JPH1061384A - Wear diagnosis method of cutter of tunnel excavating equipment - Google Patents

Wear diagnosis method of cutter of tunnel excavating equipment

Info

Publication number
JPH1061384A
JPH1061384A JP23367096A JP23367096A JPH1061384A JP H1061384 A JPH1061384 A JP H1061384A JP 23367096 A JP23367096 A JP 23367096A JP 23367096 A JP23367096 A JP 23367096A JP H1061384 A JPH1061384 A JP H1061384A
Authority
JP
Japan
Prior art keywords
cutter
excavation
ground
wear
cutter head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23367096A
Other languages
Japanese (ja)
Other versions
JP3828615B2 (en
Inventor
Akiyoshi Chichibu
顕美 秩父
Koji Yoshino
広司 吉野
Kazuhiko Sato
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP23367096A priority Critical patent/JP3828615B2/en
Publication of JPH1061384A publication Critical patent/JPH1061384A/en
Application granted granted Critical
Publication of JP3828615B2 publication Critical patent/JP3828615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To diagnose wear amount of a cutter main body quantitatively by measuring propulsion speed of a tunnel excavating equipment and torque and number of revolutions of a cutter head and obtaining excavation coefficient which indicates amount of work done by the excavating equipment. SOLUTION: A disclike cutter head 2 is rotated at a front end of a shield frame 1 of a shield machine to excavate the ground G. An acceleration sensor which detects excavation sound is attached to a rear face of a bulkhead 7 of a sealed chamber 3. Changes of the intensity of an excavation sound signal AE are obtained from an acoustic signal from the acceleration sensor in the ground and are adopted as feature parameters which indicate the hardness of the ground to be excavated. Jack propulsion speed V is measured by a jack sensor attached to a hydraulic jack for propulsion 6, and rotation torque T and the number of revolutions ω of the cutter head 2 are measured by a torque sensor and a number of revolution sensor. Excavation coefficient is determined based on propulsion speed V, torque T, and number of revolutions ω, and wear amount W of a cutter main body is diagnosed quantitatively to improve diagnosis accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シールド掘進機や
トンネルボーリングマシン(TBM)等のトンネル掘削
機械によるトンネルや上下水道等の掘削工事において、
地盤を掘削するカッタの損耗量を定量的に診断する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excavation work for a tunnel or water supply and sewerage by a tunnel excavation machine such as a shield machine or a tunnel boring machine (TBM).
The present invention relates to a method for quantitatively diagnosing a wear amount of a cutter for excavating a ground.

【0002】[0002]

【従来の技術】シールド工法によるトンネルや上下水道
等の掘削工事においては、シールド掘進機の前面で回転
して地盤を掘削するカッタヘッド上のカッタ本体は、地
盤の切削に伴い経時的に摩耗や損傷を受けるため、ある
程度カッタ本体が損耗した場合は、これを交換する必要
がある。しかし、地中でのカッタ本体の交換は煩雑で大
掛かりな工事を伴うため、必要以上の頻度で交換する
と、掘削工事の中断回数が増大することによって工期が
長くなったり、コストが上昇し、また、交換頻度が過小
である場合は、カッタ本体が許容範囲を超えて損耗され
ることによって掘進速度や掘削効率が著しく低下するた
め、カッタ本体の健全性を地上で常時診断し、その交換
時期を的確に決定する必要がある。
2. Description of the Related Art In excavation work such as tunnels and water supply and sewerage by a shield method, a cutter body on a cutter head which excavates the ground by rotating in front of a shield excavator wears and wears over time as the ground is cut. If the cutter body is worn to some extent because it is damaged, it needs to be replaced. However, exchanging the cutter body underground is complicated and requires large-scale construction, so if it is replaced more frequently than necessary, the number of interruptions of excavation work will increase and the construction period will increase, and the cost will increase. If the replacement frequency is too low, the cutter body will be worn out of tolerance and the excavation speed and drilling efficiency will be significantly reduced.Therefore, the health of the cutter body will be constantly diagnosed on the ground, and the replacement time will be determined. It needs to be determined accurately.

【0003】このようなカッタ本体の健全性の診断方法
として、従来は、カッタ本体の損耗の進行度合が地盤と
の摺動量にほぼ比例するとの仮定に基づいて、掘進に伴
う前記カッタ本体の周回距離を計測する方法が採用され
ている。この方法によれば、硬い地盤ほど、一定の掘進
距離におけるカッタ本体の周回距離が増大して損耗が進
行するものと診断される。
Conventionally, as a method of diagnosing the soundness of the cutter body, a conventional method of diagnosing the cutter body with excavation has been based on the assumption that the degree of progress of wear of the cutter body is substantially proportional to the amount of sliding with the ground. A method of measuring a distance is employed. According to this method, it is diagnosed that the harder the ground is, the more the orbital distance of the cutter body at a constant excavation distance increases and the wear proceeds.

【0004】[0004]

【発明が解決しようとする課題】しかし、カッタ本体の
損耗は、実際にはトンネル掘削機械の運転状況や、掘削
される地盤の硬さに支配されるため、回転数から求めら
れるカッタ本体の摺動距離のみのデータでは、カッタ本
体の損耗の進行状況を高精度で診断してその交換時期を
的確に推定することは困難である。
However, the wear of the cutter body is actually governed by the operating conditions of the tunnel excavating machine and the hardness of the ground to be excavated. It is difficult to diagnose the progress of the wear of the cutter body with high accuracy and accurately estimate the replacement time using the data of only the moving distance.

【0005】本発明は、上記のような事情のもとになさ
れたもので、その技術的課題とするところは、トンネル
掘削機械が掘削対象地盤に対してした仕事量と、カッタ
本体の損耗量との関係に着目し、診断精度を向上させる
ことにある。
SUMMARY OF THE INVENTION The present invention has been made under the above circumstances, and the technical subjects thereof are that the amount of work performed by a tunnel excavating machine on the ground to be excavated and the amount of wear of a cutter body are reduced. And to improve the diagnostic accuracy.

