JP5658988B2 - Soil cement steel pipe composite pile and its construction method - Google Patents

Soil cement steel pipe composite pile and its construction method Download PDF

Info

Publication number
JP5658988B2
JP5658988B2 JP2010278072A JP2010278072A JP5658988B2 JP 5658988 B2 JP5658988 B2 JP 5658988B2 JP 2010278072 A JP2010278072 A JP 2010278072A JP 2010278072 A JP2010278072 A JP 2010278072A JP 5658988 B2 JP5658988 B2 JP 5658988B2
Authority
JP
Japan
Prior art keywords
steel pipe
pile
soil cement
ground
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010278072A
Other languages
Japanese (ja)
Other versions
JP2012127082A (en
Inventor
義明 塚田
義明 塚田
前嶋 匡
匡 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2010278072A priority Critical patent/JP5658988B2/en
Publication of JP2012127082A publication Critical patent/JP2012127082A/en
Application granted granted Critical
Publication of JP5658988B2 publication Critical patent/JP5658988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ソイルセメント鋼管複合杭の施工方法およびその施工方法に関する。さらに詳述すると、本発明は、掘削孔に築造したソイルセメントコラムに杭を埋設することによって複合杭を施工する技術の改良に関する。   The present invention relates to a construction method of a soil cement steel pipe composite pile and a construction method thereof. More specifically, the present invention relates to an improvement in a technique for constructing a composite pile by burying the pile in a soil cement column built in a drilling hole.

従来、地盤改良によって築造された地盤中のコラム(柱体)に補強部材として鋼管等を埋設し、杭体(複合杭)とする工法が利用されている。この工法に関しては、例えば地盤とセメントミルク等の固化材を攪拌して掘削孔内を所定深度までソイルセメント化し、ソイルセメントが固化する前に螺旋状羽根(張り出し翼)が設けられた杭を回転させながら埋設することによってソイルセメント複合杭(合成杭)を施工する技術などが提案されている(例えば特許文献1,2参照)。   Conventionally, a method of embedding a steel pipe or the like as a reinforcing member in a column (column body) in the ground constructed by ground improvement to make a pile body (composite pile) has been used. For this method, for example, the ground and solidified material such as cement milk are agitated to form soil cement to a predetermined depth in the excavation hole, and before the soil cement solidifies, a pile with spiral blades (extended blades) is rotated. Techniques for constructing soil cement composite piles (synthetic piles) by burying them while making them have been proposed (see, for example, Patent Documents 1 and 2).

特開2001−317050号公報JP 2001-317050 A 特開2001−140251号公報JP 2001-140251 A

しかしながら、上述のごとき従来工法においては、地盤とセメントミルク等の固化材を攪拌するため、掘削地盤の性状によっては掘進性が著しく低下することから、大きい支持力を発現させるために必要な良質な支持層への根入れを十分に行なうことができず、杭体の支持性能を十分に発現させることができるとは限らない。   However, in the conventional method as described above, since the ground and solidified material such as cement milk are agitated, depending on the properties of the excavated ground, the excavation performance is significantly lowered, so that the high quality necessary for developing a large bearing capacity is required. The support layer cannot be sufficiently embedded, and the support performance of the pile body cannot be fully expressed.

そこで、本発明は、掘削地盤における杭体の支持性能を向上させることのできるソイルセメント鋼管複合杭およびその施工方法を提供することを目的とする。   Then, an object of this invention is to provide the soil cement steel pipe composite pile which can improve the support performance of the pile body in excavation ground, and its construction method.

かかる課題を解決するべく本発明者は種々の検討を行った。従来のソイルセメント工法において、周辺地盤が比較的固い地層(堅固な地層)を掘削して地盤改良することができれば、杭体の支持性能の向上が見込まれる。しかし、従来の地盤改良は、共回り防止翼がついた施工冶具で掘削し撹拌して行うというものが一般的であり、周辺地盤が固い地層では十分な攪拌ができないおそれがある。   In order to solve this problem, the present inventor has made various studies. In the conventional soil cement method, if the ground can be improved by excavating a relatively hard layer (solid layer), the support performance of the pile body is expected to be improved. However, conventional ground improvement is generally performed by excavating and stirring with a construction jig having a co-rotation prevention blade, and there is a possibility that sufficient stirring cannot be performed in a hard ground.

また、従来、地盤掘削時における抵抗は、掘削冶具の形状的な特徴(例えば、地盤とセメントミルク等の固化材を十分攪拌するために必要な攪拌翼が複数個取り付けてあったりするという特徴)からして一般に大きいものである。このため、従来工法によって比較的固い地層を掘削するとしても、回転トルクと地盤の強度との相関が低くバラツキが大きくなるため、施工管理指標として取り扱うことができないという問題がある。つまり、地盤の固さがある程度を超えると層の判別が困難となり、先端支持層の管理指標としては活用できなくなってしまうので、固い地盤に到達する以前に掘削を止めてしまうことや、逆に所定の強度を発揮している地盤に到達していてもそのことが把握できずにそのまま掘削し続けてしまう場合がある。   Conventionally, the resistance at the time of excavation is a shape characteristic of the excavation jig (for example, a characteristic that a plurality of stirring blades necessary for sufficiently stirring the solid and solidified material such as cement milk are attached) Therefore, it is generally large. For this reason, even if a relatively hard formation is excavated by the conventional construction method, there is a problem that the correlation between the rotational torque and the strength of the ground is low and the variation is large, so that it cannot be handled as a construction management index. In other words, if the hardness of the ground exceeds a certain level, it becomes difficult to distinguish the layer and it can not be used as a management index for the tip support layer, so it is possible to stop drilling before reaching the hard ground, or conversely Even if the ground reaching the predetermined strength is reached, it may not be grasped and excavation may continue.

さらに、堅固な地層に羽根付き鋼管杭を埋設する際には、鋼管杭の回転数と貫入速度(埋設速度)の関係が変化することがあり、しかも、回転が過剰になると、羽根によりソイルセメントコラムが乱され、周辺地盤を巻き込む、空間ができるなど、鉛直性、摩擦抵抗の面で影響がでやすいという問題もある。   Furthermore, when embedding bladed steel pipe piles in a solid formation, the relationship between the rotation speed of steel pipe piles and the penetration speed (burial speed) may change. There is also a problem that the column is disturbed, the surrounding ground is involved, and a space is created.

