JP6425267B2 - Construction method of rooted foundation using a rotating penetration pile and a rotating penetration pile - Google Patents

Construction method of rooted foundation using a rotating penetration pile and a rotating penetration pile Download PDF

Info

Publication number
JP6425267B2
JP6425267B2 JP2015089228A JP2015089228A JP6425267B2 JP 6425267 B2 JP6425267 B2 JP 6425267B2 JP 2015089228 A JP2015089228 A JP 2015089228A JP 2015089228 A JP2015089228 A JP 2015089228A JP 6425267 B2 JP6425267 B2 JP 6425267B2
Authority
JP
Japan
Prior art keywords
pile
outer cylinder
penetration
blade
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015089228A
Other languages
Japanese (ja)
Other versions
JP2016075139A5 (en
JP2016075139A (en
Inventor
耕之 吉田
耕之 吉田
豊彦 小林
豊彦 小林
篠原 敏雄
敏雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Geotech Co Ltd
Original Assignee
Chiyoda Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Geotech Co Ltd filed Critical Chiyoda Geotech Co Ltd
Publication of JP2016075139A publication Critical patent/JP2016075139A/en
Publication of JP2016075139A5 publication Critical patent/JP2016075139A5/ja
Application granted granted Critical
Publication of JP6425267B2 publication Critical patent/JP6425267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Piles And Underground Anchors (AREA)

Description

本発明は、支持力(押し込み抵抗力及び引き抜き抵抗力)の増加を図った回転貫入杭及び回転貫入杭を使用する根固めされた回転貫入杭の施工方法に関する。   The present invention relates to a rotary penetration pile in which the bearing force (push-in resistance and pull-out resistance) is increased, and to a construction method of a rooted rotary penetration pile using the rotary penetration pile.

土木、建設工事の基礎として杭を採用する施工では、杭の支持力を増加させるため、杭の先端部分に杭径よりも大きな径を有する拡大根固めを形成する工法が採用されている。例えば、地盤に杭径とほぼ同じ穴径の杭用の穴を掘削専用装置で掘削し、次いで杭先端付近の穴径が杭径の2倍程度になるように拡大掘削し、硬化性流動体を流し込み地盤の土砂と撹拌混合した後、掘削専用装置を杭用の穴から引き上げ、硬化性流動体が硬化する前に杭用の穴に杭を進入させ、杭の先端部分を硬化性流動体と土砂との混合体中に貫入させて固着させる拡大根固め工法が知られている。   In construction which adopts a pile as a foundation of civil engineering and construction work, in order to increase the bearing capacity of the pile, a method of forming an expanded rooting having a diameter larger than the diameter of the pile at the tip end of the pile is adopted. For example, excavate a hole for a pile whose diameter is the same as the diameter of the pile on the ground using a dedicated drilling device, and then expand the excavation so that the diameter of the hole near the pile tip is about twice the pile diameter. And stir-mix it with the soil on the ground, then pull up the dedicated drilling device from the hole for the pile and allow the pile to enter the hole for the pile before the hardenable fluid hardens, and harden the tip of the pile with the hardenable fluid There is known an expanded rooting method of penetrating and fixing in a mixture of water and earth and sand.

しかし、上記拡大根固め工法では、杭用の穴の掘削工程と、杭を杭用の穴に埋設する杭埋設工程とに分割されていて、施工時間の短縮化を図ることが難しく、また掘削専用装置が必要となる課題を有している。   However, in the above-described expanded rooting construction method, it is difficult to shorten the construction time because it is divided into the drilling process of the hole for the pile and the piling process of laying the pile in the hole for the pile There is a problem that a dedicated device is required.

上記課題を解決するため、例えば、杭先端部分の外周に杭径の2倍乃至3倍の外径を有する螺旋翼を設け且つ硬化性流動体の吐出穴を設けた回転貫入杭を使用し、この回転貫入杭を地表面から地盤中に回転貫入させ、その先端が地盤中の支持層に到達した時点で回転貫入鋼管杭の吐出孔からの硬化性流動体の外部への噴出を開始させ、正転と逆転を繰り返しつつ上下動させ、土砂と硬化性流動体とを撹拌混合させながら、最終深度まで回転貫入させ、鋼管杭本体の周囲に、螺旋翼とほぼ同径の円柱状をなした固化混合体を形成する拡大根固め工法が提案されている(特許文献1参照)。螺旋翼は地盤中へ回転貫入の推進の役割と支持地盤への支持力伝達の役割を担っている。この工法では、掘削専用装置を必要とせず、杭を地盤に回転貫入させる過程で拡大根固めを形成することが出来、施工時間の短縮化と施工コストの低廉化を図ることが可能である。   In order to solve the above problems, for example, using a rotary penetration pile provided with a spiral wing having an outer diameter twice to three times the pile diameter on the outer periphery of the pile tip portion and provided with a discharge hole of the hardenable fluid The rotational penetration pile is made to penetrate from the ground surface into the ground, and when the tip reaches the support layer in the ground, the spouting of the hardenable fluid from the discharge hole of the rotational penetration steel pipe pile is started. While rotating and moving up and down while repeating normal rotation and reverse rotation, while stirring and mixing earth and sand and hardenable fluid, it was penetrated to the final depth, and a cylindrical shape with the same diameter as the spiral wing was made around the steel pipe pile main body An expanded rooting method for forming a solidified mixture has been proposed (see Patent Document 1). The spiral wing has a role of promoting rotational penetration into the ground and a role of supporting force transmission to the supporting ground. With this construction method, it is possible to form an expanded rooting in the process of making a pile rotate into the ground without requiring a dedicated drilling device, and it is possible to shorten the construction time and reduce the construction cost.

また、別の施工方法として、杭先端部分の外周に設けた螺旋翼の周縁にその周方向に沿って適宜間隔をあけて周縁から杭の径方向に突出可能な複数の補助(拡大)掘削刃を配置した回転貫入杭を使用し、この回転貫入杭を地表面から地盤中に回転貫入させ、その先端が地盤中の支持層の上端付近に到達した時点で回転貫入鋼管杭の吐出孔からの硬化性流動体の外部への噴出を開始させ、正転と逆転を繰り返しつつ上下動させ、土砂と硬化性流動体とを撹拌混合させながら、最終深度まで回転貫入させ、鋼管杭本体の周囲に、螺旋翼の周縁から突出した拡大掘削刃と同径の円柱状をなした固化混合体を形成する拡大根固め工法が提案されている(特許文献2参照)。この工法では、上記回転貫入杭を使用した工法と同様に掘削専用装置を必要とせず、杭を地盤に回転貫入させる過程で拡大根固めを形成することが出来、施工時間の短縮化と施工コストの低廉化を図ることが可能である上に、螺旋翼で確保される地盤掘削寸法が、拡大掘削刃が突出した寸法分だけ大きくなり、螺旋翼のみの場合よりも径の大きい拡大根固めを形成することが可能である。   In addition, as another construction method, a plurality of auxiliary (expanded) excavating blades capable of protruding in the radial direction of the pile from the peripheral edge by appropriately spacing the peripheral edge of the spiral blade provided on the outer periphery of the pile tip along the peripheral direction Using a rotary penetrative pile in which the rotary penetrative pile is placed, this rotary penetrative pile is made to rotationally penetrate from the ground surface into the ground, and when its tip reaches near the upper end of the support layer in the ground, from the discharge hole of the rotary penetrative steel pipe pile Start the jet of the hardenable fluid to the outside, move it up and down while repeating normal rotation and reverse rotation, rotate and penetrate to the final depth while mixing soil and hardenable fluid with stirring, and around the steel pipe pile main body An enlarged rooting method has been proposed for forming a solidified mixture in the form of a column having the same diameter as that of an expanded cutting blade protruding from the periphery of a spiral wing (see Patent Document 2). In this construction method, as in the construction method using the above-mentioned rotary penetration pile, it is possible to form an expanded rooting in the process of making a pile rotate into the ground without requiring a dedicated drilling device, shortening construction time and construction cost In addition, the ground excavating size secured by the spiral wing is increased by the size by which the expanding digging blade protrudes, and the expanded rooting with a larger diameter than in the case of only the spiral wing can be achieved. It is possible to form.

特開2013−57194号公報JP, 2013-57194, A 特開2013−19249号公報JP, 2013-19249, A

前者の工法では、杭の支持力を増加させるにはより径の大きい螺旋翼を設けることが必要となるが、そうすると施工現場への杭の搬送時に嵩張り、また地盤への回転貫入初期時に回転貫入抵抗が増加する課題がある。   In the former method, it is necessary to provide a spiral blade with a larger diameter in order to increase the bearing capacity of the pile, but doing so bulks when transporting the pile to the construction site and also rotates at the initial stage of rotational penetration into the ground There is a problem that penetration resistance increases.

後者の施工方法では、杭を地盤に回転貫入させる際に拡大掘削刃が地盤周囲の土砂に押されて螺旋翼の周縁から突出せずに螺旋翼に収まり、回転貫入杭を逆転させて上方に移動させる際に拡大掘削刃が地盤周囲の土砂により押し出されて螺旋翼の周縁から突出するようになっていることから、地盤への回転貫入初期抵抗が螺旋翼のみの場合とあまり変わらないものの、地盤中で拡大掘削刃が螺旋翼の周縁から突出していることを確認することが出来ない課題がある。   In the latter construction method, when making a pile rotate into the ground, the enlarged cutting edge is pushed by the soil around the ground and does not protrude from the peripheral edge of the spiral wing, and fits into the spiral wing, and reverses the rotary penetration pile to move upward. Since the extended cutting edge is pushed out by the soil around the ground and protrudes from the peripheral edge of the spiral wing when moving it, the initial resistance to rotational penetration into the ground is not much different from that of the spiral wing alone, There is a problem that it can not be confirmed in the ground that the extended cutting edge protrudes from the peripheral edge of the spiral wing.

本発明は、杭の支持力を増加させることが出来る上に、地盤中で拡大掘削刃が螺旋翼の周縁から突出していることを確認することが出来る、回転貫入杭及び同回転貫入杭を使用する根固めされた基礎の施工方法を提供することを目的とする。   The present invention makes it possible to increase the bearing capacity of piles and to confirm that the extended cutting edge protrudes from the peripheral edge of the spiral wing in the ground, using the rotary penetration pile and the rotary penetration pile The purpose of the project is to provide a method of construction of a hardened foundation.

本発明の請求項1に記載の回転貫入杭は、外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、前記外筒から露出した前記内筒の先端寄りの周面に沿って設けられた螺旋翼と、前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、前記内筒の周面に設けられた硬化性流動体の噴出口と、を備え、前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転しつつ軸方向に所定距離移動可能に構成され、前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出するように構成され、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記外筒が前記内筒に対して軸方向に所定距離移動することを利用して前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したのを検知することを特徴とする。   The rotary penetration pile according to claim 1 of the present invention is a pile main body comprising an outer cylinder and an inner cylinder disposed in the tip portion of the outer cylinder in a state where the closed tip is exposed from the outer cylinder. A spiral wing provided along a circumferential surface near the tip of the inner cylinder exposed from the outer cylinder, and an enlarged digging blade provided on the spiral wing so as to be able to project radially outward of the pile main body; And a jet of a hardenable fluid provided on a circumferential surface of the inner cylinder, wherein the outer cylinder rotates the pile main body in a direction opposite to a direction in which the pile body is inserted into the ground. Is configured to be movable in the axial direction by a predetermined distance while rotating with respect to the shaft, and the enlarged digging blade is housed on the peripheral side of the spiral wing when the pile body is rotationally inserted into the ground, and the pile body is The outer cylinder rotates with respect to the inner cylinder when rotating in the direction opposite to the direction in which the rotary penetration is made. The outer cylinder is configured to protrude radially outward of the pile main body from the peripheral edge of the spiral wing, and the outer cylinder is rotated relative to the inner cylinder when the pile main body is rotated in a direction opposite to the rotational penetration direction. It is characterized in that movement by a predetermined distance in the axial direction is used to detect that the enlarged digging blade protrudes outward in the radial direction of the pile main body from the peripheral edge of the spiral wing.

