。   As described above, a solidified body F obtained by solidifying the excavated earth and sand in the ground with a curable fluid is completed in the support layer S.

図7(a)、(b)は、本発明の回転貫入杭の第3実施例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   7 (a) and 7 (b) show a third embodiment of the rotary penetrating pile of the present invention. 1 (a), (b), FIGS. 2 (a), (b), (c), and the same parts as those shown in FIGS. 3 (a), (b), (c). The detailed description is omitted.

本第3実施例の回転貫入杭Abでは、前記螺旋翼20にその一方の面側(表面側)と他方の面側(裏面側)とを連通させる貫通部としての方形状の一対の貫通穴21を設けており、この点が上述した第1実施例の回転貫入杭Aと相違し、これ以外の部分については同一である。回転貫入杭Abを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S(図6参照)内で複数回上下動させる際には、図14(a)に示すように、貫通穴21を介して螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この貫通穴21を介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体F(図6参照)を形成することが可能となる。なお、本第3実施例の回転貫入杭Abでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70(図1(a)など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetrating pile Ab of the third embodiment, a pair of rectangular through holes as penetrating portions that allow the one surface side (front surface side) and the other surface side (back surface side) to communicate with the spiral blade 20. 21 is provided, and this point is different from the rotary penetrating pile A of the first embodiment described above, and the other portions are the same. When rotating the rotary penetrating pile Ab forward / reversely and moving the tip of the pile body 10 up and down a plurality of times within the support layer S (see FIG. 6), as shown in FIG. 14 (a), The earth and sand excavated by the spiral blade 20 and the enlarged excavating blade 30 through the through-hole 21 and the curable fluid ejected from the jet port 40 from the front side to the back side or from the back side to the front side of the spiral blade 20. To flow. The stirring and mixing by the flow of the earth and sand and the curable fluid performed through the through-hole 21 is added to the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30, so that the sand and the curable fluid are stirred and mixed. As a result, the root-solidified body F (see FIG. 6) in which the earth and sand and the curable fluid are uniformly mixed can be formed. In addition, in the rotary penetrating pile Ab of the third embodiment, as in the rotary penetrating pile A of the first embodiment described above, the support force can be increased by the enlarged excavating blade 30, and the mark 70 (FIG. 1 (a) and the like), it is possible to detect that the enlarged excavation blade 30 protrudes from the peripheral edge of the spiral blade 20 to the radially outer side of the pile body 10 in the ground. In addition, the enlarged excavation blade 30 can be reliably projected outward in the radial direction of the pile body 10 at the initial stage of rotation in which the pile body 10 is rotated in the reverse direction.

図8(a)、(b)は、上記第3実施例の回転貫入杭Abの第1変形例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)、図7(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   FIGS. 8A and 8B show a first modification of the rotary penetrating pile Ab of the third embodiment. 1 (a), (b), FIG. 2 (a), (b), (c), FIG. 3 (a), (b), (c), FIG. 7 (a), (b). The same reference numerals are given to the same parts as those shown in FIG.

本第1変形例の回転貫入杭Acでは、前記貫通部として前記螺旋翼20の周縁の一部を切欠いた一対の切欠部21aを設けている。本第1変形例の回転貫入杭Acでも、図14(a)に示すように、切欠部21aを介して螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動し、この流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   In the rotary penetrating pile Ac of the first modified example, a pair of cutout portions 21a in which a part of the peripheral edge of the spiral blade 20 is cut out is provided as the penetrating portion. Also in the rotation penetration pile Ac of this 1st modification, as shown to Fig.14 (a), it is ejected from the earth and sand excavated with the spiral blade 20 and the said enlarged excavation blade 30 via the notch part 21a, and the said jet nozzle 40. Further, the curable fluid flows from the surface side of the spiral blade 20 to the back surface side or from the back surface side to the surface side, and the stirring and mixing by this flow is added to the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30. The stirring and mixing of the earth and sand and the curable fluid is further promoted, and the root-solidified body F in which the earth and sand and the curable fluid are uniformly mixed can be formed.

図9(a)、(b)は、上記第3実施例の回転貫入杭Abの第2変形例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)、図7(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   FIGS. 9A and 9B show a second modification of the rotary penetrating pile Ab of the third embodiment. 1 (a), (b), FIG. 2 (a), (b), (c), FIG. 3 (a), (b), (c), FIG. 7 (a), (b). The same reference numerals are given to the same parts as those shown in FIG.

本第2変形例の回転貫入杭Adでは、前記螺旋翼20に前記貫通部として方形状の一対の貫通穴21bを設け且つこの貫通穴21bの長辺方向の一端側にガイド部22を設けている。このガイド部22は、例えば、貫通穴21bを形成する際に生じる切り起こしの一部を螺旋翼20の裏面側に適宜角度をつけて折り曲げることにより形成される。ガイド部22は、図14(b)に示すように、螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体を貫通穴21bに導き、貫通穴21bを介しての螺旋翼20の表面側から裏面側あるいは裏面側から表面側への土砂と硬化性流動体の流動をスムーズにする。本第2変形例の回転貫入杭Adでも、貫通穴21bを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   In the rotary penetrating pile Ad of the second modified example, a pair of rectangular through holes 21b are provided as the penetrating parts in the spiral blade 20, and a guide part 22 is provided on one end side in the long side direction of the through holes 21b. Yes. The guide portion 22 is formed, for example, by bending a part of the cut and raised generated when forming the through hole 21b at an appropriate angle to the back surface side of the spiral blade 20. As shown in FIG. 14B, the guide portion 22 guides the earth and sand excavated by the spiral blade 20 and the enlarged excavating blade 30 and the curable fluid ejected from the ejection port 40 to the through hole 21b. The flow of the earth and sand and the curable fluid from the front surface side to the back surface side or the back surface side to the front surface side of the spiral blade 20 through the through hole 21b is made smooth. Even in the rotary penetration pile Ad of the second modified example, the stirring and mixing by the flow of the earth and sand and the curable fluid performed through the through hole 21b is added to the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30. The stirring and mixing of the earth and sand and the curable fluid is further promoted, and the root-solidified body F in which the earth and sand and the curable fluid are uniformly mixed can be formed.