これらの点をふまえつつ、従来工法の問題に着目してさらに検討を重ねた本発明者は、かかる課題の解決に結び付く新たな知見を得るに至った。本発明はかかる知見に基づくもので、複合杭の施工対象地盤を掘削ロッドで掘削し、該掘削孔にセメントミルクを注入してソイルセメントコラムを築造し、掘削孔から掘削ロッドを引き抜き、先端地盤の抵抗力を増大させる受圧部を少なくとも杭先端に有し、杭軸部には周囲との摩擦抵抗力を増大させるための付着力増強部を有する鋼管杭をソイルセメントコラム中に回転させながら埋設し、杭先端の受圧部をソイルセメントコラムの底部から突き抜けさせ、掘削孔が掘削された地層よりも深く堅固な地層に少なくとも受圧部を埋設させる。   Based on these points, the present inventor, who has made further studies focusing on the problems of conventional construction methods, has obtained new knowledge that leads to the solution of such problems. The present invention is based on such knowledge, excavating the ground to be constructed of the composite pile with a drilling rod, injecting cement milk into the drilling hole to build a soil cement column, pulling the drilling rod from the drilling hole, A steel pipe pile with a pressure receiving part that increases the resistance force of the pile at least at the tip of the pile and an adhesion enhancing part for increasing the frictional resistance force with the surroundings is buried in the soil cement column. Then, the pressure receiving portion at the tip of the pile is penetrated from the bottom of the soil cement column, and at least the pressure receiving portion is embedded in a deeper and more solid formation than the formation in which the excavation hole is excavated.

かかる施工方法においては、掘削対象である地層よりも深く堅固な地層を、受圧部を介して鋼管杭の先端を支持する支持層として機能させることができる。また、従来工法と同様、ソイルセメントと鋼管杭とを一体化させて大きな摩擦力を実現することができる。したがって、掘削地盤における杭体(ソイルセメント鋼管複合杭)の支持性能を向上させることができる。   In such a construction method, a deeper and harder stratum than the stratum to be excavated can function as a support layer that supports the tip of the steel pipe pile via the pressure receiving portion. In addition, as in the conventional construction method, the soil cement and the steel pipe pile can be integrated to achieve a large frictional force. Therefore, the support performance of the pile body (soil cement steel pipe composite pile) in the excavated ground can be improved.

しかも、この施工方法においては堅固な地層を地盤改良することはしない。このため、堅固な地層においては十分な撹拌ができないといった問題と無縁であるし、このように堅固な地層を改良しないで済むので施工がしやすく効率的である。   Moreover, this construction method does not improve the ground of a solid stratum. For this reason, it is unrelated to the problem that sufficient agitation cannot be performed in a solid formation, and since it is not necessary to improve the solid formation in this way, construction is easy and efficient.

また、この施工方法においては、堅固な地層にソイルセメントコラムの施工を行わず、したがって堅固な地層に形成された掘削孔に鋼管杭を埋設することもないので、埋設時の回転トルクと地盤の強度との高い相関を施工管理指標として取り扱うことが可能である。つまり、堅固な地層よりも上層の地層においてのみソイルセメントコラムを築造し、固い地盤(堅固な地層)のみに鋼管杭を埋設するので、埋設時における回転トルクと地盤(掘削孔を含む)の強度との相関を高く保つことが可能であるため、固い地盤の判別を埋設(貫入)時のトルク変化を利用して行うことができる。これによれば、貫入される鋼管杭の先端が支持層となる固い地盤(堅固な地層)に到達したことをいち早く把握することができる。   Also, in this construction method, soil cement columns are not constructed in a hard formation, and therefore steel pipe piles are not buried in excavation holes formed in the solid formation. It is possible to handle a high correlation with strength as a construction management index. In other words, the soil cement column is built only in the stratum above the solid strata, and the steel pipe piles are buried only in the hard ground (solid stratum), so the rotational torque and the strength of the ground (including the drilling holes) are buried. Since it is possible to maintain a high correlation with the ground, it is possible to determine a hard ground by using a torque change at the time of embedding (penetration). According to this, it can grasp | ascertain quickly that the front-end | tip of the steel pipe pile penetrated reached | attained the hard ground (solid formation) used as a support layer.

このような施工方法においては、掘削ロッドとして、セメントミルク等の地盤改良材を吐出させる吐出口が最下端の撹拌翼よりも下側にあり、少なくとも最下端の撹拌翼よりも下側に鋼管杭の筒径以上の部分を有するものを用いることが好ましい。かかる掘削ロッドは、掘削孔から引き抜かれる際、鋼管杭よりも大径のセメント柱状部を形成し、当該セメント柱状部に鋼管杭を回転埋設することを可能とする。   In such a construction method, as the excavating rod, the discharge port for discharging the ground improvement material such as cement milk is below the lowermost stirring blade, and at least below the lowermost stirring blade, the steel pipe pile It is preferable to use one having a portion larger than the cylindrical diameter. When the excavation rod is pulled out from the excavation hole, a cement columnar part having a diameter larger than that of the steel pipe pile is formed, and the steel pipe pile can be rotationally embedded in the cement columnar part.

また、かかる施工方法においては、掘削孔から掘削ロッドを引き抜く際、掘削ロッドからセメントミルクを吐出しながら引き抜くことが好ましい。鋼管杭よりも大径のセメント柱状部を掘削孔内に形成し、該セメント柱状部に鋼管杭を埋設することにより、ソイル部分と混じり合っていないセメントを鋼管杭の表面に接触させて固化させ、より強固に一体化したソイルセメント鋼管複合杭を施工することが可能である。   Moreover, in this construction method, when extracting a drilling rod from a drilling hole, it is preferable to pull out while discharging cement milk from a drilling rod. By forming a cement pillar with a diameter larger than that of the steel pipe pile in the excavation hole and embedding the steel pipe pile in the cement pillar, the cement not mixed with the soil part is brought into contact with the surface of the steel pipe pile and solidified. It is possible to construct soil cement steel pipe composite piles that are more firmly integrated.

さらには、鋼管杭を、回転速度と貫入速度を一定に保ちながら埋設することが好ましい。鋼管杭を回転埋設する際、回転速度と貫入速度が一定でないと、螺旋状羽根等の付着力増強部によってソイルセメントが撹拌され、巻き上げられてしまうおそれがあるが、このように回転速度と貫入速度が一定になるように管理しながら施工する本発明によればソイルセメントが撹拌され巻き上げられるのを回避することができる。   Furthermore, it is preferable to embed the steel pipe pile while keeping the rotation speed and the penetration speed constant. When rotating and embedding steel pipe piles, if the rotation speed and penetration speed are not constant, the soil cement may be stirred and rolled up by the adhesion enhancing part such as spiral blades. According to the present invention in which construction is performed while maintaining the speed to be constant, it is possible to avoid the soil cement from being stirred and wound up.