本発明の請求項10に記載の、回転貫入杭を使用する根固めされた基礎の施工方法は、外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、前記内筒の周面に設けられた硬化性流動体の噴出口と、を備え、前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転しつつ軸方向に所定距離移動可能に構成され、前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出するように構成され、前記噴出口は、前記杭本体を地盤中に回転貫入させるときには前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときには前記外筒が前記内筒に対し回転して前記外筒により覆わられなくなる前記内筒の周面個所に設けられた、回転貫入杭を使用し、前記杭本体に硬化性流動体供給管を配置する準備工程と、前記杭本体を回転して前記螺旋翼の推進力により地盤中に所定深度まで回転貫入させる回転貫入工程と、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるその回転初期時において、前記外筒が前記内筒に対して軸方向に所定距離移動することを利用し、前記外筒の前記内筒に対する回転により前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したことを確認する確認工程と、前記確認工程後、前記杭本体を前記回転貫入させる方向と反対の方向に回転して前記所定深度から所定位置まで引き上げる間に、前記硬化性流動体供給管から前記外筒により覆わられなくなった前記噴出口を介して前記硬化性流動体を噴出しつつ、前記拡大掘削刃により前記螺旋翼の周辺の地盤を掘削する回転引上げ工程と、を備え、前記所定位置と前記所定深度との間で前記回転貫入工程と前記回転引上げ工程とを繰り返す間に、前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記噴出口から噴出された前記硬化性流動体とを撹拌混合させることを特徴とする。   In the method of construction of a rooted foundation using a rotary penetration pile according to claim 10 of the present invention, the outer cylinder and the inside of the tip portion of the outer cylinder with the closed tip exposed from the outer cylinder And a spiral wing provided along the outer peripheral surface of the inner cylinder near the tip end of the inner cylinder exposed from the outer cylinder, and the spiral wing radially outward of the pile main body And an outlet for a hardenable fluid provided on a circumferential surface of the inner cylinder, the outer cylinder being in a direction to rotationally insert the pile main body into the ground It is configured to be able to move a predetermined distance in the axial direction while rotating with respect to the inner cylinder when it is rotated in the opposite direction to the above, and the enlarged digging blade is used to rotationally insert the pile body into the ground. Of the pile body and rotated in the direction opposite to the direction in which the pile body is inserted. The outer cylinder rotates with respect to the inner cylinder when protruding to project radially outward of the pile main body from the peripheral edge of the helical wing, and the jet port rotates and inserts the pile main body into the ground The circumference of the inner cylinder which is covered by the outer cylinder when being made to rotate, and which is rotated relative to the inner cylinder when it is rotated in the direction opposite to the direction in which the pile body is made to penetrate. Preparation step of arranging a hardenable fluid supply pipe in the pile main body using a rotary penetration pile provided at a surface location, and rotating the pile main body to drive the helical wing to a predetermined depth in the ground The outer cylinder is moved by a predetermined distance in the axial direction with respect to the inner cylinder at the time of the rotational penetration step of rotational penetration to the end and the initial stage of rotation of rotating the pile main body in the direction opposite to the direction of the rotational penetration. Use A confirmation step of confirming that the enlarged excavating blade protrudes outward in a radial direction of the pile main body from a peripheral edge of the spiral wing by rotation of the outer cylinder with respect to the inner cylinder; and after the confirmation step, rotating the pile main body While rotating in the direction opposite to the penetrating direction and pulling up from the predetermined depth to the predetermined position, the curable fluid is supplied from the curable fluid supply pipe through the spout which is not covered by the outer cylinder. And rotating the step of excavating the ground around the spiral blade with the expanding blade, and repeating the step of rotating penetration and the step of rotating pulling between the predetermined position and the predetermined depth. In the meantime, the spiral fluid, the earth and sand excavated by the enlarged cutting blade, and the hardenable fluid ejected from the jet nozzle are stirred and mixed.

本発明によれば、杭の支持力を増加させることが出来る上に、杭本体を地盤に回転貫入させる方向と反対の方向に回転させるとき、外筒が内筒に対して軸方向に所定距離移動することを利用して拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出したのを検知するように構成してあるので、拡大掘削刃の突出をきわめて簡単な構成で確認することが可能である。   According to the present invention, the bearing capacity of the pile can be increased, and when the pile body is rotated in the direction opposite to the direction in which the pile is rotationally inserted into the ground, the outer cylinder is axially displaced from the inner cylinder by a predetermined distance. Since it is configured to detect that the enlarged cutting blade protrudes radially outward of the pile main body from the peripheral edge of the spiral wing by using movement, the protruding of the enlarged cutting blade is confirmed with a very simple configuration. It is possible.

本発明の回転貫入杭の第1実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁に収まった状態を示す概略斜視図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態を示す概略斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Example of the rotation penetration pile of this invention, (a) is a schematic perspective view which shows the state which the expansion excavation blade settled in the periphery of a helical wing, (b) is an expansion excavation blade being a peripheral edge of a helical wing. It is a schematic perspective view which shows the state which protruded to the radial direction outer side of a pile main body from them. 図1(a)に示す状態での回転貫入杭の詳細図で、(a)は一部省略した半裁縦断面図、(b)は一部省略した平面図、(c)は外筒と噴出口との関係を示す部分側面図である。FIG. 1A is a detailed view of the rotary penetration pile in the state shown in FIG. 1A, where (a) is a partially cut vertical sectional view partially omitted, (b) is a partially omitted plan view, and (c) is an outer cylinder and jet It is a partial side view showing a relation with an exit. 図1(b)に示す状態での回転貫入杭の詳細図で、(a)は一部省略した半裁縦断面図、(b)は一部省略した平面図、(c)は外筒と噴出口との関係を示す部分側面図である。It is a detailed view of the rotation penetration pile in the state shown in FIG. 1 (b), (a) is a partially cut vertical sectional view partially omitted, (b) a plan partially omitted, (c) an outer cylinder and a jet It is a partial side view showing a relation with an exit. 本発明の回転貫入杭の第2実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁に収まった状態での半裁縦断面図、(b)は同状態での一部省略した平面図である。It is a figure showing a 2nd example of a rotation penetration pile of the present invention, and (a) is a half cutting vertical sectional view in the state where an expansion excavation blade was settled in a peripheral edge of a spiral wing, (b) is partial omission in the same state FIG. 図4に示す回転貫入杭の拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での図で、(a)は同状態での一部省略した半裁縦断面図、(b)は同状態での一部省略した平面図である。Fig. 4 is a view in which the enlarged cutting edge of the rotary penetration pile shown in Fig. 4 protrudes outward in the radial direction of the pile main body from the peripheral edge of the spiral blade, where (a) is a partially cut vertical sectional view with the part omitted in the same state, b) is a partially omitted plan view in the same state. 本発明の回転貫入杭を使用する根固めされた基礎の施工方法の第1実施例を示す工程説明図で、(a)は回転貫入杭の先端部分が地盤中の支持層に到達する前の状態を示す図、(b)は回転貫入杭の先端が地盤中の支持層底部に到達した状態を示す図、(c)は回転貫入杭を回転貫入時とは反対の方向に回転させて支持層底部から引上げを開始した状態を示す図、(d)は回転貫入杭が支持層上部に引き上げられた状態を示す図、(e)は回転貫入杭の先端が支持層底部に戻った状態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is process explanatory drawing which shows 1st Example of the construction method of the rooted foundation which uses the rotation penetration pile of this invention, (a) is before the front-end | tip part of a rotation penetration pile reaches the support layer in the ground. (B) shows a state in which the tip of the rotary penetration pile has reached the bottom of the support layer in the ground, and (c) shows the support by rotating the rotary penetration pile in the opposite direction to that in rotational penetration Figure showing a state where pulling is started from the bottom of the layer, (d) shows a state where the rotary penetration pile is pulled to the top of the support layer, (e) shows a state where the tip of the rotary penetration pile returns to the bottom of the support layer FIG. 本発明の回転貫入杭の第3実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。It is a figure which shows 3rd Example of the rotation penetration pile of this invention, (a) is the partially-omitted top view in the state which the expansion excavation blade settled in the peripheral side of a helical wing, (b) is an expansion excavation blade It is the partially omitted top view in the state protruded in the radial direction outer side of a pile main body from the periphery of a helical wing. 図7に示す本発明の回転貫入杭の第1変形例で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。FIG. 7 shows a first modification of the rotary penetration pile according to the present invention, wherein (a) is a partially omitted plan view in a state in which the enlarged cutting edge is accommodated on the peripheral side of the spiral wing, (b) is the enlarged cutting edge These are the partially omitted top views in the state which protruded to the radial direction outer side of a pile main body from the periphery of a helical wing. 図7に示す本発明の回転貫入杭の第2変形例で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。7 is a second modification of the rotary penetration pile of the present invention shown in FIG. 7, wherein (a) is a partially omitted plan view in a state in which the enlarged cutting edge is accommodated on the peripheral side of the spiral blade, (b) is the enlarged cutting edge These are the partially omitted top views in the state which protruded to the radial direction outer side of a pile main body from the periphery of a helical wing. 本発明の回転貫入杭の第4実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まる一方、貫通部が閉じられた状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出する一方、貫通部が開かれた状態での一部省略した平面図である。It is a figure showing the 4th example of a rotation penetration pile of the present invention, and (a) is the top view which partially omitted in the state where a penetration part was closed, while an extended excavation blade fits in the peripheral side of a spiral wing. b) is the top view which partially omitted in the state in which the penetration part was opened, while an expansion excavation blade protrudes to the radial direction outer side of a pile main body from the periphery of a helical wing | blade. 本発明の回転貫入杭の第5実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。It is a figure which shows the 5th Example of the rotation penetration pile of this invention, (a) is the top view which partially abbreviate | omitted in the state which the expansion excavation blade settled in the peripheral side of a helical wing, (b) is an expansion excavation blade It is the partially omitted top view in the state protruded in the radial direction outer side of a pile main body from the periphery of a helical wing. 図11に示す本発明の回転貫入杭の変形例で、(a)は拡大掘削刃が螺旋翼の周縁側に収まった状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出した状態での一部省略した平面図である。11 is a modification of the rotary penetration pile of the present invention shown in FIG. 11, where (a) is a partially omitted plan view in a state in which the enlarged cutting blade is accommodated on the peripheral side of the spiral blade, (b) is a spiral drawing of the enlarged cutting blade It is the partially omitted top view in the state protruded in the radial direction outer side of a pile main body from the periphery of a wing | blade. 本発明の回転貫入杭の第6実施例を示す図で、(a)は拡大掘削刃が螺旋翼の周縁側に収まる一方、貫通部が閉じた状態での一部省略した平面図、(b)は拡大掘削刃が螺旋翼の周縁から杭本体の径方向外側に突出する一方、貫通部が開いた状態での一部省略した平面図である。It is a figure showing a 6th example of a rotation penetration pile of the present invention, and (a) is a top view partially omitted in the state where a penetration part was closed, while an extended excavation blade fits in the peripheral side of a spiral wing. ) Is a plan view partially omitted in a state in which the penetrating portion is open, while the enlarged drilling blade protrudes radially outward of the pile main body from the peripheral edge of the spiral wing. 掘削された土砂と硬化性流動体が貫通部を通って螺旋翼の一方の面側から他方の面側あるいは他方の面側から一方の面側に流動する状態を説明する説明図で、(a)は図7、図8又は図11に示す貫通部での掘削された土砂と硬化性流動体の流動状態の説明図、(b)は図9又は図12に示す貫通部での掘削された土砂と硬化性流動体の流動状態の説明図である。Explanatory drawing explaining the state from which the excavated earth and sand and the hardenable fluid flow from the one surface side of the spiral wing to the other surface side or the other surface side through the penetration part, (a 11 is an explanatory view of the flow state of excavated earth and sand and the hardenable fluid in the penetration shown in FIG. 7, FIG. 8 or FIG. 11, and (b) is excavated in the penetration shown in FIG. It is explanatory drawing of the flowing state of earth and sand and a hardenable fluid.

本発明の回転貫入杭の第1実施例について、図1(a)、(b)を参照してその概略を説明する。本実施例の回転貫入杭Aは、鋼管製の外筒11と、底蓋13で閉塞された先端が該外筒11から露出した状態で該外筒11の先端部分内に配置される鋼管製の内筒12を有する杭本体10と、外筒11から露出した内筒12の先端寄りの外周面に沿って設けられた略一巻の螺旋翼20と、螺旋翼20にその周方向に180°の開き角度をあけて配置された、杭本体10の径方向外側に突出可能な2枚の拡大掘削刃30と、内筒12の周面に設けられた硬化性流動体の噴出口40と、底蓋13に配置された先端掘削刃50と、を備える。地盤中で杭本体10を回転推進させる方向と反対の方向(地盤中から引き上げる方向)に回転させたとき、その回転初期時に外筒11が内筒12に対して所定角度回転しつつ所定距離軸方向(所定距離上方向)に移動する。地盤中への回転推進方向と反対の方向への回転初期時以降は、外筒11と内筒12は一体となって回転する。本実施例の回転貫入杭Aでは、この回転初期時に、外筒11が内筒12に対して所定角度回転することを利用して拡大掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出し、また外筒11の内筒12に対する回転で外筒11が内筒12に対して所定距離軸方向に移動することを利用して拡大掘削刃30が杭本体10の径方向外側に突出したことを検知するようにしている。なお、外筒11は、施工時に回転貫入杭Aの地盤中への貫入深さに応じて継ぎ足される。硬化性流動体は、施工時に流動性を有し施工後は時間の経過に伴い硬化するもので、例えばセメントや地盤固化材を水で溶いたミルク状のもの、あるいはこれに砂を加えたモルタルなどである。   The outline of a first embodiment of the rotary penetration pile of the present invention will be described with reference to FIGS. 1 (a) and 1 (b). The rotary penetration pile A of this embodiment is a steel pipe disposed in the tip portion of the outer cylinder 11 in a state in which the outer cylinder 11 made of steel pipe and the tip closed by the bottom lid 13 are exposed from the outer cylinder 11 In the circumferential direction of the pile main body 10 having the inner cylinder 12 and the spiral blade 20 of approximately one turn provided along the outer peripheral surface of the inner cylinder 12 exposed from the outer cylinder 11 near the tip of the inner cylinder 12 Two expansive drilling blades 30 which can be projected radially outward of the pile main body 10 and arranged with an opening angle of ° and a jet 40 of a hardenable fluid provided on the circumferential surface of the inner cylinder 12 , And a tip digging blade 50 disposed on the bottom lid 13. When the pile body 10 is rotated in the ground in the direction opposite to the direction in which the pile body 10 is rotationally propelled (in the direction of pulling up from the ground), the outer cylinder 11 rotates a predetermined angle with the inner cylinder 12 at the initial stage of rotation Move in the direction (upward by a predetermined distance). From the initial stage of rotation in the direction opposite to the direction of rotational propulsion into the ground, the outer cylinder 11 and the inner cylinder 12 rotate integrally. In the rotary penetration pile A of this embodiment, at the initial stage of rotation, the diameter of the pile main body 10 is increased from the peripheral edge of the spiral wing 20 by using the outer cylinder 11 rotating at a predetermined angle with respect to the inner cylinder 12. Of the outer cylinder 11 by moving the outer cylinder 11 in the axial direction by a predetermined distance with respect to the inner cylinder 12 by the rotation of the outer cylinder 11 with respect to the inner cylinder 12. It detects that it has protruded to the In addition, the outer cylinder 11 is added according to the penetration depth to the ground of the rotational penetration pile A at the time of construction. A hardenable fluid has fluidity at the time of construction and hardens with the passage of time after construction. For example, it is a milk-like one in which cement or a ground solidifying material is dissolved with water, or a mortar in which sand is added thereto. Etc.

