JP2013133630A - Excavation rod and construction method - Google Patents

Excavation rod and construction method Download PDF

Info

Publication number
JP2013133630A
JP2013133630A JP2011284042A JP2011284042A JP2013133630A JP 2013133630 A JP2013133630 A JP 2013133630A JP 2011284042 A JP2011284042 A JP 2011284042A JP 2011284042 A JP2011284042 A JP 2011284042A JP 2013133630 A JP2013133630 A JP 2013133630A
Authority
JP
Japan
Prior art keywords
blades
blade
main shaft
excavation
excavation rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011284042A
Other languages
Japanese (ja)
Inventor
Takashi Okumura
貴史 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2011284042A priority Critical patent/JP2013133630A/en
Publication of JP2013133630A publication Critical patent/JP2013133630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Earth Drilling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excavation rod which allows the amount of earth removal to be reduced in pile construction, and a construction method.SOLUTION: An excavation rod 3 includes a main shaft 31 which is rotated by a driving force, an excavation bit 32 disposed at the tip 31a of the main shaft 31, and a corotation prevention blade 33, a first agitation blade 34, a second agitation blade 35, and propeller-like agitation blades 36 and 37, which are arranged in this order from the tip side. The agitation blades 36 and 37 having opposing slopes with gradients different from each other in circumferential direction include at least a pair of propeller-like vanes 361 and 371 which allow the distance between the opposing slopes to be gradually reduced toward circumferential direction. The agitation blades 36 and 37 are rotated coaxially with the main shaft 31 and exert a pushing force on the surplus excavated soil or the like toward outside.

Description

本発明は、掘削ロッドおよび施工方法に関する。さらに詳述すると、本発明は、地盤改良を併用した施工技術の改良に関する。   The present invention relates to a drilling rod and a construction method. More specifically, the present invention relates to an improvement of construction technology using ground improvement in combination.

従来、地盤改良によって築造された地盤中のコラム(柱体)に補強部材として鋼管等を埋設し、杭体(複合杭)とする工法が利用されている。   Conventionally, a method of embedding a steel pipe or the like as a reinforcing member in a column (column body) in the ground constructed by ground improvement to make a pile body (composite pile) has been used.

このような工法として、地盤とセメントミルク等の硬化材を攪拌して掘削孔内を所定深度までソイルセメント化し、ソイルセメントが固化する前に螺旋状羽根(張り出し翼)が設けられた杭を回転させながら埋設することによってソイルセメント複合杭(合成杭)を施工する技術が知られている。また、撹拌棒と土押板を用い、撹拌しつつ土の盛り上がり抑制させる技術、供回り防止翼の上部に取り付けた撹拌翼によって撹拌効果は奏するようにした技術などが提案されている(例えば特許文献1,2参照)。   As such a method, the ground and hardened material such as cement milk are agitated, and the inside of the excavation hole is soil cemented to a predetermined depth, and the pile provided with spiral blades (extended blades) is rotated before the soil cement solidifies. A technique for constructing soil cement composite piles (synthetic piles) by burying them while being buried is known. In addition, a technique that uses a stirring bar and an earth-pressing plate to suppress the rise of soil while stirring, a technique in which a stirring effect is achieved by a stirring blade attached to the upper part of the anti-rotation blade has been proposed (for example, a patent) References 1 and 2).

特許第3069874号公報Japanese Patent No. 3069874 特許第3621971号公報Japanese Patent No. 3621971

しかしながら、上述のごとき従来の施工技術は、掘削時の排土量(地表に排出される余剰掘削土の量)を減少させるという着眼点を伴うものではない。余剰掘削土は産業廃棄物であり、環境への負荷を多くし、処理費用の増加も引き起こしているものであるため、杭の施工に際しては排土量を減少させることも重要なこととなっている。   However, the conventional construction techniques as described above do not involve the point of reducing the amount of soil discharged during excavation (the amount of surplus excavated soil discharged to the ground surface). Excess excavated soil is industrial waste, which increases the burden on the environment and increases treatment costs. Therefore, it is important to reduce the amount of soil discharged when constructing piles. Yes.

そこで、本発明は、杭施工に際して排土量を減少させるようにした掘削ロッドおよび施工方法を提供することを目的とする。   Then, an object of this invention is to provide the excavation rod and construction method which reduced the amount of earth removal at the time of pile construction.

かかる課題を解決するべく本発明者は種々の検討を行った。例えば、従来のごとき攪拌混合冶具を使用した定速施工方法では、対象地盤の硬さや透水性によっては施工時間が多くなってしまい、排土量が増えてしまうことが多い。この排土量は、掘削体積の約15%〜45%程度とバラツキが大きく、確実に予想することは難しいものである。この点に着目すると、従来、より良く攪拌する方法は提案されているものの、それでいて尚かつ排土量を減少させる技術を併せ有する掘削治具や掘削方法は見当たらない。このような観点からさらに検討を重ねた本発明者は、かかる課題の解決に結び付く新たな知見を得るに至った。   In order to solve this problem, the present inventor has made various studies. For example, in a conventional constant speed construction method using a stirring and mixing jig as in the prior art, the construction time increases depending on the hardness and water permeability of the target ground, and the amount of soil is often increased. This amount of soil removal varies widely from about 15% to 45% of the excavation volume, and it is difficult to predict reliably. Focusing on this point, a method for better agitation has heretofore been proposed, but there is still no excavation jig or excavation method having a technique for reducing the amount of soil removal. The present inventor who has further studied from such a viewpoint has come to obtain new knowledge that leads to the solution of such problems.

本発明はかかる知見に基づくもので、掘削対象地盤を掘削する掘削ロッドにおいて、駆動力を受けて回転する主軸と、該主軸の先端部に設けられた掘削ビットと、周方向における傾斜が互いに異なる対向傾斜面を有しており、これら対向傾斜面の間隔が周方向へ漸次減少する少なくとも一対のプロペラ状の羽根からなり、主軸に設けられて該主軸と同軸回転し、余剰掘削土等を外周側へと押し出す力を作用させる撹拌翼と、を備えるというものである。   The present invention is based on such knowledge, and in the excavation rod for excavating the ground to be excavated, the main shaft that rotates by receiving driving force, the excavation bit provided at the tip of the main shaft, and the inclination in the circumferential direction are different from each other. It consists of at least a pair of propeller blades that have opposing inclined surfaces, and the interval between these opposing inclined surfaces gradually decreases in the circumferential direction, and is provided on the main shaft and rotates coaxially with the main shaft to remove excess excavated soil, etc. And a stirring blade for applying a force pushing out to the side.