【0006】[0006]

【課題を解決するための手段】本発明に係るトンネル掘
削機械のカッタの損耗診断方法は、地中を掘進するトン
ネル掘削機械の推進速度v、カッタヘッドのトルクT及
びカッタヘッドの回転数ωを計測して、これらの値から
掘削係数KT を定義し、この掘削係数KT を指標とし
て、前記カッタヘッド上に配置されたカッタ本体の摩耗
量wを定量的に診断するものであり、また、KT 2の積算
値が所定の値に達した場合にカッタの摩耗量が許容限界
に達したと判定するものである。
According to the present invention, there is provided a method of diagnosing wear of a cutter of a tunnel excavating machine, comprising: determining a propulsion speed v, a torque T of a cutter head, and a rotational speed ω of the cutter head of the tunnel excavating machine excavating underground. It is measured, to define the drilling coefficient K T from these values, as an index of the drilling coefficient K T, and the wear amount w of the cutter body that is disposed on the cutter head intended to quantitatively diagnose and it is intended to determine the amount of wear the cutter has reached the allowable limit when the integrated value of K T 2 has reached a predetermined value.

【0007】[0007]

【発明の実施の形態】トンネルや上下水道等の掘削工事
では、トンネル掘削機械の運転状況を管理するために、
各種の機械量を計測している。これらの計測データのう
ち、前記掘削機械の掘削性能を評価するうえで基本とな
るのは、総推力F、カッタトルクT、推進用ジャッキの
推進速度v及びカッタヘッドの回転数ωである。トンネ
ルボーリングマシン(TBM)による硬岩の掘削では、
カッタトルクTとカッタヘッド1回転当たりの掘進距離
Pとの間に次式が成り立つことが見出される。 T=KTn ・・・・・・・・・・・・・・・・・・・・ 上記式においては、掘削対象の岩石の種類や、カッタ
本体の幾何学的形状、寸法とは独立して、指数nは 1.0
〜1.5 であり、係数KT は掘削対象地盤の性状やカッタ
本体の幾何学的性質を反映する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In excavation work for tunnels, water supply and sewerage, etc., in order to manage the operation status of tunnel excavation machines,
It measures various mechanical quantities. Of these measurement data, the basics for evaluating the excavating performance of the excavating machine are the total thrust F, the cutter torque T, the propulsion speed v of the propulsion jack, and the rotation speed ω of the cutter head. Excavation of hard rock by tunnel boring machine (TBM)
It is found that the following equation holds between the cutter torque T and the excavation distance P per one rotation of the cutter head. T = K T P n ··········· In the above formula, the type of rock to be excavated and the geometric shape and dimensions of the cutter body Independently, the index n is 1.0
The coefficient K T reflects the properties of the ground to be excavated and the geometrical properties of the cutter body.

【0008】上記式は硬岩を掘削対象としたTBMで
の経験式であるが、本発明ではこの経験式を礫岩や砂礫
岩等を含む地盤の掘削にも適用し得るものと仮定し、次
式により係数KT を定義する。 KT =T/P=T・ω/v ・・・・・・・・・・・・ ここで、式は式における指数nを 1.0と想定してい
ることになる。
The above equation is an empirical equation for a TBM for excavating hard rock. In the present invention, it is assumed that this empirical equation can be applied to the excavation of the ground including conglomerate, sandstone and the like. The coefficient K T is defined by the following equation. K T = T / P = T · ω / v Here, the formula assumes that the exponent n in the formula is 1.0.

【0009】本発明では、式で定義される係数KT
掘削係数と呼び、これをカッタ交換の判定のための有効
な指標として採用する。この掘削係数KT は、上述のよ
うに、掘削対象地盤の力学的性質とカッタヘッド上に配
列されたカッタ本体の幾何学的条件の双方に依存する。
したがって、カッタ本体の摩耗が一定とみなし得る区間
で掘削係数KT に変化が生じるとすれば、それは掘削対
象地盤の変化、すなわち地質の変化か、地盤の力学的性
質の変化の少なくともいずれかが生じたことが予想され
る。また掘削対象地盤が同一地層区分に属しているにも
拘らず掘削係数KT が変化したとすれば、そのときには
カッタの幾何学的性質が変化したしたこと、具体的には
カッタ本体の摩耗が進展した可能性がある。
In the present invention, the coefficient K T defined by the equation is called an excavation coefficient, and this is adopted as an effective index for determining cutter replacement. As described above, the excavation coefficient K T depends on both the mechanical properties of the ground to be excavated and the geometric conditions of the cutter bodies arranged on the cutter head.
Therefore, if a change occurs in the excavation coefficient K T in a section where the wear of the cutter body can be considered to be constant, it means that a change in the ground to be excavated, that is, a change in the geology or a change in the mechanical properties of the ground. It is expected to have occurred. Also, if the excavation coefficient K T changes despite the fact that the ground to be excavated belongs to the same stratum section, then the geometrical properties of the cutter have changed at that time, and specifically, the wear of the cutter body has been reduced. It may have evolved.

【0010】式で定義したカッタトルクに係る掘削係
数KT について、別の視点からその物理的意味を述べ
る。式から明らかなように、KT は単位掘進長だけ掘
削するためにトンネル掘削機械が地盤に対してした仕事
のうち、カッタヘッドの回転に基づく寄与を表してい
る。ここではこれを回転掘削仕事と呼ぶ。すなわちKT
は単位掘進長当たりの回転掘削仕事であるから、カッタ
本体の交換時を起点として任意の距離Lだけ掘進したと
きの仕事WT はKT を積算することによって与えられ
る。すなわち、
The physical meaning of the excavation coefficient K T related to the cutter torque defined by the equation will be described from another viewpoint. As is apparent from the equation, K T is out of work tunneling machine is against ground to drilling by a unit excavation length, represents the contribution based on the rotation of the cutter head. Here, this is called rotary excavation work. That is, K T
Is the rotary excavation work per unit excavation length, so that the work W T when excavating by an arbitrary distance L starting from the time of replacement of the cutter body is given by integrating KT . That is,

【数1】 (Equation 1)

【0011】ここで、カッタ本体の摩耗量wは、トンネ
ル掘削機械が掘削対象地盤に対してした回転掘削仕事と
関連しているため、次式で表されるものと仮定する。
Here, it is assumed that the amount of wear w of the cutter body is expressed by the following equation because it is related to the rotary excavation work performed by the tunnel excavating machine on the ground to be excavated.