図1(a)に示すように、前記外筒11の先端は略螺旋状に切り欠けられており、この切欠き部14を介して前記内筒12の先端寄りの外周面が外筒11から露出している。切欠き部14には、拡大掘削刃30が螺旋翼20の周縁に収まっている、図1(a)に示す状態において、螺旋翼20の一端部20aが係止する段部14aが設けられ、また拡大掘削刃30を構成する支持片32の内端部分32a(図2(b)参照)が収まる凹部14bが設けられる。   As shown in FIG. 1A, the tip of the outer cylinder 11 is cut in a substantially spiral shape, and the outer peripheral surface of the inner cylinder 12 near the tip is cut away from the outer cylinder 11 via the notch 14. It is exposed. The notch 14 is provided with a step 14a which is engaged with the one end 20a of the spiral blade 20 in the state shown in FIG. Moreover, the recessed part 14b which the inner end part 32a (refer FIG.2 (b)) of the support piece 32 which comprises the expansion cutting blade 30 accommodates is provided.

前記内筒12の内部は、図2(a)、図3(a)に示すように、仕切板15を介して上下2つの部屋15a、15bに区画されていて、下方の部屋15bの周壁に前記噴出口40が設けられ、上方の部屋15aに硬化性流動体供給管60の先端部分を着脱可能に受け入れる受入管61が設けられる。受入管61の下端は仕切板15の中央部分に設けた穴15cに接続される。硬化性流動体供給管60から受入れ管61と穴15cを介して下方の部屋15bに硬化性流動体が供給され、噴出口40から杭本体10の径方向外側に向けて噴出される。なお、受入管61の内周面には軸方向に適宜間隔をあけて弾性リング62が複数個(図2(a)、図3(a)では3個)配置され、硬化性流動体供給管60と受入管61との隙間から硬化性流動体が漏れないようにしている。   As shown in FIGS. 2 (a) and 3 (a), the inside of the inner cylinder 12 is divided into upper and lower two rooms 15a and 15b via a partition plate 15, and the inner wall of the lower room 15b is The jet nozzle 40 is provided, and a receiving pipe 61 for detachably receiving the tip portion of the curable fluid supply pipe 60 in the upper chamber 15a is provided. The lower end of the receiving pipe 61 is connected to a hole 15 c provided in the central portion of the partition plate 15. The curable fluid is supplied from the curable fluid supply pipe 60 to the lower chamber 15 b through the receiving pipe 61 and the hole 15 c, and the curable fluid is spouted from the spout 40 outward in the radial direction of the pile main body 10. A plurality of elastic rings 62 (three in FIG. 2A and FIG. 3A) are disposed on the inner peripheral surface of the receiving pipe 61 at appropriate intervals in the axial direction, and a curable fluid supply pipe is provided. The hardening fluid is prevented from leaking from the gap between 60 and the receiving pipe 61.

前記外筒11の先端部分の内周面とこの内周面に覆われる前記内筒12の外周面には、図2(a)、図3(a)に示すように、前記螺旋翼20と同一ピッチのねじ部16、ねじ部17が設けられ、これらねじ部16,17を介して内筒12が外筒11の先端部分内に螺合して配置される。外筒11の内周面には、ねじ部16の近傍位置に抜け止めストッパー18が設けられ、外筒11が内筒12に対して回転することに伴って外筒11が軸方向に移動すると抜け止めストッパー18が内筒12のねじ部17に当たり、外筒11がそれ以上移動しないようにしている。本実施例では、抜け止めストッパー18により外筒11が内筒12に対し1回転して外筒11が軸方向に1ピッチ分移動したらそこで止まるように設定している。   As shown in FIG. 2 (a) and FIG. 3 (a), the inner peripheral surface of the tip end portion of the outer cylinder 11 and the outer peripheral surface of the inner cylinder 12 covered with the inner peripheral surface The threaded portion 16 and the threaded portion 17 having the same pitch are provided, and the inner cylinder 12 is screwed into the tip portion of the outer cylinder 11 via the threaded portions 16 and 17. On the inner peripheral surface of the outer cylinder 11, a stopper 18 is provided at a position near the screw portion 16, and when the outer cylinder 11 moves in the axial direction as the outer cylinder 11 rotates with respect to the inner cylinder 12. The stopper 18 abuts against the screw portion 17 of the inner cylinder 12 so that the outer cylinder 11 can not move further. In this embodiment, the outer cylinder 11 is rotated once with respect to the inner cylinder 12 by the stopper 18 and the outer cylinder 11 is set so as to stop there when it is moved by one pitch in the axial direction.

前記螺旋翼20は、前記外筒11の外径の2倍乃至3倍の外径を有する。回転貫入杭A(杭本体10)を地盤中に回転貫入させる方向に回転(正回転)している間、螺旋翼20の一端部20aと前記切欠き部14の段部14aとは、その係止状態が維持され(図1(a)参照)、外筒11が内筒12に対して回転するのを防止する。したがって、杭本体10を正回転させて地盤中に回転貫入させる間は外筒11と内筒12が一体となって回転して地盤中に貫入する。   The spiral wing 20 has an outer diameter twice to three times the outer diameter of the outer cylinder 11. While the rotary penetration pile A (pile main body 10) is rotated (positively rotated) in the direction to rotationally insert the ground into the ground, the one end 20a of the spiral wing 20 and the step 14a of the notch 14 The stopped state is maintained (see FIG. 1A) to prevent the outer cylinder 11 from rotating relative to the inner cylinder 12. Therefore, while the pile main body 10 is rotated forward and rotationally inserted into the ground, the outer cylinder 11 and the inner cylinder 12 integrally rotate and penetrate into the ground.

一方、杭本体10を地盤中に回転貫入させる方向と反対の方向に回転(逆回転)させると、その回転初期時において外筒11が内筒12に対して1回転してねじ部16、ねじ部17の1ピッチ分軸方向上方に移動するが、前記抜け止めストッパー18が外筒11の内筒12に対する1ピッチ分以上の移動を防止し、その後は外筒11と内筒12とが一体となって回転し、地盤中から後退する(引き上げられる)。   On the other hand, when the pile body 10 is rotated (reversely rotated) in the direction opposite to the direction in which the pile body 10 is inserted into the ground, the outer cylinder 11 makes one rotation with respect to the inner cylinder 12 at the initial stage of the rotation. The retaining stopper 18 prevents movement of the outer cylinder 11 relative to the inner cylinder 12 by more than one pitch, and thereafter the outer cylinder 11 and the inner cylinder 12 are integrated. And rotate and retreat from the ground (pulled up).

前記拡大掘削刃30は、図2(a)、図3(a)等に示すように、前記杭本体10の軸方向に延びる掘削刃片31と、この掘削刃片31を前記螺旋翼20に取り付ける1対の支持片32とを備える。1対の支持片32は、螺旋翼20の面部を挟み込み且つ前記内筒12寄りの内端側が螺旋翼20の面部を軸方向に貫通する枢軸33により螺旋翼20に搖動可能に取り付けられる。1対の支持片32の螺旋翼20の周縁側の外端部に掘削刃片31が固定(溶接)される。掘削刃片31は、枢軸33を支点として螺旋翼20に対して搖動(回動)し、螺旋翼20の周縁から杭本体10の径方向外側の突出可能である。
As shown in FIG. 2 (a), FIG. 3 (a), etc., the enlarged cutting blade 30 has a cutting blade 31 extending in the axial direction of the pile main body 10 and the cutting blade 31 as the spiral blade 20. And a pair of support pieces 32 to be attached. The pair of support pieces 32 sandwich the surface portion of the spiral wing 20, and the inner end side closer to the inner cylinder 12 is pivotally attached to the spiral wing 20 by a pivot 33 axially penetrating the surface portion of the spiral wing 20. The cutting edge piece 31 is fixed (welded) to the outer end of the peripheral side of the spiral wing 20 of the pair of support pieces 32 . The cutting blade piece 31 swings (rotates) with respect to the spiral wing 20 with the pivot 33 as a fulcrum, and can project radially outward of the pile main body 10 from the peripheral edge of the spiral wing 20.

前記杭本体10を正回転させて地盤中に回転貫入させる際には、前記螺旋翼20に作用する地盤の摩擦力は、図2(b)の矢印Bに示すように、前記拡大掘削刃30を螺旋翼20の周縁側に押圧するように作用する。このため、図2(b)、(c)に示すように、拡大掘削刃30は、その支持片32の内端部分32aが前記外筒11の切欠き部14に設けた凹部14b内に止まり、掘削刃片31が螺旋翼20の周縁側に収まっている。一方、杭本体10を逆回転させて地盤中から引き上げる際には、螺旋翼20に作用する地盤の摩擦力は、図3(b)の矢印Cに示すように、拡大掘削刃30を螺旋翼20の周縁から杭本体10の周縁から径方向外側に押し出す方向に作用する。この逆回転の回転初期時には、外筒11が前記内筒12に対して回転し、支持片32はその内端部分32aが、図1(b)、図3(b)に示すように、外筒11の切欠き部14の凹部14bに押されて枢軸33を支点として回転し、掘削刃片31が螺旋翼20の周縁から杭本体10の径方向外側に突出する。すなわち、逆回転の回転初期時に、拡大掘削刃30には、外筒11から杭本体10の径方向外側への押し出し力が作用する。拡大掘削刃30は、地盤からの摩擦力と外筒11からの押し出し力とが相俟ってその掘削刃片31が杭本体10の径方向外側に確実に突出する。   When the pile main body 10 is rotated forward to be inserted into the ground, the frictional force of the ground acting on the spiral blade 20 is the expanded cutting blade 30 as shown by the arrow B in FIG. 2 (b). Acts on the peripheral side of the spiral wing 20. For this reason, as shown in FIGS. 2 (b) and 2 (c), in the enlarged cutting blade 30, the inner end portion 32a of the support piece 32 stops in the recess 14b provided in the notch 14 of the outer cylinder 11. The cutting blade 31 is accommodated on the peripheral side of the spiral blade 20. On the other hand, when pulling up the pile main body 10 from the ground in reverse, the frictional force of the ground acting on the spiral blade 20 is as shown by arrow C in FIG. It acts in a direction of pushing radially outward from the peripheral edge of the pile main body 10 from the peripheral edge 20. At the initial stage of the reverse rotation, the outer cylinder 11 is rotated relative to the inner cylinder 12, and the support piece 32 has an outer end portion 32a, as shown in FIGS. 1 (b) and 3 (b). The excavating blade 31 is pushed by the recess 14 b of the notch 14 of the cylinder 11 and rotates around the pivot 33, and the digging blade piece 31 protrudes outward in the radial direction of the pile main body 10 from the peripheral edge of the spiral wing 20. That is, at the initial stage of the reverse rotation, a pushing force from the outer cylinder 11 to the radially outer side of the pile main body 10 acts on the enlarged cutting blade 30. The friction between the ground and the pushing force of the outer cylinder 11 combine to ensure that the cutting edge 31 of the enlarged cutting edge 30 projects outward in the radial direction of the pile body 10.

前記拡大掘削刃30は、前記杭本体10を正回転させて地盤中に回転貫入させる際には螺旋翼20の周縁側に収まっているので、ほとんど回転貫入抵抗にはならない。また、拡大掘削刃30は、杭本体10を地盤中で逆回転させるときその掘削刃片31が杭本体10の径方向外側に突出して掘削面積を拡大させる。したがって、杭本体10を地盤中で正回転と逆回転を繰り返して上下動させると、螺旋翼20単独の場合に比して螺旋翼20の周囲の土砂をより多く掘削軟化させることが出来る。   When the enlarged excavating blade 30 rotates and enters the ground by rotating the pile main body 10 forward, the enlarged excavating blade 30 is accommodated on the peripheral side of the spiral blade 20, and therefore hardly causes rotational penetration resistance. In addition, when the pile body 10 is reversely rotated in the ground, the cutting blade piece 31 of the enlarged cutting blade 30 protrudes outward in the radial direction of the pile body 10 to enlarge the digging area. Therefore, when the pile main body 10 is repeatedly moved up and down in the ground by rotating forward and reverse repeatedly, it is possible to dig and soften more soil around the spiral blade 20 than in the case of the spiral blade 20 alone.

図1(a)、(b)等に示すように、前記外筒11の杭頭部上端に位置する前記硬化性流動体供給管60の外周面の個所にはペイントなどでマーク70が付けられている。外筒11が前記内筒12に対して前記ねじ部16、17の1ピッチ分軸方向上方に移動したときにマーク70が外筒11の杭頭部内に隠れる。これは外筒11が内筒12に対して1回転した結果であり、上述したように、この外筒11の1回転によって前記拡大掘削刃30が前記螺旋翼20の周縁から杭本体10の径方向外側に突出する。したがって、マーク70が外筒11の杭頭部内に隠れたことを観測することにより拡大掘削刃30が杭本体10の径方向外側に突出したことを検知することが出来る。 As shown in FIGS. 1 (a) and 1 (b) etc., a mark 70 is attached by paint or the like on the outer peripheral surface of the curable fluid supply pipe 60 located at the upper end of the pile head of the outer cylinder 11. ing. When the outer cylinder 11 is moved upward in the axial direction by one pitch of the screw portions 16 and 17 with respect to the inner cylinder 12 , the mark 70 is hidden in the pile head of the outer cylinder 11. This is a result of the outer cylinder 11 rotating one turn with respect to the inner cylinder 12, and as described above, the diameter of the pile main body 10 from the peripheral edge of the spiral blade 20 is the enlarged drilling blade 30 by one rotation of the outer cylinder 11. Protrudes outward in the direction. Therefore, by observing that the mark 70 is hidden in the pile head of the outer cylinder 11, it is possible to detect that the enlarged cutting blade 30 protrudes outward in the radial direction of the pile main body 10.