また、本発明にかかるソイルセメント鋼管複合杭は、複合杭の施工対象地盤に掘削された掘削孔に注入されて築造されたソイルセメントと、該ソイルセメントに埋設されるとともに、杭先端の抵抗力を増大させる受圧部がソイルセメントから突き抜け、ソイルセメント中には該ソイルセメントとの付着力を増強させる杭軸周辺の付着力増強部が位置し、掘削孔が掘削された地層よりも深く堅固な地層に少なくとも受圧部が埋設した状態となっている鋼管杭と、で構成されるというものである。   In addition, the soil cement steel pipe composite pile according to the present invention is a soil cement that is injected and built in a drilling hole excavated in the ground to be constructed of the composite pile, and embedded in the soil cement, and the resistance of the pile tip The pressure receiving part that increases the penetration of the soil cement penetrates the soil cement, and in the soil cement there is an adhesion strengthening part around the pile shaft that enhances the adhesion with the soil cement. It is composed of steel pipe piles in which at least the pressure receiving part is embedded in the formation.

本発明によれば、掘削地盤における杭体の支持性能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the support performance of the pile body in excavation ground can be improved.

複合杭の施工方法の手順を示すもので、(A)杭打機による杭芯合わせ、(B)セメントミルクと地盤を撹拌混合してのソイルセメントコラム築造、(C)ソイルセメントコラムの築造完了、(D)鋼管杭の建て込み、(E)鋼管杭の杭芯合わせ、鉛直性の確認、(F)鋼管杭のソイルセメントコラム中への回転埋設、(G)鋼管杭の杭頭レベルの確認 の各工程を表す図である。It shows the procedure of construction method of composite piles. (A) Pile core alignment by pile driver, (B) Soil cement column construction by mixing and mixing cement milk and ground, (C) Construction completion of soil cement column , (D) Steel pipe pile erection, (E) Steel pipe pile pile alignment, verticality confirmation, (F) Steel pipe pile rotary embedding in soil cement column, (G) Steel pipe pile pile head level It is a figure showing each process of confirmation. 本発明の一実施形態を示すもので、(A)掘削ロッドによる掘削、(B)セメントミルクを吐出しながらの掘削ロッドの引き抜き、(C)鋼管杭の建て込み、(D)堅固な地層への鋼管杭先端の埋設 の各工程を、深層に堅固な地層を含む地盤の一例とともに表す図である。1 shows one embodiment of the present invention, (A) excavation by excavation rod, (B) extraction of excavation rod while discharging cement milk, (C) erection of steel pipe pile, (D) to solid formation It is a figure showing each process of embedding the steel pipe pile tip with an example of the ground including a solid layer in the deep layer.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.

図1、図2に本発明にかかるソイルセメント鋼管複合杭およびその施工方法の実施形態を示す。以下では、まずソイルセメント鋼管複合杭(SC杭(鋼管コンクリート複合杭))の一般的な施工方法について説明し(図1参照)、その後、本発明の特徴的部分について説明する(図2参照)。   1 and 2 show an embodiment of a soil cement steel pipe composite pile and its construction method according to the present invention. Below, the general construction method of a soil cement steel pipe composite pile (SC pile (steel pipe concrete composite pile)) is demonstrated first (refer FIG. 1), and the characteristic part of this invention is demonstrated after that (refer FIG. 2). .

杭打機10は、リーダー12、オーガー13、振れ止め装置14などを有し、地盤Gを掘削し、当該掘削孔4に杭(例えば鋼管杭5)を立設させながら回転させて埋設する機械である(図1参照)。   The pile driving machine 10 has a leader 12, an auger 13, a steady rest device 14, and the like, excavates the ground G, and rotates and embeds a pile (for example, a steel pipe pile 5) while standing in the excavation hole 4. (See FIG. 1).

オーガー(杭回転装置)13は、鉛直方向に立設するリーダー12に沿って杭打時に移動可能に設けられており、当該リーダー12の長手方向に沿って昇降する(図1参照)。オーガー13には、鋼管杭5が直接またはヤットコ(図示省略)を介して連結されており、該オーガー13が回転駆動することによって当該鋼管杭5も回転させ、地盤Gに貫入させる。本実施形態では、少なくとも先端に貫入用の螺旋状羽根5bが設けられた鋼管杭5を用いており、このように鋼管杭5を回転させることにより、螺旋状羽根5bが生じさせる地中への推進力を利用して当該鋼管杭5を掘削孔4内に貫入させる。鋼管杭10が地盤Gに貫入する際、オーガー3もリーダー2に沿って降下する。   The auger (pile rotating device) 13 is provided so as to be movable along the leader 12 standing upright in the vertical direction, and moves up and down along the longitudinal direction of the leader 12 (see FIG. 1). The steel pipe pile 5 is connected to the auger 13 directly or via a yatco (not shown), and the steel pipe pile 5 is also rotated and penetrated into the ground G when the auger 13 is driven to rotate. In this embodiment, the steel pipe pile 5 in which the spiral blade 5b for penetration is provided at least at the tip is used. By rotating the steel pipe pile 5 in this way, the steel blade pile 5b is generated into the ground. The steel pipe pile 5 is penetrated into the excavation hole 4 using a propulsive force. When the steel pipe pile 10 penetrates the ground G, the auger 3 also descends along the leader 2.

また、図1において、符号3はオーガー13により回転駆動され、鋼管杭5が埋設される掘削孔4を掘削するための掘削ロッドである。掘削ロッド3は内部が中空の構造であり、液体等を通じるための配管を兼ねている。また、掘削ロッド3の先端部3aには、この掘削ロッド3が先行掘削する際にセメントミルク(地盤改良材の一例)を噴出するノズル(図示省略)が設けられている。さらに、この掘削ロッド3の先端部3aよりも基端側には、地盤Gを掘削し、セメントミルクと地盤とを撹拌・混合する掘削ビット3bが設けられている。後に詳述するが、本実施形態では、少なくとも先端部3aが鋼管杭5の筒径よりも大径である掘削ロッド3を用いている。   Moreover, in FIG. 1, the code | symbol 3 is an excavation rod for excavating the excavation hole 4 which is rotationally driven by the auger 13 and in which the steel pipe pile 5 is embed | buried. The excavation rod 3 has a hollow structure and also serves as a pipe for passing a liquid or the like. Further, a nozzle (not shown) that ejects cement milk (an example of a ground improvement material) when the excavation rod 3 performs prior excavation is provided at the distal end portion 3a of the excavation rod 3. Further, a drilling bit 3b for drilling the ground G and stirring and mixing the cement milk and the ground is provided on the base end side of the distal end portion 3a of the drilling rod 3. As will be described in detail later, in the present embodiment, the excavation rod 3 having at least a tip portion 3 a larger than the cylinder diameter of the steel pipe pile 5 is used.