【数2】すなわち、この式でn=1ならばw=cWT
であり、摩耗量は回転掘削仕事に比例することを意味し
ている。またn=2ならば、摩耗量は単位掘進長当たり
の回転掘削仕事KT の2乗の積算値に比例することにな
る。指数nはn≧1と期待されるが、これは工事実績に
より定められ、係数cも同様に工事実績に基づいて定め
られる。
That is, if n = 1 in this equation, w = cW T
Which means that the wear amount is proportional to the rotary excavation work. If n = 2, the amount of wear is proportional to the integrated value of the square of the rotary excavation work K T per unit excavation length. The index n is expected to be n ≧ 1, which is determined based on the construction results, and the coefficient c is similarly determined based on the construction results.

【0012】式が成り立てば、カッタ本体の交換の判
定規準は次式で表される。すなわちカッタ交換の規準
が、許容される摩耗量の最大値wmax で定められたとす
ると、判定規準は、
When the equation is established, the criterion for the exchange of the cutter body is expressed by the following equation. That criterion cutter replacement, when defined by the maximum value w max wear amount allowed, decision criteria,

【数3】である。この式は、KT nの積算値が前回カッ
タ本体を交換した時から起算してwmax/cに達した時点
(式で右辺と左辺が等しくなった時点)でカッタ本体
を交換すべきであることを示している。
## EQU3 ## This formula should be replaced when the integrated value of K T n reaches w max / c from the time when the cutter body was replaced last time (when the right side and the left side become equal in the formula). It indicates that there is.

【0013】式の判定規準では指数nと係数cを事前
に把握しておく必要がある。この場合、過去に同一機種
のトンネル掘削機械での工事実績があれば、それを利用
して指数n及び係数cを求めておくことができる。ま
た、この機種のトンネル掘削機械による工事実績がなけ
れば、掘進初期の段階で掘進データとカッタ本体の摩耗
量の実測値から、後述の実施例で述べるような手法に準
じて推定する。
In the criterion of the equation, it is necessary to grasp the index n and the coefficient c in advance. In this case, the index n and the coefficient c can be obtained by using the past construction results of the same type of tunnel excavating machine, if any. Further, if there is no construction performance by this type of tunnel excavating machine, it is estimated in the early stage of excavation from the excavation data and the actually measured value of the wear amount of the cutter body in accordance with a method described later in an embodiment.

【0014】[0014]

【実施例】本発明の実施例として、外径が2140mm、総推
力が最大4704kN (480tf)、カッタヘッドの回転トルクが
最大353kN・m (36tf・m)の岩盤対応型のシールド掘進機を
用いて、総延長1816m (シールド掘進機の発進位置から
起算した一次覆工セグメントのリング数に換算して1779
リングに相当する距離)の下水道幹線施設工事を行った
事例について説明する。前記シールド掘進機は、図1に
示すように、略円筒形のシールドフレーム1の掘進方向
前端で、円盤状のカッタヘッド2をシールドフレーム1
の軸心部を中心に回転させて地盤Gを掘削し、これによ
って発生した掘削土(ズリ)G’を、カッタヘッド2に
形成されたスリット(図示省略)からその背面の密閉チ
ャンバ3内に導入して、カッタヘッド2の回転に伴って
撹拌し、この密閉チャンバ3から後方へ延在されたスク
リュコンベア4を介して排土ゲート5に連続的に搬送
し、更にそこから適宜搬送手段を介して地上へ排出する
ようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, a rock drilling shield excavator having an outer diameter of 2140 mm, a total thrust of up to 4704 kN (480 tf), and a cutter head rotational torque of up to 353 kNm (36 tfm) is used. Total length of 1816m (converted to the number of rings in the primary lining segment calculated from the starting position of the shield
An example of construction of a sewer main line facility (distance equivalent to a ring) will be described. As shown in FIG. 1, the shield excavator attaches a disk-shaped cutter head 2 to the shield frame 1 at the front end in the excavation direction of a substantially cylindrical shield frame 1.
The ground G is excavated by rotating about the center of the axis, and the excavated soil (slipping) G ′ generated by this is inserted into a closed chamber 3 on the rear surface of the cutter head 2 through a slit (not shown) formed in the cutter head 2. It is stirred with the rotation of the cutter head 2 and is continuously conveyed from the closed chamber 3 to a discharging gate 5 via a screw conveyor 4 extending rearward. Through the ground.

【0015】また、シールドフレーム1の掘進方向後端
では、掘削された坑内壁に、図示されていないエレクタ
によって複数のセグメントSを環状に組み立てて、土圧
に耐えるための一次覆工を施している。そして、セグメ
ントSを1リング分だけ組み立てたら、このセグメント
Sの前端に推進用油圧ジャッキ6を当てて押圧すること
によって、その反力でシールド掘進機を前記1リング分
の軸方向長さLに相当する一定距離だけ掘進してから、
次の1リング分のセグメントSの組み立てを行うといっ
た行程のサイクルが繰り返される。
At the rear end of the shield frame 1 in the excavation direction, a plurality of segments S are assembled in an annular shape by an unillustrated erector on the excavated inner wall, and subjected to a primary lining to withstand earth pressure. I have. Then, after assembling the segment S for one ring, the propulsion hydraulic jack 6 is applied to the front end of the segment S and pressed, so that the reaction force causes the shield machine to reach the axial length L for one ring. After digging for the equivalent constant distance,
The cycle of the process of assembling the segment S for the next one ring is repeated.