本実施例では、地盤中で杭本体10を逆回転させたとき、その回転初期時に外筒11が内筒12に対しねじ部16、17の1ピッチ分軸方向上方に移動することを利用して、拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知するのに、硬化性流動体供給管60の外周面にマーク70を付した場合を示したが、これに限定されるものではない。例えば、地盤から露出した外筒11の杭頭部上端に定規などを当てて杭頭部の高さの変化を計測することにより検知するようにしてもよい。   In this embodiment, when the pile main body 10 is reversely rotated in the ground, the outer cylinder 11 is moved axially upward by one pitch of the screw portions 16 and 17 with respect to the inner cylinder 12 at the initial stage of the rotation. To indicate that the mark 70 is provided on the outer peripheral surface of the hardenable fluid supply pipe 60 in order to detect that the enlarged cutting blade 30 protrudes outward in the radial direction of the pile main body 10 from the peripheral edge of the spiral wing 20 However, it is not limited to this. For example, a change in height of the pile head may be measured by placing a ruler or the like on the upper end of the pile head of the outer cylinder 11 exposed from the ground.

前記噴出口40は、例えば逆止弁などから構成されていて、前記部屋15bから地盤中の掘削された土砂に硬化性流動体を噴出させることが出来るが、地盤中の掘削された土砂が部屋15b内に流入するのを防止する機能を有する。噴出口40は、図1(b)、図3(c)に示すように前記内筒12の周面の前記螺旋翼20の一端部20aと他端部20bとの間に位置している。噴出口40は、杭本体10を地盤中に回転貫入させる正回転時には図1(a)、図2(c)に示すように外筒11により覆われて(外筒11が閉じて)保護され、杭本体10を地盤中から引き上げる逆回転時には図1(b)、図3(c)に示すように外筒11により覆われなくなり(外筒11が開き)、硬化性流動体の噴出が可能となる。   Although the said spout 40 is comprised, for example from a non-return valve etc., although the hardenable fluid can be spouted to the excavated earth and sand in the ground from the said room 15b, the excavated earth and sand in the ground is a room It has a function to prevent it from flowing into 15b. The jet nozzle 40 is located between one end 20a and the other end 20b of the spiral wing 20 on the circumferential surface of the inner cylinder 12, as shown in FIGS. 1 (b) and 3 (c). The jet nozzle 40 is covered and protected by the outer cylinder 11 (the outer cylinder 11 is closed) as shown in FIG. 1 (a) and FIG. 2 (c) at the time of forward rotation in which the pile body 10 is rotationally inserted into the ground. When the pile body 10 is pulled up from the ground, as shown in FIG. 1 (b) and FIG. 3 (c), it is not covered by the outer cylinder 11 (the outer cylinder 11 opens), and the curable fluid can be jetted It becomes.

以上説明したように、本第1実施例の回転貫入杭Aによれば、拡大掘削刃30により支持力を増加させることが出来る上に、外筒11の杭頭部上端に位置する硬化性流動体供給管60の外周面の個所にマーク70を付し、このマーク70を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、検知手段としてのマーク70はペイントなどで簡単に付すことができてコストがかからずに済む。また、杭本体10を地盤中で逆回転させる際、その回転初期時に外筒11が内筒12に対し回転して、拡大掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出す力が作用し、この押し出し力と地盤から螺旋翼20に作用する摩擦力(図3(b)の矢印C参照)とが相俟って掘削刃片31を杭本体10の径方向外側に確実に突出させることが出来る。さらに、噴出口40は、杭本体10を正回転させて地盤中に回転貫入させる際には外筒11に覆われて螺旋翼20の周囲の土砂から保護されるので、噴出口40を構成する逆止弁として汎用品を使用することが出来、コストダウンを図ることが可能である。さらにまた、杭本体10を地盤中で逆回転させると外筒11が開き、何ら支障なく硬化性流動体供給管60から供給された硬化性流動体を螺旋翼20の周囲にある掘削された土砂に向けて噴出することが出来る。   As described above, according to the rotary penetration pile A of the first embodiment, the supporting force can be increased by the enlarged digging blade 30, and the hardenable flow located at the upper end of the pile head of the outer cylinder 11 A mark 70 is attached to a point on the outer peripheral surface of the body supply pipe 60, and by observing the mark 70, the enlarged cutting blade 30 protrudes radially outward of the pile main body 10 from the peripheral edge of the spiral wing 20 in the ground. Can be detected. Further, the mark 70 as a detection means can be easily attached by paint or the like, and the cost can be reduced. Further, when the pile body 10 is reversely rotated in the ground, the outer cylinder 11 rotates relative to the inner cylinder 12 at the initial stage of the rotation, and the enlarged cutting blade 30 is made from the peripheral edge of the spiral wing 20 radially outward of the pile body 10 The extruding force acts, and the extruding force and the frictional force acting on the spiral blade 20 from the ground (see arrow C in FIG. 3B) combine to make the cutting blade 31 radially outward of the pile body 10 It can be made to project reliably. Furthermore, since the spout 40 is covered by the outer cylinder 11 and protected from the earth and sand around the spiral wing 20 when the pile body 10 is rotated forward and rotated into the ground, the spout 40 is configured A general purpose product can be used as a check valve, and cost reduction can be achieved. Furthermore, when the pile main body 10 is reversely rotated in the ground, the outer cylinder 11 is opened, and the hardened fluid supplied from the hardenable fluid supply pipe 60 without any trouble is excavated in the soil around the spiral wing 20 You can spout towards the

図4(a)、(b)、図5(a)、(b)は、本発明の回転貫入杭の第2実施例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Fig.4 (a), (b), FIG. 5 (a), (b) has shown 2nd Example of the rotation penetration pile of this invention. In the figure, the same reference numerals are given to the same parts as the parts shown in FIGS. 1 (a) and 1 (b), 2 (a), 2 (b) and 2 (c) and 3 (a), 3 (b) and 3 (c). And the detailed description is omitted.

本第2実施例の回転貫入杭Aaでは、前記拡大掘削刃30を前記杭本体10の径方向外側に突出させる機構が上述した第1実施例の回転貫入杭Aと相違し、これ以外の部分については同一である。この突出させる機構は、前記外筒11側に設けられたピン80とこのピン80が摺動可能に係合する前記拡大掘削刃30側に設けられた溝部81とから構成され、杭本体10を逆回転させる回転初期時に外筒11が内筒12に対して回転するのに伴ってピン80が溝部81内を摺動することにより前記枢軸33を支点として拡大掘削刃30を回動して杭本体10の径方向外側に突出させる。ピン80は、1対の拡大掘削刃30に対応する、外筒11の先端部分の外周面個所にそれぞれ設けられた略扇形状の支持突起82に、外筒11の軸方向に延びるように取り付けられる。溝部81は、前記1対の支持片32のうち、螺旋翼20の表面(上面)側の支持片32の内端部に、前記枢軸33方向に延びるように設けられる。   In the rotary penetration pile Aa of the second embodiment, the mechanism for causing the enlarged excavating blade 30 to protrude outward in the radial direction of the pile main body 10 is different from the rotary penetration pile A of the first embodiment described above, Is the same. The protruding mechanism is composed of a pin 80 provided on the outer cylinder 11 side and a groove 81 provided on the enlarged cutting blade 30 side engaged with the pin 80 in a slidable manner. When the outer cylinder 11 rotates relative to the inner cylinder 12 at the initial stage of reverse rotation, the pin 80 slides in the groove 81 to rotate the enlarged cutting blade 30 about the pivot 33 as a pivot. It projects outward in the radial direction of the main body 10. The pin 80 is attached to a substantially fan-shaped support projection 82 provided on the outer peripheral surface of the tip end portion of the outer cylinder 11 corresponding to the pair of enlarged cutting blades 30 so as to extend in the axial direction of the outer cylinder 11 Be The groove portion 81 is provided in the inner end portion of the support piece 32 on the surface (upper surface) side of the spiral wing 20 of the pair of support pieces 32 so as to extend in the direction of the pivot axis 33.

前記杭本体10を正回転させて地盤中に回転貫入させる際には、前記螺旋翼20に作用する地盤の摩擦力は、図4(b)の矢印Dに示すように、前記拡大掘削刃30を螺旋翼20の周縁側に押圧するように作用し、拡大掘削刃30はその掘削刃片31が螺旋翼20の周縁側に収まっている。一方、杭本体10を逆回転させて地盤中から引き上げる際には、螺旋翼20に作用する地盤の摩擦力は、図5(b)の矢印Eに示すように、拡大掘削刃30を螺旋翼20の周縁から杭本体10の周縁から径方向外側に押し出す方向に作用する。この逆回転の回転初期時には、外筒11が前記内筒12に対して回転し、この回転に伴ってピン80が溝部81内を摺動することにより前記枢軸33を支点として拡大掘削刃30を回動させて杭本体10の径方向外側に突出させる力が作用する。拡大掘削刃30は、地盤からの摩擦力とピン80と溝部81を介して伝達される外筒11からの力とが相俟ってその掘削刃片31が杭本体10の径方向外側に確実に突出する。   When the pile main body 10 is rotated forward to be inserted into the ground, the frictional force of the ground acting on the spiral blade 20 is the expanded cutting blade 30 as shown by the arrow D in FIG. 4 (b). Of the enlarged cutting blade 30 is accommodated on the peripheral side of the spiral blade 20. On the other hand, when pulling up the pile main body 10 from the ground in reverse, the frictional force of the ground acting on the spiral blade 20 is as shown by arrow E in FIG. 5 (b). It acts in a direction of pushing radially outward from the peripheral edge of the pile main body 10 from the peripheral edge 20. At the initial stage of the reverse rotation, the outer cylinder 11 rotates with respect to the inner cylinder 12 and the pin 80 slides in the groove 81 along with the rotation, whereby the enlarged cutting blade 30 is pivoted on the pivot 33 as a fulcrum. A force acts to cause the pile body 10 to project radially outward by rotating it. The enlarged cutting blade 30 has a force of friction from the ground and a force from the outer cylinder 11 transmitted through the pin 80 and the groove 81 to ensure that the cutting blade 31 is on the radially outer side of the pile body 10 Project to

本第2実施例の回転貫入杭Aaも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   Similarly to the rotary penetration pile A of the first embodiment described above, the rotary penetration pile Aa of the second embodiment can also increase the supporting force by the enlarged digging blade 30, and observe the mark 70. Thus, it is possible to detect that the enlarged drilling blade 30 protrudes radially outward of the pile main body 10 from the peripheral edge of the spiral wing 20 in the ground. Further, at the initial stage of rotation in which the pile main body 10 is reversely rotated, the enlarged drilling blade 30 can be reliably protruded to the radially outer side of the pile main body 10.

なお、前記杭本体10を逆回転させる回転初期時に、前記外筒11が前記内筒12に対して回転することを利用して前記拡大掘削刃30を前記螺旋翼20の周縁から杭本体10の径方向外側に突出させる機構は、図1(a)、(b)乃至図5(a)、(b)に示す2つの実施例の機構に限定されるものではない。   In the initial stage of rotation in which the pile main body 10 is reversely rotated, the enlarged excavating blade 30 is moved from the peripheral edge of the spiral wing 20 by utilizing the rotation of the outer cylinder 11 with respect to the inner cylinder 12. The mechanism for projecting radially outward is not limited to the mechanisms of the two embodiments shown in FIGS. 1 (a) and (b) to 5 (a) and 5 (b).

次に、図6(a)乃至(e)を参照して本発明の回転貫入杭を使用する根固めされた基礎の施工方法の一実施例を説明する。本実施例の施工方法では、図1(a)、(b)乃至図3(a)、(b)、(c)に示す第1実施例の回転貫入杭Aを使用している。図中、図1(a)、(b)乃至図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Next, with reference to FIGS. 6 (a) to 6 (e), one embodiment of a method of constructing a rooted foundation using the rotary penetration pile of the present invention will be described. In the construction method of the present embodiment, the rotary penetration pile A of the first embodiment shown in FIGS. 1 (a), (b) to 3 (a), (b), (c) is used. In the figure, the same parts as the parts shown in FIG. 1 (a), (b) to FIG. 3 (a), (b) and (c) are assigned the same reference numerals and detailed explanations thereof will be omitted.

まず、回転貫入杭Aを地盤中に回転貫入する前に硬化性流動体供給管60の先端部分を受入管61(図2(a)等参照)に差し込むなどの準備をしておく。この準備工程後、図6(a)、(b)に示す回転貫入工程に移る。   First, the tip portion of the hardenable fluid supply pipe 60 is inserted into the receiving pipe 61 (see, for example, FIG. 2A) before the rotary penetration pile A is rotationally penetrated into the ground. After this preparation process, the process proceeds to the rotational penetration process shown in FIGS. 6 (a) and 6 (b).

図6(a)は、回転貫入工程において、回転貫入杭Aの先端部分が地盤中の支持層Sに到達する前の状態を示す。同図に示すように、回転駆動装置を搭載した地上の杭打機(図示せず)により杭本体10は回転駆動(正回転)されて螺旋翼20のねじ込み作用(推進力)を利用して地中に回転貫入する。この回転貫入の際、先端掘削刃50が地盤を掘削しつつ杭本体10が貫入するので、地盤が固い場合でも杭本体10の貫入がスムーズに行われる。なお、地盤が余り固くない場合には先端掘削刃50を設けなくても支障なく杭本体10を地盤中に貫入させることが出来る。   Fig.6 (a) shows the state before the front-end | tip part of rotation penetration pile A reaches | attains the support layer S in the ground in a rotation penetration process. As shown in the figure, the pile main body 10 is rotationally driven (positively rotated) by a ground driving machine (not shown) on which the rotary drive is mounted, and the screwing action (propulsive force) of the spiral wing 20 is utilized. Penetration into the ground. At the time of this rotational penetration, the pile body 10 penetrates while digging the ground while the tip digging blade 50 digging in, so that the pile body 10 smoothly penetrates even when the ground is hard. In addition, when the ground is not very hard, the pile main body 10 can be penetrated into the ground without any trouble even if the tip digging blade 50 is not provided.