ここで、上述の掘削ロッド3を用いて地盤Gを掘削し、掘削孔4に鋼管杭5を埋設するまでの一連の動作について順に説明する(図1参照)。   Here, a series of operations until the ground G is excavated using the excavation rod 3 and the steel pipe pile 5 is buried in the excavation hole 4 will be described in order (see FIG. 1).

まず、施工対象の地盤Gの所定位置に杭打機10の杭芯位置を合わせたら(図1(A)参照)、掘削ロッド3により地盤Gを掘削し、セメントミルクと地盤Gのソイル(土壌)とを撹拌混合して地盤改良し、ソイルセメントコラム30を築造する(図1(B)参照)。築造が完了したら掘削孔4から掘削ロッド3を引き抜き(図1(C)参照)、鋼管杭5の建て込みを行う。   First, when the pile core position of the pile driving machine 10 is aligned with a predetermined position of the ground G to be constructed (see FIG. 1A), the ground G is excavated by the excavating rod 3, and the soil (soil) of cement milk and ground G The soil cement column 30 is built (see FIG. 1 (B)). When the construction is completed, the excavation rod 3 is pulled out from the excavation hole 4 (see FIG. 1C), and the steel pipe pile 5 is installed.

鋼管杭5を建て込むには、まず杭打機10により鋼管杭5の基端(杭頭)を吊り上げ(図1(D)参照)、鋼管杭5の杭芯合わせをするとともに鉛直性を確認する(図1(E)参照)。その後、鋼管杭5を回転させてソイルセメントコラム30中に埋設し(図1(F)参照)、埋設したら鋼管杭5の杭頭レベル(杭頭の鉛直方向位置)を確認する(図1(G)参照)。   In order to build the steel pipe pile 5, first the base end (pile head) of the steel pipe pile 5 is lifted by the pile driving machine 10 (see FIG. 1 (D)), and the vertical alignment of the steel pipe pile 5 is confirmed. (See FIG. 1E). Thereafter, the steel pipe pile 5 is rotated and embedded in the soil cement column 30 (see FIG. 1 (F)), and once buried, the pile head level (vertical position of the pile head) of the steel pipe pile 5 is confirmed (FIG. 1 ( G)).

以上は掘削孔4にソイルセメントコラム30を築造して鋼管杭5を埋設するまでの一般的な施工方法の一例であるが、本実施形態では、以下のごとき方法を実施してソイルセメント鋼管複合杭(図2において符号1で示す)を施工する。すなわち、本実施形態では、掘削対象地層(図2において符号G1で示す)の深層にさらに堅固な地層(図2において符号G2で示す)が存在する場合に、当該堅固な地層G2の直上において堅固な地層G2に至らないよう掘削し、ソイルセメントコラム30を築造した後、該ソイルセメントコラム30から先端が突き抜けて深層の堅固な地層G2に埋設されるように鋼管杭5を埋設する。詳細は以下のとおりである(図2参照)。   The above is an example of a general construction method from the construction of the soil cement column 30 in the excavation hole 4 to the embedding of the steel pipe pile 5, but in this embodiment, the following method is carried out to implement the composite soil cement steel pipe. A pile (indicated by reference numeral 1 in FIG. 2) is constructed. That is, in the present embodiment, when there is a more rigid formation (indicated by reference numeral G2 in FIG. 2) in the deep layer of the excavation target formation (indicated by reference numeral G1 in FIG. 2), the solid formation is directly above the solid formation G2. After excavating the soil cement column 30 so as not to reach the geological formation G2, the steel pipe pile 5 is buried so that the tip penetrates the soil cement column 30 and is buried in the deep solid formation G2. Details are as follows (see FIG. 2).

まず、掘削ロッド3を回転させながら掘進させて地盤Gを掘削する(図2(A)参照)。掘削の際は、例えば地上に設置されたプラント(図示省略)等から掘削ロッド3の内部に設けられた配管にセメントミルクを供給し、その配管の先端に位置するノズルから吐出させる。吐出されたセメントミルクは、掘削ビット3bにより撹拌され、地盤Gと混合されてスラリー化し、ソイルセメントコラム30を築造する。なお、掘削ロッド3により掘削する際、堅固な地層G2まで掘削することはせず、掘り進めても堅固な地層G2の直上部分(手前部分)を掘削孔4の最深部とする(図2(B)参照)。   First, the excavation rod 3 is rotated and excavated to excavate the ground G (see FIG. 2A). When excavating, for example, cement milk is supplied to a pipe provided inside the excavating rod 3 from a plant (not shown) or the like installed on the ground, and discharged from a nozzle located at the tip of the pipe. The discharged cement milk is agitated by the excavating bit 3b, mixed with the ground G, and slurried to build the soil cement column 30. In addition, when excavating with the excavation rod 3, it does not excavate to the hard formation G2, and even if it excavates, the upper part (front part) of the hard formation G2 is made the deepest part of the excavation hole 4 (FIG. 2 ( B)).

次に、掘削孔4から掘削ロッド3を引き抜く。ここで、上述したように、本実施形態では少なくとも先端部3aが鋼管杭5の筒径よりも大径である掘削ロッド3を用いているので、セメントミルクを吐出しながら掘削ロッド3を引き抜くこととすれば、掘削孔4内に鋼管杭5よりも大径のセメント柱状部(図2において符号31で示す)を形成することができる(図2(B)等参照)。   Next, the excavation rod 3 is pulled out from the excavation hole 4. Here, as described above, in the present embodiment, the excavation rod 3 having at least the tip portion 3a larger than the tube diameter of the steel pipe pile 5 is used, so that the excavation rod 3 is pulled out while discharging cement milk. Then, a cement columnar portion (indicated by reference numeral 31 in FIG. 2) having a diameter larger than that of the steel pipe pile 5 can be formed in the excavation hole 4 (see FIG. 2 (B) and the like).