このような掘削ロッドにおいては、掘削時、主軸を回転させると、該主軸に設けられた撹拌翼が地盤中にて所定方向に回転するこのとき、一対のプロペラ状の羽根(ブレード)の間に入り込んだ余剰掘削土等(地盤中の掘削土のほか、該掘削土とセメントミルクのような硬化材との混合体を含む)は、上側の羽根の対向傾斜面から下向きへの力を受け、尚かつ下側の羽根の対向傾斜面からは上向きへの力を受ける。このように、上下から圧力を加えられた余剰掘削土等は、外周側(径方向外側)へと追いやられ、掘削孔の孔壁側に押し付けられながら練り付けられる。この結果、孔壁に練り付けられた余剰掘削土等の体積分だけ発生残土量が減り、環境に対する負荷が軽減する。また、複合杭の周面摩擦力の増大を見込むことができることから、杭としての性能を向上させることも可能となる。   In such a drilling rod, when the main shaft is rotated during excavation, the stirring blade provided on the main shaft rotates in a predetermined direction in the ground. At this time, between the pair of propeller blades (blades) The surplus excavated soil that has entered (including the excavated soil in the ground as well as a mixture of the excavated soil and a hardener such as cement milk) receives a downward force from the opposed inclined surface of the upper blade, In addition, an upward force is received from the opposed inclined surface of the lower blade. In this way, surplus excavated soil or the like, which is pressurized from above and below, is driven to the outer peripheral side (outside in the radial direction) and kneaded while being pressed against the hole wall side of the excavation hole. As a result, the amount of generated residual soil is reduced by the volume of surplus excavated soil kneaded on the hole wall, and the load on the environment is reduced. Moreover, since the increase in the peripheral frictional force of the composite pile can be expected, the performance as a pile can be improved.

上述のごとき掘削ロッドにおいては、複数の羽根が、周方向において等間隔に配置されていることが好ましい。   In the excavation rod as described above, it is preferable that the plurality of blades are arranged at equal intervals in the circumferential direction.

また、羽根の主軸方向への投影面積が、当該羽根の先端が描く円の面積の1/8〜1/6であることが好ましい。   Moreover, it is preferable that the projected area of the blade in the main axis direction is 1/8 to 1/6 of the area of the circle drawn by the tip of the blade.

さらに、羽根の径が、掘削ビットにより掘削して形成される掘削孔の孔壁の内径よりも小さいことが好ましい。   Furthermore, it is preferable that the diameter of a blade | wing is smaller than the internal diameter of the hole wall of the excavation hole formed by excavating with an excavation bit.

また、対向する羽根のうち上方に位置するものが、下方に位置するものよりも広い形状に形成されていることも好ましい。この場合には、対向する羽根のうち上方に位置するものが、当該羽根の回転方向後方が前方側よりも広い形状に形成されていてもよい。   Moreover, it is also preferable that what is located above among the opposing blade | wings is formed in the shape wider than what is located below. In this case, the blades positioned above among the opposed blades may be formed in a shape in which the rear in the rotation direction of the blades is wider than the front side.

また、羽根の少なくとも1枚は、当該羽根の回転方向後方が急斜面となる傾斜面を有していることも好ましい。   Moreover, it is also preferable that at least one of the blades has an inclined surface having a steep slope at the rear in the rotation direction of the blade.

また、羽根の少なくとも1枚は、当該羽根の径方向外周寄りが緩斜面となる傾斜面を有していることも好ましい。   Moreover, it is also preferable that at least one of the blades has an inclined surface with a gentle slope near the outer periphery in the radial direction of the blade.

さらに、主軸は、当該主軸のうち対向する羽根の間における軸径がその他の部分における軸径よりも大きいものであることが好ましい。   Furthermore, it is preferable that the main shaft has a larger shaft diameter between the opposing blades in the main shaft than the shaft diameter in other portions.

また、本発明にかかる施工方法は、周方向における傾斜が互いに異なる対向傾斜面を有しており、これら対向傾斜面の間隔が周方向へ漸次減少する少なくとも一対のプロペラ状の羽根からなる撹拌翼と、駆動力を受けて回転する主軸と、該主軸の先端部に設けられた掘削ビットと、を備える掘削ロッドを用い、該掘削ロッドによって掘削対象地盤を掘削する際、地盤中における土砂、または該土砂とセメントミルクとの混合体を外周側へと押し出す力を撹拌翼によって作用させる、というものである。   Further, the construction method according to the present invention has opposed inclined surfaces having different inclinations in the circumferential direction, and a stirring blade composed of at least a pair of propeller blades in which the interval between the opposed inclined surfaces gradually decreases in the circumferential direction. And when excavating the ground to be excavated with the excavation rod using the excavation rod provided with a main shaft that rotates by receiving a driving force and a excavation bit provided at the tip of the main shaft, or A force for pushing the mixture of the earth and sand and the cement milk to the outer peripheral side is applied by a stirring blade.

本発明によれば、杭施工に際して排土量を減少させることができる。   According to the present invention, the amount of soil discharged during pile construction can be reduced.

複合杭の施工方法の手順を示すもので、(A)杭打機による杭芯合わせ、(B)セメントミルクと地盤を撹拌混合してのソイルセメントコラム築造、(C)ソイルセメントコラムの築造完了、(D)鋼管杭の建て込み、(E)鋼管杭の杭芯合わせ、鉛直性の確認、(F)鋼管杭のソイルセメントコラム中への回転埋設、(G)鋼管杭の杭頭レベルの確認 の各工程を表す図である。It shows the procedure of construction method of composite piles. (A) Pile core alignment by pile driver, (B) Soil cement column construction by mixing and mixing cement milk and ground, (C) Construction completion of soil cement column , (D) Steel pipe pile erection, (E) Steel pipe pile pile alignment, verticality confirmation, (F) Steel pipe pile rotary embedding in soil cement column, (G) Steel pipe pile pile head level It is a figure showing each process of confirmation. 本発明の一実施形態を示す掘削ロッドの側面図である。It is a side view of the excavation rod which shows one Embodiment of this invention. 掘削ロッドの形態例を示す平面図である。It is a top view which shows the form example of a drilling rod. プロペラ状撹拌翼の形態例を示す、径方向外側から見た羽根の図である。It is the figure of the blade | wing seen from the radial direction outer side which shows the form example of a propeller-shaped stirring blade. プロペラ状撹拌翼の他の形態を示す平面図である。It is a top view which shows the other form of a propeller-shaped stirring blade. 回転方向前方よりも後方ほど急斜面となるように変化する傾斜面を有するプロペラ状撹拌翼(主軸の一方側のみ)の概略図である。It is the schematic of the propeller-shaped stirring blade (only one side of a main shaft) which has an inclined surface which changes so that it may become a steep slope toward the back rather than the rotation direction front. 羽根の径方向外周寄りほど緩斜面となるように捻られた傾斜面を有するプロペラ状撹拌翼(主軸の一方側のみ)を径方向外側から見た図である。It is the figure which looked at the propeller-shaped stirring blade (only one side of a main axis | shaft) which has the inclined surface twisted so that it might become a gentle slope near the radial direction outer periphery of a blade | wing from the radial direction outer side.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.