回転貫入工程は、図6(b)に示すように、杭本体10の先端部分が、支持層S中の根固め体F(図6(c)乃至(e)参照)の下端が位置する予定の深度(支持層Sの底部)に到達するまで続行する。支持層Sの底部に到達したら、外筒11の杭頭部上端に位置する硬化性流動体供給管60の外周面の個所にペイントなどでマーク70を付す。回転貫入工程では、螺旋翼20の周囲の土砂から螺旋翼20に作用する摩擦力により拡大掘削刃30が螺旋翼20の周縁側に収められており、拡大掘削刃30が杭本体10の回転貫入抵抗になることがない。   In the rotational penetration step, as shown in FIG. 6 (b), the tip end portion of the pile body 10 is scheduled to locate the lower end of the rooted body F (see FIGS. 6 (c) to 6 (e)) in the support layer S. Continue until it reaches the depth of (bottom of support layer S). When the bottom of the support layer S is reached, a mark 70 is provided by paint or the like on the outer peripheral surface of the hardenable fluid supply pipe 60 located at the upper end of the pile head of the outer cylinder 11. In the rotational penetration process, the enlarged drilling blade 30 is accommodated on the peripheral side of the spiral blade 20 by the frictional force acting on the spiral blade 20 from the soil around the spiral blade 20, and the enlarged drilling blade 30 is a rotational intrusion of the pile body 10 It does not become resistance.

上記回転貫入工程後、杭本体10を回転貫入時と反対の方向に回転(逆回転)させるその回転初期時において、外筒11が内筒12に対して回転するので、これを利用して拡大掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出し、またこの回転に伴って外筒11が内筒12に対して所定距離軸方向に移動するので、これを利用して拡大掘削刃30が杭本体10の径方向外側に突出したことを確認する。すなわち、この確認工程では、外筒11が内筒12に対して回転しつつ所定距離軸方向に移動することを利用して掘削刃30を螺旋翼20の周縁から杭本体10の径方向外側に押し出す一方で、拡大掘削刃30が杭本体10の径方向外側に突出したことを確認する。本実施例では、地盤表面上に位置する外筒11の杭頭部上端に位置していた硬化性流動体供給管60の外周面のマーク70が外筒11の杭頭部内に隠れたことを観測することで拡大掘削刃30が杭本体10の径方向外側に突出したことを確認している(図6(c)参照)。   Since the outer cylinder 11 rotates with respect to the inner cylinder 12 at the initial stage of rotation in which the pile main body 10 is rotated (reversely rotated) in the direction opposite to the rotational penetration after the above-mentioned rotation penetration process, enlargement is performed using this The excavating blade 30 is pushed outward from the peripheral edge of the spiral blade 20 in the radial direction of the pile main body 10, and the outer cylinder 11 is moved in the axial direction by a predetermined distance with respect to the inner cylinder 12 along with this rotation. It is confirmed that the enlarged cutting blade 30 protrudes outward in the radial direction of the pile body 10. That is, in this confirmation step, the excavating blade 30 is moved from the peripheral edge of the spiral wing 20 radially outward of the pile main body 10 by utilizing the movement of the outer cylinder 11 in the axial direction while rotating with respect to the inner cylinder 12. While extruding, it is confirmed that the enlarged drilling blade 30 protrudes radially outward of the pile main body 10. In this embodiment, the mark 70 on the outer peripheral surface of the hardenable fluid supply pipe 60 located at the upper end of the pile head of the outer cylinder 11 located on the ground surface is hidden in the pile head of the outer cylinder 11 It is confirmed that the enlarged cutting blade 30 protrudes outward in the radial direction of the pile main body 10 by observing the (see FIG. 6C).

上記確認工程において、硬化性流動体供給管60の外周面のマーク70が、外筒11の杭頭部内に隠れたときには、外筒11により拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したこと、また外筒11が噴出口40を覆わず開いたことを示すので、この確認工程後に杭本体10をさらに逆回転させて支持層S中で引き上げる回転引上げ工程に移る。この回転引上げ工程では、図6(c)に示すように、杭本体10を逆回転させつつ、噴出口40から硬化性流動体を噴出する。杭本体10は支持層Sの底部から上方に移動し、その移動の過程で杭本体10の径方向外側に突出した拡大掘削刃30により螺旋翼20の周囲の地盤を掘削する。すなわち、拡大掘削しつつ、掘削された土砂と噴出された硬化性流動体とを撹拌混合する。   In the confirmation step, when the mark 70 on the outer peripheral surface of the hardenable fluid supply pipe 60 is hidden in the pile head of the outer cylinder 11, the enlarged cutting blade 30 is piled from the peripheral edge of the spiral wing 20 by the outer cylinder 11. Since it indicates that it has been projected outward in the radial direction of 10 and that the outer cylinder 11 has opened without covering the spout 40, the rotary pull-up process of pulling up the pile body 10 further in reverse in the support layer S after this confirmation process. Move to In the rotational pulling process, as shown in FIG. 6C, the hardenable fluid is ejected from the ejection port 40 while the pile main body 10 is reversely rotated. The pile body 10 moves upward from the bottom of the support layer S, and excavates the ground around the spiral wing 20 with an enlarged cutting blade 30 projecting radially outward of the pile body 10 in the process of the movement. That is, while carrying out the expanded excavation, the excavated earth and sand and the ejected curable fluid are stirred and mixed.

上記回転引上げ工程は、図6(d)に示すように、杭本体10の先端部分が、根固め体Fの上端が位置する予定の深度(支持層Sの上部)に達するまで行う。杭本体10の先端部分が支持層Sの上部に達したら、杭本体10を正回転するが、この杭本体10の正回転は既に掘削された支持層Sの個所で行われることから、拡大掘削刃30を螺旋翼20の周縁に押し付ける地盤の摩擦力は弱く、拡大掘削刃30は杭本体10の径方向外側に突出したままである。支持層S中で杭本体10を正回転しながら拡大掘削及び撹拌混合を行う。この回転貫入,拡大掘削及び撹拌混合は、図6(e)に示すように、杭本体10の先端部分が支持層Sの底部に達するまで行う。   The said rotation pulling-up process is performed until the front-end | tip part of the pile main body 10 reaches the planned depth (upper part of the support layer S) where the upper end of the rooted body F is located, as shown in FIG.6 (d). When the tip portion of the pile main body 10 reaches the upper portion of the support layer S, the pile main body 10 is positively rotated, but the positive rotation of the pile main body 10 is performed at the portion of the support layer S already excavated. The frictional force of the ground pressing the blade 30 against the peripheral edge of the spiral wing 20 is weak, and the enlarged cutting blade 30 still protrudes radially outward of the pile body 10. Enlargement drilling and agitation mixing are performed while rotating the pile main body 10 forward in the support layer S. This rotational penetration, expansion drilling and agitation mixing are performed until the tip portion of the pile body 10 reaches the bottom of the support layer S, as shown in FIG. 6 (e).

杭本体10の先端部分が支持層Sの底部に達したら、回転貫入工程(図6(e)参照)から回転引上げ工程(図6(d)参照)に移る。回転貫入工程の後、回転引上げ工程と拡大掘削及び撹拌混合を繰り返して杭本体10を支持層S内で複数回上下動させる。これにより、螺旋翼20と拡大掘削刃30で掘削された土砂は、噴出口40から噴出された硬化性流動体と螺旋翼20と拡大掘削刃30を使って撹拌混合される。この撹拌混合は、掘削された土砂の性状や使用する硬化性流動体の性状などにより異なるが、例えば、回転貫入工程の後、杭本体10の上下動による撹拌混合を十数回繰り返して行う。   When the tip end portion of the pile body 10 reaches the bottom of the support layer S, the process proceeds from the rotational penetration process (see FIG. 6E) to the rotational pulling process (see FIG. 6D). After the rotational penetration process, the pile body 10 is moved up and down a plurality of times in the support layer S by repeating the rotational pull-up process and the expansion drilling and agitation mixing. As a result, the earth and sand excavated by the spiral blade 20 and the enlarged cutting blade 30 are stirred and mixed using the hardenable fluid ejected from the jet 40, the spiral blade 20 and the enlarged cutting blade 30. Although this stirring and mixing varies depending on the properties of excavated earth and sand, and the properties of the hardenable fluid to be used, for example, after the rotation penetration process, the stirring and mixing by the vertical movement of the pile body 10 is repeated ten times.

以上のようにして地盤中の掘削された土砂を硬化性流動体で固化した根固め体Fが支持層S内に完成する。   As described above, the rooting body F obtained by solidifying the excavated earth and sand in the ground with the hardenable fluid is completed in the support layer S.

図7(a)、(b)は、本発明の回転貫入杭の第3実施例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   7 (a) and 7 (b) show a third embodiment of the rotary penetration pile of the present invention. In the figure, the same reference numerals are given to the same parts as the parts shown in FIGS. 1 (a) and 1 (b), 2 (a), 2 (b) and 2 (c) and 3 (a), 3 (b) and 3 (c). And the detailed description is omitted.

本第3実施例の回転貫入杭Abでは、前記螺旋翼20にその一方の面側(表面側)と他方の面側(裏面側)とを連通させる貫通部としての方形状の一対の貫通穴21を設けており、この点が上述した第1実施例の回転貫入杭Aと相違し、これ以外の部分については同一である。回転貫入杭Abを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S(図6参照)内で複数回上下動させる際には、図14(a)に示すように、貫通穴21を介して螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この貫通穴21を介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体F(図6参照)を形成することが可能となる。なお、本第3実施例の回転貫入杭Abでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70(図1(a)など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetration pile Ab of the third embodiment, a pair of square through holes serving as a through portion that causes the spiral wing 20 to communicate between the one surface side (front surface side) and the other surface side (back surface side) 21 is provided, and this point is different from the rotary penetration pile A of the first embodiment described above, and the other parts are the same. As shown in FIG. 14 (a), when rotating the penetrating penetration pile Ab forward and reversely rotate and moving the tip portion of the pile body 10 up and down a plurality of times within the support layer S (see FIG. 6), Earth and sand excavated by the spiral blade 20 and the enlarged drilling blade 30 through the through hole 21 and the hardenable fluid jetted from the jet nozzle 40 are from the front surface side to the rear surface side of the spiral blade 20 or from the rear surface side to the front surface side Flow to The agitation mixing by the flow of the earth and sand and the hardenable fluid performed through the through holes 21 is added to the agitation mixing using the spiral blade 20 and the enlarged cutting blade 30 so that the agitation mixing of the earth and sand and the hardenable fluid is performed. It becomes possible to form the rooting body F (see FIG. 6) in which soil and soil and a hardenable fluid are uniformly mixed. Incidentally, even in the case of the rotary penetration pile Ab of the third embodiment, the supporting force can be increased by the enlarged digging blade 30 as in the case of the rotary penetration pile A of the first embodiment described above, and the mark 70 (see FIG. By observing 1 (a) or the like), it can be detected that the enlarged cutting blade 30 protrudes from the peripheral edge of the spiral wing 20 to the outside in the radial direction of the pile main body 10 in the ground. Further, at the initial stage of rotation in which the pile main body 10 is reversely rotated, the enlarged drilling blade 30 can be reliably protruded to the radially outer side of the pile main body 10.

図8(a)、(b)は、上記第3実施例の回転貫入杭Abの第1変形例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)、図7(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Fig.8 (a), (b) has shown the 1st modification of the rotation penetration pile Ab of the said 3rd Example. 1 (a), (b), 2 (a), 2 (b), 2 (c), 3 (a), 3 (b), 2 (c), 7 (a), 7 (b). The same reference numerals are given to the same parts as the parts shown in and the detailed description thereof will be omitted.

本第1変形例の回転貫入杭Acでは、前記貫通部として前記螺旋翼20の周縁の一部を切欠いた一対の切欠部21aを設けている。本第1変形例の回転貫入杭Acでも、図14(a)に示すように、切欠部21aを介して螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動し、この流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   In rotation penetration pile Ac of the 1st modification, a pair of notch 21a which notched a part of periphery of said spiral wing 20 is provided as said penetration part. Also in the rotary penetration pile Ac of the first modification, as shown in FIG. 14 (a), the earth and sand excavated by the spiral wing 20 and the expanding digging blade 30 are spouted from the spout 40 through the notch 21a. The curable fluid flows from the front surface side to the back surface side of the spiral blade 20 or from the back surface side to the front surface side, and the stirring and mixing by this flow is added to the stirring and mixing using the spiral blade 20 and the enlarged cutting blade 30. The stirring and mixing of the soil and the hardenable fluid is further facilitated, and it becomes possible to form the rooted body F in which the soil and the hardenable fluid are uniformly mixed.

図9(a)、(b)は、上記第3実施例の回転貫入杭Abの第2変形例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)、図7(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Fig.9 (a), (b) has shown the 2nd modification of the rotation penetration pile Ab of the said 3rd Example. 1 (a), (b), 2 (a), 2 (b), 2 (c), 3 (a), 3 (b), 2 (c), 7 (a), 7 (b). The same reference numerals are given to the same parts as the parts shown in and the detailed description thereof will be omitted.