続いて、掘削孔4内に鋼管杭5を建て込む。本実施形態では、当該鋼管杭5のソイルセメント30との付着力を増強させる螺旋状羽根5aをその周囲に有する鋼管杭5を回転させながら掘削孔4内のソイルセメントコラム30中に埋設する(図2(C)参照)。このとき、鋼管杭5の本体部(螺旋状羽根5aを除く軸部)および螺旋状羽根5aの一部は、周辺のソイルセメントよりもセメント含有量が多いセメント柱状部31を通過し、外周面にセメントミルクが接触した状態となる。これによれば、セメントミルクがこれら外周面に接触した状態で固化する結果、ソイルセメントコラム30と鋼管杭5とをより強固に一体化させることができる。また、ソイルセメントと鋼管杭5とを一体化させて大きな摩擦力を実現することができるのは従来と同様である。以上から、本実施形態によれば掘削地盤におけるソイルセメント鋼管複合杭1の支持性能を向上させることができる。同時に、当該施工法によれば、ソイルセメントコラム30と鋼管杭5は強固に一体化するため、ソイルセメントコラム30と鋼管杭5との付着力を増強させるための螺旋状羽根5aの面積を小さくすることや、設置枚数を少なくすることが可能となる。   Subsequently, the steel pipe pile 5 is built in the excavation hole 4. In the present embodiment, the steel pipe pile 5 having a spiral blade 5a around the periphery of the steel pipe pile 5 that enhances the adhesion of the steel pipe pile 5 to the soil cement 30 is embedded in the soil cement column 30 in the excavation hole 4 ( (See FIG. 2C). At this time, the main body part (the shaft part excluding the spiral blade 5a) of the steel pipe pile 5 and a part of the spiral blade 5a pass through the cement columnar part 31 having a higher cement content than the surrounding soil cement, and the outer peripheral surface. Cement milk comes into contact with According to this, as a result of the cement milk solidifying in contact with these outer peripheral surfaces, the soil cement column 30 and the steel pipe pile 5 can be integrated more firmly. In addition, the soil cement and the steel pipe pile 5 can be integrated to realize a large frictional force as in the conventional case. From the above, according to the present embodiment, the supporting performance of the soil cement steel pipe composite pile 1 in the excavated ground can be improved. At the same time, according to the construction method, since the soil cement column 30 and the steel pipe pile 5 are firmly integrated, the area of the spiral blade 5a for increasing the adhesion between the soil cement column 30 and the steel pipe pile 5 is reduced. It is possible to reduce the number of installations.

ところで、堅固な地層G2に羽根付き鋼管杭5を埋設する際には、鋼管杭5の回転数と貫入速度(埋設速度)の関係が変化することがあり、しかも、回転が過剰になると、螺旋状羽根5aによりソイルセメントコラム30が乱され、周辺地盤を巻き込むなど、鉛直性(鋼管杭5がどの程度鉛直に施工されるか)、摩擦抵抗といった点で影響が生じることもある。特に、埋設時、鋼管杭5の先端がより堅固な地盤に当接した場合には、このようなことが起こりやすい。この点、本実施形態においては、上述のように引き抜き工程においてもセメントミルクを吐出してセメント柱状部31を形成しているので、鋼管杭5を回転埋設する際、螺旋状羽根5aの周辺のソイルセメントコラム30が施工時の乱れにより強度低下することを抑止することができる。   By the way, when the bladed steel pipe pile 5 is embedded in the solid formation G2, the relationship between the rotation speed of the steel pipe pile 5 and the penetration speed (embedding speed) may change, and if the rotation becomes excessive, the spiral The soil cement column 30 may be disturbed by the blades 5a, and the surrounding ground may be involved, which may affect the verticality (how much the steel pipe pile 5 is constructed vertically) and frictional resistance. In particular, at the time of embedding, this is likely to occur when the tip of the steel pipe pile 5 comes into contact with a firmer ground. In this respect, in the present embodiment, since the cement columnar portion 31 is formed by discharging cement milk also in the drawing process as described above, when the steel pipe pile 5 is rotationally embedded, the periphery of the spiral blade 5a is It is possible to prevent the strength of the soil cement column 30 from being lowered due to disturbance during construction.

さらに、本実施形態では、鋼管杭5の先端の螺旋状羽根5bをソイルセメントコラム30の底部から突き抜けさせ、掘削孔4が掘削された地層G1よりも深層の堅固な地層G2に、少なくとも杭先端の螺旋状羽根5bを埋設させる(図2(D)参照)。一般に、鋼管杭5が一部でも掘削孔4から突き出てしまうと底面が一様でなくなり、複合杭の支持強度が劣化してしまうと考えられているため、たとえ僅かでも掘削孔4から鋼管杭5の一部が突き出ないように調整して施工するのが通常である。これに対し、本実施形態では、鋼管杭5の先端をあえて掘削孔4(のソイルセメントコラム30)から突き抜けさせ、さらに堅固な地層G2に埋設させることによって、堅固な地層G2を鋼管杭5の先端を支持する支持層として機能させ、杭体(ソイルセメント鋼管複合杭1)の地盤Gにおける支持性能を向上さえている。しかも、本実施形態の施工方法においては堅固な地層G2を地盤改良することはないので、堅固な地層G2においては十分な撹拌が難しいといった問題とはそもそも無縁であるし、このような堅固な地層G2を改良しないで済むので施工がしやすく効率的である。   Furthermore, in this embodiment, the spiral blade 5b at the tip of the steel pipe pile 5 is penetrated from the bottom of the soil cement column 30, and at least the tip of the pile is formed in the solid formation G2 deeper than the formation G1 in which the excavation hole 4 is excavated. Are embedded (see FIG. 2D). In general, if even a part of the steel pipe pile 5 protrudes from the excavation hole 4, it is considered that the bottom surface is not uniform and the support strength of the composite pile deteriorates. It is normal to adjust and install so that a part of 5 does not protrude. On the other hand, in the present embodiment, the tip of the steel pipe pile 5 is intentionally penetrated from the excavation hole 4 (the soil cement column 30), and further embedded in the hard formation G2, so that the solid formation G2 is formed in the steel pipe pile 5. It functions as a support layer that supports the tip, and even improves the support performance of the pile body (soil cement steel pipe composite pile 1) in the ground G. Moreover, since the solid formation G2 is not improved in the construction method according to the present embodiment, the solid formation G2 has nothing to do with the problem that sufficient agitation is difficult in the first place, and such a solid formation. Since it is not necessary to improve G2, construction is easy and efficient.