図1〜図4に本発明にかかる掘削ロッドおよび施工方法の実施形態を示す。以下では、まず掘削ロッド3、杭打機10の構造について説明し、その後、該掘削ロッド3を用いた複合杭の施工方法について説明する。   1 to 4 show an embodiment of a drilling rod and construction method according to the present invention. Below, the structure of the excavation rod 3 and the pile driving machine 10 is demonstrated first, and the construction method of the composite pile using this excavation rod 3 is demonstrated after that.

図2、図3において、符号3はオーガー13により回転駆動され、鋼管杭5が埋設される掘削孔4を掘削するための掘削ロッドである。掘削ロッド3の主軸31は中空構造であり、液体等を通じるための配管を兼ねている。また、掘削ロッド3の主軸31の先端部31aには、この掘削ロッド3が先行掘削する際にセメントミルク(地盤改良材としての硬化材の一例)を噴出するノズル(図示省略)が設けられている。さらに、主軸31の先端部31aよりも基端側には、地盤Gを掘削し、セメントミルクと掘削土とを撹拌・混合する掘削ビット32が設けられている。この掘削ビット32の基端側には、先端側から順に、共回り防止翼33、第1撹拌翼34、第2撹拌翼35、プロペラ状撹拌翼36,37が主軸31に設けられている。   2 and 3, reference numeral 3 denotes a drilling rod that is driven to rotate by the auger 13 and excavates the excavation hole 4 in which the steel pipe pile 5 is embedded. The main shaft 31 of the excavation rod 3 has a hollow structure and also serves as a pipe for passing a liquid or the like. The tip 31a of the main shaft 31 of the excavation rod 3 is provided with a nozzle (not shown) that ejects cement milk (an example of a hardened material as a ground improvement material) when the excavation rod 3 performs prior excavation. Yes. Further, a drilling bit 32 that excavates the ground G and stirs and mixes the cement milk and the excavated soil is provided on the proximal end side of the distal end portion 31a of the main shaft 31. On the base end side of the excavation bit 32, a co-rotation preventing blade 33, a first stirring blade 34, a second stirring blade 35, and propeller-shaped stirring blades 36 and 37 are provided on the main shaft 31 in order from the distal end side.

共回り防止翼33は、掘削孔4の孔径を超える長さに形成されている翼で、両端が地盤3に入り込んだ状態となり、掘削ビット32と共回りしないようになっている。詳しくは図示していないが、共回り防止翼33はパイプ等を介して主軸31に対して相対回転可能な状態で取り付けられている。また、この共回り防止翼33と掘削ビット32は、土をせん断して細かく砕くのに適するようにある程度狭い間隔に配置されており(図2参照)、良質な改良体を形成することに寄与する。   The co-rotation preventing wing 33 is a wing formed to have a length exceeding the hole diameter of the excavation hole 4, and both ends thereof enter the ground 3 so as not to rotate together with the excavation bit 32. Although not shown in detail, the co-rotation preventing wing 33 is attached to be able to rotate relative to the main shaft 31 via a pipe or the like. Further, the co-rotation preventing wing 33 and the excavation bit 32 are arranged at a narrow interval to some extent so as to be suitable for shearing and finely pulverizing the soil (see FIG. 2), which contributes to the formation of a good quality improved body. To do.

第1撹拌翼34、第2攪拌翼35は、掘削ロッド3の主軸31に固定された棒状部材からなる翼で、掘削ロッド3の主軸31とともに回転し、細かく砕かれた掘削土を掘削孔4内で攪拌する(図2参照)。本実施形態では、互いに直交するように配置された棒状部材をそれぞれ第1撹拌翼34、第2攪拌翼35としているが、これら翼の数や形状は特に限定されるものではなく、他の態様とすることもできる。   The first stirring blade 34 and the second stirring blade 35 are blades made of a rod-like member fixed to the main shaft 31 of the excavation rod 3, and rotate together with the main shaft 31 of the excavation rod 3. (See FIG. 2). In this embodiment, the rod-shaped members arranged so as to be orthogonal to each other are the first stirring blade 34 and the second stirring blade 35, respectively, but the number and shape of these blades are not particularly limited, and other modes It can also be.

プロペラ状撹拌翼36,37は、傾斜面36a,37aが対向するように配置された対のプロペラ状の羽根によって構成されている。本実施形態では、180度おきに配置された2枚のプロペラ状の羽根361によって軸方向先端側のプロペラ状撹拌翼36を構成し、同様に180度おきに配置された2枚のプロペラ状の羽根371によって軸方向基端側のプロペラ状撹拌翼37を構成している(図3参照)。   The propeller-shaped stirring blades 36 and 37 are configured by a pair of propeller-shaped blades disposed so that the inclined surfaces 36a and 37a face each other. In this embodiment, two propeller blades 361 arranged at intervals of 180 degrees constitute a propeller-like stirring blade 36 on the axial front end side, and similarly, two propeller-like blades arranged at intervals of 180 degrees are formed. A propeller-like stirring blade 37 on the axial base end side is constituted by the blade 371 (see FIG. 3).