図10(a)、(b)は、本発明の回転貫入杭の第4実施例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   10 (a) and 10 (b) show a fourth embodiment of the rotary penetrating pile of the present invention. 1 (a), (b), FIGS. 2 (a), (b), (c), and the same parts as those shown in FIGS. 3 (a), (b), (c). The detailed description is omitted.

本第4実施例の回転貫入杭Aeでは、前記螺旋翼20にその表面側と裏面側とを連通させる貫通部としての方形状の一対の貫通穴21cを設け且つ前記拡大掘削刃30の支持片32によりこれら一対の貫通穴21cを開閉可能に構成しており、この点が上述した第1実施例の回転貫入杭Aと相違し、これ以外の部分については同一である。回転貫入杭Aeを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S内で複数回上下動させる際には、図14(a)に示すように、貫通穴21cを介して螺旋翼20と拡大掘削刃30で掘削された土砂と噴出口40から噴出された硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この貫通穴21cを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。本第4実施例では、同じく貫通穴21を設けた上記第3実施例と異なり、貫通穴21cが支持片32により開閉可能になっており、回転貫入杭Aeを正回転させて地盤中に回転貫入する際には、図10(a)に示すように、貫通穴21cが螺旋翼20の周縁側に収まっている拡大掘削刃30の支持片32により閉じられる。このため、回転貫入中、貫通穴21cを介して地盤反力が漏れるのを防ぎ、貫通穴21cを設けたことによる地盤中への回転推進力の低下を阻止することが出来る。貫通穴21cは、回転貫入杭Aeを逆回転させて地盤中から引き上げる際には、図10(b)に示すように、貫通穴21cが螺旋翼20の周縁側から杭本体10の径方向に突出した拡大掘削刃30の支持片32により開かれる。なお、本第4実施例の回転貫入杭Aeでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70(図1(a)など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetrating pile Ae of the fourth embodiment, the spiral blade 20 is provided with a pair of rectangular through holes 21c as penetrating portions that allow the front surface side and the back surface side to communicate with each other, and the support piece for the enlarged excavating blade 30 The pair of through holes 21c is configured to be openable and closable by 32, and this point is different from the rotary penetrating pile A of the first embodiment described above, and the other portions are the same. When the rotary penetration pile Ae is rotated forward / reversely and the tip portion of the pile body 10 is moved up and down a plurality of times in the support layer S, as shown in FIG. 14 (a), through the through hole 21c. Thus, the earth and sand excavated by the spiral blade 20 and the enlarged excavating blade 30 and the curable fluid ejected from the jet port 40 flow from the surface side of the spiral blade 20 to the back surface side or from the back surface side to the surface side. The stirring and mixing by the flow of the earth and sand and the curable fluid performed through the through hole 21c is added to the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30, whereby the earth and sand and the curable fluid are stirred and mixed. As a result, the root-solidified body F in which the earth and sand and the curable fluid are uniformly mixed can be formed. In the fourth embodiment, unlike the third embodiment in which the through hole 21 is also provided, the through hole 21c can be opened and closed by the support piece 32, and the rotary penetrating pile Ae is rotated in the forward direction by rotating forward. When penetrating, as shown in FIG. 10A, the through hole 21 c is closed by the support piece 32 of the enlarged excavating blade 30 that is accommodated on the peripheral side of the spiral blade 20. For this reason, it is possible to prevent the ground reaction force from leaking through the through hole 21c during the rotation penetration, and to prevent the rotation propulsion force from being lowered into the ground due to the provision of the through hole 21c. When the through-hole 21c is rotated in the reverse direction by rotating the rotary penetrating pile Ae from the ground, the through-hole 21c extends in the radial direction of the pile body 10 from the peripheral side of the spiral blade 20 as shown in FIG. It is opened by the support piece 32 of the extended digging blade 30 protruding. Note that, in the rotary penetrating pile Ae of the fourth embodiment, as in the rotary penetrating pile A of the first embodiment described above, the support force can be increased by the enlarged excavating blade 30, and the mark 70 (FIG. 1 (a) and the like), it is possible to detect that the enlarged excavation blade 30 protrudes from the peripheral edge of the spiral blade 20 to the radially outer side of the pile body 10 in the ground. In addition, the enlarged excavation blade 30 can be reliably projected outward in the radial direction of the pile body 10 at the initial stage of rotation in which the pile body 10 is rotated in the reverse direction.

図11(a)、(b)は、本発明の回転貫入杭の第5実施例を示している。図中、図4(a)、(b)、図5(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Fig.11 (a), (b) has shown the 5th Example of the rotation penetration pile of this invention. In the figure, the same parts as those shown in FIGS. 4 (a), 4 (b), 5 (a) and 5 (b) are denoted by the same reference numerals, and detailed description thereof is omitted.