【0016】密閉チャンバ3を形成している隔壁7の後
面には、カッタヘッド2における掘削音を検出するため
の加速度センサが取り付けられ、推進用油圧ジャッキ6
にはジャッキ推進速度vを計測するためのジャッキセン
サが取り付けられ、カッタヘッド2の駆動系には、カッ
タヘッド2の回転トルクTを計測するためのトルクセン
サや、カッタヘッド2の回転数ωを計測するための回転
数センサが取り付けられている。前記推進速度v、トル
クT、回転数ω等は、それぞれ掘進長25cm毎に計測して
地上の制御室内に設置したコンピュータに供給し、この
コンピュータによって各種演算を行うようにした。
An acceleration sensor for detecting the sound of excavation in the cutter head 2 is attached to the rear surface of the partition wall 7 forming the closed chamber 3.
Is provided with a jack sensor for measuring the jack propulsion speed v. The drive system of the cutter head 2 includes a torque sensor for measuring the rotational torque T of the cutter head 2 and a rotational speed ω of the cutter head 2. A rotation speed sensor for measuring is attached. The propulsion speed v, the torque T, the number of revolutions ω, and the like were measured for each excavation length of 25 cm and supplied to a computer installed in a control room on the ground, and the computer performed various calculations.

【0017】図2は図1に示す岩盤対応型シールド掘進
機を正面から見たものであり、カッタヘッド2には、カ
ッタ本体としてディスクカッタ21が10セット、ツール
ビット22が 5個× 6列=30個、その他センタカッタ2
3、ゲージカッタ24などが取り付けられている。ディ
スクカッタ21はいずれも直径が 305mmで、その許容さ
れる摩耗限界は18mmと定められている。
FIG. 2 is a front view of the rock drilling shield excavator shown in FIG. 1. The cutter head 2 has 10 sets of disk cutters 21 as a cutter body and 5 × 6 rows of tool bits 22. = 30 pieces, other center cutter 2
3. A gauge cutter 24 and the like are attached. Each of the disk cutters 21 has a diameter of 305 mm, and its allowable wear limit is set at 18 mm.

【0018】工区の地質構成は、事前のボーリング調査
によると、図3に示すように全区間のうち発進側約2/
3は泥岩と礫岩からなる地層、到達側約1/3は砂礫層
であった。泥岩は全体的に風化が進んでおり、シルト状
又は砂質の泥岩である。礫岩は10〜30mmの円礫を主体と
する砂礫からなり、80〜200mm の玉石が1mにつき 3〜
4 個点在する。工区後半の砂礫層は、 5〜60mmの礫を主
体とし、80〜300mm の玉石が混入している。
According to the pre-boring survey, the geological composition of the construction zone is, as shown in FIG.
3 was a stratum composed of mudstone and conglomerate, and about 1/3 of the reaching side was a gravel layer. The mudstone is generally weathered and is a silty or sandy mudstone. Conglomerate is composed of sand, mainly consisting of 10 to 30 mm round pebble, and 80 to 200 mm cobblestone is 3 to 3 m / m.
There are four dots. The gravel layer in the latter half of the construction area is mainly composed of 5-60mm gravel and 80-300mm cobblestone.

【0019】カッタヘッド2による地盤掘削音は軟らか
い粘性土層では小さく、地盤が硬くなるにつれて大きく
なるため、隔壁7の後面の加速度センサで検出される音
響信号から不要な周波数成分をカットオフし波形処理す
ることによって得られた一定の掘削距離毎の掘削音信号
AE強度を、掘削地盤の硬さを表す特徴パラメータとし
て採用した。図4は、発進後40リング位置から掘進完了
位置までのほぼ全工区について、各リング(掘進行程)
毎の掘削音信号AE強度の変化を示したものである。
The ground excavation noise generated by the cutter head 2 is small in a soft clay soil layer and increases as the ground becomes harder. Therefore, unnecessary frequency components are cut off from an acoustic signal detected by an acceleration sensor on the rear surface of the partition wall 7 to form a waveform. The digging sound signal AE intensity for each fixed digging distance obtained by the processing was adopted as a characteristic parameter representing the hardness of the digging ground. Figure 4 shows each ring (digging progress) for almost all sections from the 40 ring position to the excavation completion position after starting.
The change of the excavation sound signal AE intensity for each is shown.

【0020】すなわち図4によれば、シールド掘進機が
図3に示す泥岩及び礫岩層内を掘進している区間に相当
する1150リング付近までは、掘削音信号AE強度は1V程
度の小さい値を示し、特に顕著な変化は認められない。
その後1150リング付近からは玉石を含む砂礫層に移行す
るのに対応して、掘削音信号AE強度の急激な増大が見
られ、しかもその値は 1.5〜4.5Vまで激しく変化してい
るため、かなり地盤の硬軟の差があることを示してい
る。特に1450〜1550リング付近では掘削音信号AE強度
が著しく大きくなっており、地盤がかなり硬いことを示
している。
That is, according to FIG. 4, the excavation sound signal AE intensity has a small value of about 1 V up to about 1150 rings corresponding to the section where the shield machine is excavating in the mudstone and conglomerate layer shown in FIG. No significant change was observed.
After that, from around 1150 ring, the AE intensity of the excavation sound signal sharply increased in response to the transition to the gravel layer containing cobblestone, and the value changed drastically from 1.5 to 4.5 V. This indicates that there is a difference in the hardness of the ground. In particular, the AE intensity of the excavation sound signal is remarkably large in the vicinity of the 1450 to 1550 ring, which indicates that the ground is considerably hard.