また、本実施形態の施工方法においては堅固な地層G2を掘削しないため、回転トルクと地盤Gの強度との高い相関を施工管理指標として取り扱うことができる。つまり、本実施形態においては堅固な地層G2よりも上層の地層G1のみを掘削対象としており、掘削時における掘削ロッド3の回転トルクと地盤強度との相関を高く保つことができるので、掘削時のトルク変化を利用して固い地盤G2の判別を行うことが可能である。これによれば、掘削ロッド3が堅固な地層G2に到達したことをいち早く把握することができる。   Moreover, in the construction method of this embodiment, since the solid formation G2 is not excavated, a high correlation between the rotational torque and the strength of the ground G can be handled as a construction management index. That is, in the present embodiment, only the formation G1 that is higher than the solid formation G2 is targeted for excavation, and the correlation between the rotational torque of the excavation rod 3 and the ground strength during excavation can be kept high, so It is possible to determine the hard ground G2 using the torque change. According to this, it is possible to quickly grasp that the excavation rod 3 has reached the solid formation G2.

また、鋼管杭5の埋設時においても同様のことがいえる。つまり、本実施形態の施工方法においてはセメント柱状部31を形成してから鋼管杭5を回転埋設させるので、当該鋼管杭5の回転トルクに関してソイルセメントコラム30やセメント柱状部31の強度との高い相関を施工管理指標として取り扱うことができる。したがって、回転埋設時のトルク変化を利用して、鋼管杭5の先端がソイルセメントコラム30の底部を突き抜けたことや支持層の対象となる固い地盤G2に到達したことを把握し、必要な杭の根入れ長を判断できるというトルク管理を行うことが可能である。   The same can be said when the steel pipe pile 5 is buried. That is, in the construction method of the present embodiment, the steel pipe pile 5 is rotationally embedded after the cement columnar portion 31 is formed. Therefore, the strength of the soil cement column 30 and the cement columnar portion 31 is high with respect to the rotational torque of the steel pipe pile 5. Correlation can be handled as a construction management index. Therefore, using the torque change at the time of rotary embedding, it is understood that the tip of the steel pipe pile 5 has penetrated the bottom of the soil cement column 30 and has reached the hard ground G2 that is the target of the support layer. It is possible to perform torque management that can determine the penetration length of the.

また、上述のようにトルク管理を行うことが可能な施工方法においては、鋼管杭5の回転速度と貫入速度を一定に保ちながら該鋼管杭5を埋設することも可能である。鋼管杭5を回転埋設する際、回転速度と貫入速度が一定でないと、螺旋状羽根5aによってソイルセメントが撹拌され、巻き上げられてしまうおそれがあるが、このように回転速度と貫入速度が一定になるように管理しながら施工することとすればソイルセメントが撹拌され巻き上げられるのを回避することができる。回転速度と貫入速度を一定に保つための具体例としては、トルクの変化に応じてオーガー13による鋼管杭5の回転速度を調整すること等が挙げられる。   Moreover, in the construction method which can perform torque management as mentioned above, it is also possible to embed the steel pipe pile 5 while keeping the rotation speed and penetration speed of the steel pipe pile 5 constant. When the steel pipe pile 5 is rotationally embedded, if the rotational speed and the penetration speed are not constant, the soil cement may be stirred and wound up by the spiral blade 5a, but the rotational speed and the penetration speed are thus constant. It is possible to avoid the soil cement being agitated and wound up if it is constructed while being managed. As a specific example for keeping the rotational speed and the penetration speed constant, adjusting the rotational speed of the steel pipe pile 5 by the auger 13 according to the change in torque may be mentioned.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば上述した実施形態では、周囲に連続する螺旋状羽根5aが設けられた鋼管杭5を示したが(図2参照)、これは一例にすぎず、この他、螺旋状羽根5aが不連続に設けられた鋼管杭5を用いてソイルセメント鋼管複合杭1を施工することもできる。あるいは、凹部やリブ状の凸部といったような螺旋状羽根以外のものが設けられた鋼管杭5を用いてソイルセメント鋼管複合杭1を施工することもできる。要は、少なくとも杭先端部分をソイルセメントコラム30から突き抜けさせて堅固な地層G2に埋設させ、当該埋設させた先端部分によって杭先端地盤の抵抗力を増大させ、同時に杭周囲との付着力を増強させうるものである限り、鋼管杭5における、先端地盤の抵抗力を増大させる受圧部やソイルセメントコラム30と鋼管杭5の付着力を増強させうる付着力増強部の形状や形態は特に限定されることはない。詳細な説明はしないが、螺旋状羽根5b以外の付着力増強部の好適例を挙げれば、上述の凹部やリブ状の凸部のように地層G2との接触面積を増加させるもの、地層G2中において楔(くさび)のように機能する鋭い突起やこれらの連続部のようなもの、地層G2との摩擦力を向上させる材質からなる突起や被覆物などがある。また、上述の実施形態では、鋼管杭5の周囲に設けられた螺旋状羽根のうち地層G2に埋設される部分を受圧部の一例として符号5bで示し、残りの部分をソイルセメントコラム30との付着力を増強させる付着力増強部の一例として符号5aで示したが、両者は当初から明確に区別されている必要はなく、要は地層G2に埋設されて抵抗力増大させる部分が受圧部として機能することができ、ソイルセメントコラム30との付着力を増強させる部分が付着力増強部として機能することができるのであって、当該受圧部や付着力増強部の範囲が個々のソイルセメント鋼管複合杭1において異なっていても構わない。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the steel pipe pile 5 provided with the continuous spiral blade 5a is shown (see FIG. 2), but this is only an example, and the spiral blade 5a is discontinuous. The soil cement steel pipe composite pile 1 can also be constructed using the provided steel pipe pile 5. Or the soil cement steel pipe composite pile 1 can also be constructed using the steel pipe pile 5 provided with things other than a spiral blade | wing, such as a recessed part and a rib-shaped convex part. In short, at least the tip of the pile penetrates from the soil cement column 30 and is embedded in the solid formation G2, and the resistance of the pile tip ground is increased by the embedded tip, and at the same time the adhesion to the periphery of the pile is enhanced. As long as it can be made, the shape and form of the pressure receiving portion that increases the resistance force of the tip ground in the steel pipe pile 5 and the adhesion force increasing portion that can increase the adhesion force between the soil cement column 30 and the steel pipe pile 5 are particularly limited. Never happen. Although not explained in detail, if a suitable example of the adhesion enhancing portion other than the spiral blade 5b is given, the one that increases the contact area with the formation G2, such as the above-mentioned concave portion or rib-like convex portion, There are sharp protrusions that function like wedges, continuous parts thereof, protrusions made of materials that improve the frictional force with the formation G2, and coverings. Moreover, in the above-mentioned embodiment, the part embed | buried in the formation G2 among the spiral blades provided in the circumference | surroundings of the steel pipe pile 5 is shown with the code | symbol 5b as an example of a pressure receiving part, and the remaining part is with the soil cement column 30. Although the reference numeral 5a shows an example of an adhesion enhancing part that enhances the adhesion, the two do not need to be clearly distinguished from the beginning. In short, the portion that is embedded in the formation G2 and increases the resistance is the pressure receiving part. A portion that can function and enhances the adhesion force with the soil cement column 30 can function as an adhesion enhancement portion, and the range of the pressure receiving portion and the adhesion enhancement portion is individual soil cement steel pipe composite. It may be different in the pile 1.