本第5実施例の回転貫入杭Afでは、前記螺旋翼20にその表面側と裏面側とを連通させる貫通部としての方形状の一対の貫通穴21dを設けており、この点が上述した第2実施例の回転貫入杭Aaと相違しているが、これ以外の部分については同一である。貫通穴21dを設ける点では上述した第3実施例の回転貫入杭Abと同じである。回転貫入杭Afを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S内で複数回上下動させる際には、図14(a)に示すように、貫通穴21dを介して螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この貫通穴21dを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。なお、本第5実施例の回転貫入杭Afでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、マーク70(図1など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetrating pile Af of the fifth embodiment, the spiral blade 20 is provided with a pair of rectangular through holes 21d as penetrating portions that allow the front surface side and the back surface side to communicate with each other. Although it differs from the rotary penetration pile Aa of 2 Example, it is the same about other parts. The point of providing the through hole 21d is the same as the rotary penetrating pile Ab of the third embodiment described above. When the rotary penetrating pile Af is rotated forward and backward to move the tip of the pile body 10 up and down a plurality of times in the support layer S, as shown in FIG. Thus, the earth and sand excavated by the spiral blade 20 and the enlarged excavating blade 30 and the curable fluid ejected from the jet port 40 flow from the surface side of the spiral blade 20 to the back surface side or from the back surface side to the surface side. The stirring and mixing by the flow of the earth and sand and the curable fluid performed through the through hole 21d is added to the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30, so that the sand and the curable fluid are stirred and mixed. As a result, the root-solidified body F in which the earth and sand and the curable fluid are uniformly mixed can be formed. In addition, in the rotary penetrating pile Af of the fifth embodiment, the supporting force can be increased by the enlarged excavating blade 30 as in the case of the rotary penetrating pile A of the first embodiment described above, and the mark 70 (FIG. 1). Etc.) can be detected by projecting the enlarged excavating blade 30 from the peripheral edge of the spiral blade 20 to the outer side in the radial direction of the pile body 10. In addition, the enlarged excavation blade 30 can be reliably projected outward in the radial direction of the pile body 10 at the initial stage of rotation in which the pile body 10 is rotated in the reverse direction.

図12(a)、(b)は、上記第5実施例の回転貫入杭Afの変形例を示している。図中、図4(a)、(b)、図5(a)、(b)、図11(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   12 (a) and 12 (b) show a modification of the rotary penetrating pile Af of the fifth embodiment. In the figure, the same parts as those shown in FIGS. 4A, 4B, 5A, 5B, FIG. Is omitted.

本変形例の回転貫入杭Agでは、前記螺旋翼20に前記貫通部として方形状の一対の貫通穴21eを設け且つ貫通穴21eの長辺方向の一端側にガイド部22aを設けている。このガイド部22aは、前記ガイド部22(図9参照)と同様に、例えば、貫通穴21eを形成する際に生じる切り起こしの一部を螺旋翼20の裏面側に適宜角度をつけて折り曲げることにより形成される。ガイド部22aは、図14(b)に示すように、螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体を貫通穴21eに導き、貫通穴21eを介しての螺旋翼20の表面側から裏面側あるいは裏面側から表面側への土砂と硬化性流動体の流動をスムーズにする。本変形例の回転貫入杭Agでも、貫通穴21eを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   In the rotary penetrating pile Ag of this modification, a pair of rectangular through holes 21e are provided in the spiral blade 20 as the through parts, and a guide part 22a is provided on one end side in the long side direction of the through holes 21e. Like the guide portion 22 (see FIG. 9), for example, the guide portion 22a bends a part of the cut and raised generated when forming the through hole 21e at an appropriate angle to the back side of the spiral blade 20. It is formed by. As shown in FIG. 14B, the guide portion 22a guides the earth and sand excavated by the spiral blade 20 and the enlarged excavating blade 30 and the curable fluid ejected from the ejection port 40 to the through hole 21e. The flow of the earth and sand and the curable fluid from the front surface side to the back surface side or the back surface side to the front surface side of the spiral blade 20 through the through hole 21e is made smooth. Also in the rotary penetration pile Ag of this modification, the stirring and mixing by the flow of the earth and sand and the curable fluid performed through the through hole 21e is added to the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30, so that The stirring and mixing with the curable fluid is further promoted, and the root-solidified body F in which the earth and sand and the curable fluid are uniformly mixed can be formed.

図13(a)、(b)は、本発明の回転貫入杭の第6実施例を示している。図中、図4(a)、(b)、図5(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   13 (a) and 13 (b) show a sixth embodiment of the rotary penetrating pile of the present invention. In the figure, the same parts as those shown in FIGS. 4 (a), 4 (b), 5 (a) and 5 (b) are denoted by the same reference numerals, and detailed description thereof is omitted.