【0021】この事例では、発進後しばらくは軟らかい
泥岩及び礫岩層内を掘削しているため、カッタの摩耗や
損傷も軽微であると推定されるが、このような軟らかい
地盤を掘進している場合でも摩耗は確実に進行するた
め、 781リングに相当する位置まで掘進した時点で第1
回目のカッタ交換が行われた。その後は1150リング付近
で砂礫層への移行によって、摩耗の進行がやや早まるも
のと推定され、1304リングに相当する位置まで掘進した
時点で第2回目のカッタ交換が行われた。更にその後は
1400リング付近から掘削音信号AE強度が著しく大きく
なって地盤がかなり硬い区間に相当し、ディスクカッタ
21がかなり損傷を受けているものと推定されるため、
第2回目のカッタ交換後僅か 141リングの距離を掘削し
て1446リングに相当する位置まで掘進した時点で第3回
目のカッタ交換が行われた。
In this case, it is presumed that the abrasion and damage of the cutter are slight since the excavation is performed in the soft mudstone and conglomerate layers for a while after the vehicle starts, but the excavation is performed in such a soft ground. However, since the wear progresses reliably, the first point when excavating to the position equivalent to the 781 ring
The second cutter exchange was performed. After that, it was estimated that the wear progressed slightly due to the transition to the gravel layer near the 1150 ring, and the second cutter exchange was performed when the excavation reached the position corresponding to the 1304 ring. After that,
Since it is estimated that the digging sound signal AE intensity becomes remarkably large from around 1400 ring and the ground corresponds to a considerably hard section, and the disk cutter 21 is estimated to be considerably damaged,
After the second cutter exchange, the third cutter exchange was performed at the point when only 141 rings were excavated and excavated to a position equivalent to 1446 rings.

【0022】ディスクカッタ21のカッタリング摩耗量
(以下、カッタ摩耗量という)は、各カッタ交換時なら
びに1779リングで掘進完了時の計4回測定された。図5
はその測定結果を示すもので、この図中の横軸には、デ
ィスクカッタ21の各カッタリングの位置をカッタヘッ
ド2の中心から計測した距離で示している。図5による
と、カッタヘッド2の中心から離れた位置にあるカッタ
リングほど(外周側ほど)周速が大きいことによって摩
耗量が大きくなる傾向がみられる。また、第1回目のデ
ィスクカッタ交換時に測定したカッタ摩耗量の平均値は
8.9mm、第2回目のカッタ交換時に測定したカッタ摩耗
量の平均値は11.3mm、第3回目のカッタ交換時に測定し
たカッタ摩耗量の平均値は15.2mm、掘進完了位置でのカ
ッタ交換時に測定したカッタ摩耗量の平均値は12.6mmで
あった。
The amount of wear of the disk cutter 21 (hereinafter referred to as the amount of wear of the cutter) was measured a total of four times when each cutter was replaced and when excavation was completed with 1779 rings. FIG.
Shows the measurement results. The horizontal axis in the figure shows the position of each cutter ring of the disk cutter 21 as a distance measured from the center of the cutter head 2. According to FIG. 5, there is a tendency that the amount of wear increases as the peripheral speed increases with increasing distance from the center of the cutter head 2 (away from the center). The average value of the cutter wear measured at the time of the first disk cutter replacement is
8.9mm, average cutter wear measured at the second cutter change is 11.3mm, average cutter wear measured at the third cutter change is 15.2mm, measured at the end of excavation The average value of the obtained cutter wear amount was 12.6 mm.

【0023】次に、この工事の事例について、本発明に
よる損耗診断方法を適用し、カッタ交換時期について評
価してみた。図6は、式に基づいて1リング毎に算出
した掘削係数KT の推移を示すものである。
Next, with respect to this example of construction, the wear diagnosis method according to the present invention was applied to evaluate the cutter replacement time. FIG. 6 shows the transition of the excavation coefficient K T calculated for each ring based on the equation.

【0024】すなわち図6によれば、先に説明した掘削
音信号AE強度と同様、シールド掘進機が泥岩及び礫岩
層内を掘進している区間に相当する約1150リング位置ま
では、掘削係数KT は相対的に低い水準にとどまってい
るが、砂礫層内へ移行するのと同時に掘削係数KT は急
激に高くなり、その後は掘進終了位置まで高い水準とな
っている。しかし、これを更に詳細に観察すると、砂礫
層内の掘進過程でも1450リング位置以降はそれ以前に比
較して掘削係数KT の値が低下しており、高い水準を維
持している掘削音信号AE強度の推移とはやや異なる傾
向を示していることがわかる。
That is, according to FIG. 6, similarly to the digging sound signal AE intensity described above, the digging coefficient K is up to about 1150 ring positions corresponding to the section where the shield machine is digging in the mudstone and conglomerate layer. Although T remains at a relatively low level, the excavation coefficient KT rapidly increases at the same time as the material moves into the gravel layer, and thereafter becomes high until the excavation end position. However, when observing this in more detail, the excavation coefficient KT value after the 1450 ring position was lower than before that even during the excavation process in the gravel layer, and the excavation sound signal that maintained a high level It can be seen that the trend is slightly different from the transition of the AE intensity.

【0025】例えば、図4に符号Aで示すように、1250
〜1300リング付近にかけて掘削音信号AE強度がやや減
少している領域があり、すなわちこの領域Aでは地盤が
ある程度軟らかくなっていることを示しているのに対し
て、図6を参照すると、掘削係数KT は、この領域Aで
は逆に大きな値を示している。地盤が軟らかいにも拘ら
ず掘削係数KT が大きくなっているのは、摩耗や損傷に
よって掘削能力が低下しているであると推定される。ま
た例えば、図4に符号Bで示すように、1450〜1550リン
グにかけて掘削音信号AE強度が極めて大きい領域があ
り、すなわちこの領域Bでは地盤が極めて硬いことを示
しているのに対して、図6を参照すると、掘削係数KT
は、この領域Bでは逆に小さな値を示している。地盤が
硬いにも拘らず掘削係数KT が小さくなっているのは、
1446リングに相当する位置でのカッタ交換によって、掘
削能力が回復したためであると推定される。
For example, as shown by reference numeral A in FIG.
There is a region where the digging sound signal AE intensity is slightly reduced up to about 1300 rings, that is, the region A shows that the ground is somewhat soft, while referring to FIG. KT has a large value in the area A. The reason why the excavation coefficient KT is large even though the ground is soft is presumed to be that the excavation ability has decreased due to wear and damage. Also, for example, as shown by reference numeral B in FIG. 4, there is a region where the digging sound signal AE intensity is extremely large from 1450 to 1550 ring, that is, in this region B, the ground is extremely hard. Referring to FIG. 6, the excavation coefficient K T
Represents a small value in the area B. The fact that the excavation coefficient K T is small despite the fact that the ground is hard is that
It is presumed that the excavation ability was recovered by replacing the cutter at the position corresponding to the 1446 ring.