先端側(下側)の羽根361と基端側(上側)の羽根371とは、周方向における傾斜が互いに異なる対向傾斜面36a,37aをそれぞれ有している(図4参照)。より具体的に説明すると、先端側の羽根361は、掘削ロッド3が時計回りに回転した際、余剰掘削土等を押し上げる上りの対向傾斜面36aを有し、基端側の羽根371は、掘削ロッド3が時計回りに回転した際、余剰掘削土等を押し下げる下りの逆傾斜の対向傾斜面37aを有している(図3、図4参照)。先端側の羽根361と基端側の羽根371は、これら対向傾斜面36a,37aの間隔が周方向へ漸次減少するように配置されている(図4参照)。   The tip side (lower side) blade 361 and the base end side (upper side) blade 371 have opposed inclined surfaces 36a and 37a having different inclinations in the circumferential direction, respectively (see FIG. 4). More specifically, the blade 361 on the distal end side has an upward inclined surface 36a that pushes up excess excavated soil when the excavating rod 3 rotates clockwise, and the blade 371 on the proximal end side is excavated. When the rod 3 rotates in the clockwise direction, it has an opposing inclined surface 37a having a downward reverse inclination that pushes down the excess excavated soil or the like (see FIGS. 3 and 4). The blades 361 on the distal end side and the blades 371 on the proximal end side are arranged so that the distance between the opposed inclined surfaces 36a and 37a gradually decreases in the circumferential direction (see FIG. 4).

これら先端側の羽根361と基端側の羽根371において、対向傾斜面36a,37aの間隔は特に限定されるものではなく、対象地盤Gの大きさや性状、当該掘削ロッド3の構造などに応じて適宜設定しうる。ここで、当該対向傾斜面36a,37aの間隔の一例を示せば、10cm〜20cm程度である。   The distance between the opposed inclined surfaces 36a, 37a in the blade 361 on the distal end side and the blade 371 on the proximal end side is not particularly limited, depending on the size and properties of the target ground G, the structure of the excavation rod 3, and the like. It can be set appropriately. Here, if an example of the space | interval of the said opposing inclined surfaces 36a and 37a is shown, it will be about 10 cm-20 cm.

また、先端側の羽根361と基端側の羽根371の大きさ(軸方向への投影面積)も適宜設定しうるものであるが、好適例を示せば、これら羽根361,371の先端が描く円の面積(プロペラ状撹拌翼36,37によって撹拌可能な領域)の1/8〜1/6程度であることが好ましい。羽根361,371の大きさがこの程度であれば、掘削ロッド3の回転時における抵抗が大きくなりすぎない範囲で、余剰掘削土等を側方移動させつつ孔壁4a側に押し出す作用を十分に発現させやすい。   In addition, the size (projection area in the axial direction) of the blades 361 on the distal end side and the blades 371 on the proximal end side can be set as appropriate. If a suitable example is shown, the tips of these blades 361 and 371 are drawn. It is preferable that it is about 1/8 to 1/6 of the area of the circle (the region that can be stirred by the propeller-like stirring blades 36 and 37). If the size of the blades 361 and 371 is about this level, the operation of pushing the surplus excavated soil etc. to the side of the hole wall 4a while moving the surplus excavated soil and the like in a range in which the resistance during rotation of the excavating rod 3 does not become excessively large. Easy to express.

さらに、先端側の羽根361と基端側の羽根371の径(プロペラ径)は、掘削ビットにより掘削して形成される掘削孔4の孔壁径のおよそ80%よりも大きく、尚かつ該孔壁径よりも小さいものであることが好ましい。本実施形態では、これら羽根361,371の径を、孔壁径の90%程度に設定している(図2等参照)。   Furthermore, the diameters (propeller diameters) of the blades 361 on the distal end side and the blades 371 on the proximal end side are larger than about 80% of the hole wall diameter of the drilling hole 4 formed by drilling with the drilling bit. It is preferably smaller than the wall diameter. In the present embodiment, the diameters of the blades 361 and 371 are set to about 90% of the hole wall diameter (see FIG. 2 and the like).

杭打機10は、リーダー12、オーガー13、振れ止め装置14などを有し、地盤Gを掘削し、当該掘削孔4に杭(例えば鋼管杭5)を立設させながら回転させて埋設する機械である(図1参照)。   The pile driving machine 10 has a leader 12, an auger 13, a steady rest device 14, and the like, excavates the ground G, and rotates and embeds a pile (for example, a steel pipe pile 5) while standing in the excavation hole 4. (See FIG. 1).

オーガー(杭回転装置)13は、鉛直方向に立設するリーダー12に沿って杭打時に移動可能に設けられており、当該リーダー12の長手方向に沿って昇降する(図1参照)。オーガー13には、鋼管杭5が直接またはヤットコ(図示省略)を介して連結されており、該オーガー13が回転駆動することによって当該鋼管杭5も回転させ、地盤Gに貫入させる。本実施形態では、少なくとも先端に貫入用の螺旋状羽根5bが設けられた鋼管杭5を用いており、このように鋼管杭5を回転させることにより、螺旋状羽根5bが生じさせる地中への推進力を利用して当該鋼管杭5を掘削孔4内に貫入させる。鋼管杭10が地盤Gに貫入する際、オーガー3もリーダー2に沿って降下する。   The auger (pile rotating device) 13 is provided so as to be movable along the leader 12 standing upright in the vertical direction, and moves up and down along the longitudinal direction of the leader 12 (see FIG. 1). The steel pipe pile 5 is connected to the auger 13 directly or via a yatco (not shown), and the steel pipe pile 5 is also rotated and penetrated into the ground G when the auger 13 is driven to rotate. In this embodiment, the steel pipe pile 5 in which the spiral blade 5b for penetration is provided at least at the tip is used. By rotating the steel pipe pile 5 in this way, the steel blade pile 5b is generated into the ground. The steel pipe pile 5 is penetrated into the excavation hole 4 using a propulsive force. When the steel pipe pile 10 penetrates the ground G, the auger 3 also descends along the leader 2.

続いて、上述の掘削ロッド3を用いて地盤Gを掘削し、掘削孔4に鋼管杭5を埋設するまでの一連の動作について順に説明する(図1等参照)。   Subsequently, a series of operations until the ground G is excavated by using the excavation rod 3 and the steel pipe pile 5 is buried in the excavation hole 4 will be described in order (see FIG. 1 and the like).