本第6実施例の回転貫入杭Ahでは、前記螺旋翼20にその表面側と裏面側とを連通させる貫通部としての、略円形状に切欠いた一対の切欠部21fを設け且つ前記拡大掘削刃30の支持片32によりこれら一対の切欠部21fを開閉可能に構成しており、この点が上述した第2実施例の回転貫入杭Aaと相違し、これ以外の部分については同一である。支持片32によって切欠部21fを開閉可能に構成する点では上述した第4実施例の回転貫入杭Aeと同じである。回転貫入杭Ahを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S内で複数回上下動させる際には、図14(a)に示すように、切欠部21fを介して螺旋翼20と拡大掘削刃30で掘削された土砂と噴出口40から噴出された硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この切欠部21fを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。本第6実施例では、同じく貫通穴21dを設けた上記第5実施例と異なり、切欠部21fが支持片32により開閉可能になっており、回転貫入杭Ahを正回転させて地盤中に回転貫入する際には、図13(a)に示すように、切欠部21fが螺旋翼20の周縁側に収まっている拡大掘削刃30の支持片32により閉じられる。このため、回転貫入中、切欠部21fを介して地盤反力が漏れるのを防ぎ、切欠部21fを設けたことによる地盤中への回転推進力の低下を阻止することが出来る。切欠部21fは、回転貫入杭Ahを逆回転させて地盤中から引き上げる際には、図13(b)に示すように、切欠部21fが螺旋翼20の周縁側から杭本体10の径方向に突出した拡大掘削刃30の支持片32により開かれる。なお、本第6実施例の回転貫入杭Ahでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70(図1(a)など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetrating pile Ah of the sixth embodiment, a pair of cutout portions 21f that are cut out in a substantially circular shape are provided as penetrating portions that allow the front surface side and the back surface side of the spiral blade 20 to communicate with each other. The pair of cutout portions 21f are configured to be openable and closable by 30 support pieces 32. This point is different from the rotary penetration pile Aa of the second embodiment described above, and the other portions are the same. It is the same as the rotary penetrating pile Ae of the fourth embodiment described above in that the notch 21f can be opened and closed by the support piece 32. When the rotary penetration pile Ah is rotated forward / reversely and the tip portion of the pile body 10 is moved up and down a plurality of times in the support layer S, as shown in FIG. Thus, the earth and sand excavated by the spiral blade 20 and the enlarged excavating blade 30 and the curable fluid ejected from the jet port 40 flow from the surface side of the spiral blade 20 to the back surface side or from the back surface side to the surface side. The stirring and mixing by the flow of the earth and sand and the curable fluid performed through the notch 21f is added to the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30, whereby the sand and the curable fluid are stirred and mixed. As a result, the root-solidified body F in which the earth and sand and the curable fluid are uniformly mixed can be formed. In the sixth embodiment, unlike the fifth embodiment in which the through hole 21d is also provided, the notch portion 21f can be opened and closed by the support piece 32, and the rotary penetrating pile Ah is rotated forward to rotate in the ground. When penetrating, as shown in FIG. 13A, the notch portion 21 f is closed by the support piece 32 of the enlarged excavating blade 30 that is accommodated on the peripheral side of the spiral blade 20. For this reason, it is possible to prevent the ground reaction force from leaking through the notch 21f during the rotation penetration, and to prevent the rotation propulsion force from being lowered into the ground due to the provision of the notch 21f. When the notched portion 21f rotates the rotary penetrating pile Ah in the reverse direction and pulls it up from the ground, the notched portion 21f is formed in the radial direction of the pile main body 10 from the peripheral side of the spiral blade 20 as shown in FIG. It is opened by the support piece 32 of the extended digging blade 30 protruding. In addition, in the rotary penetrating pile Ah of the sixth embodiment, as in the rotary penetrating pile A of the first embodiment described above, the support force can be increased by the enlarged excavating blade 30, and the mark 70 (FIG. 1 (a) and the like), it is possible to detect that the enlarged excavation blade 30 protrudes from the peripheral edge of the spiral blade 20 to the radially outer side of the pile body 10 in the ground. In addition, the enlarged excavation blade 30 can be reliably projected outward in the radial direction of the pile body 10 at the initial stage of rotation in which the pile body 10 is rotated in the reverse direction.

本発明の回転貫入杭は、図1(a)等に示す回転貫入杭A、図4(a)等に示す回転貫入杭Aa、図7(a)等に示す回転貫入杭Ab、図8(a)等に示す回転貫入杭Ac、図9(a)等に示す回転貫入杭Ad、図10(a)等に示す回転貫入杭Ae、図11(a)に示す回転貫入杭Af、図12(a)等に示す回転貫入杭Ag、図13(a)等に示す回転貫入杭Ah等に限定されるものではない。   The rotating penetrating pile of the present invention includes a rotating penetrating pile A shown in FIG. 1 (a), the rotating penetrating pile Aa shown in FIG. 4 (a), the rotating penetrating pile Ab shown in FIG. a) a rotary penetrating pile Ac shown in FIG. 9 (a), a rotary penetrating pile Ae shown in FIG. 10 (a), a rotary penetrating pile Af shown in FIG. 11 (a), FIG. It is not limited to the rotation penetration pile Ag shown to (a) etc., the rotation penetration pile Ah etc. shown to FIG.

また、本発明の回転貫入杭を使用する根固めされた基礎の施工方法では、図1(a)、(b)等に示す回転貫入杭Aを使用した場合(図6(a)乃至(e)参照)を示したが、これに限定されるものではなく、例えば図4(a)等に示す回転貫入杭Aa、図7(a)等に示す回転貫入杭Ab、図8(a)等に示す回転貫入杭Ac、図9(a)等に示す回転貫入杭Ad、図10(a)等に示す回転貫入杭Ae、図11(a)に示す回転貫入杭Af、図12(a)等に示す回転貫入杭Agあるいは図13(a)等に示す回転貫入杭Ahを使用してもよい。   Moreover, in the construction method of the solidified foundation using the rotation penetration pile of this invention, when the rotation penetration pile A shown to FIG. 1 (a), (b) etc. is used (FIG. 6 (a) thru | or (e). However, the present invention is not limited to this. For example, the rotary penetrating pile Aa shown in FIG. 4 (a), the rotary penetrating pile Ab shown in FIG. 7 (a), FIG. 8 (a), etc. Rotating penetrating pile Ac shown in FIG. 9 (a), rotating penetrating pile Ad shown in FIG. 10 (a), rotating penetrating pile Af shown in FIG. 11 (a), FIG. 12 (a). A rotary penetrating pile Ag shown in FIG. 13 or a rotary penetrating pile Ah shown in FIG.

例えば、図7(a)等に示す回転貫入杭Abを使用した場合、前記杭本体10の先端部分を前記支持層S内(所定位置と所定深度との間)で上下動させる際(前記回転貫入工程と前記回転引上げ工程とを繰り返す間)に、前記貫通穴21を介して行われる土砂と硬化性流動体との流動による撹拌混合が、螺旋翼20と拡大掘削刃30を使った撹拌混合に加わり、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   For example, when the rotary penetrating pile Ab shown in FIG. 7 (a) or the like is used, the tip portion of the pile body 10 is moved up and down within the support layer S (between a predetermined position and a predetermined depth) (the rotation). During the repetition of the penetration step and the rotary pulling step), the stirring and mixing by the flow of the earth and sand and the curable fluid performed through the through hole 21 is performed by the stirring and mixing using the spiral blade 20 and the enlarged excavating blade 30. In addition, the stirring and mixing of the earth and sand and the curable fluid is further promoted, and the root-solidified body F in which the earth and sand and the curable fluid are uniformly mixed can be formed.