【0026】次に、カッタ摩耗量とKT nの積算値との関
係に着目する。図7は各カッタ交換位置を起点とするK
T nの積算値の推移を示すもので、すなわち、前記各カッ
タ交換位置を境に全工区を4つの区間に分け、各区間毎
に、n=1及びn=2の場合のKT nの積算値を求めてあ
る。図8はn=2の場合、すなわち各区間毎のKT 2の積
算値と、その区間で生じたカッタ摩耗量の平均値wmean
とを対比して示すものである。この図から明らかなよう
に、前記KT 2の積算値とカッタ摩耗量の平均値との間に
は次の比例関係が見出される。
Next, attention is paid to the relationship between the cutter wear amount and the integrated value of K T n . FIG. 7 shows K starting from each cutter exchange position.
It shows the transition of the integrated value of T n , that is, the entire construction section is divided into four sections at each of the cutter replacement positions, and for each section, K T n for n = 1 and n = 2 The integrated value is calculated. FIG. 8 shows the case where n = 2, that is, the integrated value of K T 2 for each section and the average value w mean of the amount of cutter wear generated in that section.
Is shown in comparison with FIG. As is apparent from this figure, the following proportional relationship is found between the integrated value of K T 2 and the average value of the amount of cutter wear.

【数4】 また、この式が成立するならば、式による判定規準
は次式のように改められる。
(Equation 4) If this equation is satisfied, the criterion based on the equation is changed to the following equation.

【数5】 (Equation 5)

【0027】この実施例の場合、図8に示すようにa=
2.4×10-5、b= 4.8mmであり、また先に述べたよう
に、ディスクカッタ21の摩耗限界wmax は18mmと定め
られているため、式が示唆するKT 2の積算値の限界は
5.5×105 単位となる。しかし実際にはwmax =wmean
ではないから、KT 2の積算値の限界はもう少し低い水準
に抑えるべきと考えられる。そこで、wmax = 1.2w
meanと仮定すると、式が示唆するKT 2の積算値の限界
は 4.2×105 単位になる。実際の全工区でのKT 2の積算
値は11.9×105 単位であるから、発進してから掘進完了
までの途中のカッタ交換回数を求めると、 11.9× 105/(4.2×105)−1=1.8 となり、カッタ交換は2回で良かったことになる。すな
わち、実際の工事ではカッタを3回交換したわけだか
ら、交換回数を1回節減できた可能性がある。
In this embodiment, as shown in FIG.
2.4 × 10 −5 , b = 4.8 mm, and as described above, the wear limit w max of the disk cutter 21 is set to 18 mm, so the limit of the integrated value of K T 2 suggested by the equation is given. Is
5.5 × 10 5 units. However, in practice, w max = w mean
Therefore, it is considered that the limit of the integrated value of K T 2 should be suppressed to a slightly lower level. Therefore, w max = 1.2w
Assuming mean , the limit of the integrated value of K T 2 suggested by the equation is 4.2 × 10 5 units. Since the actual integrated value of K T 2 in all construction sections is 11.9 × 10 5 units, the number of cutter replacements from the start to the completion of excavation is calculated as 11.9 × 10 5 /(4.2×10 5 ) -1 = 1.8, which means that cutter exchange was good twice. That is, since the cutter was replaced three times in the actual construction, the number of replacements may be reduced by one.

【0028】[0028]

【発明の効果】本発明によれば、トンネル掘削機械が掘
削対象地盤に対してした仕事量を表す掘削係数KT によ
って、カッタ本体の摩耗量wを定量的に診断し、また、
T 2の積算値が所定の値に達した場合にカッタの摩耗量
が許容限界に達したと判定するものであるため、カッタ
交換時期の判定精度を向上させることができる。
According to the present invention, the wear amount w of the cutter body is quantitatively diagnosed by the excavation coefficient K T representing the amount of work performed by the tunnel excavating machine on the ground to be excavated.
Since it is determined that the wear amount of the cutter has reached the allowable limit when the integrated value of K T 2 has reached a predetermined value, it is possible to improve the determination accuracy of the cutter replacement time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する実施例として岩盤対応型シー
ルド掘進機による下水道幹線施設工事の状況を示す概略
的な説明図である。
FIG. 1 is a schematic explanatory view showing the state of construction of a sewer main line facility using a rock-compatible shield excavator as an embodiment to which the present invention is applied.

【図2】上記岩盤対応型シールド掘進機のカッタヘッド
を正面から見た図である。
FIG. 2 is a front view of a cutter head of the rock drilling shield excavator.

【図3】上記下水道幹線施設工事における工区の地質構
成を示す説明図である。
FIG. 3 is an explanatory diagram showing a geological configuration of a work section in the sewer main line facility construction.

【図4】上記下水道幹線施設工事における発進後40リン
グ位置から掘進完了までのほぼ全工区について測定した
掘削音信号AE強度の変化を示す説明図である。
FIG. 4 is an explanatory diagram showing a change in the digging sound signal AE intensity measured for almost all construction sections from the 40 ring position after the start to the completion of excavation in the sewer main line facility construction.

【図5】上記下水道幹線施設工事における各カッタ交換
時ならびに掘進完了時に測定したカッタ摩耗量を示す説
明図である。
FIG. 5 is an explanatory diagram showing cutter wear measured at the time of each cutter replacement and at the completion of excavation in the sewer main line facility construction.