まず、掘削ロッド3を回転させながら掘進させて地盤Gを掘削する(図1(A)、(B)参照)。掘削の際は、例えば地上に設置されたプラント(図示省略)等から掘削ロッド3の内部に設けられた配管にセメントミルクを供給し、その配管の先端に位置するノズルから吐出させる。吐出されたセメントミルクは、掘削ビット32により撹拌され、地盤Gの余剰掘削土と混合されてスラリー化し、ソイルセメントコラム40を築造する。その後、掘削孔4から掘削ロッド3を引き抜く(図1(C)参照)。   First, the ground G is excavated by rotating the excavating rod 3 (see FIGS. 1A and 1B). When excavating, for example, cement milk is supplied to a pipe provided inside the excavating rod 3 from a plant (not shown) or the like installed on the ground, and discharged from a nozzle located at the tip of the pipe. The discharged cement milk is agitated by the excavation bit 32 and mixed with the surplus excavation soil of the ground G to form a slurry, and the soil cement column 40 is constructed. Thereafter, the excavation rod 3 is pulled out from the excavation hole 4 (see FIG. 1C).

続いて、掘削孔4内に鋼管杭5を建て込む。鋼管杭5を建て込むには、まず杭打機10により鋼管杭5の基端(杭頭)を吊り上げ(図1(D)参照)、鋼管杭5の杭芯合わせをするとともに鉛直性を確認する(図1(E)参照)。その後、鋼管杭5を回転させてソイルセメントコラム40中に埋設し(図1(F)参照)、埋設したら鋼管杭5の杭頭レベル(杭頭の鉛直方向位置)を確認する(図1(G)参照)。本実施形態では、当該鋼管杭5のソイルセメントとの付着力を増強させる螺旋状羽根5aをその周囲に有する鋼管杭5を回転させながら掘削孔4内のソイルセメントコラム40中に埋設するようにしている。以上により、地盤改良によって築造された地盤G中のソイルセメントコラム40に補強部材として鋼管杭5を埋設した複合杭(ソイルセメント鋼管複合杭)1の施工が完了する。   Subsequently, the steel pipe pile 5 is built in the excavation hole 4. In order to build the steel pipe pile 5, first the base end (pile head) of the steel pipe pile 5 is lifted by the pile driving machine 10 (see FIG. 1 (D)), and the vertical alignment of the steel pipe pile 5 is confirmed. (See FIG. 1E). Thereafter, the steel pipe pile 5 is rotated and embedded in the soil cement column 40 (see FIG. 1 (F)), and once embedded, the pile head level (vertical position of the pile head) of the steel pipe pile 5 is confirmed (FIG. 1 ( G)). In the present embodiment, the steel pipe pile 5 having a helical blade 5a that enhances the adhesion of the steel pipe pile 5 to the soil cement is embedded in the soil cement column 40 in the excavation hole 4 while rotating the steel pipe pile 5 around it. ing. Thus, the construction of the composite pile (soil cement steel pipe composite pile) 1 in which the steel pipe pile 5 is embedded as a reinforcing member in the soil cement column 40 in the ground G constructed by the ground improvement is completed.

上述のごとき掘削ロッド3を用いて施工する本実施形態によれば、以下のごとき作用効果を奏することができる。すなわち、掘削ロッド3によって地盤Gを掘削する際、主軸31に設けたプロペラ状撹拌翼36,37を用い、先端側(下側)の羽根361によって余剰掘削土等(余剰掘削土のほか、該余剰掘削土等と硬化材との混合体をも含む)を上向きかつ上斜め孔壁4a側へ移動させ、尚かつ基端側(上側)の羽根371によって余剰掘削土等を下向きかつ下斜め孔壁4a側へ移動させる作用をもたらすことができる(図2中の斜めの矢印、図4中の矢印参照)。これら先端側の羽根361と基端側の羽根371は、対向傾斜面36a,37aの間隔を周方向へ漸次減少させるものであるため、これらプロペラ状撹拌翼36,37の間における余剰掘削土等は上下から圧力を受け、逃げ場を失い、外周側へと押し出される。したがって本実施形態の掘削ロッド3によれば、いわば平面的かつ立体的に余剰掘削土等を攪拌し、これと同時に、これら余剰掘削土等を孔壁4a側へと押し付けながら練り付けることができる(図2中の横向きの矢印参照)。   According to this embodiment constructed using the excavation rod 3 as described above, the following operational effects can be achieved. That is, when excavating the ground G with the excavation rod 3, the propeller-shaped stirring blades 36 and 37 provided on the main shaft 31 are used, and the surplus excavation soil or the like (in addition to the surplus excavation soil, the (Including a mixture of surplus excavated soil and hardened material) upward and toward the upper slanted hole wall 4a, and the surplus excavated soil or the like is moved downward and slanted by the blade 371 on the base end side (upper side). The action of moving to the wall 4a side can be brought about (see the oblique arrow in FIG. 2 and the arrow in FIG. 4). Since the blades 361 on the front end side and the blades 371 on the base end side gradually decrease the distance between the opposed inclined surfaces 36a, 37a in the circumferential direction, excess excavated soil between the propeller-shaped stirring blades 36, 37, etc. Receives pressure from above and below, loses escape and is pushed to the outer periphery. Therefore, according to the excavation rod 3 of the present embodiment, the surplus excavation soil and the like can be stirred in a flat and three-dimensional manner, and at the same time, the surplus excavation soil and the like can be kneaded while being pressed toward the hole wall 4a. (See horizontal arrow in FIG. 2).

この結果、本実施形態の掘削ロッド3によれば、孔壁4aに練り付けられた余剰掘削土等の体積分だけ発生残土量が減り、これによって環境に対する負荷を軽減することができる。   As a result, according to the excavation rod 3 of the present embodiment, the amount of generated residual soil is reduced by the volume of surplus excavated soil and the like kneaded on the hole wall 4a, thereby reducing the burden on the environment.

また、プロペラ状撹拌翼36,37を用いることは、余剰掘削土等の攪拌混合の効率を改善することにもつながる。これによれば、地盤改良体のばらつきを抑制し、より均一化かつ高品質化した地盤改良体を実現することが可能となる。しかも、複合杭1の周面摩擦力の増大を見込むことができることから、当該複合杭1の強度と品質を向上させることができる。   In addition, the use of the propeller-shaped stirring blades 36 and 37 also leads to an improvement in the efficiency of stirring and mixing such as surplus excavated soil. According to this, it becomes possible to realize a ground improvement body that suppresses variations in the ground improvement body and is more uniform and of higher quality. And since the increase in the peripheral frictional force of the composite pile 1 can be anticipated, the intensity | strength and quality of the said composite pile 1 can be improved.