本発明の回転貫入杭及び同回転貫入杭を使用する根固めされた基礎の施工方法は、螺旋翼の外径を大きくすることなく、押し込み支持力や引き抜き支持力を向上させる場合に適用される。   The rotary penetration pile of the present invention and the method for constructing the foundation using the rotary penetration pile are applied when the push-in support force and the pull-out support force are improved without increasing the outer diameter of the spiral blade. .

A,Aa 回転貫入杭
Ab,Ac 回転貫入杭
Ad,Ae 回転貫入杭
Af,Ag 回転貫入杭
Ah 回転貫入杭
S 支持層
F 根固め体
10 杭本体
11 外筒
12 内筒
13 底蓋
20 螺旋翼
21 貫通穴
21a 切欠部
21b 貫通穴
21c 貫通穴
21d 貫通穴
21e 貫通穴
21f 切欠部
22 ガイド部
22a ガイド部
30 拡大掘削刃
40 噴出口
60 硬化性流動体供給管
70 マーク
80 ピン
81 溝部
A, Aa Rotating penetration pile Ab, Ac Rotating penetration pile Ad, Ae Rotating penetration pile Af, Ag Rotating penetration pile Ah Rotating penetration pile S Support layer F Rooting body 10 Pile body 11 Outer cylinder 12 Inner cylinder 13 Bottom lid 20 Spiral wing 21 through hole 21a cutout portion 21b through hole 21c through hole 21d through hole 21e through hole 21f cutout portion 22 guide portion 22a guide portion 30 enlarged excavation blade 40 jet outlet 60 curable fluid supply pipe 70 mark 80 pin 81 groove portion

Claims (11)