本第2変形例の回転貫入杭Adでは、前記螺旋翼20に前記貫通部として方形状の一対の貫通穴21bを設け且つこの貫通穴21bの長辺方向の一端側にガイド部22を設けている。このガイド部22は、例えば、貫通穴21bを形成する際に生じる切り起こしの一部を螺旋翼20の裏面側に適宜角度をつけて折り曲げることにより形成される。ガイド部22は、図14(b)に示すように、螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体を貫通穴21bに導き、貫通穴21bを介しての螺旋翼20の表面側から裏面側あるいは裏面側から表面側への土砂と硬化性流動体の流動をスムーズにする。本第2変形例の回転貫入杭Adでも、貫通穴21bを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   In the rotary penetration pile Ad of the second modification, the spiral wing 20 is provided with a pair of square through holes 21b as the through portion, and a guide portion 22 is provided on one end side in the long side direction of the through hole 21b. There is. The guide portion 22 is formed, for example, by bending a part of a cut-and-raised portion generated when forming the through hole 21 b at an appropriate angle on the back surface side of the spiral wing 20. As shown in FIG. 14 (b), the guide portion 22 guides the earth and sand excavated by the spiral blade 20 and the enlarged drilling blade 30 and the curable fluid ejected from the jet port 40 to the through hole 21 b, The flow of soil and hardenable fluid from the surface side to the back surface side of the spiral wing 20 or from the back surface side to the surface side through the through holes 21b is smoothened. Also in the rotary penetration pile Ad of the second modification, the agitation mixing by the flow of the soil and the hardenable fluid performed through the through hole 21b is added to the agitation mixing using the spiral blade 20 and the enlarged cutting blade 30, The stirring and mixing of the soil and the hardenable fluid is further facilitated, and it becomes possible to form the rooted body F in which the soil and the hardenable fluid are uniformly mixed.

図10(a)、(b)は、本発明の回転貫入杭の第4実施例を示している。図中、図1(a)、(b)、図2(a)、(b)、(c)、図3(a)、(b)、(c)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Fig.10 (a), (b) has shown 4th Example of the rotation penetration pile of this invention. In the figure, the same reference numerals are given to the same parts as the parts shown in FIGS. 1 (a) and 1 (b), 2 (a), 2 (b) and 2 (c) and 3 (a), 3 (b) and 3 (c). And the detailed description is omitted.

本第4実施例の回転貫入杭Aeでは、前記螺旋翼20にその表面側と裏面側とを連通させる貫通部としての方形状の一対の貫通穴21cを設け且つ前記拡大掘削刃30の支持片32によりこれら一対の貫通穴21cを開閉可能に構成しており、この点が上述した第1実施例の回転貫入杭Aと相違し、これ以外の部分については同一である。回転貫入杭Aeを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S内で複数回上下動させる際には、図14(a)に示すように、貫通穴21cを介して螺旋翼20と拡大掘削刃30で掘削された土砂と噴出口40から噴出された硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この貫通穴21cを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。本第4実施例では、同じく貫通穴21を設けた上記第3実施例と異なり、貫通穴21cが支持片32により開閉可能になっており、回転貫入杭Aeを正回転させて地盤中に回転貫入する際には、図10(a)に示すように、貫通穴21cが螺旋翼20の周縁側に収まっている拡大掘削刃30の支持片32により閉じられる。このため、回転貫入中、貫通穴21cを介して地盤反力が漏れるのを防ぎ、貫通穴21cを設けたことによる地盤中への回転推進力の低下を阻止することが出来る。貫通穴21cは、回転貫入杭Aeを逆回転させて地盤中から引き上げる際には、図10(b)に示すように、貫通穴21cが螺旋翼20の周縁側から杭本体10の径方向に突出した拡大掘削刃30の支持片32により開かれる。なお、本第4実施例の回転貫入杭Aeでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70(図1(a)など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetration pile Ae of the fourth embodiment, the spiral wing 20 is provided with a pair of square through holes 21c as a through portion for communicating the front surface side and the rear surface side, and the support piece of the enlarged cutting blade 30 The pair of through holes 21c can be opened and closed by means of 32, and this point is different from the rotary penetration pile A of the first embodiment described above, and the other parts are the same. When rotating the penetrating penetration pile Ae forward and reversely rotating to move the tip end portion of the pile body 10 up and down a plurality of times in the support layer S, as shown in FIG. 14A, through the through hole 21c. The earth and sand excavated by the spiral blade 20 and the enlarged drilling blade 30 and the hardenable fluid ejected from the jet nozzle 40 flow from the front surface side to the rear surface side of the spiral blade 20 or from the rear surface side to the front surface side. The agitation mixing by the flow of the earth and sand and the hardenable fluid performed through the through holes 21c is added to the agitation mixing using the spiral blade 20 and the enlarged cutting blade 30, thereby the agitation mixing of the earth and sand and the hardenable fluid is performed. It becomes possible to form the rooting body F in which soil and soil and a hardenable fluid are uniformly mixed. In the fourth embodiment, unlike the third embodiment in which the through hole 21 is also provided, the through hole 21c can be opened and closed by the support piece 32, and the rotation penetration pile Ae is rotated forward to rotate in the ground. At the time of penetration, as shown in FIG. 10A, the through hole 21 c is closed by the support piece 32 of the enlarged cutting blade 30 accommodated on the peripheral side of the spiral wing 20. Therefore, it is possible to prevent the ground reaction force from leaking through the through hole 21c during the rotational penetration, and to prevent the reduction of the rotational propulsive force into the ground due to the provision of the through hole 21c. As shown in FIG. 10 (b), when the through hole 21c is pulled up from the ground by rotating the rotary penetration pile Ae in the reverse direction, the through hole 21c extends in the radial direction of the pile main body 10 from the peripheral side of the spiral wing 20. It is opened by the support piece 32 of the projecting enlarged cutting blade 30. Incidentally, even in the case of the rotary penetration pile Ae of the fourth embodiment, in the same manner as the rotary penetration pile A of the first embodiment described above, the supporting force can be increased by the enlarged digging blade 30, and the mark 70 (see FIG. By observing 1 (a) or the like), it can be detected that the enlarged cutting blade 30 protrudes from the peripheral edge of the spiral wing 20 to the outside in the radial direction of the pile main body 10 in the ground. Further, at the initial stage of rotation in which the pile main body 10 is reversely rotated, the enlarged drilling blade 30 can be reliably protruded to the radially outer side of the pile main body 10.

図11(a)、(b)は、本発明の回転貫入杭の第5実施例を示している。図中、図4(a)、(b)、図5(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   Fig.11 (a), (b) has shown 5th Example of the rotation penetration pile of this invention. In the figure, the same parts as the parts shown in FIG. 4A, FIG. 4B, FIG. 5A, and FIG. 5B are assigned the same reference numerals and detailed explanations thereof will be omitted.

本第5実施例の回転貫入杭Afでは、前記螺旋翼20にその表面側と裏面側とを連通させる貫通部としての方形状の一対の貫通穴21dを設けており、この点が上述した第2実施例の回転貫入杭Aaと相違しているが、これ以外の部分については同一である。貫通穴21dを設ける点では上述した第3実施例の回転貫入杭Abと同じである。回転貫入杭Afを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S内で複数回上下動させる際には、図14(a)に示すように、貫通穴21dを介して螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この貫通穴21dを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。なお、本第5実施例の回転貫入杭Afでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、マーク70(図1など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetration pile Af of the fifth embodiment, the spiral wing 20 is provided with a pair of square through holes 21 d as a through portion for communicating the surface side and the back side with each other, and this point is the above-described fifth Although it differs from the rotation penetration pile Aa of 2 Examples, it is the same about parts other than this. It is the same as the rotation penetration pile Ab of the third embodiment described above in that the through hole 21d is provided. When rotating the penetrating penetration pile Af forward and reversely rotating to move the tip end portion of the pile body 10 up and down a plurality of times in the support layer S, as shown in FIG. 14A, through the through hole 21d. The earth and sand excavated by the spiral wing 20 and the enlarged drilling blade 30 and the hardenable fluid jetted from the jet port 40 flow from the front side to the rear side of the spiral wing 20 or from the rear side to the front side. The agitation mixing by the flow of the earth and sand and the hardenable fluid performed through the through holes 21d is added to the agitation mixing using the spiral blade 20 and the enlarged cutting blade 30, thereby the agitation mixing of the earth and sand and the hardenable fluid is performed. It becomes possible to form the rooting body F in which soil and soil and a hardenable fluid are uniformly mixed. In addition, even in the case of the rotary penetration pile Af of the fifth embodiment, as in the case of the rotary penetration pile A of the first embodiment described above, the supporting force can be increased by the enlarged digging blade 30, and the mark 70 (FIG. By observing, etc.), it can be detected in the ground that the enlarged cutting blade 30 protrudes from the peripheral edge of the spiral wing 20 radially outward of the pile main body 10. Further, at the initial stage of rotation in which the pile main body 10 is reversely rotated, the enlarged drilling blade 30 can be reliably protruded to the radially outer side of the pile main body 10.

図12(a)、(b)は、上記第5実施例の回転貫入杭Afの変形例を示している。図中、図4(a)、(b)、図5(a)、(b)、図11(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   12 (a) and 12 (b) show modifications of the rotary penetration pile Af of the fifth embodiment. In the figure, the same parts as those shown in FIGS. 4 (a) and 4 (b), 5 (a) and 5 (b) and FIGS. 11 (a) and 11 (b) are indicated by the same reference numerals. Omit.

本変形例の回転貫入杭Agでは、前記螺旋翼20に前記貫通部として方形状の一対の貫通穴21eを設け且つ貫通穴21eの長辺方向の一端側にガイド部22aを設けている。このガイド部22aは、前記ガイド部22(図9参照)と同様に、例えば、貫通穴21eを形成する際に生じる切り起こしの一部を螺旋翼20の裏面側に適宜角度をつけて折り曲げることにより形成される。ガイド部22aは、図14(b)に示すように、螺旋翼20と前記拡大掘削刃30で掘削された土砂と前記噴出口40から噴出された前記硬化性流動体を貫通穴21eに導き、貫通穴21eを介しての螺旋翼20の表面側から裏面側あるいは裏面側から表面側への土砂と硬化性流動体の流動をスムーズにする。本変形例の回転貫入杭Agでも、貫通穴21eを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   In the rotary penetration pile Ag of this modification, the spiral wing 20 is provided with a pair of square through holes 21 e as the through portion, and a guide portion 22 a is provided on one end side in the long side direction of the through holes 21 e. Similar to the guide portion 22 (see FIG. 9), the guide portion 22a may be bent at an appropriate angle on the back surface side of the spiral wing 20, for example, by bending a part of the cut-and-raised portion formed when forming the through hole 21e. It is formed by As shown in FIG. 14 (b), the guide portion 22 a guides the earth and sand excavated by the spiral blade 20 and the enlarged drilling blade 30 and the curable fluid ejected from the jet port 40 to the through hole 21 e. The flow of soil and hardenable fluid from the surface side to the back surface side or from the back surface side to the surface side of the spiral wing 20 through the through holes 21 e is made smooth. Also in the rotary penetration pile Ag of this modification, the agitation mixing by the flow of the earth and sand and the hardenable fluid performed through the through hole 21e is added to the agitation mixing using the spiral blade 20 and the enlarged cutting blade 30, Agitation mixing with the hardenable fluid is further facilitated, and it becomes possible to form the rooted body F in which earth and sand and the hardenable fluid are uniformly mixed.

図13(a)、(b)は、本発明の回転貫入杭の第6実施例を示している。図中、図4(a)、(b)、図5(a)、(b)に示す部分と同一部分には同一符号を付してその詳細な説明を省略する。   13 (a) and 13 (b) show a sixth embodiment of the rotary penetration pile of the present invention. In the figure, the same parts as the parts shown in FIG. 4A, FIG. 4B, FIG. 5A, and FIG. 5B are assigned the same reference numerals and detailed explanations thereof will be omitted.

本第6実施例の回転貫入杭Ahでは、前記螺旋翼20にその表面側と裏面側とを連通させる貫通部としての、略円形状に切欠いた一対の切欠部21fを設け且つ前記拡大掘削刃30の支持片32によりこれら一対の切欠部21fを開閉可能に構成しており、この点が上述した第2実施例の回転貫入杭Aaと相違し、これ以外の部分については同一である。支持片32によって切欠部21fを開閉可能に構成する点では上述した第4実施例の回転貫入杭Aeと同じである。回転貫入杭Ahを正回転・逆回転させて前記杭本体10の先端部分を前記支持層S内で複数回上下動させる際には、図14(a)に示すように、切欠部21fを介して螺旋翼20と拡大掘削刃30で掘削された土砂と噴出口40から噴出された硬化性流動体が螺旋翼20の表面側から裏面側あるいは裏面側から表面側に流動する。この切欠部21fを介して行われる土砂と硬化性流動体の流動による撹拌混合が螺旋翼20と拡大掘削刃30を使った撹拌混合に加わることにより、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。本第6実施例では、同じく貫通穴21dを設けた上記第5実施例と異なり、切欠部21fが支持片32により開閉可能になっており、回転貫入杭Ahを正回転させて地盤中に回転貫入する際には、図13(a)に示すように、切欠部21fが螺旋翼20の周縁側に収まっている拡大掘削刃30の支持片32により閉じられる。このため、回転貫入中、切欠部21fを介して地盤反力が漏れるのを防ぎ、切欠部21fを設けたことによる地盤中への回転推進力の低下を阻止することが出来る。切欠部21fは、回転貫入杭Ahを逆回転させて地盤中から引き上げる際には、図13(b)に示すように、切欠部21fが螺旋翼20の周縁側から杭本体10の径方向に突出した拡大掘削刃30の支持片32により開かれる。なお、本第6実施例の回転貫入杭Ahでも、上述した第1実施例の回転貫入杭Aと同様に、拡大掘削刃30により支持力を増加させることが出来る上に、前記マーク70(図1(a)など参照)を観測することにより、地盤中で拡大掘削刃30が螺旋翼20の周縁から杭本体10の径方向外側に突出したのを検知することが出来る。また、杭本体10を逆回転させる回転初期時において拡大掘削刃30を確実に杭本体10の径方向外側に突出させることが出来る。   In the rotary penetration pile Ah of the sixth embodiment, the spiral wing 20 is provided with a pair of substantially circular cutouts 21f as a penetrating portion for communicating the front surface side and the rear surface side, and the enlarged cutting edge The pair of notches 21f can be opened and closed by the support pieces 32 of 30. This point is different from the rotary penetration pile Aa of the second embodiment described above, and the other parts are the same. It is the same as the rotary penetration pile Ae of the fourth embodiment described above in that the notch 21f is configured to be openable and closable by the support piece 32. As shown in FIG. 14A, when moving the tip end portion of the pile main body 10 up and down a plurality of times in the support layer S by rotating the rotary penetration pile Ah forward and reversely, as shown in FIG. The earth and sand excavated by the spiral blade 20 and the enlarged drilling blade 30 and the hardenable fluid ejected from the jet nozzle 40 flow from the front surface side to the rear surface side of the spiral blade 20 or from the rear surface side to the front surface side. The agitation mixing by the flow of the soil and the hardenable fluid performed through the notch 21f is added to the agitation mixing using the spiral blade 20 and the enlarged cutting blade 30, the agitation mixing of the sediment and the hardenable fluid is performed. It becomes possible to form the rooting body F in which soil and soil and a hardenable fluid are uniformly mixed. In the sixth embodiment, unlike the fifth embodiment in which the through hole 21d is similarly provided, the notch 21f can be opened and closed by the support piece 32, and the rotation penetration pile Ah is rotated forward to rotate in the ground. At the time of penetration, as shown in FIG. 13A, the notch 21 f is closed by the support piece 32 of the enlarged cutting blade 30 which is accommodated on the peripheral side of the spiral wing 20. For this reason, during rotational penetration, it is possible to prevent the ground reaction force from leaking through the notch 21f, and to prevent the reduction in rotational propulsive force into the ground due to the provision of the notch 21f. As shown in FIG. 13 (b), when the notch portion 21 f rotates the rotary penetration pile Ah in reverse and pulls it out of the ground, the notch portion 21 f is in the radial direction of the pile main body 10 from the peripheral side of the spiral wing 20. It is opened by the support piece 32 of the projecting enlarged cutting blade 30. In addition, even in the rotary penetration pile Ah of the sixth embodiment, the supporting force can be increased by the enlarged digging blade 30 in the same manner as the rotary penetration pile A of the first embodiment described above, and the mark 70 (see FIG. By observing 1 (a) or the like), it can be detected that the enlarged cutting blade 30 protrudes from the peripheral edge of the spiral wing 20 to the outside in the radial direction of the pile main body 10 in the ground. Further, at the initial stage of rotation in which the pile main body 10 is reversely rotated, the enlarged drilling blade 30 can be reliably protruded to the radially outer side of the pile main body 10.