ここで、プロペラ状撹拌翼36,37による、余剰掘削土等を孔壁4a側への押し付け作用、練り付け作用をより大きく発現させる観点からすれば、主軸31のうち、対向する羽根361,371の間における部分を、その他の部分における部分よりも大きな軸径とすることも好ましい(図2中に二点鎖線で示す符号31b参照)。こうした場合、プロペラ状撹拌翼36,37の間の軸部側スペースを強制的になくすことにより余剰掘削土等に対する外周側への押し付け作用、練り付け作用を大きくすることが可能となる。   Here, from the viewpoint of expressing excessively excavated soil or the like by the propeller-shaped stirring blades 36 and 37 toward the hole wall 4a and a kneading function, the blades 361 and 371 of the main shaft 31 which are opposed to each other. It is also preferable to set the portion in the middle to a larger shaft diameter than the portions in the other portions (see reference numeral 31b indicated by a two-dot chain line in FIG. 2). In such a case, by forcibly eliminating the shaft side space between the propeller-like stirring blades 36 and 37, it is possible to increase the pressing action and kneading action on the outer excavated soil and the like on the outer peripheral side.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば上述した実施形態では、プロペラ状撹拌翼36,37として、上下に配置される先端側の羽根361と基端側の羽根371が平面視において重なり合うように配置されたものを示したが(図3参照)、この他、先端側の羽根361を先行させ、あるいは後退させるようにして、これら対向する先端側の羽根361と基端側の羽根371を周方向へずらした配置とすることもできる。一例として、粘性が強く、流動性が低い掘削土を掘削対象とする場合、このように先端側の羽根361と基端側の羽根371とを周方向へずらせば、これら上下の羽根361,371が2枚同時に掘削土に当たらず時間差で交互に当たるようになることから、抵抗を低減させることが可能となる。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the propeller-like stirring blades 36 and 37 are illustrated such that the top blade 361 and the base blade 371 arranged vertically are overlapped in a plan view (see FIG. In addition, the front-side blades 361 and the proximal-side blades 371 may be shifted in the circumferential direction by leading or retracting the front-side blades 361. . As an example, when excavating soil having high viscosity and low fluidity, if the tip blade 361 and the base blade 371 are shifted in the circumferential direction in this manner, the upper and lower blades 361 and 371 are arranged. Since the two do not hit the excavated soil at the same time but alternately hit with a time difference, the resistance can be reduced.

また、上述した実施形態では、上下に配置される先端側の羽根361と基端側の羽根371とが水平面を挟んで対称的に配置された、面対称の構造であるプロペラ状撹拌翼36,37を例示したが(図4参照)、これも好適例にすぎず、非対称の構造であってもよい。一例を示せば、対向する羽根361,371のうち基端側(上側)の羽根371が、当該羽根371の回転方向後方が前方側よりも広げられた形状に形成されていてもよい(図4中の2点鎖線および図5参照)。通常、余剰掘削土に対するセメントの含有率は70〜80%程度であるところ、当該セメント含有率が100%程度とされた混合体は流動性が高くなる。このように流動性が高い混合体(余剰掘削土等)を対象とする場合において、羽根361を何らかの形で大型化することは、撹拌作用と孔壁側への押し付け作用をさらに効果的なものにしうる点で好適である。また、このように基端側(上側)の羽根371のみを大型化することは、地盤Gから掘削ロッド3を引き上げる際の邪魔になりにくい(比較的、抵抗が生じにくい)という点において好ましい。   Further, in the above-described embodiment, the propeller-shaped stirring blades 36 having a plane-symmetric structure in which the tip-side blades 361 and the base-side blades 371 arranged vertically are arranged symmetrically across the horizontal plane. Although 37 is illustrated (see FIG. 4), this is also only a preferred example and may be an asymmetric structure. If an example is shown, the blade | wing 371 of the base end side (upper side) among the blade | wings 361 and 371 which opposes may be formed in the shape where the rotation direction back of the said blade | wing 371 was expanded rather than the front side (FIG. 4). Middle two-dot chain line and FIG. 5). Usually, the cement content with respect to the surplus excavated soil is about 70 to 80%, and the mixture having the cement content of about 100% has high fluidity. In the case of targeting a mixture with high fluidity (excess excavated soil, etc.), increasing the size of the blade 361 in some form is more effective for the stirring action and the pressing action on the hole wall side. It is suitable in that it can be made. In addition, increasing the size of only the base end (upper) blade 371 in this way is preferable in that it does not obstruct the lifting of the excavation rod 3 from the ground G (relatively less resistance is generated).

また、先端側の羽根361と基端側の羽根371とを非対称とする構造例をさらに示せば、特に図示はしていないが、先端側の羽根361と基端側の羽根371とで、傾斜面36a,37aに緩急の差を設けて傾斜の度合いを異ならせてもよい。   Further, if a structural example in which the tip-side blade 361 and the base-side blade 371 are asymmetric is further shown, the tip-side blade 361 and the base-side blade 371 are inclined, although not particularly illustrated. The degree of inclination may be changed by providing a difference between the surfaces 36a and 37a.

また、上述した実施形態では、先端側の羽根361と基端側の羽根371の対向する傾斜面36a,37aについて具体的形態は特に言及しなかったが、これら傾斜面36a,37aは、対象地盤Gの大きさや性状、当該掘削ロッド3の構造などに応じて適宜設定しうる。具体的には、羽根361(371)の傾斜角(翼角、プロペラピッチ)を可変としてもよいし、各羽根における傾斜角を互いに異ならせてもよい。また、傾斜面36a,37aは角度が一様である平滑面であってもよいし、自由な曲率をもった曲面であってもよい。曲率をもった曲面の例を挙げれば、羽根361(371)は、当該羽根361(371)の回転方向前方よりも後方ほど急斜面となるように変化する傾斜面36a(37a)を有していてもよい(図6参照)。あるいは、羽根361(371)の径方向外周寄りほど緩斜面となるように捻られた傾斜面36a(37a)であってもよい(図7参照)。羽根361(371)の径方向外周寄りほど緩斜面となるように変化する傾斜面36a(37a)であれば、主軸31側では余剰掘削土等に対して上下から圧力が作用し、外周側ほどその圧力は小さくなる。このため、内周側(軸寄り)の余剰掘削土等が内周側から外周側へと大きく移動しようとする働きを阻害することなくより有効に作用させることが可能となる。   In the above-described embodiment, the specific form of the inclined surfaces 36a and 37a facing the blades 361 on the distal end side and the blades 371 on the proximal end side is not particularly mentioned, but these inclined surfaces 36a and 37a It can be set as appropriate according to the size and properties of G, the structure of the excavation rod 3, and the like. Specifically, the inclination angle (blade angle, propeller pitch) of the blades 361 (371) may be variable, or the inclination angles of the blades may be different from each other. Further, the inclined surfaces 36a and 37a may be smooth surfaces having a uniform angle or curved surfaces having a free curvature. If the example of the curved surface with a curvature is given, the blade | wing 361 (371) has the inclined surface 36a (37a) which changes so that it may become a steep slope back from the rotation direction front of the said blade | wing 361 (371). It is also possible (see FIG. 6). Or the inclined surface 36a (37a) twisted so that it may become a gentle slope near the radial direction outer periphery of the blade | wing 361 (371) may be sufficient (refer FIG. 7). If the inclined surface 36a (37a) changes so as to become a gentle slope toward the radially outer periphery of the blade 361 (371), pressure is applied to the surplus excavated soil or the like on the main shaft 31 side, and the outer peripheral side is closer to the outer peripheral side. The pressure is reduced. For this reason, it becomes possible to make it act more effectively, without inhibiting the operation which the inner peripheral side (axis side) surplus excavation soil etc. try to move largely from the inner periphery side to the outer periphery side.