外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、
前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、
前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、
前記内筒の前記外筒により開閉可能に覆われる周面個所に設けられた硬化性流動体の噴出口と、を備え、
前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して所定角度回転しつつ軸方向に所定距離移動可能で、
前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出し、
前記杭本体を前記回転貫入させる方向と反対の方向に回転させるとき、前記外筒が前記内筒に対して軸方向に所定距離移動することを利用して前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したのを検知することを特徴とする回転貫入杭。
A pile body comprising an outer cylinder, and an inner cylinder disposed in the distal end portion of the outer cylinder with the closed tip exposed from the outer cylinder;
A spiral wing provided along an outer peripheral surface near the tip of the inner cylinder exposed from the outer cylinder;
An enlarged excavation blade provided on the spiral wing so as to protrude radially outward of the pile body;
A curable fluid jet port provided at a peripheral surface portion of the inner cylinder that is covered with the outer cylinder so as to be opened and closed;
The outer cylinder is movable a predetermined distance in the axial direction while rotating a predetermined angle with respect to the inner cylinder when rotating the pile main body in a direction opposite to the direction of rotating and penetrating into the ground.
The enlarged excavation blade is accommodated on the peripheral side of the spiral blade when the pile body is rotated and penetrated into the ground, and is rotated into the inner cylinder when the pile body is rotated in a direction opposite to the direction of the rotation penetration. Projecting radially outward of the pile body from the periphery of the spiral wing by the outer cylinder rotating against,
When the pile main body is rotated in a direction opposite to the direction in which the rotation is inserted, the enlarged excavating blade moves to a peripheral edge of the spiral blade by utilizing the fact that the outer cylinder moves a predetermined distance in the axial direction with respect to the inner cylinder. It detects that it protruded to the radial direction outer side of the said pile main body from the rotation penetration pile characterized by the above-mentioned.
請求項1に記載の回転貫入杭において、
前記外筒の先端部分の内周面と前記内筒の外周面にそれぞれ前記螺旋翼のピッチと同じピッチのねじ部を設け、これらねじ部を介して前記内筒を前記外筒の先端部分内に螺合することを特徴とする回転貫入杭。
In the rotation penetration pile according to claim 1,
Screw portions having the same pitch as the pitch of the spiral blades are provided on the inner peripheral surface of the tip portion of the outer tube and the outer peripheral surface of the inner tube, and the inner tube is placed in the tip portion of the outer tube through these screw portions. Rotating penetrating pile characterized by being screwed onto.
請求項1又は2に記載の基礎杭の回転貫入杭において、
前記噴出口は、前記内筒の周面の前記螺旋翼の端部間に設けられ、前記杭本体を地盤中に回転貫入させるときには、前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときには、前記外筒が前記内筒に対し回転して該外筒により覆わられなくなる、ことを特徴とする回転貫入杭。
In the rotation penetration pile of the foundation pile according to claim 1 or 2,
The spout is provided between the end portions of the spiral wing on the peripheral surface of the inner cylinder, and when the pile main body is rotated and penetrated into the ground, it is covered by the outer cylinder and the pile main body is rotated and penetrated. When rotating in a direction opposite to the direction, the outer cylinder rotates relative to the inner cylinder and is not covered by the outer cylinder.
請求項2又は3に記載の回転貫入杭において、
前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させて前記外筒が前記内筒に対し回転して所定ピッチ分だけ軸方向に移動したとき、前記外筒の前記内筒に対する移動を停止させるストッパーを設けたことを特徴とする回転貫入杭。
In the rotation penetration pile according to claim 2 or 3,
When the outer cylinder rotates relative to the inner cylinder and moves in the axial direction by a predetermined pitch when the pile main body is rotated in a direction opposite to the direction in which the pile body rotates and penetrates into the ground, the outer cylinder is moved relative to the inner cylinder. A rotary penetrating pile provided with a stopper for stopping movement.
請求項1乃至4の何れか一項に記載の回転貫入杭において、
前記拡大掘削刃は、前記螺旋翼に対して搖動可能に設けられていることを特徴とする回転貫入杭。
In the rotation penetration pile as described in any one of Claims 1 thru | or 4,
The rotary excavation pile, wherein the enlarged excavation blade is provided so as to be capable of swinging with respect to the spiral blade.
請求項5に記載の回転貫入杭において、
前記拡大掘削刃は、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに、前記内筒に対して回転する前記外筒に押されて回動し、前記螺旋翼の周縁から前記杭本体の径方向外側に突出する、ことを特徴とする回転貫入杭。
In the rotation penetration pile according to claim 5,
The enlarged excavating blade is rotated by being pushed by the outer cylinder rotating with respect to the inner cylinder when rotating the pile main body in a direction opposite to the direction in which the pile main body is rotated and penetrated, from the periphery of the spiral blade A rotary penetrating pile characterized by projecting radially outward of the pile body.
請求項5に記載の回転貫入杭において、
前記外筒に該外筒の軸方向と平行にピンが設けられ、前記拡大掘削刃の端部に該ピンが摺動可能に係合する溝部を設け、
前記拡大掘削刃は、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに、前記内筒に対して回転する前記外筒に伴って前記ピンが前記溝部内を移動することにより回動し、前記螺旋翼の周縁から前記杭本体の径方向外側に突出する、ことを特徴とする回転貫入杭。
In the rotation penetration pile according to claim 5,
A pin is provided in the outer cylinder in parallel with the axial direction of the outer cylinder, and a groove part is provided at the end of the enlarged excavation blade so that the pin is slidably engaged.
When the enlarged excavating blade rotates the pile main body in a direction opposite to the direction of the rotation penetration, the pin moves in the groove portion with the outer cylinder rotating with respect to the inner cylinder. A rotary penetrating pile that rotates and protrudes radially outward from the periphery of the spiral wing.
請求項5に記載の回転貫入杭において、
前記螺旋翼に、その一方の面側と他方の面側とを連通させる貫通部を設けたことを特徴とする回転貫入杭。
In the rotation penetration pile according to claim 5,
A rotary penetrating pile characterized in that the spiral blade is provided with a penetrating portion for communicating one surface side with the other surface side.
請求項8に記載の回転貫入杭において、
前記拡大掘削刃は、前記螺旋翼に対して搖動可能に設けられた支持片と、この支持片の外端部に設けられて前記杭本体の軸方向に延びる掘削刃片とを備え、
前記貫通部は、前記杭本体を地盤中に回転貫入させるときに、前記支持片により閉じられ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに、前記支持片により開かれるように、前記支持片を利用して開閉可能に構成されていることを特徴とする回転貫入杭。
In the rotation penetration pile according to claim 8,
The enlarged excavation blade includes a support piece provided so as to be swingable with respect to the spiral blade, and an excavation blade piece provided at an outer end portion of the support piece and extending in the axial direction of the pile body,
The penetration part is closed by the support piece when the pile body is rotated and penetrated into the ground, and is opened by the support piece when the pile body is rotated in a direction opposite to the direction of the rotation penetration. Thus, it is comprised so that opening and closing is possible using the said support piece, The rotation penetration pile characterized by the above-mentioned.
回転貫入杭を使用する根固めされた基礎の施工方法であって、
外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、
前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、
前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、
前記内筒の前記外筒により開閉可能に覆われる周面個所に設けられた硬化性流動体の噴出口と、を備え、
前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して所定角度回転しつつ軸方向に所定距離移動し、
前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出し、
前記噴出口は、前記杭本体を地盤中に回転貫入させるとき前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるとき前記外筒が前記内筒に対し回転して覆わられなくなる、回転貫入杭を使用し、
前記杭本体に硬化性流動体供給管を配置する準備工程と、
前記杭本体を回転して前記螺旋翼の推進力により地盤中に所定深度まで回転貫入させる回転貫入工程と、
前記杭本体を前記回転貫入させる方向と反対の方向に回転させるその回転初期時において、前記外筒が前記内筒に対して回転しつつ軸方向に所定距離移動することを利用し、前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したことを確認する確認工程と、
前記確認工程後、前記杭本体を前記回転貫入させる方向と反対の方向に回転して前記所定深度から所定位置まで引き上げる間に、前記硬化性流動体供給管から前記外筒により覆わられなくなった前記噴出口を介して前記硬化性流動体を噴出しつつ、前記拡大掘削刃により前記螺旋翼の周辺の地盤を掘削する回転引上げ工程と、を備え、
前記所定位置と前記所定深度との間で前記回転貫入工程と前記回転引上げ工程とを繰り返す間に、前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記噴出口から噴出された前記硬化性流動体とを撹拌混合させることを特徴とする、回転貫入杭を使用する根固めされた基礎の施工方法。
A construction method for a solidified foundation that uses a rotating intrusion pile,