【図6】上記下水道幹線施設工事における発進後40リン
グ位置から掘進完了までのほぼ全工区について、掘削係
数KT の変化を示す説明図である。
FIG. 6 is an explanatory diagram showing a change in an excavation coefficient K T for almost all construction sections from the 40 ring position after the start to the completion of excavation in the above sewer main line facility construction.

【図7】上記各カッタ交換位置を起点とするKT nの積算
値の推移を示す説明図である。
FIG. 7 is an explanatory diagram showing a transition of an integrated value of K T n starting from each of the cutter replacement positions.

【図8】上記工区を各カッタ交換位置で分けた各区間毎
のKT 2の積算値と、その区間で生じたカッタ摩耗量の平
均値wmeanとの関係を示す説明図である。
FIG. 8 is an explanatory diagram showing a relationship between an integrated value of K T 2 for each section obtained by dividing the construction section at each cutter replacement position and an average value w mean of the amount of cutter wear generated in the section.

【符号の説明】[Explanation of symbols]

2 カッタヘッド 21 ディスクカッタ(カッタ本体) 2 Cutter head 21 Disk cutter (Cutter body)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地中を掘進するトンネル掘削機械の推進
速度v、カッタヘッドのトルクT及びカッタヘッドの回
転数ωを計測して、これらの値から掘削係数KT をKT
=T・ω/vと定義し、前記カッタヘッド上に配置され
たカッタ本体の摩耗量wを次式; 【数2】 により定量的に診断することを特徴とするトンネル掘削
機械のカッタの損耗診断方法。
1. A to excavating the underground tunnel boring machine advancing speed v, by measuring the rotational speed ω of the torque T and the cutter head of the cutter head, a drill coefficient K T from these values K T
= T · ω / v, and the wear amount w of the cutter body disposed on the cutter head is expressed by the following equation; A method for diagnosing wear of a cutter of a tunnel excavating machine, characterized in that the diagnosis is made quantitatively by using a computer.
【請求項2】 請求項1の記載において、 カッタ本体の交換の判定規準は次式; 【数3】 で求め、KT nの積算値が前回カッタ本体を交換した時か
ら起算してwmax/cに達した時点でカッタ本体を交換す
べきであると判定することを特徴とするトンネル掘削機
械のカッタの損耗診断方法。
2. The criterion for determining whether to replace a cutter body according to claim 1, wherein: And determining that the cutter body should be replaced when the integrated value of K T n reaches w max / c from the time when the cutter body was replaced last time. Diagnosis method for cutter wear.
JP23367096A 1996-08-16 1996-08-16 Cutter wear diagnosis method for tunnel excavator Expired - Fee Related JP3828615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367096A JP3828615B2 (en) 1996-08-16 1996-08-16 Cutter wear diagnosis method for tunnel excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367096A JP3828615B2 (en) 1996-08-16 1996-08-16 Cutter wear diagnosis method for tunnel excavator

Publications (2)

Publication Number Publication Date
JPH1061384A true JPH1061384A (en) 1998-03-03
JP3828615B2 JP3828615B2 (en) 2006-10-04

Family

ID=16958699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367096A Expired - Fee Related JP3828615B2 (en) 1996-08-16 1996-08-16 Cutter wear diagnosis method for tunnel excavator

Country Status (1)