また、上述した実施形態においては、ある掘削対象地層G1の深層にさらに堅固な地層G2が存在する地盤Gを示しながら説明としたが、ここでいう「堅固」というのは掘削対象地盤G1を基準とした相対的なものであって、掘削対象地層G1と堅固な地層G2とを厳密に分ける数値(N値)が存在するわけではない。要は、ある地層(途中で地盤強度が変化している場合を含む)に掘削孔4(およびソイルセメントコラム30)を設けて単に鋼管杭5を埋設するのではなく、その深層により堅固な地層G2が存在するならば鋼管杭5の先端を掘削孔4からあえて突き抜けさせ、従来ならば杭体支持力と関連性のなかった当該堅固な地層G2に埋設させることによってソイルセメント鋼管複合杭1の支持力向上を図るのが本願の趣旨であり、両者の区分けは実情に応じて適宜行われればよい。なお、図2に示した地盤固さの指標は、所定重さのハンマーを自由落下させて標準貫入用サンプラーを所定深さ打ち込むに要する打撃回数(つまりはN値)に基づくが、上述したように、具体的数値までを表すものではない。   Further, in the above-described embodiment, the description has been given while showing the ground G in which a deeper stratum G2 is present in the deep layer of a certain excavation target stratum G1, but the term “solid” here refers to the excavation target ground G1 as a reference. However, there is no numerical value (N value) that strictly separates the excavation target formation G1 and the solid formation G2. The point is not to simply bury the steel pipe pile 5 by providing the excavation hole 4 (and the soil cement column 30) in a certain formation (including the case where the ground strength is changed in the middle), but a deeper formation. If G2 is present, the tip of the steel pipe pile 5 is intentionally penetrated from the excavation hole 4 and is buried in the solid formation G2 which has not been related to the pile body supporting force in the past, so that the soil cement steel pipe composite pile 1 The purpose of the present application is to improve the supporting force, and the division between the two may be appropriately performed according to the actual situation. The ground hardness index shown in FIG. 2 is based on the number of hits (that is, the N value) required to freely drop a hammer having a predetermined weight and drive a standard penetration sampler to a predetermined depth. It does not represent a specific numerical value.

本発明は、掘削孔に築造したソイルセメントコラムに杭を埋設することによって複合杭を施工する場合に適用して好適なものである。   The present invention is suitable for application in the case of constructing a composite pile by burying the pile in a soil cement column built in the excavation hole.

1…ソイルセメント鋼管複合杭、3…掘削ロッド、3a…先端部、4…掘削孔、5…鋼管杭、5a…螺旋状羽根(付着力増強部)、5b…螺旋状羽根(受圧部)、30…ソイルセメントコラム、G1…掘削孔が掘削される地層(掘削対象地層)、G2…堅固な地層 DESCRIPTION OF SYMBOLS 1 ... Soil cement steel pipe composite pile, 3 ... Excavation rod, 3a ... Tip part, 4 ... Drilling hole, 5 ... Steel pipe pile, 5a ... Spiral blade | wing (adhesive force increase part), 5b ... Spiral blade | wing (pressure receiving part), 30 ... soil cement column, G1 ... formation in which excavation holes are excavated (excavation target formation), G2 ... solid formation

Claims (4)

セメントミルク等の地盤改良材を吐出する吐出口が最下端の撹拌翼よりも下側にあり、少なくとも最下端の撹拌翼よりも下側に鋼管杭の筒径以上の部分を有する掘削ロッドを用いて、複合杭の施工対象地盤を掘削し、
該掘削孔にセメントミルク等の地盤改良材を注入してソイルセメントコラムを築造し、
前記掘削孔から前記掘削ロッドを引き抜き、
地盤からの抵抗力を増大させる受圧部を少なくとも杭先端に有し、杭軸部には周囲との摩擦抵抗力を増大させるための付着力増強部を有する鋼管杭を前記ソイルセメントコラム中に回転させながら埋設し、
前記杭先端の受圧部を前記ソイルセメントコラムの底部から突き抜けさせ、前記掘削孔が掘削された地層よりも深く堅固な地層に少なくとも前記受圧部を埋設させる、ソイルセメント鋼管複合杭の施工方法。
Use a drilling rod that has a discharge port for discharging ground improvement material such as cement milk below the lowermost stirring blade, and has at least a portion larger than the tube diameter of the steel pipe pile below the lowermost stirring blade Te, to cut excavation and construction subject ground of composite pile,
Injecting ground improvement material such as cement milk into the excavation hole to build a soil cement column,
Pull out the drill rod from the drill hole,
A steel pipe pile that has a pressure receiving part that increases resistance from the ground at least at the tip of the pile, and an adhesion enhancing part that increases the frictional resistance with the surroundings in the pile shaft part rotates into the soil cement column. Buried while letting
A construction method of a soil cement steel pipe composite pile, in which a pressure receiving portion at the tip of the pile is penetrated from a bottom portion of the soil cement column, and at least the pressure receiving portion is embedded in a solid layer deeper than the formation in which the excavation hole is excavated.
前記掘削孔から前記掘削ロッドを引き抜く際、前記掘削ロッドから前記セメントミルクを吐出しながら引き抜く、請求項に記載のソイルセメント鋼管複合杭の施工方法。 When withdrawing the drill rod from the drill hole, pull while discharging the cement milk from the drill rod, the construction method of soil cement steel composite pile according to claim 1. 前記鋼管杭を、回転速度と貫入速度を一定に保ちながら埋設する、請求項1または2に記載のソイルセメント鋼管複合杭の施工方法。 The construction method of the soil cement steel pipe composite pile according to claim 1 or 2 , wherein the steel pipe pile is embedded while keeping a rotation speed and a penetration speed constant. 前記1から3のいずれか一項に記載のソイルセメント鋼管複合杭の施工方法により施工されたソイルセメント鋼管複合杭。  The soil cement steel pipe composite pile constructed by the construction method of the soil cement steel pipe composite pile according to any one of 1 to 3 above.
JP2010278072A 2010-12-14 2010-12-14 Soil cement steel pipe composite pile and its construction method Active JP5658988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278072A JP5658988B2 (en) 2010-12-14 2010-12-14 Soil cement steel pipe composite pile and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278072A JP5658988B2 (en) 2010-12-14 2010-12-14 Soil cement steel pipe composite pile and its construction method