A pile body comprising an outer cylinder, and an inner cylinder disposed in the distal end portion of the outer cylinder with the closed tip exposed from the outer cylinder;
A spiral wing provided along an outer peripheral surface near the tip of the inner cylinder exposed from the outer cylinder;
An enlarged excavation blade provided on the spiral wing so as to protrude radially outward of the pile body;
A curable fluid jet port provided at a peripheral surface portion of the inner cylinder that is covered with the outer cylinder so as to be opened and closed;
The outer cylinder moves a predetermined distance in the axial direction while rotating a predetermined angle with respect to the inner cylinder when rotating the pile body in a direction opposite to the direction of rotating and penetrating into the ground,
The enlarged excavation blade is accommodated on the peripheral side of the spiral blade when the pile body is rotated and penetrated into the ground, and is rotated into the inner cylinder when the pile body is rotated in a direction opposite to the direction of the rotation penetration. Projecting radially outward of the pile body from the periphery of the spiral wing by the outer cylinder rotating against,
The spout is covered with the outer cylinder when the pile body is rotated and penetrated into the ground, and the outer cylinder is rotated with respect to the inner cylinder when the pile body is rotated in a direction opposite to the direction of the rotation penetration. And use a rotating intrusion pile,
A preparation step of disposing a curable fluid supply pipe on the pile body;
Rotating penetration step of rotating the pile main body and rotating and penetrating to a predetermined depth in the ground by the propulsive force of the spiral wing,
Using the fact that the outer cylinder moves a predetermined distance in the axial direction while rotating with respect to the inner cylinder at the initial stage of rotation in which the pile main body is rotated in a direction opposite to the direction of the rotation penetration, the enlarged excavation A confirmation step for confirming that the blade protrudes radially outward of the pile body from the periphery of the spiral blade;
After the confirmation step, the pile main body is not covered by the outer cylinder from the curable fluid supply pipe while rotating in the direction opposite to the direction in which the pile body is rotated and pulled up from the predetermined depth to a predetermined position. A rotary pulling step of excavating the ground around the spiral wing with the enlarged excavating blade while ejecting the curable fluid through an ejection port, and
During the repetition of the rotary penetration step and the rotary pulling step between the predetermined position and the predetermined depth, the hardened material ejected from the earth and sand excavated by the spiral blade and the enlarged excavation blade and the ejection port A construction method for a solidified foundation using a rotating penetrating pile, characterized by stirring and mixing with a fluid.
回転貫入杭を使用する根固めされた基礎の施工方法であって、
外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、
前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、
前記螺旋翼の一方の面側と他方の面側とを連通させる貫通部と、
前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、
前記内筒の前記外筒により開閉可能に覆われる周面個所に設けられた硬化性流動体の噴出口と、を備え、
前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して所定角度回転しつつ軸方向に所定距離移動し、
前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出し、
前記噴出口は、前記杭本体を地盤中に回転貫入させるとき前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるとき前記外筒が前記内筒に対し回転して覆わられなくなる、回転貫入杭を使用し、
前記杭本体に硬化性流動体供給管を配置する準備工程と、
前記杭本体を回転して前記螺旋翼の推進力により地盤中に所定深度まで回転貫入させる回転貫入工程と、
前記杭本体を前記回転貫入させる方向と反対の方向に回転させるその回転初期時において、前記外筒が前記内筒に対して回転しつつ軸方向に所定距離移動することを利用し、前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したことを確認する確認工程と、
前記確認工程後、前記杭本体を前記回転貫入させる方向と反対の方向に回転して前記所定深度から所定位置まで引き上げる間に、前記硬化性流動体供給管から前記外筒により覆わられなくなった前記噴出口を介して前記硬化性流動体を噴出しつつ、前記拡大掘削刃により前記螺旋翼の周辺の地盤を掘削する回転引上げ工程と、を備え、
前記所定位置と前記所定深度との間で前記回転貫入工程と前記回転引上げ工程とを繰り返す間に、前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記噴出口から噴出された前記硬化性流動体とを撹拌混合させ、且つ前記貫通部を介して前記螺旋翼の一方の面側から他方の面側あるいは他方の面側から一方の面側に前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記硬化性流動体とを流動させて撹拌混合させることを特徴とする、回転貫入杭を使用する根固めされた基礎の施工方法。
A construction method for a solidified foundation that uses a rotating intrusion pile,
A pile body comprising an outer cylinder, and an inner cylinder disposed in the distal end portion of the outer cylinder with the closed tip exposed from the outer cylinder;
A spiral wing provided along an outer peripheral surface near the tip of the inner cylinder exposed from the outer cylinder;
A penetrating portion for communicating one surface side and the other surface side of the spiral blade;
An enlarged excavation blade provided on the spiral wing so as to protrude radially outward of the pile body;
A curable fluid jet port provided at a peripheral surface portion of the inner cylinder that is covered with the outer cylinder so as to be opened and closed;
The outer cylinder moves a predetermined distance in the axial direction while rotating a predetermined angle with respect to the inner cylinder when rotating the pile body in a direction opposite to the direction of rotating and penetrating into the ground,
The enlarged excavation blade is accommodated on the peripheral side of the spiral blade when the pile body is rotated and penetrated into the ground, and is rotated into the inner cylinder when the pile body is rotated in a direction opposite to the direction of the rotation penetration. Projecting radially outward of the pile body from the periphery of the spiral wing by the outer cylinder rotating against,
The spout is covered with the outer cylinder when the pile body is rotated and penetrated into the ground, and the outer cylinder is rotated with respect to the inner cylinder when the pile body is rotated in a direction opposite to the direction of the rotation penetration. And use a rotating intrusion pile,
A preparation step of disposing a curable fluid supply pipe on the pile body;
Rotating penetration step of rotating the pile main body and rotating and penetrating to a predetermined depth in the ground by the propulsive force of the spiral wing,
Using the fact that the outer cylinder moves a predetermined distance in the axial direction while rotating with respect to the inner cylinder at the initial stage of rotation in which the pile main body is rotated in a direction opposite to the direction of the rotation penetration, the enlarged excavation A confirmation step for confirming that the blade protrudes radially outward of the pile body from the periphery of the spiral blade;
After the confirmation step, the pile main body is not covered by the outer cylinder from the curable fluid supply pipe while rotating in the direction opposite to the direction in which the pile body is rotated and pulled up from the predetermined depth to a predetermined position. A rotary pulling step of excavating the ground around the spiral wing with the enlarged excavating blade while ejecting the curable fluid through an ejection port, and
During the repetition of the rotary penetration step and the rotary pulling step between the predetermined position and the predetermined depth, the hardened material ejected from the earth and sand excavated by the spiral blade and the enlarged excavation blade and the ejection port The fluid is stirred and mixed, and is excavated by the spiral blade and the expansion excavation blade from the one surface side of the spiral blade to the other surface side or the other surface side to the one surface side through the penetration portion. A method for constructing a solidified foundation using a rotating intrusion pile, wherein the earth and sand and the curable fluid are fluidized and mixed with stirring.
JP2015089228A 2014-10-06 2015-04-24 Construction method of rooted foundation using a rotating penetration pile and a rotating penetration pile Active JP6425267B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014205573 2014-10-06
JP2014205573 2014-10-06