また、上述した実施形態では、上下に配置される先端側の羽根361と基端側の羽根371とからなる一対のプロペラ状撹拌翼36,37を例示したが(図2参照)、もちろん、このような羽根361,371が軸方向に沿って複数対配置された多段式の掘削ロッド3とすることもできる。   In the above-described embodiment, the pair of propeller-shaped stirring blades 36 and 37 including the blades 361 on the front end side and the blades 371 on the base end side arranged on the top and bottom are illustrated (see FIG. 2). It is also possible to provide a multistage excavation rod 3 in which a plurality of pairs of blades 361 and 371 are arranged along the axial direction.

同様に、上述した実施形態では、180度おきに配置された2枚のプロペラ状の羽根361(371)によって軸方向先端側のプロペラ状撹拌翼36(37)を構成した例を示したが(図3参照)、もちろん、同一平面に3枚以上の羽根を配置することもできる。この場合、これらの羽根は周方向において等間隔に配置されていることが好ましい。また、プロペラ状撹拌翼が多段式である場合においては、異なるプロペラ状撹拌翼(別の段のプロペラ状撹拌翼)の羽根が重なり合わないように(主軸方向へ投影した場合に羽根どうしの重なりが無いか少なくなるように)構成されていることが好ましい。この場合には、多少の施工抵抗の増加はあるとしても、より大きな押し付け効果をもって余剰掘削土等を孔壁4a側へと練り付けることが可能となる。   Similarly, in the above-described embodiment, an example is shown in which the propeller-shaped stirring blade 36 (37) on the tip end side in the axial direction is configured by two propeller-shaped blades 361 (371) arranged at intervals of 180 degrees ( Of course, three or more blades can of course be arranged on the same plane. In this case, it is preferable that these blades are arranged at equal intervals in the circumferential direction. In addition, when the propeller-like stirring blades are multistage, the blades of different propeller-like stirring blades (different-stage propeller-like stirring blades) should not overlap (when projected in the main axis direction, the blades overlap) It is preferable that it is configured so that there is no or less). In this case, even if there is a slight increase in construction resistance, surplus excavated soil or the like can be kneaded to the hole wall 4a side with a greater pressing effect.

また、プロペラ状撹拌翼36,37を構成する羽根361,371は、厚さの一様な板状の羽根であってもよいし、断面三角形のような厚さが変化する羽根であってもよい。要は、余剰掘削土等を側方に移動させつつ孔壁4a側に押し出す作用を発現させる傾斜面36a,37aを備えているものであれば、プロペラ状撹拌翼36,37の具体的な形態は特に限定されることがない。したがって、円板を分割したものを傾けた状態で主軸に取り付けた構成の羽根であってもプロペラ状撹拌翼を構成することが可能である。   Further, the blades 361 and 371 constituting the propeller-like stirring blades 36 and 37 may be plate-shaped blades having a uniform thickness, or may be blades having a triangular cross-section with varying thickness. Good. The point is that the specific shape of the propeller-like stirring blades 36, 37 is provided as long as it has the inclined surfaces 36a, 37a that cause the surplus excavated soil or the like to move sideways and push out to the hole wall 4a side. Is not particularly limited. Therefore, it is possible to constitute a propeller-like stirring blade even with a blade having a configuration in which a disc is divided and attached to the main shaft in an inclined state.

本発明は、複合杭を施工する等の際に地盤を掘削する場合に適用して好適なものである。   The present invention is suitable for application when excavating the ground when constructing composite piles or the like.

1…複合杭
3…掘削ロッド
4…掘削孔
4a…孔壁
31…主軸
31a…先端部
32…掘削ビット
36,37…プロペラ状撹拌翼(撹拌翼)
36a,37a…傾斜面
361,371…プロペラ状の羽根
G…地盤
DESCRIPTION OF SYMBOLS 1 ... Composite pile 3 ... Drilling rod 4 ... Drilling hole 4a ... Hole wall 31 ... Main shaft 31a ... Tip part 32 ... Drilling bit 36, 37 ... Propeller-shaped stirring blade (stirring blade)
36a, 37a ... inclined surfaces 361, 371 ... propeller blade G ... ground

Claims (10)