Publications (2)

Publication Number Publication Date
JP2012127082A JP2012127082A (en) 2012-07-05
JP5658988B2 true JP5658988B2 (en) 2015-01-28

Family

ID=46644415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278072A Active JP5658988B2 (en) 2010-12-14 2010-12-14 Soil cement steel pipe composite pile and its construction method

Country Status (1)

Country Link
JP (1) JP5658988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754662B1 (en) * 2015-02-17 2017-07-07 강상욱 Method for Constructing the Basement Pile

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447810B1 (en) * 2013-04-05 2014-10-08 반석기초이앤씨(주) Construction method of micro pile for skin friction column composed soil cement
KR101626130B1 (en) * 2013-06-26 2016-05-31 (주)아리터 Pile construction method
CN103437348B (en) * 2013-08-28 2015-06-17 深圳市福田建安建设集团有限公司 Construction device and method of pile peripheral cemented soil cast-in-place stiffness core pile
KR102149894B1 (en) * 2013-11-22 2020-08-31 이엑스티 주식회사 Method for pile construction
CN105019433A (en) * 2014-06-17 2015-11-04 肖一 Two-hole unbalance guniting cemented soil stirring construction technology
CN104818713A (en) * 2015-02-26 2015-08-05 武汉中力岩土工程有限公司 Profile steel cement soil pile construction method adaptive to various stratums
CN104863129B (en) * 2015-04-12 2016-12-14 重庆晨宇机床制造有限公司 Not rounded agitation driller
CN104895060A (en) * 2015-04-12 2015-09-09 朱艳菊 Kidney ellipsoid mixing drilling machine
CN104863138B (en) * 2015-06-05 2017-02-08 机械科学研究总院青岛分院 Hexagonal prism composite cement soil pile machine
CN104863134B (en) * 2015-06-05 2017-02-08 机械科学研究总院青岛分院 Oval stake preparation equipment
CN105019447B (en) * 2015-08-09 2016-09-14 南通振强机械制造有限公司 Double circle combination stirring pile-formation machines
CN105155525B (en) * 2015-08-09 2016-11-30 天津大学 A kind of usage of double circle combination stirring pile-formation machines
CN105421356A (en) * 2015-12-31 2016-03-23 卢兴耐 T-shaped plug-in pile stirring and drilling machine
CN105421345A (en) * 2015-12-31 2016-03-23 卢兴耐 V-shaped inserting head X-pile pile forming machine
CN105421378A (en) * 2015-12-31 2016-03-23 卢兴耐 pi-shaped plug pile mixing and drilling machine
CN105421347A (en) * 2015-12-31 2016-03-23 卢兴耐 Pi pile and rectangular pile V-shaped locking apparatus
JP7084836B2 (en) * 2018-09-28 2022-06-15 大和ハウス工業株式会社 Excavation stirrer
CN114508629B (en) * 2022-01-24 2023-07-25 中铁四局集团有限公司 Pipe jacking construction method for penetrating through mixed gravel layer and sandstone layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564221U (en) * 1992-02-07 1993-08-27 日本コンクリート工業株式会社 Mixing and stirring equipment for ground improvement
JP4626916B2 (en) * 2000-03-03 2011-02-09 旭化成建材株式会社 Construction method of soil cement composite pile
JP2002275884A (en) * 2001-03-14 2002-09-25 Glandl Agency Kk Soft ground improving method and pile constructing device
JP2003147766A (en) * 2001-11-09 2003-05-21 Asahi Kasei Corp Burying method for steel pipe pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754662B1 (en) * 2015-02-17 2017-07-07 강상욱 Method for Constructing the Basement Pile

Also Published As

Publication number Publication date
JP2012127082A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5658988B2 (en) Soil cement steel pipe composite pile and its construction method
CN109723373B (en) Hole forming construction process for rotary drilling bored pile in slightly weathered granite stratum
CN102619224B (en) Construction method and drilling tool for variable cross-section bored cast-in-place pile (rock bolt)
CA2885700A1 (en) Method for producing a reinforced structure in the ground
EP2581498B1 (en) Method of making large diameter piles in a ground and tool for carrying out said operation
EP2652205B1 (en) Drilling method
JP2015212485A (en) Ground reinforcement method using steel pipe pile and consolidation tool for use in the same
JP4928192B2 (en) Construction method of expansion head pile
JP2005273293A (en) Excavating method
CN102767337A (en) Sleeve type screw pile machine drill and construction method for eliminating barriers
CN102619219B (en) Drilling construction method for cast-in-place concrete variable threaded tubular pile and drilling tool for implementing drilling construction method
CN110374101B (en) Construction method for cast-in-situ bored pile casing of high-pressure-bearing fractured water stratum
JP6408795B2 (en) Method and apparatus for crushing underground obstacles
JP5499335B2 (en) Steel pipe pile and support structure and construction method using the steel pipe pile
JP6914780B2 (en) How to drill a hole for burying a ground anchor
JP4853132B2 (en) Construction method of foundation pile
JP6035355B2 (en) Low strength pipe burial method and excavation head used for it
CN114622548B (en) Bored concrete pile pore-forming construction structure for complex stratum
CN102966091A (en) Rotary embedded steel pipe pile and construction method thereof
CN216110510U (en) Drilling equipment for large-diameter rock-socketed cast-in-place pile with ultra-thick covering layer
CN114622549B (en) Bored concrete pile hole-forming construction method for complex stratum
JP2013133630A (en) Excavation rod and construction method
JP5109526B2 (en) Construction method of columnar improvement
GB2455303A (en) Method and apparatus for forming a cast in situ screw pile
JP2001073367A (en) Embedding construction method for steel pipe pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5658988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150