本発明の回転貫入杭は、図1(a)等に示す回転貫入杭A、図4(a)等に示す回転貫入杭Aa、図7(a)等に示す回転貫入杭Ab、図8(a)等に示す回転貫入杭Ac、図9(a)等に示す回転貫入杭Ad、図10(a)等に示す回転貫入杭Ae、図11(a)に示す回転貫入杭Af、図12(a)等に示す回転貫入杭Ag、図13(a)等に示す回転貫入杭Ah等に限定されるものではない。   The rotary penetration pile of the present invention includes a rotary penetration pile A shown in FIG. 1 (a) etc., a rotary penetration pile Aa shown in FIG. 4 (a) etc., a rotary penetration pile Ab shown in FIG. 7 (a) etc. a) rotational penetrating pile Ac shown in FIG. 9A etc., rotational penetrating pile Ae shown in FIG. 10A etc., rotational penetrating pile Af shown in FIG. 11A, FIG. It is not limited to the rotation penetration pile Ag shown to (a) etc., and the rotation penetration pile Ah etc shown to FIG. 13 (a) etc. FIG.

また、本発明の回転貫入杭を使用する根固めされた基礎の施工方法では、図1(a)、(b)等に示す回転貫入杭Aを使用した場合(図6(a)乃至(e)参照)を示したが、これに限定されるものではなく、例えば図4(a)等に示す回転貫入杭Aa、図7(a)等に示す回転貫入杭Ab、図8(a)等に示す回転貫入杭Ac、図9(a)等に示す回転貫入杭Ad、図10(a)等に示す回転貫入杭Ae、図11(a)に示す回転貫入杭Af、図12(a)等に示す回転貫入杭Agあるいは図13(a)等に示す回転貫入杭Ahを使用してもよい。   Moreover, in the construction method of the rooted foundation using the rotary penetration pile of the present invention, when the rotary penetration pile A shown in FIG. 1 (a), (b), etc. is used (FIGS. ), But the invention is not limited thereto. For example, a rotary penetration pile Aa shown in FIG. 4 (a) etc., a rotary penetration pile Ab shown in FIG. 7 (a) etc., FIG. 8 (a) etc. 9 (a) etc., a rotary penetration pile Ae shown in FIG. 10 (a) etc., a rotary penetration pile Af shown in FIG. 11 (a), FIG. 12 (a) A rotary penetration pile Ag shown in FIG. 13 or a rotary penetration pile Ah shown in FIG. 13A or the like may be used.

例えば、図7(a)等に示す回転貫入杭Abを使用した場合、前記杭本体10の先端部分を前記支持層S内(所定位置と所定深度との間)で上下動させる際(前記回転貫入工程と前記回転引上げ工程とを繰り返す間)に、前記貫通穴21を介して行われる土砂と硬化性流動体との流動による撹拌混合が、螺旋翼20と拡大掘削刃30を使った撹拌混合に加わり、土砂と硬化性流動体との撹拌混合がよりすすみ、土砂と硬化性流動体とが均一に混合した前記根固め体Fを形成することが可能となる。   For example, when using the rotary penetration pile Ab shown in FIG. 7 (a) etc., when moving the tip portion of the pile body 10 up and down in the support layer S (between a predetermined position and a predetermined depth) (the rotation During the repetition of the penetration process and the rotational pulling process), the stirring and mixing by the flow of the earth and sand and the hardenable fluid performed through the through hole 21 is the stirring and mixing using the spiral blade 20 and the enlarged cutting blade 30 In addition, stirring and mixing of the soil and the hardenable fluid is further facilitated, and it is possible to form the root compact F in which the soil and the hardenable fluid are uniformly mixed.

本発明の回転貫入杭及び同回転貫入杭を使用する根固めされた基礎の施工方法は、螺旋翼の外径を大きくすることなく、押し込み支持力や引き抜き支持力を向上させる場合に適用される。   The construction method of a rooted foundation using the rotary penetration pile and the rotary penetration pile according to the present invention is applied to the case of improving the pushing support force and the pull-out support force without increasing the outer diameter of the spiral blade. .

A,Aa 回転貫入杭
Ab,Ac 回転貫入杭
Ad,Ae 回転貫入杭
Af,Ag 回転貫入杭
Ah 回転貫入杭
S 支持層
F 根固め体
10 杭本体
11 外筒
12 内筒
13 底蓋
20 螺旋翼
21 貫通穴
21a 切欠部
21b 貫通穴
21c 貫通穴
21d 貫通穴
21e 貫通穴
21f 切欠部
22 ガイド部
22a ガイド部
30 拡大掘削刃
40 噴出口
60 硬化性流動体供給管
70 マーク
80 ピン
81 溝部
A, Aa Rotary penetration pile Ab, Ac Rotary penetration pile Ad, Ae Rotary penetration pile Af, Ag Rotary penetration pile Ah Rotary penetration pile S Support layer F Rooted body 10 Pile body 11 Outer cylinder 12 Inner cylinder 13 Bottom cover 20 Spiral wing 21 through hole 21a notch portion 21b through hole 21c through hole 21d through hole 21e through hole 21f notch portion 22 guide portion 22a guide portion 30 enlarged excavating blade 40 jet port 60 curable fluid supply pipe 70 mark 80 pin 81 groove portion

Claims (11)