掘削対象地盤を掘削する掘削ロッドにおいて、
駆動力を受けて回転する主軸と、
該主軸の先端部に設けられた掘削ビットと、
周方向における傾斜が互いに異なる対向傾斜面を有しており、これら対向傾斜面の間隔が周方向へ漸次減少する少なくとも一対のプロペラ状の羽根からなり、前記主軸に設けられて該主軸と同軸回転し、余剰掘削土等を外周側へと押し出す力を作用させる撹拌翼と、
を備える、掘削ロッド。
In the excavation rod that excavates the ground to be excavated,
A spindle that rotates upon receiving a driving force;
A drill bit provided at the tip of the spindle;
It has at least one pair of propeller-shaped blades having opposed inclined surfaces with different inclinations in the circumferential direction, and the interval between these opposed inclined surfaces gradually decreases in the circumferential direction, and is provided on the main shaft and rotates coaxially with the main shaft And a stirring blade for applying a force to push the surplus excavated soil etc. to the outer peripheral side,
A drilling rod comprising.
複数の前記羽根が、周方向において等間隔に配置されている、請求項1に記載の掘削ロッド。   The excavation rod according to claim 1, wherein the plurality of blades are arranged at equal intervals in the circumferential direction. 前記羽根の前記主軸方向への投影面積が、当該羽根の先端が描く円の面積の1/8〜1/6である、請求項1に記載の掘削ロッド。   The drilling rod according to claim 1, wherein a projected area of the blade in the principal axis direction is 1/8 to 1/6 of a circle drawn by a tip of the blade. 前記羽根の径が、前記掘削ビットにより掘削して形成される掘削孔の孔壁の内径よりも小さい、請求項1に記載の掘削ロッド。   The drilling rod according to claim 1, wherein the diameter of the blade is smaller than the inner diameter of a hole wall of a drilling hole formed by drilling with the drilling bit. 前記対向する羽根のうち上方に位置するものが、下方に位置するものよりも広い形状に形成されている、請求項1に記載の掘削ロッド。   The excavation rod according to claim 1, wherein among the opposed blades, an upper one is formed in a shape wider than that of a lower one. 前記対向する羽根のうち上方に位置するものが、当該羽根の回転方向後方が前方側よりも広い形状に形成されている、請求項5に記載の掘削ロッド。   The excavation rod according to claim 5, wherein the blade located above among the opposed blades is formed in a shape in which the rear in the rotation direction of the blade is wider than the front side. 前記羽根の少なくとも1枚は、当該羽根の回転方向後方が急斜面となる傾斜面を有している、請求項1に記載の掘削ロッド。   The excavation rod according to claim 1, wherein at least one of the blades has an inclined surface whose rear surface in the rotation direction of the blade is a steep slope. 前記羽根の少なくとも1枚は、当該羽根の径方向外周寄りが緩斜面となる傾斜面を有している、請求項1に記載の掘削ロッド。   The excavation rod according to claim 1, wherein at least one of the blades has an inclined surface having a gentle slope near a radially outer periphery of the blade. 前記主軸は、当該主軸のうち前記対向する羽根の間における軸径がその他の部分における軸径よりも大きいものである、請求項1に記載の掘削ロッド。   The excavation rod according to claim 1, wherein the main shaft has a larger shaft diameter between the opposing blades of the main shaft than a shaft diameter in other portions. 周方向における傾斜が互いに異なる対向傾斜面を有しており、これら対向傾斜面の間隔が周方向へ漸次減少する少なくとも一対のプロペラ状の羽根からなる撹拌翼と、駆動力を受けて回転する主軸と、該主軸の先端部に設けられた掘削ビットと、を備える掘削ロッドを用い、
該掘削ロッドによって掘削対象地盤を掘削する際、地盤中における土砂、または該土砂とセメントミルクとの混合体を外周側へと押し出す力を前記撹拌翼によって作用させる、施工方法。
Stirring blades composed of at least a pair of propeller blades having opposed inclined surfaces with different inclinations in the circumferential direction, and the interval between the opposed inclined surfaces gradually decreases in the circumferential direction, and a main shaft that rotates by receiving a driving force And a drilling rod provided with a drilling bit provided at the tip of the main shaft,
When excavating the ground to be excavated with the excavation rod, a construction method in which the stirring blades act to push the earth and sand in the ground or a mixture of the earth and sand and cement milk to the outer peripheral side.
JP2011284042A 2011-12-26 2011-12-26 Excavation rod and construction method Pending JP2013133630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284042A JP2013133630A (en) 2011-12-26 2011-12-26 Excavation rod and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284042A JP2013133630A (en) 2011-12-26 2011-12-26 Excavation rod and construction method

Publications (1)

Publication Number Publication Date
JP2013133630A true JP2013133630A (en) 2013-07-08

Family

ID=48910519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284042A Pending JP2013133630A (en) 2011-12-26 2011-12-26 Excavation rod and construction method

Country Status (1)

Country Link
JP (1) JP2013133630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031735A (en) * 2015-08-05 2017-02-09 株式会社エステック Ground hardening layer establishment method and device thereof
JP2021025200A (en) * 2019-07-31 2021-02-22 旭化成建材株式会社 Drilling device and column building method using drilling device
CN117751725A (en) * 2023-12-08 2024-03-26 中交建筑集团工程服务有限公司 Desert green transplanting device that plants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031735A (en) * 2015-08-05 2017-02-09 株式会社エステック Ground hardening layer establishment method and device thereof
JP2021025200A (en) * 2019-07-31 2021-02-22 旭化成建材株式会社 Drilling device and column building method using drilling device
CN117751725A (en) * 2023-12-08 2024-03-26 中交建筑集团工程服务有限公司 Desert green transplanting device that plants

Similar Documents

Publication Publication Date Title
JP5658988B2 (en) Soil cement steel pipe composite pile and its construction method
JPH0531607B2 (en)
JP2008175039A (en) Method of driving both steel pipe pile and soil cement pile
JP4626655B2 (en) Construction method of foundation pile
JP5774618B2 (en) Foundation pile and foundation pile construction method
CN104603366A (en) Method for constructing knotted cast-in-place concrete-based pile, and excavation blade-equipped steel pipe
JP2013133630A (en) Excavation rod and construction method
JP2014109097A (en) Foot protection method for rotary penetration pile
JP5808153B2 (en) How to construct a retaining wall
CN104153381A (en) Waterproof curtain pile, waterproof curtain and construction method of waterproof curtain pile
JP6555849B2 (en) Ground improvement device
JP2013057194A (en) Rotary penetration steel pipe pile and construction method of foundation pile having foot protection
JP2014066010A (en) Method of ground improvement around pile head
JP5875849B2 (en) Injection stirring ground improvement method
JP4853132B2 (en) Construction method of foundation pile
JP2014177827A (en) Core material and soil cement continuous wall construction method using the same
JP4615841B2 (en) Synthetic pile construction method and synthetic pile
JP2004308411A (en) Existing concrete pile foundation having large diameter and method for burying existing pile
JP5499335B2 (en) Steel pipe pile and support structure and construction method using the steel pipe pile
CN206035515U (en) Tunnel rock stratum slip casting anchor pipe
CN109162283A (en) A kind of reinforced cement-soil pile anchor support and its construction equipment and construction method
JP7486461B2 (en) Ground improvement method
CN108978649A (en) High pressure jet grouting foundation construction technique
JP2003213679A (en) Construction method of pile hole, excavating rod and excavating head
JP4929378B2 (en) Composite pile and composite pile construction method