Country Link
JP (1) JP3828615B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300369A (en) * 2017-07-31 2017-10-27 中铁隧道集团有限公司 Shield/TBM hob abrasion measurement apparatus and measuring method
CN109443969A (en) * 2018-10-25 2019-03-08 西南交通大学 One kind being used for shield cutter cutter wear characteristic test and experiment device and method
RU2688714C1 (en) * 2016-12-05 2019-05-22 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Device and method of determining, during drilling, coefficient of fortress according to protodyakov of the tunnel roof rock based on the sound level meter
CN110017147A (en) * 2019-05-09 2019-07-16 中国电建集团铁路建设有限公司 A kind of shield cutter abrasion real-time monitoring system and monitoring method
CN110633525A (en) * 2019-09-12 2019-12-31 辽宁石油化工大学 Method and device for optimizing energy consumption of earth pressure balance shield machine system
JP2020094414A (en) * 2018-12-13 2020-06-18 川崎重工業株式会社 Shield machine
CN112412483A (en) * 2020-10-30 2021-02-26 中铁一局集团有限公司 Combined monitoring method for damage of cutter head of shield tunneling machine
CN112666033A (en) * 2020-12-18 2021-04-16 湘潭大学 Design method for TBM hob ring-rock opposite grinding similarity test
CN112855193A (en) * 2021-02-24 2021-05-28 中铁工程装备集团隧道设备制造有限公司 Method for accurately evaluating wear resistance of TBM hob ring
JP2021521363A (en) * 2018-06-08 2021-08-26 ヘーレンクネヒト アクツィエンゲゼルシャフトHerrenknecht Aktiengesellschaft Tunnel excavators and methods for digging tunnels
CN114608430A (en) * 2022-03-18 2022-06-10 中铁十四局集团大盾构工程有限公司 Shield machine cutter abrasion real-time detection experiment table and system based on Hall sensor
CN116556977A (en) * 2023-06-29 2023-08-08 河南金品建筑工程有限公司 Rotary excavating equipment for building construction
CN116910961A (en) * 2022-12-20 2023-10-20 中铁十一局集团有限公司 Cutter life prediction method suitable for heading machine in tunnel construction
CN117108294A (en) * 2023-10-16 2023-11-24 山东济矿鲁能煤电股份有限公司阳城煤矿 Intelligent monitoring system for faults of shield tunneling machine
CN117552793A (en) * 2024-01-11 2024-02-13 深圳大学 Quantitative evaluation method, system and terminal for shield cutter head abrasion state
CN117851761A (en) * 2024-03-08 2024-04-09 山东天工岩土工程设备有限公司 Method and system for evaluating states of cutterheads of shield machine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688714C1 (en) * 2016-12-05 2019-05-22 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Device and method of determining, during drilling, coefficient of fortress according to protodyakov of the tunnel roof rock based on the sound level meter
CN107300369A (en) * 2017-07-31 2017-10-27 中铁隧道集团有限公司 Shield/TBM hob abrasion measurement apparatus and measuring method
CN107300369B (en) * 2017-07-31 2023-06-20 中铁隧道局集团有限公司 Shield/TBM hob abrasion measurement device and measurement method
JP2021521363A (en) * 2018-06-08 2021-08-26 ヘーレンクネヒト アクツィエンゲゼルシャフトHerrenknecht Aktiengesellschaft Tunnel excavators and methods for digging tunnels
CN109443969A (en) * 2018-10-25 2019-03-08 西南交通大学 One kind being used for shield cutter cutter wear characteristic test and experiment device and method
CN109443969B (en) * 2018-10-25 2023-09-22 西南交通大学 Device and method for testing abrasion characteristics of cutter of shield cutter head
JP2020094414A (en) * 2018-12-13 2020-06-18 川崎重工業株式会社 Shield machine
CN110017147A (en) * 2019-05-09 2019-07-16 中国电建集团铁路建设有限公司 A kind of shield cutter abrasion real-time monitoring system and monitoring method
CN110633525B (en) * 2019-09-12 2023-04-07 辽宁石油化工大学 Method and device for optimizing energy consumption of earth pressure balance shield machine system
CN110633525A (en) * 2019-09-12 2019-12-31 辽宁石油化工大学 Method and device for optimizing energy consumption of earth pressure balance shield machine system
CN112412483A (en) * 2020-10-30 2021-02-26 中铁一局集团有限公司 Combined monitoring method for damage of cutter head of shield tunneling machine
CN112666033A (en) * 2020-12-18 2021-04-16 湘潭大学 Design method for TBM hob ring-rock opposite grinding similarity test
CN112666033B (en) * 2020-12-18 2023-11-17 中铁山河工程装备股份有限公司 TBM hob ring-rock opposite grinding similarity test design method
CN112855193A (en) * 2021-02-24 2021-05-28 中铁工程装备集团隧道设备制造有限公司 Method for accurately evaluating wear resistance of TBM hob ring
CN114608430B (en) * 2022-03-18 2024-01-19 中铁十四局集团大盾构工程有限公司 Real-time detection experiment table and system for cutter abrasion of shield tunneling machine based on Hall sensor
CN114608430A (en) * 2022-03-18 2022-06-10 中铁十四局集团大盾构工程有限公司 Shield machine cutter abrasion real-time detection experiment table and system based on Hall sensor
CN116910961A (en) * 2022-12-20 2023-10-20 中铁十一局集团有限公司 Cutter life prediction method suitable for heading machine in tunnel construction
CN116910961B (en) * 2022-12-20 2024-01-30 中铁十一局集团有限公司 Cutter life prediction method suitable for heading machine in tunnel construction
CN116556977B (en) * 2023-06-29 2023-09-15 河南金品建筑工程有限公司 Rotary excavating equipment for building construction
CN116556977A (en) * 2023-06-29 2023-08-08 河南金品建筑工程有限公司 Rotary excavating equipment for building construction
CN117108294A (en) * 2023-10-16 2023-11-24 山东济矿鲁能煤电股份有限公司阳城煤矿 Intelligent monitoring system for faults of shield tunneling machine
CN117108294B (en) * 2023-10-16 2024-01-12 山东济矿鲁能煤电股份有限公司阳城煤矿 Intelligent monitoring system for faults of shield tunneling machine
CN117552793A (en) * 2024-01-11 2024-02-13 深圳大学 Quantitative evaluation method, system and terminal for shield cutter head abrasion state
CN117552793B (en) * 2024-01-11 2024-04-12 深圳大学 Quantitative evaluation method, system and terminal for shield cutter head abrasion state
CN117851761A (en) * 2024-03-08 2024-04-09 山东天工岩土工程设备有限公司 Method and system for evaluating states of cutterheads of shield machine
CN117851761B (en) * 2024-03-08 2024-05-14 山东天工岩土工程设备有限公司 Method and system for evaluating states of cutterheads of shield machine

Also Published As

Publication number Publication date
JP3828615B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JPH1061384A (en) Wear diagnosis method of cutter of tunnel excavating equipment
JP4495114B2 (en) Tunnel excavator and tunnel excavation method
KR20170045772A (en) Earth pressure balance TBM test apparatus for TBM design and research
JPH07995B2 (en) Excavator
JP2015124467A (en) Roller cutter mechanism
Thewes et al. Transient face support in slurry shield tunneling due to different time scales for excavation sequence of cutting tools and penetration time of support fluid
JP6686710B2 (en) Cutter bit wear amount estimation method
JP2009221802A (en) Determing device and determing method for excavation cross section soil stratum of shield machine
CN210564541U (en) Quick heading machine
JP2008297821A (en) Shield driving machine and tunneling method therefor
TW201504513A (en) Cutter board of shield tunneling machine and shield tunneling machine including the same
TWI618849B (en) Shield tunneling machine
JPH10266783A (en) Disk cutter wear detection method and wear detector
Frough et al. Study of the correlation between RMR and TBM downtimes
JP6898890B2 (en) Shield excavator
JP3460981B2 (en) Shield excavator and method for estimating excavable distance of shield excavator
JP2017190640A (en) Rotary excavator capable of controlling pressing force on pit face
JPH11101091A (en) Tunnel excavator and excavation method
JP3806182B2 (en) Method for diagnosing wear of cutter face of tunnel excavator
JPH02200996A (en) Abrasion detecting method for cutter bit
Comis et al. Design and Implementation of a Large-Diameter, Dual-Mode “Crossover” TBM for the Akron Ohio Canal Interceptor Tunnel
JPH0452397A (en) Controlling method for excavation of shield machine
JP4749571B2 (en) Horizontal hole excavator
JP3403820B2 (en) Pipe burial equipment
JP2020094432A (en) Tunnel boring machine and fatigue measuring method on bearing part

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20021008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees