JP4305309B2 - Submarine tunnel construction method and submarine excavator - Google Patents

Submarine tunnel construction method and submarine excavator Download PDF

Info

Publication number
JP4305309B2
JP4305309B2 JP2004208674A JP2004208674A JP4305309B2 JP 4305309 B2 JP4305309 B2 JP 4305309B2 JP 2004208674 A JP2004208674 A JP 2004208674A JP 2004208674 A JP2004208674 A JP 2004208674A JP 4305309 B2 JP4305309 B2 JP 4305309B2
Authority
JP
Japan
Prior art keywords
excavation
submarine
box
tunnel
excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004208674A
Other languages
Japanese (ja)
Other versions
JP2006028869A (en
Inventor
正彦 水野
智勝 瀬口
秀夫 田中
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004208674A priority Critical patent/JP4305309B2/en
Publication of JP2006028869A publication Critical patent/JP2006028869A/en
Application granted granted Critical
Publication of JP4305309B2 publication Critical patent/JP4305309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は、陸上の製作ヤードで製作されたプレキャストのトンネルエレメント(函体)を水底の掘削地盤上に互いに接合しながら設置して水底トンネルを構築する水底トンネルの施工方法およびこの工法で使用される水底掘削推進機に関するものである。   INDUSTRIAL APPLICABILITY The present invention is a submarine tunnel construction method in which a precast tunnel element (box) manufactured at an onshore production yard is installed on a submarine excavation ground while being joined together, and used in this construction method. This relates to a submarine drilling propulsion machine.

海底トンネル等のように水面下で連続するトンネルを構築する方法として沈埋トンネル工法が知られている。この沈埋トンネル工法は、トンネルエレメント(沈埋函)をドライドックなどの製作ヤードで製作し、その両端部を仮隔壁(バルクヘッド)で閉塞した上で、水の浮力をして建設現場まで曳航し、予め浚渫した水底溝(トレンチ)内に沈設した後、水圧を利用して沈埋函相互の接合を行い、埋め戻しをして、水底に連続するトンネルを建設するものである。   A submerged tunnel construction method is known as a method of constructing a tunnel that is continuous under the water surface, such as a submarine tunnel. In this submerged tunnel construction method, tunnel elements (submerged boxes) are manufactured in a production yard such as a dry dock, and both ends are closed with temporary bulkheads (bulkheads), and then buoyant with water and towed to the construction site. Then, after sinking in a pre-drown water bottom groove (trench), the submerged boxes are joined together using water pressure, backfilled, and a tunnel continuous to the water bottom is constructed.

このような沈埋トンネル工法の場合、図10に示すように、水底地盤Bに幅の広いトレンチ50を浚渫する必要があり、トンネルAよりも広範囲にわたって排土する必要があることから、施工能率が低下するなどの問題があり、また、大規模な排土のため周囲の水質汚濁が避けられないなどの問題もある。さらに、既にあるトンネル等の構造物に近接してトンネルを建設する場合、トレンチ50の幅が広いため、近接構造物に悪い影響を与える恐れがある。   In the case of such a submerged tunnel construction method, as shown in FIG. 10, it is necessary to dredge a wide trench 50 in the bottom ground B, and it is necessary to discharge the soil over a wider area than the tunnel A. There are also problems such as lowering, and there is also a problem that surrounding water pollution is unavoidable due to large-scale soil discharge. Furthermore, when a tunnel is constructed in the vicinity of a structure such as an existing tunnel, the trench 50 is wide, which may adversely affect the adjacent structure.

このような問題を解消するため、図11に示すように、水底地盤Bを掘り進む掘削部61と、トンネルエレメントの函体aを収納可能な上部と後部が開口した箱状のテール部62からなる水底掘進機60を用い、1函体分だけ掘進すると、テール部62内に函体aを沈設し、これを順次繰り返して、連続したトンネルAを建設する工法が開発されている。テール部62は、底板63と、この左右両側部から立上る左右一対の側壁64から構成され、側壁64で地山を押さえるため、図11(a) に示すように、図10の浚渫工法と比べて、掘削断面を小さくすることができ、また近接する構造物に与える影響(図に点線で示す)も少なくすることができる。   In order to solve such a problem, as shown in FIG. 11, it comprises an excavation part 61 that digs the bottom ground B, and a box-shaped tail part 62 having an open upper part and a rear part capable of accommodating the box a of the tunnel element. A method has been developed for constructing a continuous tunnel A by sinking a box a in the tail portion 62 when the machine digs for one box using the submarine excavator 60. The tail portion 62 is composed of a bottom plate 63 and a pair of left and right side walls 64 rising from both left and right side portions. In order to hold the natural ground by the side walls 64, as shown in FIG. In comparison, the excavation cross section can be reduced, and the influence on the adjacent structure (shown by a dotted line in the figure) can be reduced.

また、本発明に関連する先行技術文献として、特許文献1、特許文献2がある。特許文献1の発明では、上記の水底掘進機を用いた工法において、岸寄り水域で新設函体を既設函体の上に沈設し、既設函体上をスライドさせて先頭の既設函体の前に設置し、主航路水域内での船舶の往来を妨げないようにしている。特許文献2の発明は、水底トンネルを構築するためのシールド掘進装置であり、トンネルブロックを収容可能な箱状のガイドと、前進に伴い発生する排土を排出するポンプと、ガイド内に供給されたトンネルブロックを既設トンネルブロックに押圧するためのシールドジャッキ等から構成されている。
特許第3487201号公報 実開平5−96198号公報
Further, there are Patent Document 1 and Patent Document 2 as prior art documents related to the present invention. In the invention of Patent Document 1, in the construction method using the above-mentioned underwater excavation machine, a new box is sunk on the existing box in the shore-side water area, and the existing box is slid to the front of the first existing box. Installed so that it does not hinder the traffic of vessels in the main waterways. The invention of Patent Document 2 is a shield excavation device for constructing a submarine tunnel, a box-shaped guide that can accommodate a tunnel block, a pump that discharges soil generated during advancement, and a guide that is supplied into the guide. It is composed of a shield jack or the like for pressing the tunnel block against the existing tunnel block.
Japanese Patent No. 3487201 Japanese Utility Model Publication No. 5-96198

建設しようとするトンネルに図3の側面図に示すような縦断勾配があり、途中に縦断勾配変化部がある場合に、上記した従来の水底掘進機60を適用しようとすると、テール部62には底板63があるため、前記縦断勾配変化部を通過する際に底板63とテール部内の函体aとが干渉し、水底掘進機60が縦断勾配変化部を通過できないという問題がある。   When the tunnel to be constructed has a longitudinal gradient as shown in the side view of FIG. 3 and there is a longitudinal gradient changing portion in the middle, if the above-described conventional water bottom excavator 60 is applied, the tail portion 62 has Since there is the bottom plate 63, there is a problem that the bottom plate 63 and the box a in the tail part interfere with each other when passing through the longitudinal gradient changing portion, and the water bottom excavator 60 cannot pass through the vertical gradient changing portion.

また、水底掘進機60が前進する際、テール部62内の函体aと底板63との間に多数のコロ等を設置し、摩擦抵抗を低減して水底掘進機60が移動しやすくする必要がある。さらに、水底掘進機を用いない一般的な沈埋トンネル工法のようにトレンチ内に基礎工(基礎栗石工・仮支承台工)を予め施工しておくことができないため、水底掘進機60の前進により函体aがテール部62内から掘削地盤上に押し出された後に、水底掘進機60の後方で函体aと掘削地盤との間に裏込めモルタルや砂65を充填しており、完全な基礎を構築するのが難しい。   Further, when the water bottom excavator 60 moves forward, it is necessary to install a large number of rollers or the like between the box a in the tail portion 62 and the bottom plate 63 to reduce the frictional resistance so that the water bottom excavator 60 can easily move. There is. In addition, since a foundation work (foundation chestnut stone work / temporary support base work) cannot be pre-constructed in the trench as in a general submerged tunnel construction method that does not use a water bottom digging machine, After the box a is pushed out from the tail portion 62 onto the excavated ground, the back mortar and sand 65 are filled between the box a and the excavated ground behind the underwater excavator 60, and the complete foundation Difficult to build.

本発明は、上記のような問題を解消すべくなされたものであり、建設しようとするトンネルに縦断勾配があり、途中に縦断勾配変化部がある場合にも、水底掘進機による水底トンネル工法が可能となり、しかも比較的簡単な構造の装置で水底トンネルを建設でき、さらに完全な基礎も構築することができる水底トンネルの施工方法および水底掘削推進機を提供することを目的とする。   The present invention has been made to solve the above-described problems. Even when a tunnel to be constructed has a longitudinal gradient, and there is a longitudinal gradient changing portion in the middle, the submarine tunnel construction method using a submarine excavator is also provided. An object of the present invention is to provide a submarine tunnel construction method and a submarine excavation propulsion device that can be constructed with a relatively simple structure and can construct a submarine tunnel and can also construct a complete foundation.

本発明の請求項1の発明は、水底の地盤を水底掘削推進機で掘進しつつ、掘進後の掘削地盤上に複数の函体(トンネルエレメント)を互いに接合しながら設置して水底トンネル(海底トンネル等)を構築する水底トンネルの施工方法であり、水底掘削推進機を、前部の掘削部と、掘進方向に平行な側壁を対向配置してなるテール部とから構成し、前記一対の側壁間の掘削地盤上に函体を沈設した後、前記水底掘削推進機を1函体分だけ前進させ、側壁間への函体の設置と1函体分の前進を順次繰り返して水底トンネルを構築することを特徴とする水底トンネルの施工方法である。   According to the first aspect of the present invention, a plurality of boxes (tunnel elements) are joined to each other on the excavated ground after excavation using the submarine excavator and the bottom of the water bottom is installed. A submarine tunneling propulsion device comprising a front excavation part and a tail part formed by opposingly arranging side walls parallel to the direction of excavation, and the pair of side walls. After sinking the box on the ground excavated in the middle, the water bottom excavation propulsion machine is moved forward by one box, and the installation of the box between the side walls and the forward movement for one box are sequentially repeated to construct the bottom tunnel. It is the construction method of the underwater tunnel characterized by doing.

即ち、海底トンネル等の沈埋トンネル工法の一種であって、掘削部とテール部からなる水底掘進機を用い、水底地盤を掘削しつつテール部内に函体(沈埋函)を沈設して順次接合していくトンネル工法において、テール部の底板を無くしてテール部を左右一対の側壁から構成し、建設しようとするトンネルに縦断勾配があり、途中に縦断勾配変化部がある場合にも、この縦断勾配変化部を水底掘削推進機が通過できるようにしたものである。   In other words, it is a type of submerged tunnel construction method such as a submarine tunnel, using a submarine advancing machine consisting of an excavation part and a tail part. In the tunnel construction method, the tail plate is made up of a pair of left and right side walls without the tail plate of the tail, and the tunnel to be constructed has a longitudinal gradient, and this longitudinal gradient is also present when there is a longitudinal gradient change part in the middle. The bottom part excavator can pass through the change part.

本発明の請求項2の発明は、請求項1に記載の施工方法において、一対の側壁間の掘削地盤上に基礎(基礎栗石と仮支承など)を施工した後、この基礎上に函体を沈設することを特徴とする水底トンネルの施工方法である。   The invention according to claim 2 of the present invention is the construction method according to claim 1, wherein after a foundation (foundation chestnut and temporary support, etc.) is constructed on the excavation ground between the pair of side walls, the box is placed on the foundation. It is a construction method of a submarine tunnel characterized by being submerged.

即ち、函体の下に基礎を設ける場合であり、テール部に底板が無いため、水底掘進機を用いない一般的な沈埋トンネル工法と同様に、水底地盤掘削後で函体の沈設前に基礎栗石や仮支承を設けることができる。基礎栗石工と仮支承工を施工し、この上に函体を沈設した後、函体内からモルタル等を函体の函底と基礎栗石の空隙に注入し、完全なモルタル基礎等を構築する。   In other words, the foundation is provided under the box, and since there is no bottom plate at the tail, the foundation before the box is set after excavation of the bottom of the ground, as in the general submerged tunnel construction method that does not use the underwater excavation machine. Kuriishi and temporary support can be established. After constructing the foundation chestnut work and temporary support work and setting the box on top of this, mortar is poured from the box into the bottom of the box and the gap between the foundation chestnut stone to construct a complete mortar foundation.

本発明の請求項3の発明は、請求項1または2に記載の施工方法において、縦断勾配を有するトンネルの縦断勾配変化部を、掘削部に対して一対の側壁を上下方向に折曲させることにより、通過させることを特徴とする水底トンネルの施工方法である。   According to a third aspect of the present invention, in the construction method according to the first or second aspect, the longitudinal gradient changing portion of the tunnel having the vertical gradient is bent in a vertical direction with respect to the excavation portion. It is the construction method of the underwater tunnel characterized by passing through.

即ち、本発明ではテール部に底板が無いため、縦断勾配変化部を通過することができるが、縦断勾配変化部の形状に合わせて掘削部とテール部を中折れ状態とし、縦断勾配変化部において、掘削部で掘進できるようにし、また既設函体に反力を取って一対の側壁を推進できるようにする。   That is, in the present invention, since there is no bottom plate in the tail portion, it can pass through the longitudinal gradient changing portion, but according to the shape of the longitudinal gradient changing portion, the excavation portion and the tail portion are in a folded state, and in the longitudinal gradient changing portion It is possible to dig in the excavation part and to take a reaction force on the existing box and to propel the pair of side walls.

本発明の請求項4の発明は、水底の地盤を掘進しつつ、掘進後の掘削地盤上に複数の函体(トンネルエレメント)を互いに接合しながら設置して水底トンネル(海底トンネル等)を構築する際に使用される水底掘削推進機であり、水底の地盤を掘削する掘削手段を備えた前部の掘削部と、掘進方向に平行な側壁を函体を収納可能に対向配置してなるテール部と、掘削部に対してテール部を折曲げ可能に連結する中折れ機構と、掘削部およびテール部を前進させるための推進ジャッキを備えていることを特徴とする水底掘削推進機である。   The invention of claim 4 of the present invention constructs a submarine tunnel (such as a submarine tunnel) by excavating the ground of the bottom and installing a plurality of boxes (tunnel elements) on the excavated ground after excavation. This is a water bottom excavation propulsion machine used when carrying out the operation, and is a tail formed by disposing a front excavation part equipped with excavation means for excavating the ground of the bottom and a side wall parallel to the excavation direction so as to accommodate the box A water bottom excavation propulsion device comprising: a section, a middle folding mechanism that foldably connects the tail section to the excavation section, and a propulsion jack for advancing the excavation section and the tail section.

即ち、トンネルの縦断勾配変化部を容易に通過できるように、掘削部にテール部の一対の側壁を中折れ機構を介して連結している。中折れ機構は、掘削部に対してテール部を上下左右に折曲げ可能に連結し、掘削部を上下左右に首振りできるようにする接合構造であればよい。推進ジャッキは、例えばテール部の側壁内面とテール部内の既設函体とを連結するように配置し、既設の函体に反力を取って掘削部およびテール部を前進させる。なお、一対の側壁は底板で連結されていないため、地山圧力に対抗させるため、側壁の後端部同士をつなぎ材で連結するのが好ましい。また、つなぎ材を設けずに、内部に収納された函体により地山圧力に対して反力を取るようにしてもよい。   That is, a pair of side walls of the tail portion are connected to the excavation portion via a middle folding mechanism so that the longitudinal gradient change portion of the tunnel can be easily passed. The middle folding mechanism may be a joining structure that connects the tail part to the excavation part so that the tail part can be bent up and down and right and left and swings the excavation part up and down and right and left. The propulsion jack is disposed, for example, so as to connect the inner surface of the side wall of the tail portion and the existing box in the tail portion, and the excavating portion and the tail portion are advanced by taking a reaction force on the existing box. In addition, since a pair of side wall is not connected with the baseplate, in order to oppose natural ground pressure, it is preferable to connect the rear-end parts of a side wall with a joining material. Moreover, you may make it take reaction force with respect to a natural ground pressure by the box accommodated in the inside, without providing a connecting material.

本発明の請求項5の発明は、請求項4に記載の水底掘削推進機において、中折れ機構は、掘削部とテール部を連結する複数の掘進用シリンダから構成されていることを特徴とする水底掘削推進機である。   According to a fifth aspect of the present invention, in the submarine excavator according to the fourth aspect, the intermediate folding mechanism is composed of a plurality of excavation cylinders connecting the excavation part and the tail part. It is a submarine drilling propulsion machine.

即ち、テール部に対して掘削部を掘進させる複数の掘進用シリンダを中折れ機構に用いる場合であり、複数の掘進用シリンダの伸縮量を調節することにより、掘削部を上下・左右に首振りさせることができ、トンネルの縦断勾配変化部あるい曲線や方向修正に対応できる。なお、この場合、水底掘削推進機の前進は、この掘進用シリンダと前記推進ジャッキとを用いて尺取り式に行う。掘削部を側壁および既設の函体に反力を取って掘進用シリンダで掘進し、次いで一対の側壁を既設の函体に反力を取って推進ジャッキにより推進し、これを順次繰り返して、水底掘削推進機を1函体分だけ前進させる。   In other words, a plurality of excavation cylinders that excavate the excavation part relative to the tail part are used for the folding mechanism, and the excavation part is swung up and down and left and right by adjusting the amount of expansion and contraction of the plural excavation cylinders. It is possible to cope with the longitudinal gradient change part of the tunnel or the curve and direction correction. In this case, the water bottom excavation propulsion unit is advanced in a measuring manner using the excavation cylinder and the propulsion jack. The excavation part takes a reaction force on the side wall and the existing box and digs up with the cylinder for excavation, and then the pair of side walls takes a reaction force on the existing box and is propelled by the propulsion jack. Advance the excavator by one box.

本発明の請求項6の発明は、請求項4または5に記載の水底掘削推進機において、掘削部の前面に掘進方向に平行な土留めブレードが対向配置され、この一対の土留めブレード間を掘削可能な掘削機(水中掘削機、浚渫機など)が掘削部に装備されていることを特徴とする水底掘削推進機である。   According to a sixth aspect of the present invention, in the submarine excavation propulsion device according to the fourth or fifth aspect, a retaining blade parallel to the direction of excavation is opposed to the front surface of the excavation part, and a space between the pair of retaining blades It is a submarine drilling propulsion machine characterized in that an excavator (such as an underwater excavator or dredger) that can be excavated is equipped in the excavation part.

即ち、掘削手段には、面板、掘削翼、アースドリル等を用いることができるが、土留めブレードと水底地盤の土質に応じた数種の掘削機とを組み合わせた掘削設備を用いる場合である。土留めブレードは、上下に複数分割し、各ブレードを移動用シリンダで地山に容易に貫入できるようにするのが好ましい。掘削機には、例えば砂岩ズリ用ショベル、砂岩ズリ用グラブバケット、粘性土用回転ドラム浚渫機を用いることができる。   That is, as the excavating means, face plates, excavating blades, earth drills and the like can be used, but this is the case where excavation equipment in which earth retaining blades and several types of excavating machines according to the soil quality of the submarine ground are combined is used. The earth retaining blade is preferably divided into a plurality of upper and lower parts, and each blade can be easily penetrated into a natural ground by a moving cylinder. As the excavator, for example, a sandstone excavator, a sandstone grab bucket, and a rotating clay dredger for clay soil can be used.

本発明は、以上のような構成からなるので、次のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.

(1) 掘削部とテール部からなる水底掘削推進機のテール部の底板を無くしてテール部を左右一対の側壁から構成しているため、建設しようとするトンネルに縦断勾配があり、途中に縦断勾配変化部がある場合にも、この縦断勾配変化部を容易に通過することができ、縦断勾配変化部に連続して函体を沈設し接合することができ、縦断勾配変化部のある水底トンネルの建設が可能となる。   (1) Since the bottom plate of the tail part of the bottom drilling propulsion machine consisting of the excavation part and tail part is eliminated and the tail part is composed of a pair of left and right side walls, the tunnel to be constructed has a longitudinal gradient, and the longitudinal section is in the middle Even if there is a slope change section, it can easily pass through this longitudinal gradient change section, and a box can be continuously deposited and joined to the longitudinal gradient change section. Can be constructed.

(2) 底板が無いため、従来の函体との摩擦を低減するためのコロ等も不要となり、比較的簡単な構造の装置で、掘削断面を縮小でき、近接する構造物に対する影響を少なくできるトンネル工法が可能となる。   (2) Since there is no bottom plate, there is no need for a roller to reduce friction with the conventional box, and it is possible to reduce the cross-section of the excavation with a relatively simple device and reduce the influence on adjacent structures. Tunnel construction method becomes possible.

(3) 底板が無いため、掘削後で函体の沈設前に基礎栗石や仮支承を施工でき、また函体荷重を地盤に均等に伝達させることができ、かつ、函体と基礎を一体化できる完全なモルタル基礎等を構築することができる。   (3) Since there is no bottom plate, foundation chestnuts and temporary bearings can be constructed after excavation and before sinking the box, and the box load can be evenly transmitted to the ground, and the box and foundation are integrated. A complete mortar foundation can be constructed.

以下、本発明を図示する実施形態に基づいて説明する。この実施形態は、海底トンネルに適用した例である。図1、図2は、本発明の水底掘削推進機の基本構造を示す斜視図、横断面図、側面図である。図3、図4は、本発明が適用されるトンネルの縦断勾配の一例と、このトンネルにおける本発明の水底掘削推進機の動作を示す側面図である。図5、図6は、本発明の水底掘削推進機による水底トンネル工法の一例を工程順に示す側面図である。図7〜図9は、本発明の水底掘削推進機の具体例を示す側面図、平面図である。   Hereinafter, the present invention will be described based on the illustrated embodiments. This embodiment is an example applied to a submarine tunnel. 1 and 2 are a perspective view, a cross-sectional view, and a side view showing a basic structure of a submarine excavator according to the present invention. 3 and 4 are side views showing an example of the longitudinal gradient of the tunnel to which the present invention is applied and the operation of the submarine excavator of the present invention in this tunnel. 5 and 6 are side views showing an example of a submarine tunnel construction method using the submarine excavator according to the present invention in the order of steps. 7 to 9 are a side view and a plan view showing a specific example of the water bottom excavation propulsion device of the present invention.

図1、図2に示すように、本発明の水底掘削推進機1は、主として、掘削手段を有する前部の掘削部2と、一対の側壁4、4からなる底板の無いテール部3と、掘削部2とテール部3とを連結する中折れ機構5から構成されている。   As shown in FIG. 1 and FIG. 2, the water bottom excavator 1 of the present invention mainly includes a front excavation part 2 having excavation means, a tail part 3 having a pair of side walls 4 and 4 and having no bottom plate, It is comprised from the middle bending mechanism 5 which connects the excavation part 2 and the tail part 3. FIG.

一対の側壁4、4は、掘進方向(トンネル軸方向)と平行に、トンネルエレメントである函体aの幅よりも大きい間隔をおいて対向配置されている。この一対の側壁4、4は、それぞれ中折れ機構5を介して掘削部2の後面に接続され、函体aの長さよりも十分に長い長さを有している。また、底板が無く側壁4は片持ちで取付けられるため、一対の側壁4、4の後端部同士をつなぎ材6で連結している。このつなぎ材6は、函体aを上部開口から挿入でき、後部開口から送り出せるような位置に設ける。なお、このつなぎ材6を設けずに、内部に収納された函体aにより地山圧力に対して反力を取るようにすることもできる。   The pair of side walls 4, 4 are opposed to each other in parallel with the excavation direction (tunnel axis direction) with a gap larger than the width of the box a serving as a tunnel element. The pair of side walls 4 and 4 are connected to the rear surface of the excavation part 2 via the middle folding mechanism 5 and have a length sufficiently longer than the length of the box a. Further, since the side wall 4 is cantilevered without a bottom plate, the rear ends of the pair of side walls 4 and 4 are connected by a connecting material 6. The connecting member 6 is provided at a position where the box a can be inserted from the upper opening and can be fed out from the rear opening. In addition, without providing this connecting material 6, it can also be made to take reaction force with respect to a natural ground pressure with the box a accommodated in the inside.

掘削部2の掘削手段には、面板(掘削土をスクリューコンベアで後方に排出する)、掘削翼(砂シルト層の掘削土と海水を泥水化し、排泥ポンプで後方に流体排出する)、アースドリル(掘削土をコンクリートポンプで後方にパイプ排出する)、あるいは、後述する土留めブレードと数種の掘削機とを組み合わせた掘削設備等を用いることができる。   The excavation means of the excavation part 2 includes a face plate (excavating the excavated soil backward with a screw conveyor), an excavating blade (disintegrating the excavated soil and seawater of the sand silt layer and discharging the fluid backward with a mud pump), grounding It is possible to use a drill (pipe excavating the excavated soil backward with a concrete pump) or a drilling facility in which a retaining blade described later and several types of excavators are combined.

中折れ機構5は、掘削部2に対してテール部3を上下左右に折曲げ可能に連結し、掘削部2を上下左右に首振りできるようにする首振り機構であり、後述するトンネルの縦断勾配変化部およびトンネルの曲線や方向修正に対応できるようにするものである。この中折れ機構(首振り機構)には、所謂ユニバーサルジョイントによる接合構造等を採用することもできるが、後述するような掘削部2とテール部3を連結する複数本の掘進用シリンダを利用するのが好ましい。   The middle folding mechanism 5 is a swing mechanism that connects the tail part 3 to the excavation part 2 so that the tail part 3 can be bent vertically and horizontally, and allows the excavation part 2 to swing up, down, left and right. This makes it possible to cope with the gradient change part and the curve and direction correction of the tunnel. A so-called universal joint joining structure or the like can be adopted as the center folding mechanism (swing mechanism), but a plurality of digging cylinders that connect the excavating part 2 and the tail part 3 as described later are used. Is preferred.

図2に示すように、海底の比較的浅い位置の海底地盤Bを水底掘削推進機1で掘進し、1函体分だけ前進すると、一対の側壁4、4間の掘削地盤C上に函体aを沈設し、後述するように、函体aと側壁4とを連結する推進ジャッキにより函体aに反力を取って水底掘削推進機1を推進させ、1函体分の前進と函体aの設置とを順次繰り返し、函体同士は通常の方法で接合し、連続した海底トンネルAを構築する。   As shown in FIG. 2, when the seabed ground B at a relatively shallow seabed is excavated by the submarine excavator 1 and advanced by one box, the box is placed on the excavated ground C between the pair of side walls 4 and 4. As will be described later, the bottom jack excavator 1 is propelled by the reaction force applied to the box a by the propulsion jack that connects the box a and the side wall 4, and the box is moved forward and boxed. The installation of a is sequentially repeated, and the boxes are joined by a normal method to construct a continuous submarine tunnel A.

基礎を施工する場合には、1函体分の掘進後、一対の側壁4、4間の掘削地盤C上に基礎栗石10を敷設し、仮支承(鉛直ジャッキ)11を設置し、この上に函体aを沈設する。一対の側壁4、4の内部や後方で函体aの函底と基礎栗石10の空隙に函内からモルタル12を注入し、モルタル基礎13を構築する。水底掘進機を用いない一般的な沈埋トンネル工法と同様に、(1) 砕石マウンドを造成することができ、(2) 鉛直ジャッキ11で修正を行うことができ、(3) 函体沈設後にモルタル12を注入することができ、(4) 基礎栗石10と充填されるモルタル12とにより、函体荷重を地盤に均等に伝達することができ、函体aと基礎との一体化を図ることができる。   When constructing the foundation, after excavating one box, lay the foundation chestnut 10 on the excavation ground C between the pair of side walls 4 and 4 and install the temporary support (vertical jack) 11 on this. Sink box a. The mortar foundation 13 is constructed by injecting the mortar 12 from the inside of the pair of side walls 4 and 4 into the space between the bottom of the box a and the base chestnut 10 inside and behind the pair of side walls 4 and 4. Similar to the general submerged tunnel construction method that does not use an underwater excavator, (1) crushed stone mounds can be created, (2) vertical jacks 11 can be modified, and (3) mortar after boxing 12 can be injected, and (4) the foundation chestnut 10 and the mortar 12 filled can transmit the box load evenly to the ground, and the box a and the foundation can be integrated. it can.

なお、函体aは製作ヤードにおいて、RC構造、PC構造、SRC構造、鋼・コンクリート合成構造などで製作される。函体aは、設置箇所まで曳航してもよいし、特許文献1の発明のように、岸寄り水域で新設函体を既設函体の上に沈設し、既設函体上をガイドレールとガイド溝等を用いてスライドさせ、先頭の既設函体の前に昇降装置で設置することもできる。   The box a is manufactured in an RC structure, a PC structure, an SRC structure, a steel / concrete composite structure, etc. in a manufacturing yard. The box a may be towed to the installation location, or, as in the invention of Patent Document 1, the new box is submerged on the existing box in the shore-side water area, and the guide box and the guide are placed on the existing box. It can also be slid using a groove or the like and installed with a lifting device in front of the existing box at the top.

図3に示すように、建設しようとする海底トンネルAに縦断勾配があり、途中に縦断勾配変化部がある場合、図4に示すように、本発明の水底掘削推進機1では、底板が無い一対の側壁4,4が縦断勾配変化部を通過することができると共に、掘削部2とテール部3とを中折れ機構で縦断勾配変化部に対応させて折り曲げて前進させることにより、縦断勾配変化部において、掘削部2で掘進し、かつ、既設函体aに反力を取って前進させることができる。通過後は掘削部2とテール部3とを直線状に戻せば、函体aの沈設と掘進とを通常通り行うことができる。   As shown in FIG. 3, when the seabed tunnel A to be constructed has a vertical gradient and there is a vertical gradient change part in the middle, as shown in FIG. 4, the submarine excavator 1 of the present invention has no bottom plate. The pair of side walls 4 and 4 can pass through the longitudinal gradient changing portion, and the excavation portion 2 and the tail portion 3 are bent and advanced in accordance with the longitudinal gradient changing portion by a middle folding mechanism, thereby changing the vertical gradient. In the part, the excavation part 2 can dig, and the existing box a can be moved forward with a reaction force. After passing, if the excavation part 2 and the tail part 3 are returned to a straight line, the box a can be set and excavated as usual.

図5、図6は、海底トンネルAの陸上側における施工開始時の施工状況を工程順に示したものであり、以下のような手順で施工が行われる。なお、海底トンネルの両端は立坑等を介して別途構築された陸上トンネルに接続される。また、この海底トンネルには、縦断勾配があるが、図では水平にして示している。   5 and 6 show the construction status at the start of construction on the land side of the submarine tunnel A in the order of steps, and construction is performed in the following procedure. Both ends of the submarine tunnel are connected to a separately constructed land tunnel via a shaft. In addition, this submarine tunnel has a vertical gradient, but is shown horizontally in the figure.

(1) 図5(a) に示すように、鋼管杭等により締切壁20を構築し、その陸上側に立坑21を構築する。この立坑21の海底トンネル側に1号函体を接続するための接続端部22を構築し、この接続端部22の内側にバルクヘッド23を設ける。   (1) As shown in FIG. 5 (a), a cut-off wall 20 is constructed using steel pipe piles and a shaft 21 is constructed on the land side. A connecting end 22 for connecting the No. 1 box to the submarine tunnel side of the shaft 21 is constructed, and a bulkhead 23 is provided inside the connecting end 22.

(2) 図5(b) に示すように、締切壁20を撤去した後、浚渫船24を用いて、水底掘削推進機をセットできるように海底地盤Bの所定の範囲を浚渫する。   (2) As shown in FIG. 5 (b), after removing the cutoff wall 20, the dredger 24 is used to dredge a predetermined range of the seabed ground B so that the submarine excavator can be set.

(3) 図5(c) に示すように、起重機船25等を用いて、浚渫された掘削地盤C上に本発明の水底掘削推進機1をセットする。   (3) As shown in FIG. 5 (c), the submarine excavator 1 of the present invention is set on the excavated ground C using a hoist ship 25 or the like.

(4) 図5(d) に示すように、一対の側壁4、4間から接続端部22までの掘削地盤C上に基礎栗石10を施工し、この基礎の所定の位置に仮支承11を設置する。なお、このような基礎を施工せずに函体を設置する場合もある。   (4) As shown in FIG. 5 (d), the foundation chestnut 10 is constructed on the excavation ground C from between the pair of side walls 4, 4 to the connection end 22, and the temporary support 11 is placed at a predetermined position of the foundation. Install. A box may be installed without constructing such a foundation.

(5) 図6(a) に示すように、基礎栗石10および仮支承11の上に1号函体a1を沈設する。次いで、1号函体a1の後端部を接続端部22に接合する。   (5) As shown in FIG. 6 (a), No. 1 box a1 is set on the foundation chestnut 10 and the temporary support 11. Next, the rear end portion of No. 1 box a1 is joined to the connection end portion 22.

(6) 図6(b) に示すように、水底掘削推進機1の後方でモルタル12の注入と側部埋戻し14を行いながら、掘削部2により海底地盤Bの掘削を行う。1号函体a1に反力を取り、推進ジャッキ7により前進させる。   (6) As shown in FIG. 6 (b), the seabed ground B is excavated by the excavation part 2 while the mortar 12 is injected and the side part backfilling 14 is performed behind the submarine excavator 1. The reaction force is applied to the No. 1 box a1 and is advanced by the propulsion jack 7.

(7) 図6(c) に示すように、1函体分だけ掘進すると、一対の側壁4、4間に基礎栗石10および仮支承11を施工し、この上に次の2号函体a2を沈設する。水底掘削推進機1の後方でモルタル12の注入と側部埋戻し14を行いながら、掘削部2により海底地盤Bの掘削を行う。2号函体a1に反力を取り、推進ジャッキにより前進させる。   (7) As shown in FIG. 6 (c), when one box is dug, the foundation chestnut 10 and the temporary support 11 are constructed between the pair of side walls 4, 4, and the next No. 2 box a2 Sink. The seabed ground B is excavated by the excavating unit 2 while the mortar 12 is injected and the side portion backfilling 14 is performed behind the submarine excavator 1. Take the reaction force on box 2 a1 and move it forward with a propulsion jack.

上記の函体aの設置と1函体分の前進を順次繰り返して海底トンネルAを構築する。トンネル上部を埋戻すことによりトンネルが完成する。   Submarine tunnel A is constructed by sequentially repeating the installation of box a and the forward movement of one box. The tunnel is completed by backfilling the upper part of the tunnel.

図7〜図9は、長さ50m程度の函体aの沈設に用いられ、掘削部2に土留めブレードと数種の掘削機を組み合わせた掘削設備を備えた水底掘削推進機1の具体例である。掘削部2の両側の側壁2aに連続するようにテール部3の側壁4がそれぞれ配置され、中折れ機構5を介して連結され、掘削部2に対して一対の側壁4、4が上下・左右に傾動できるように、即ち、一対の側壁4、4に対して掘削部2が上下・左右に首振りできるように構成されている。   FIGS. 7 to 9 are specific examples of the submarine excavator 1 used to set up a box a having a length of about 50 m and provided with excavation equipment in which the excavation part 2 is combined with earth retaining blades and several types of excavators. It is. The side walls 4 of the tail part 3 are respectively arranged so as to be continuous with the side walls 2a on both sides of the excavation part 2, and are connected via a middle folding mechanism 5, and the pair of side walls 4, 4 are vertically and horizontally connected to the excavation part 2. The excavation part 2 can be swung up and down and left and right with respect to the pair of side walls 4 and 4.

この具体例では、図8に示すように、中折れ機構5には、テール部3に対して掘削部2を例えば1m程度掘進させる掘進用シリンダ8が用いられている。この掘進用シリンダ8側壁2aと側壁4の端部同士を連結するように上下・左右に一対で合計4本程度配置されており、各掘進用シリンダ8の伸縮量を調整することにより、掘削部2を上下・左右に首振りさせることができ、トンネルの縦断勾配変化部あるい曲線や方向修正に対応できるようにされている。なお、側壁2aと側壁4の端部同士は、上下・左右に可動の係合部により接合されている。   In this specific example, as shown in FIG. 8, a digging cylinder 8 for digging the excavation part 2 with respect to the tail part 3 by, for example, about 1 m is used for the folding mechanism 5. About four in total are arranged in a pair in the vertical and horizontal directions so that the end portions of the side wall 2a and the side wall 4 are connected to each other. 2 can be swung up and down, left and right, so that it can cope with the vertical gradient change part of the tunnel or the curve and direction correction. Note that the end portions of the side wall 2a and the side wall 4 are joined to each other by a movable engaging portion vertically and horizontally.

推進ジャッキ7は、一対の側壁4、4の内面にそれぞれ上下一対で設けられ、合計4本程度配置されており、ロッド先端が既設の函体aの先端面に着脱可能に取付けられ、シリンダ基部も側壁4の内面に着脱可能に取付けられ、盛替えができるようにされている。この推進ジャッキ7のストロークは、掘進用シリンダ8と同様に1m程度とされている。   A pair of upper and lower propulsion jacks 7 are provided on the inner surfaces of the pair of side walls 4, 4, and a total of about four rods are disposed, and the rod tip is detachably attached to the tip surface of the existing box a, Is also detachably attached to the inner surface of the side wall 4 so that it can be refilled. The stroke of the propulsion jack 7 is set to about 1 m as with the digging cylinder 8.

水底掘削推進機1の前進は、これらの推進ジャッキ7と掘進用シリンダ8を用いて、尺取り式に行うことになる。即ち、掘削部2を側壁4および既設の函体aに反力を取って掘進用シリンダ8で1m程度掘進し、次いで一対の側壁4、4を既設の函体aに反力を取って推進ジャッキ7により1m程度推進し、これを順次繰り返して、水底掘削推進機1を1函体分だけ前進させる。   The water bottom excavation propulsion machine 1 is advanced in a scale using the propulsion jack 7 and the excavation cylinder 8. In other words, the excavation part 2 is driven by a reaction force against the side wall 4 and the existing box a and is excavated by about 1 m by the digging cylinder 8, and then the pair of side walls 4 and 4 are driven by the reaction force against the existing box a. The jack 7 is propelled by about 1 m, and this is sequentially repeated to advance the water bottom excavation propulsion machine 1 by one box.

掘削部2の前面には、図8に示すように、掘進方向に平行な一対の土留めブレード30、30がその外面が側壁2a・側壁4の外面と面一となるように設けられており、この一対のブレード30、30で挟まれた箇所を、図9に示すような、砂岩ズリ用ショベル31、砂岩ズリ用グラブバケット32、現地盤の粘性土用回転ドラム浚渫機33で掘削(浚渫)する。これらの掘削機を土質等に応じて適宜使い分ける。   As shown in FIG. 8, a pair of earth retaining blades 30, 30 parallel to the excavation direction are provided on the front surface of the excavation part 2 so that the outer surfaces thereof are flush with the outer surfaces of the side walls 2 a and 4. 9, a portion sandwiched between the pair of blades 30, 30 is excavated by a sandstone excavator 31, a sandstone grab bucket 32, and a local clay rotating drum dredger 33 as shown in FIG. ) These excavators are properly used according to the soil quality.

土留めブレード30は、図8に示すように、全体の側面形状が下に向かって突出長さが短くなる略三角形であり、また上下に3分割され、それぞれがストローク3m程度の移動用シリンダ34で地山に容易に貫入できるようにされている。   As shown in FIG. 8, the earth retaining blade 30 has a substantially triangular shape in which the overall side surface shape has a protruding length that decreases downward, and is divided into three in the vertical direction, and each of the moving cylinders 34 has a stroke of about 3 m. It can be easily penetrated into natural ground.

砂岩ズリ用ショベル31は、図8、図9(a) に示すように、掘削部2の上面に設置した回転ベース35に基部が取付けられ、また掘削溝幅方向に一対で配置されており、バケットで砂岩ズリをすくい取り、ホッパー・ストックビン36を介してクラッシャー37へ供給し、ポンプ38で海上の船まで圧送する。潮流の影響を受けずに、任意の位置を確実に掘削できる。また、汎用機械を改造して適用できる。   As shown in FIGS. 8 and 9 (a), the sandstone excavator 31 has a base attached to a rotating base 35 installed on the upper surface of the excavation part 2, and is disposed in a pair in the excavation groove width direction. The sandstone is scraped with a bucket, supplied to a crusher 37 through a hopper / stock bin 36, and pumped to a ship at sea by a pump 38. It is possible to excavate any position reliably without being affected by tidal currents. It can also be applied by modifying general-purpose machines.

砂岩ズリ用グラブバケット32は、図9(b) に示すように、掘削部2の前面側にオーバーハングした門型クレーン39に取付け、砂岩ズリを掴み取り、ホッパー・ストックビン36を介してクラッシャー37へ供給し、ポンプ38で海上の船まで圧送する。潮流が速いとグラブバケットの位置決めが難しい。陸上の機械を改造して適用できる。   As shown in FIG. 9 (b), the sandstone slurry grab bucket 32 is attached to a portal crane 39 overhanging on the front side of the excavation section 2, grabs the sandstone slurry, and crushes 37 through the hopper / stock bin 36. To the ship at sea. Grab bucket positioning is difficult when the tide is fast. It can be applied by modifying onshore machines.

回転ドラム浚渫機33は、図9(c) に示すように、ブーム40の先端に取付け、回転ドラム式の切削機で掘削した土砂(粘性土)をポンプ41で海上の船まで圧送する。ブームを操作し任意の位置の掘削が正確にできる。汎用機械ではないが実績がある。   As shown in FIG. 9 (c), the rotary drum dredge 33 is attached to the tip of the boom 40, and the earth and sand (viscous soil) excavated by the rotary drum type cutting machine is pumped by a pump 41 to a ship at sea. The boom can be operated to accurately dig at any position. It is not a general-purpose machine but has a track record.

なお、これらの掘削機は、上記のような掘削機に限らず、土質等に応じて種々の掘削機を使用できることはいうまでもない。   Needless to say, these excavators are not limited to the excavators as described above, and various excavators can be used according to the soil quality and the like.

なお、以上は、海底トンネルに適用した場合について説明したが、その他の水底トンネルにも適用できる。また、縦断勾配変化部のあるトンネルについて説明したが、縦断勾配変化部のないトンネルにも適用できる。   In addition, although the above demonstrated the case where it applied to a submarine tunnel, it is applicable also to another submarine tunnel. Moreover, although the tunnel with a longitudinal gradient change part was demonstrated, it is applicable also to a tunnel without a longitudinal gradient change part.

本発明の水底掘削推進機の基本構造を示す斜視図である。It is a perspective view which shows the basic structure of the water bottom excavation propulsion machine of this invention. 図1の水底掘削推進機の施工状態を示したものであり、(a) は横断面図、(b) は側面図である。FIG. 2 shows a construction state of the submarine excavator in FIG. 1, (a) is a cross-sectional view, and (b) is a side view. 本発明が適用されるトンネルの縦断勾配の一例を示す側面図である。It is a side view which shows an example of the longitudinal gradient of the tunnel to which this invention is applied. 縦断勾配変化部における本発明の水底掘削推進機の動作を順に示す側面図である。It is a side view which shows operation | movement of the water bottom excavation propulsion machine of this invention in order in a vertical gradient change part. 本発明の水底掘削推進機による水底トンネル工法の一例を工程順に示す側面図(前半部分)である。It is a side view (first half part) which shows an example of a water bottom tunnel construction method by a water bottom excavation propulsion machine of the present invention in order of a process. 本発明の水底掘削推進機による水底トンネル工法の一例を工程順に示す側面図(後半部分)である。It is a side view (latter half part) which shows an example of the water bottom tunnel construction method by the water bottom excavation propulsion machine of this invention in order of a process. 本発明の水底掘削推進機の具体例を示したものであり、(a) は側面図、(b) は平面図である。FIG. 1 shows a specific example of a submarine excavator according to the present invention, where (a) is a side view and (b) is a plan view. 図7の前部の掘削部付近を示したものであり、(a) は側面図、(b) は平面図である。FIG. 8 shows the vicinity of the excavation part in the front part of FIG. 7, where (a) is a side view and (b) is a plan view. 本発明で用いる掘削部の種々の掘削手段を示す側面図であり、(a) は砂岩ズリ用ショベル方式、(b) は砂岩ズリ用グラブバケット方式、(c) は粘性土用回転ドラム浚渫機方式である。It is a side view which shows the various excavation means of the excavation part used by this invention, (a) is a sandstone slurry excavator system, (b) is a sandstone slurry grab bucket system, (c) is a rotating clay dredger for clay soil It is a method. 従来の沈埋トンネル工法を示す横断面図である。It is a cross-sectional view which shows the conventional submerged tunnel construction method. 従来の水底掘進機を用いるトンネル工法であり、(a) は横断面図、(b) は側面図である。This is a tunnel method using a conventional submerged excavator. (A) is a cross-sectional view and (b) is a side view.

符号の説明Explanation of symbols

A……海底トンネル(水底トンネル)
a……函体(トンネルエレメント)
B……海底地盤(水底地盤)
C……掘削地盤
1……水底掘削推進機
2……掘削部
2a…側壁
3……テール部
4……側壁
5……中折れ機構
6……つなぎ材
7……推進ジャッキ
8……掘進用シリンダ
10……基礎栗石
11……仮支承(鉛直ジャッキ)
12……モルタル
13……モルタル基礎
14……側部埋戻し
20……締切壁
21……立坑
22……接続端部
23……バルクヘッド
24……浚渫船
25……起重機船
30……土留めブレード
31……砂岩ズリ用ショベル
32……砂岩ズリ用グラブバケット
33……粘性土用回転ドラム浚渫機
34……移動用シリンダ
35……回転ベース
36……ホッパー・ストックビン
37……クラッシャー
38……ポンプ
39……門型クレーン
40……ブーム
41……ポンプ
A ... Submarine tunnel (underwater tunnel)
a …… Box (tunnel element)
B ...... Submarine ground (water bottom ground)
C ... excavation ground 1 ... submerged excavator 2 ... excavation part 2a ... side wall 3 ... tail part 4 ... side wall 5 ... center bending mechanism 6 ... tether 7 ... propulsion jack 8 ... for excavation Cylinder 10 ... foundation Kuriishi 11 ... temporary support (vertical jack)
12 …… Mortar 13 …… Mortar foundation 14 …… Side backfill 20 …… Cut wall 21 …… Vertical shaft 22 …… Connection end 23 …… Bulkhead 24 …… Drawer 25 …… Hoisting ship 30 …… Soil retaining Blade 31 ... Sandstone sand shovel 32 ... Sandstone sand grab bucket 33 ... Cohesive soil rotary drum dredge 34 ... Moving cylinder 35 ... Rotary base 36 ... Hopper / stock bin 37 ... Crusher 38 ... ... pump 39 ... portal crane 40 ... boom 41 ... pump

Claims (6)