外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、
前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、
前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、
前記内筒の前記外筒により開閉可能に覆われる周面個所に設けられた硬化性流動体の噴出口と、を備え、
前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して所定角度回転しつつ軸方向に所定距離移動可能で、
前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出し、
前記杭本体を前記回転貫入させる方向と反対の方向に回転させるとき、前記外筒が前記内筒に対して軸方向に所定距離移動することを利用して前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したのを検知することを特徴とする回転貫入杭。
A pile body comprising: an outer cylinder; and an inner cylinder disposed in a tip portion of the outer cylinder in a state where the closed tip is exposed from the outer cylinder;
A helical wing provided along an outer peripheral surface of the inner cylinder near the tip end of the inner cylinder exposed from the outer cylinder;
An enlarged drilling blade provided on the spiral wing so as to be able to project radially outward of the pile body;
And a jet of a hardenable fluid provided at a circumferential surface portion which is openably and closably covered by the outer cylinder of the inner cylinder,
The outer cylinder is movable in the axial direction by a predetermined distance while rotating at a predetermined angle with respect to the inner cylinder when the pile main body is rotated in a direction opposite to the direction in which the pile body is inserted into the ground.
The enlarged cutting blade is housed on the peripheral side of the spiral blade when the pile body is rotationally inserted into the ground, and is rotated in the direction opposite to the direction in which the pile body is rotated. Protruding radially outward of the pile main body from the peripheral edge of the spiral wing by means of the outer cylinder which rotates in the opposite direction,
When the outer cylinder is moved in the axial direction relative to the inner cylinder when the pile main body is rotated in the direction opposite to the direction in which the rotary penetration is made, the enlarged cutting blade is a peripheral edge of the spiral wing The rotary penetration pile characterized by detecting that it protruded to the diameter direction outside of the above-mentioned pile body from the above.
請求項1に記載の回転貫入杭において、
前記外筒の先端部分の内周面と前記内筒の外周面にそれぞれ前記螺旋翼のピッチと同じピッチのねじ部を設け、これらねじ部を介して前記内筒を前記外筒の先端部分内に螺合することを特徴とする回転貫入杭。
In the rotary penetration pile according to claim 1,
Screws having the same pitch as the pitch of the spiral blade are provided on the inner peripheral surface of the tip end portion of the outer cylinder and the outer peripheral surface of the inner cylinder, and the inner cylinder is placed inside the tip portion of the outer cylinder A rotary penetration pile characterized by being screwed into one.
請求項1又は2に記載の基礎杭の回転貫入杭において、
前記噴出口は、前記内筒の周面の前記螺旋翼の端部間に設けられ、前記杭本体を地盤中に回転貫入させるときには、前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときには、前記外筒が前記内筒に対し回転して該外筒により覆わられなくなる、ことを特徴とする回転貫入杭。
In the rotary penetration pile of the foundation pile according to claim 1 or 2,
The jet nozzle is provided between the end portions of the spiral blade on the circumferential surface of the inner cylinder, and when the pile main body is rotationally penetrated into the ground, is covered by the outer cylinder to cause the pile main body to rotationally penetrate. The rotary penetration pile characterized in that when rotating in the direction opposite to the direction, the outer cylinder rotates with respect to the inner cylinder and is not covered by the outer cylinder.
請求項2又は3に記載の回転貫入杭において、
前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させて前記外筒が前記内筒に対し回転して所定ピッチ分だけ軸方向に移動したとき、前記外筒の前記内筒に対する移動を停止させるストッパーを設けたことを特徴とする回転貫入杭。
In the rotary penetration pile according to claim 2 or 3,
When the outer cylinder is rotated relative to the inner cylinder and moved in the axial direction by a predetermined pitch by rotating the pile main body in the direction opposite to the direction in which the pile is inserted into the ground, the outer cylinder relative to the inner cylinder The rotary penetration pile characterized by having provided the stopper which stops movement.
請求項1乃至4の何れか一項に記載の回転貫入杭において、
前記拡大掘削刃は、前記螺旋翼に対して搖動可能に設けられていることを特徴とする回転貫入杭。
In the rotation penetration pile according to any one of claims 1 to 4,
The rotary digging pile characterized in that the enlarged digging blade is provided so as to be able to pivot with respect to the spiral wing.
請求項5に記載の回転貫入杭において、
前記拡大掘削刃は、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに、前記内筒に対して回転する前記外筒に押されて回動し、前記螺旋翼の周縁から前記杭本体の径方向外側に突出する、ことを特徴とする回転貫入杭。
In the rotary penetration pile according to claim 5,
The enlarged digging blade is pushed and rotated by the outer cylinder rotating with respect to the inner cylinder when rotating the pile main body in the direction opposite to the direction in which the rotary penetration is made, from the peripheral edge of the spiral wing The rotary penetration pile characterized by protruding to the radial direction outer side of the said pile main body.
請求項5に記載の回転貫入杭において、
前記外筒に該外筒の軸方向と平行にピンが設けられ、前記拡大掘削刃の端部に該ピンが摺動可能に係合する溝部を設け、
前記拡大掘削刃は、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに、前記内筒に対して回転する前記外筒に伴って前記ピンが前記溝部内を移動することにより回動し、前記螺旋翼の周縁から前記杭本体の径方向外側に突出する、ことを特徴とする回転貫入杭。
In the rotary penetration pile according to claim 5,
The outer cylinder is provided with a pin parallel to the axial direction of the outer cylinder, and the end of the enlarged cutting blade is provided with a groove portion in which the pin is slidably engaged.
When the enlarged excavation blade rotates the pile main body in the direction opposite to the direction in which the rotary penetration is performed, the pin moves in the groove along with the outer cylinder rotating with respect to the inner cylinder. A rotary penetration pile characterized by rotating and protruding radially outward of the pile main body from the peripheral edge of the spiral wing.
請求項5に記載の回転貫入杭において、
前記螺旋翼に、その一方の面側と他方の面側とを連通させる貫通部を設けたことを特徴とする回転貫入杭。
In the rotary penetration pile according to claim 5,
The rotary penetration pile characterized by providing the penetration part which makes the one side and the other side communicate on the said spiral wing.
請求項8に記載の回転貫入杭において、
前記拡大掘削刃は、前記螺旋翼に対して搖動可能に設けられた支持片と、この支持片の外端部に設けられて前記杭本体の軸方向に延びる掘削刃片とを備え、
前記貫通部は、前記杭本体を地盤中に回転貫入させるときに、前記支持片により閉じられ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに、前記支持片により開かれるように、前記支持片を利用して開閉可能に構成されていることを特徴とする回転貫入杭。
In the rotary penetration pile according to claim 8,
The enlarged digging blade includes a support piece slidably provided relative to the spiral blade, and a digging piece provided at an outer end of the support piece and extending in the axial direction of the pile body.
The penetration portion is closed by the support piece when the pile body is rotationally penetrated into the ground, and is opened by the support piece when the pile body is rotated in the direction opposite to the rotation penetration direction. Thus, the rotary penetration pile characterized in that it is configured to be able to open and close using the support piece.
回転貫入杭を使用する根固めされた基礎の施工方法であって、
外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、
前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、
前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、
前記内筒の前記外筒により開閉可能に覆われる周面個所に設けられた硬化性流動体の噴出口と、を備え、
前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して所定角度回転しつつ軸方向に所定距離移動し、
前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出し、
前記噴出口は、前記杭本体を地盤中に回転貫入させるとき前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるとき前記外筒が前記内筒に対し回転して覆わられなくなる、回転貫入杭を使用し、
前記杭本体に硬化性流動体供給管を配置する準備工程と、
前記杭本体を回転して前記螺旋翼の推進力により地盤中に所定深度まで回転貫入させる回転貫入工程と、
前記杭本体を前記回転貫入させる方向と反対の方向に回転させるその回転初期時において、前記外筒が前記内筒に対して回転しつつ軸方向に所定距離移動することを利用し、前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したことを確認する確認工程と、
前記確認工程後、前記杭本体を前記回転貫入させる方向と反対の方向に回転して前記所定深度から所定位置まで引き上げる間に、前記硬化性流動体供給管から前記外筒により覆わられなくなった前記噴出口を介して前記硬化性流動体を噴出しつつ、前記拡大掘削刃により前記螺旋翼の周辺の地盤を掘削する回転引上げ工程と、を備え、
前記所定位置と前記所定深度との間で前記回転貫入工程と前記回転引上げ工程とを繰り返す間に、前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記噴出口から噴出された前記硬化性流動体とを撹拌混合させることを特徴とする、回転貫入杭を使用する根固めされた基礎の施工方法。
It is a construction method of a rooted foundation using a rotating penetration pile,
A pile body comprising: an outer cylinder; and an inner cylinder disposed in a tip portion of the outer cylinder in a state where the closed tip is exposed from the outer cylinder;
A helical wing provided along an outer peripheral surface of the inner cylinder near the tip end of the inner cylinder exposed from the outer cylinder;
An enlarged drilling blade provided on the spiral wing so as to be able to project radially outward of the pile body;
And a jet of a hardenable fluid provided at a circumferential surface portion which is openably and closably covered by the outer cylinder of the inner cylinder,
The outer cylinder moves a predetermined distance in the axial direction while rotating at a predetermined angle with respect to the inner cylinder when rotating the pile main body in the direction opposite to the direction in which the pile body is inserted into the ground.
The enlarged cutting blade is housed on the peripheral side of the spiral blade when the pile body is rotationally inserted into the ground, and is rotated in the direction opposite to the direction in which the pile body is rotated. Protruding radially outward of the pile main body from the peripheral edge of the spiral wing by means of the outer cylinder which rotates in the opposite direction,
The jet nozzle is covered by the outer cylinder when the pile body is rotationally inserted into the ground, and the outer cylinder is rotated relative to the inner cylinder when the pile body is rotated in the direction opposite to the rotational insertion direction. Use a rotating penetration pile,
A step of preparing a hardenable fluid supply pipe on the pile body;
A rotational penetration process in which the pile body is rotated and penetrated into the ground to a predetermined depth by the propulsive force of the spiral blade;
In the initial stage of rotation in which the pile main body is rotated in the direction opposite to the direction in which the rotary penetration is made, the outer cylinder is moved relative to the inner cylinder by a predetermined distance while rotating with respect to the inner cylinder. A confirmation step of confirming that the blade protrudes outward in the radial direction of the pile main body from the peripheral edge of the spiral wing;
After the confirmation step, while the pile main body is rotated in the direction opposite to the direction in which the rotary penetration is made and pulled up from the predetermined depth to the predetermined position, the curable fluid supply pipe is not covered by the outer cylinder And b) a rotary pull-up step of excavating the ground around the spiral blade by the enlarged cutting blade while spouting the hardenable fluid through a spout.
While repeating the rotational penetration process and the rotational pulling process between the predetermined position and the predetermined depth, the earth and sand excavated by the spiral wing and the enlarged digging blade and the hardenability ejected from the jet nozzle are repeated. A method of constructing a rooted foundation using a rotary penetration pile, characterized in that the mixture is stirred and mixed with a fluid.
回転貫入杭を使用する根固めされた基礎の施工方法であって、
外筒と、閉塞された先端が該外筒から露出した状態で該外筒の先端部分内に配置される内筒とを備えた杭本体と、
前記外筒から露出した前記内筒の先端寄りの外周面に沿って設けられた螺旋翼と、
前記螺旋翼の一方の面側と他方の面側とを連通させる貫通部と、
前記螺旋翼に前記杭本体の径方向外側に突出可能に設けられた拡大掘削刃と、
前記内筒の前記外筒により開閉可能に覆われる周面個所に設けられた硬化性流動体の噴出口と、を備え、
前記外筒は、前記杭本体を地盤中に回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して所定角度回転しつつ軸方向に所定距離移動し、
前記拡大掘削刃は、前記杭本体を地盤中に回転貫入させるときに前記螺旋翼の周縁側に収められ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるときに前記内筒に対して回転する前記外筒により前記螺旋翼の周縁から前記杭本体の径方向外側に突出し、
前記噴出口は、前記杭本体を地盤中に回転貫入させるとき前記外筒により覆われ、前記杭本体を前記回転貫入させる方向と反対の方向に回転させるとき前記外筒が前記内筒に対し回転して覆わられなくなる、回転貫入杭を使用し、
前記杭本体に硬化性流動体供給管を配置する準備工程と、
前記杭本体を回転して前記螺旋翼の推進力により地盤中に所定深度まで回転貫入させる回転貫入工程と、
前記杭本体を前記回転貫入させる方向と反対の方向に回転させるその回転初期時において、前記外筒が前記内筒に対して回転しつつ軸方向に所定距離移動することを利用し、前記拡大掘削刃が前記螺旋翼の周縁から前記杭本体の径方向外側に突出したことを確認する確認工程と、
前記確認工程後、前記杭本体を前記回転貫入させる方向と反対の方向に回転して前記所定深度から所定位置まで引き上げる間に、前記硬化性流動体供給管から前記外筒により覆わられなくなった前記噴出口を介して前記硬化性流動体を噴出しつつ、前記拡大掘削刃により前記螺旋翼の周辺の地盤を掘削する回転引上げ工程と、を備え、
前記所定位置と前記所定深度との間で前記回転貫入工程と前記回転引上げ工程とを繰り返す間に、前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記噴出口から噴出された前記硬化性流動体とを撹拌混合させ、且つ前記貫通部を介して前記螺旋翼の一方の面側から他方の面側あるいは他方の面側から一方の面側に前記螺旋翼と前記拡大掘削刃により掘削された土砂と前記硬化性流動体とを流動させて撹拌混合させることを特徴とする、回転貫入杭を使用する根固めされた基礎の施工方法。
It is a construction method of a rooted foundation using a rotating penetration pile,
A pile body comprising: an outer cylinder; and an inner cylinder disposed in a tip portion of the outer cylinder in a state where the closed tip is exposed from the outer cylinder;
A helical wing provided along an outer peripheral surface of the inner cylinder near the tip end of the inner cylinder exposed from the outer cylinder;
A penetrating portion communicating the one surface side of the spiral wing with the other surface side;
An enlarged drilling blade provided on the spiral wing so as to be able to project radially outward of the pile body;
And a jet of a hardenable fluid provided at a circumferential surface portion which is openably and closably covered by the outer cylinder of the inner cylinder,
The outer cylinder moves a predetermined distance in the axial direction while rotating at a predetermined angle with respect to the inner cylinder when rotating the pile main body in the direction opposite to the direction in which the pile body is inserted into the ground.
The enlarged cutting blade is housed on the peripheral side of the spiral blade when the pile body is rotationally inserted into the ground, and is rotated in the direction opposite to the direction in which the pile body is rotated. Protruding radially outward of the pile main body from the peripheral edge of the spiral wing by means of the outer cylinder which rotates in the opposite direction,
The jet nozzle is covered by the outer cylinder when the pile body is rotationally inserted into the ground, and the outer cylinder is rotated relative to the inner cylinder when the pile body is rotated in the direction opposite to the rotational insertion direction. Use a rotating penetration pile,
A step of preparing a hardenable fluid supply pipe on the pile body;
A rotational penetration process in which the pile body is rotated and penetrated into the ground to a predetermined depth by the propulsive force of the spiral blade;
In the initial stage of rotation in which the pile main body is rotated in the direction opposite to the direction in which the rotary penetration is made, the outer cylinder is moved relative to the inner cylinder by a predetermined distance while rotating with respect to the inner cylinder. A confirmation step of confirming that the blade protrudes outward in the radial direction of the pile main body from the peripheral edge of the spiral wing;
After the confirmation step, while the pile main body is rotated in the direction opposite to the direction in which the rotary penetration is made and pulled up from the predetermined depth to the predetermined position, the curable fluid supply pipe is not covered by the outer cylinder And b) a rotary pull-up step of excavating the ground around the spiral blade by the enlarged cutting blade while spouting the hardenable fluid through a spout.
While repeating the rotational penetration process and the rotational pulling process between the predetermined position and the predetermined depth, the earth and sand excavated by the spiral wing and the enlarged digging blade and the hardenability ejected from the jet nozzle are repeated. The fluid is stirred and mixed, and excavated by the spiral blade and the enlarged cutting blade from the one surface side of the spiral blade to the other surface side or the other surface side from the one surface side through the penetration portion. A method of constructing a rooted foundation using a rotary penetrable pile, characterized in that the deposited soil and the hardenable fluid are made to flow and be stirred and mixed.
JP2015089228A 2014-10-06 2015-04-24 Construction method of rooted foundation using a rotating penetration pile and a rotating penetration pile Active JP6425267B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014205573 2014-10-06
JP2014205573 2014-10-06

Publications (3)

Publication Number Publication Date
JP2016075139A JP2016075139A (en) 2016-05-12
JP2016075139A5 JP2016075139A5 (en) 2018-03-22
JP6425267B2 true JP6425267B2 (en) 2018-11-21

Family

ID=55949669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089228A Active JP6425267B2 (en) 2014-10-06 2015-04-24 Construction method of rooted foundation using a rotating penetration pile and a rotating penetration pile

Country Status (1)

Country Link
JP (1) JP6425267B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148783B2 (en) * 2018-04-09 2022-10-06 ジャパンパイル株式会社 Enlarged head for excavator
CN111119168A (en) * 2020-01-03 2020-05-08 广西盛虎建筑科技有限公司 Post-grouting construction method for spinning enlarged-head steel pipe pile
JP7274697B1 (en) * 2023-02-10 2023-05-17 秋男 田中 Rotating buried tip enlarged wing pile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073363A (en) * 1999-09-03 2001-03-21 Kubota Corp Screwing steel pipe pile
JP2010255349A (en) * 2009-04-28 2010-11-11 Takenaka Komuten Co Ltd Double pipe type steel pipe pile for vibration isolation and construction method therefor
JP5274627B2 (en) * 2011-07-14 2013-08-28 千代田工営株式会社 Rotating buried pile, its construction method and underground structure floating control device
JP5936996B2 (en) * 2012-11-30 2016-06-22 千代田工営株式会社 Rooting construction method of rotary intrusion pile
JP5774618B2 (en) * 2013-02-13 2015-09-09 千代田工営株式会社 Foundation pile and foundation pile construction method

Also Published As

Publication number Publication date
JP2016075139A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
KR102090305B1 (en) Big helical pile with easy grouting construction and construction method using the same
JP6273333B1 (en) Method for forming soil cement pile
JP6425267B2 (en) Construction method of rooted foundation using a rotating penetration pile and a rotating penetration pile
JP5274627B2 (en) Rotating buried pile, its construction method and underground structure floating control device
KR101675884B1 (en) Helical pile and construction method thereof
JP5774618B2 (en) Foundation pile and foundation pile construction method
JP3133466U (en) Drilling head of ground improvement column construction equipment
JP2010133114A (en) Piling method accompanying soil improvement
JP2008075266A (en) Method of constructing pile
JP2004293264A (en) Excavator for buried pile and construction method for buried pile
JP5936996B2 (en) Rooting construction method of rotary intrusion pile
JP2008031673A (en) Method for confirming expanding blade diametrically expanded state of excavator for constructing foundation pile
JP4626655B2 (en) Construction method of foundation pile
JP6502287B2 (en) Pile and pile installation method
JP5948068B2 (en) Pile construction method with anchors
JP4476230B2 (en) Steel pipe pile rooting method
JP2007327281A (en) Stirring/mixing apparatus and soil improvement method using the same
JP2013057194A (en) Rotary penetration steel pipe pile and construction method of foundation pile having foot protection
JP2015001087A (en) Ground excavator
JP4197074B2 (en) Embedded pile construction equipment
JP2012140787A (en) Construction method of pile body and casing pipe used for the same, and foundation structure constructed thereby
JP5163711B2 (en) Threaded pile and method of construction
JP4997269B2 (en) Ground improvement machine
JPH06287943A (en) Foot protection method for tip of foundation pile and cylindrical foundation pile
JP5992464B2 (en) Excavation blade mounting steel pipe for construction of cast-in-place concrete pile and construction method of cast-in-place concrete pile

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181018

R150 Certificate of patent or registration of utility model

Ref document number: 6425267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250