Publications (3)

Publication Number Publication Date
JP2016075139A true JP2016075139A (en) 2016-05-12
JP2016075139A5 JP2016075139A5 (en) 2018-03-22
JP6425267B2 JP6425267B2 (en) 2018-11-21

Family

ID=55949669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089228A Active JP6425267B2 (en) 2014-10-06 2015-04-24 Construction method of rooted foundation using a rotating penetration pile and a rotating penetration pile

Country Status (1)

Country Link
JP (1) JP6425267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183480A (en) * 2018-04-09 2019-10-24 ジャパンパイル株式会社 Expandable head for drilling machine
CN111119168A (en) * 2020-01-03 2020-05-08 广西盛虎建筑科技有限公司 Post-grouting construction method for spinning enlarged-head steel pipe pile
JP7274697B1 (en) * 2023-02-10 2023-05-17 秋男 田中 Rotating buried tip enlarged wing pile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073363A (en) * 1999-09-03 2001-03-21 Kubota Corp Screwing steel pipe pile
JP2010255349A (en) * 2009-04-28 2010-11-11 Takenaka Komuten Co Ltd Double pipe type steel pipe pile for vibration isolation and construction method therefor
JP2013019249A (en) * 2011-07-14 2013-01-31 Chiyoda Geotech Co Ltd Rotating buried pile, burying construction method thereof, and underground burial structure flotation suppression device
JP2014109097A (en) * 2012-11-30 2014-06-12 Chiyoda Geotech Co Ltd Foot protection method for rotary penetration pile
JP2014152576A (en) * 2013-02-13 2014-08-25 Chiyoda Geotech Co Ltd Foundation pile and foot protection method of foundation pile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073363A (en) * 1999-09-03 2001-03-21 Kubota Corp Screwing steel pipe pile
JP2010255349A (en) * 2009-04-28 2010-11-11 Takenaka Komuten Co Ltd Double pipe type steel pipe pile for vibration isolation and construction method therefor
JP2013019249A (en) * 2011-07-14 2013-01-31 Chiyoda Geotech Co Ltd Rotating buried pile, burying construction method thereof, and underground burial structure flotation suppression device
JP2014109097A (en) * 2012-11-30 2014-06-12 Chiyoda Geotech Co Ltd Foot protection method for rotary penetration pile
JP2014152576A (en) * 2013-02-13 2014-08-25 Chiyoda Geotech Co Ltd Foundation pile and foot protection method of foundation pile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183480A (en) * 2018-04-09 2019-10-24 ジャパンパイル株式会社 Expandable head for drilling machine
JP7148783B2 (en) 2018-04-09 2022-10-06 ジャパンパイル株式会社 Enlarged head for excavator
CN111119168A (en) * 2020-01-03 2020-05-08 广西盛虎建筑科技有限公司 Post-grouting construction method for spinning enlarged-head steel pipe pile
JP7274697B1 (en) * 2023-02-10 2023-05-17 秋男 田中 Rotating buried tip enlarged wing pile

Also Published As

Publication number Publication date
JP6425267B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6273333B1 (en) Method for forming soil cement pile
JP2009243186A (en) Precast pile erection construction management device
JP2008106426A (en) Method for burying preboring-type precast concrete pile
JP5274627B2 (en) Rotating buried pile, its construction method and underground structure floating control device
JPH04289319A (en) Method and apparatus for forming soil cement composite pile
JP2010133114A (en) Piling method accompanying soil improvement
JP2008075266A (en) Method of constructing pile
JP2016075139A (en) Rotary penetration pile, and construction method for consolidated foundation using the rotary penetration pile
JP5774618B2 (en) Foundation pile and foundation pile construction method
JP2004293264A (en) Excavator for buried pile and construction method for buried pile
JP5936996B2 (en) Rooting construction method of rotary intrusion pile
JP2006193956A (en) Soil improvement device having spreading excavating blade and method of constructing reinforcement body with core
JP5948068B2 (en) Pile construction method with anchors
JP4476230B2 (en) Steel pipe pile rooting method
JP2013057194A (en) Rotary penetration steel pipe pile and construction method of foundation pile having foot protection
JP2010059680A (en) Drilling unit
JP2007327281A (en) Stirring/mixing apparatus and soil improvement method using the same
JP6320951B2 (en) Construction method of freely expanding reinforcement body using partial cylinder and seismic reinforcement method for existing soil structure using the reinforcement body
JP2013133630A (en) Excavation rod and construction method
JP2012140787A (en) Construction method of pile body and casing pipe used for the same, and foundation structure constructed thereby
JPH11200750A (en) Excavation bit for winding hole and execution method using it
JP4197074B2 (en) Embedded pile construction equipment
JP6629076B2 (en) Ground reinforcement method
KR101618786B1 (en) Construction Method for Reinforcing Foundation ground using Piles with Extended head and Extending device for Piles
JP5992464B2 (en) Excavation blade mounting steel pipe for construction of cast-in-place concrete pile and construction method of cast-in-place concrete pile

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181018

R150 Certificate of patent or registration of utility model

Ref document number: 6425267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250