水底の地盤を水底掘削推進機で掘進しつつ、掘進後の掘削地盤上に複数の函体を互いに接合しながら設置して水底トンネルを構築する水底トンネルの施工方法であり、
水底掘削推進機を、前部の掘削部と、掘進方向に平行な側壁を対向配置してなるテール部とから構成し、前記一対の側壁間の掘削地盤上に函体を沈設した後、前記水底掘削推進機を1函体分だけ前進させ、側壁間への函体の設置と1函体分の前進を順次繰り返して水底トンネルを構築することを特徴とする水底トンネルの施工方法。
It is a construction method of a submarine tunnel that constructs a submarine tunnel by excavating the submarine ground with a submarine excavator and installing multiple boxes on the excavated ground after excavation.
The submarine excavator is composed of a front excavation part and a tail part formed by opposingly arranging side walls parallel to the excavation direction, and after sinking a box on the excavation ground between the pair of side walls, A method of constructing a bottom tunnel, wherein the bottom excavation propulsion unit is advanced by one box, and the bottom tunnel is constructed by sequentially repeating the installation of the box between the side walls and the advance of one box.
請求項1に記載の施工方法において、一対の側壁間の掘削地盤上に基礎を施工した後、この基礎上に函体を沈設することを特徴とする水底トンネルの施工方法。   The construction method according to claim 1, wherein a foundation is constructed on the excavation ground between a pair of side walls, and then a box is sunk on the foundation. 請求項1または2に記載の施工方法において、縦断勾配を有するトンネルの縦断勾配変化部を、掘削部に対して一対の側壁を上下方向に折曲させることにより、通過させることを特徴とする水底トンネルの施工方法。   The construction method according to claim 1 or 2, wherein the longitudinal gradient changing portion of the tunnel having the longitudinal gradient is passed by bending a pair of side walls in the vertical direction with respect to the excavation portion. Tunnel construction method. 水底の地盤を掘進しつつ、掘進後の掘削地盤上に複数の函体を互いに接合しながら設置して水底トンネルを構築する際に使用される水底掘削推進機であり、
水底の地盤を掘削する掘削手段を備えた前部の掘削部と、掘進方向に平行な側壁を函体を収納可能に対向配置してなるテール部と、掘削部に対してテール部を折曲げ可能に連結する中折れ機構と、掘削部およびテール部を前進させるための推進ジャッキを備えていることを特徴とする水底掘削推進機。
It is a submarine excavator used when constructing a submarine tunnel by excavating the submarine ground and installing a plurality of boxes on the excavated ground after excavation.
The front excavation part equipped with excavation means for excavating the bottom of the water bottom, the tail part with the side wall parallel to the excavation direction facing the box so that the box can be accommodated, and the tail part bent to the excavation part A submarine excavation propulsion device comprising: a folding mechanism that can be connected, and a propulsion jack for advancing the excavation part and the tail part.
請求項4に記載の水底掘削推進機において、中折れ機構は、掘削部とテール部を連結する複数の掘進用シリンダから構成されていることを特徴とする水底掘削推進機。   5. The water bottom excavation propulsion device according to claim 4, wherein the center folding mechanism includes a plurality of excavation cylinders connecting the excavation part and the tail part. 請求項4または5に記載の水底掘削推進機において、掘削部の前面に掘進方向に平行な土留めブレードが対向配置され、この一対の土留めブレード間を掘削可能な掘削機が掘削部に装備されていることを特徴とする水底掘削推進機。
6. The submarine excavator according to claim 4 or 5, wherein earth retaining blades parallel to the excavation direction are opposed to each other in front of the excavation part, and an excavator capable of excavating between the pair of earth retaining blades is provided in the excavation part. Underwater drilling propulsion machine, characterized by
JP2004208674A 2004-07-15 2004-07-15 Submarine tunnel construction method and submarine excavator Expired - Fee Related JP4305309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208674A JP4305309B2 (en) 2004-07-15 2004-07-15 Submarine tunnel construction method and submarine excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208674A JP4305309B2 (en) 2004-07-15 2004-07-15 Submarine tunnel construction method and submarine excavator

Publications (2)

Publication Number Publication Date
JP2006028869A JP2006028869A (en) 2006-02-02
JP4305309B2 true JP4305309B2 (en) 2009-07-29

Family

ID=35895561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208674A Expired - Fee Related JP4305309B2 (en) 2004-07-15 2004-07-15 Submarine tunnel construction method and submarine excavator

Country Status (1)

Country Link
JP (1) JP4305309B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204063B2 (en) * 2009-09-16 2013-06-05 誠 植村 Box foundation construction method in open shield method
CN105297774A (en) * 2015-11-06 2016-02-03 王燏斌 Sinking-pipe construction device used for constructing tunnels
CN106761802B (en) * 2017-01-18 2019-08-30 王燏斌 A kind of submerged tunnel push pipe mole and its construction method
KR102372182B1 (en) * 2020-06-05 2022-03-08 (주)대우건설 Constructing Method of Underwater Tunnel with Tethering Tunnel Modules, and Underwater Tunnel Constructed by such Method

Also Published As

Publication number Publication date
JP2006028869A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
CN102803616B (en) For the method and apparatus manufacturing the underwater foundation of building
US5542782A (en) Method and apparatus for in situ installation of underground containment barriers under contaminated lands
CN103882881B (en) Go deep into rock construction method under water
US5056242A (en) Underground wall construction method and apparatus
CN109797749B (en) Underwater foundation pit construction device and construction method
JP6774132B1 (en) Construction method of steel pipe pile
CN110952528A (en) Construction method of cement-soil underground continuous wall under complex geological conditions
AU2012244112A1 (en) Excavation devices and methods
JP6319935B2 (en) Tubing pile driving method
JP4305309B2 (en) Submarine tunnel construction method and submarine excavator
CN113356246A (en) Construction method of combined cofferdam under hard riverbed
CN108797609A (en) Environmentally protective steel pipe steel plate combination construction method for supporting
CN103806409A (en) Milling forming system of gravity wharf foundation bed and construction method for gravity wharf structure
JP6729902B1 (en) Construction method of soil cement continuous wall
JP5639213B2 (en) Open shield method
Paulin et al. Trenching of pipelines for protection in ice environments
JP4058551B2 (en) Seismic reinforcement method for existing structures
JP2021113409A (en) Open shield machine, and tunnel construction method
CN107059839B (en) A kind of construction method of armored concrete waveform sheet pile underground structure
KR100729380B1 (en) Piling method and pile connector thereof
CN113585237B (en) Diaphragm wall joint and diaphragm wall construction method
WO2010104235A1 (en) Excavation method of underground plaza and submarine plaza using steel casing retaining wall
CN203729259U (en) Milling forming system of gravity wharf foundation bed
JP2673940B2 (en) How to build a horizontal plate-like structure in the ground
KR100964978B1 (en) Constructing method for submarine plaza using steel casing retaining wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees