JP4058551B2 - Seismic reinforcement method for existing structures - Google Patents

Seismic reinforcement method for existing structures Download PDF

Info

Publication number
JP4058551B2
JP4058551B2 JP04830699A JP4830699A JP4058551B2 JP 4058551 B2 JP4058551 B2 JP 4058551B2 JP 04830699 A JP04830699 A JP 04830699A JP 4830699 A JP4830699 A JP 4830699A JP 4058551 B2 JP4058551 B2 JP 4058551B2
Authority
JP
Japan
Prior art keywords
layer
foundation rubble
solidified
ground
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04830699A
Other languages
Japanese (ja)
Other versions
JP2000248527A (en
Inventor
章夫 鈴木
敏郎 城所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP04830699A priority Critical patent/JP4058551B2/en
Publication of JP2000248527A publication Critical patent/JP2000248527A/en
Application granted granted Critical
Publication of JP4058551B2 publication Critical patent/JP4058551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は既設構造物の耐震補強工法、特に既に構築されているケーソン岸壁などの港湾構造物に対して行われる既設構造物の耐震補強工法に関する。
【0002】
【従来の技術】
ケーソン岸壁などの湾岸構造物は、一般に水深が深くなるにつれて土圧や水圧などの大きな水平外力を受けることから、壁体として必要な重量も急激に大きくなるため、特に水深の深い港湾構造物の多くは、例えば図3に図示するようにコンクリートケーソンとよばれるコンクリート製の箱体(以下「ケーソン」という)20を海底に設置したあと、このケーソン20のなかに砂21を充填し、かつその上にコンクリート製の蓋22をして完成させるケーソン工法によって構築されている。
【0003】
また、海底の地盤が比較的軟弱な場合には、基礎捨石(割石や砕石等)を大量に敷き詰めて台形状の基礎捨石層23を造成しその上に構築される。さらに必要に応じて、基礎捨石層23の下側地盤24を良質土(置換砂)に置換して地盤改良が行われる。
【0004】
ところで、この種の港湾構造物の震災による被害は、いわゆる地盤の液状化によるものがほとんどで、地震時に一度大きな被害を受けると復旧の困難な場合も多々ある。
【0005】
先の阪神大震災でも大きな被害を受けたばかりで、特に既に構築されているケーソン岸壁などの港湾構造物の耐震補強工法の早期開発が望まれている。
なおこれまで、港湾構造物などの既設構造物の耐震補強工法として様々な方法が開発されている。たとえば、既設構造物の周辺地盤層(置換砂)に孔あき矢板を打ち込んで過剰間隙水を逃すことにより間隙水圧を減少させるようにした液状化防止工法、または構造物を貫通させた孔あき中空杭を支持地盤まで打ち込んで地震時の滑りと液状化を防止する工法、さらには構造物を削孔し、基礎捨石層を貫通させた直下の砂地盤または置換砂部分を地盤改良して液状化を防止する工法などが知られている。
【0006】
【発明が解決しようとする課題】
しかし、上述したいずれの工法を行っても、施工時に周辺地盤に対して悪影響をおよぼすおそれがあり、例えば施工時の地盤のゆるみによって基礎捨石層を形成する基礎捨石の落ち込みや改良造成体のばらつきを招くおそれがある等の課題がある。
【0007】
この発明は、以上の課題を解決するためになされたもので、特に、既に構築されているケーソン岸壁などの湾岸構造物に対して安定した地盤改良を行えるようにした既設構造物の耐震補強工法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の既設構造物の耐震補強工法は、海底地盤の上に大量の基礎捨石を敷き詰めて造成された基礎捨石層の上に構築された既設構造物の耐震補強工法であって、孔壁をケーシングで保持しながら削孔ビットによって前記既設構造物の上部から前記基礎捨石層の下端部まで削孔する工程と、前記削孔ビットを引き抜き、前記ケーシングの先端から前記基礎捨石層内に固化材を射出しながら前記ケーシングを徐々に引き上げる工程によって基礎捨石固化層を形成し、次に当該基礎捨石固化層を上部のロックカバーとして利用し、孔壁をケーシングで保持しながら削孔ビットによって前記既設構造物の上部から前記基礎捨石固化層より下方の海底地盤中まで削孔する工程と、前記ケーシングおよび削孔ビットを引き抜き、前記基礎捨石固化層より下方の海底地盤中に噴射・撹拌用ロッドを建て込む工程と、当該噴射・撹拌用ロッドを当該ロッドの先端から前記基礎捨石固化層より下方の前記海底地盤中に固化材をジェット噴射しながら徐々に引き上げる工程によって前記基礎捨石固化層より下方の海底地盤中に固化改良体を造成することを特徴とするものである。
【0010】
【発明の実施の形態】
図1(a),(b)は、ケーソン式湾岸構造物およびその耐震補強工法の一例を示し、図において、海底に大量の割石や砕石などの基礎捨石を敷き詰めて台形状の基礎捨石層1が造成され、この基礎捨石層1の上にケーソン式湾岸構造物としてケーソン岸壁2が構築されている。
【0011】
ケーソン岸壁2は、地上で製作されたコンクリート製の箱体(以下「ケーソン」という)3を基礎捨石層1の上に沈めたのち、ケーソン3内に砂4を大量に充填し、かつケーソン3の上にコンクリート製の蓋5をして構築されている。
【0012】
また、基礎捨石層1より下方の海底地盤6は、一定範囲にわたって良質土(砂)に置き換えられて地盤改良がなされている。また、ケーソン3の背後には裏込め割石7が大量に充填され、さらに裏込め石7の背後に裏込め土8が充填されている。
【0013】
次に、こうして構築されたケーソン式湾岸構造物の耐震補強工法を順をおって説明する(図2(a)〜(f)参照)。
▲1▼ 最初に、ケーソン式湾岸構造物2の上部または内部(例えば、地上またはケーソン3の内部)から基礎捨石層1の下端部まで削孔する。削孔は孔壁をケーシング9で保持しなから削孔ビット10によって行う。また、必要に応じて削孔効率を高めるために超高速ジェットを併用してもよい。
▲2▼ 次に削孔ビット10を引き抜き、次にケーシング9を徐々に引き上げながら、ケーシング9の先端から基礎捨石層1内に固化材を吐出する。
【0014】
その際、固化材として例えば水中不分離コンクリートを使用し、また基礎捨石層1の空隙率や充填範囲に応じて固化材量を適当に決定する。基礎捨石層1内に吐出された固化材が固化することで、基礎捨石層1が岩盤の如く一体化して硬質のロックカバー(基礎捨石固化層)が形成される。
次に、再び孔壁をケーシング9で保持しながら削孔ビット10によって基礎捨石層1より下方の海底地盤中に造成された改良土の下端部(液状化対象層の下面)までケーシング掘りを行う。
次に、削孔ビット10とケーシング9を引き抜き、その後に噴射・攪拌用ロッド11を建て込む。
次に、噴射・攪拌用ロッド11を、その先端から改良土内に固化材を射出しながら徐々に引き上げることにより、基礎捨石層1の下端部まで改良土と固化材とが攪拌・混合されて形成される固化改良体12を造成する。
【0015】
その際、固化材を直接、地盤中に超高速ジェットすることにより隣接する固化改良体12どうしをブラスト効果により確実に一体化し、先行固化改良体と後行固化改良体相互の密着を図るものとする。
【0016】
以上の作業を所定の平面範囲内で繰り返し行って基礎捨石層1より下方の海底地盤中に複数の固化改良体12を造成する。その際、基礎捨石層1は、岩盤の如く一体化して硬質のロックカバー(基礎捨石固化層)をなしているので、地盤改良時のゆるみによって基礎捨石層1を形成している基礎捨石の落ち込みや固化改良体12のばらつき等を確実に防止でき、きわめて確実な地盤改良を行うことができる。
【0017】
なお、基礎捨石層1より下方の海底地盤を地盤改良する方法としては、必ずしも前記のような方法によらなくてもよく、要するに基礎捨石層1より下方の海底地盤を硬質の安定な地盤に改良できる方法であれば公知の方法で行ってもよい。
【0018】
【発明の効果】
この発明は、以上説明した構成からなり、特に基礎捨石層を固化することで、地盤改良時のゆるみによる基礎捨石の落ち込みや固化改良体のばらつき等を確実に防止でき、きわめて確実な地盤改良を行うことができる。
【0019】
また、基礎捨石層の固化体が、地盤改良施工時に上部のカバー(ロックカバー)として働くため、固化改良体の造成を確実に行うことができる。
さらに、基礎捨石層に空隙がなくなりスライムの流出や海水の汚濁も防止できる。
【図面の簡単な説明】
【図1】(a),(b)はともに、ケーソン岸壁およびその耐震補強方法を示す断面図である。
【図2】(a)〜(f)はケーソン岸壁の支持地盤中に耐震補強の目的で行われる地盤改良方法の一例を示す施工図である。
【図3】ケーソン岸壁の一例を示す断面図である。
【符号の説明】
1 基礎捨石層
2 ケーソン岸壁
3 ケーソン
4 砂
5 コンクリート製の蓋
6 地盤
7 裏込め割石
8 裏込め土
9 ケーシング
10 削孔ビット
11 噴射・攪拌用ロッド
12 固化改良体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic strengthening method for existing structures, and more particularly to a seismic strengthening method for existing structures performed on already constructed harbor structures such as caisson quay.
[0002]
[Prior art]
The caisson quay and other bay structures generally receive large horizontal external forces such as earth pressure and water pressure as the water depth increases, so the weight required for the wall also increases rapidly. In many cases, for example, as shown in FIG. 3, a concrete box (hereinafter referred to as a “caisson”) 20 called a concrete caisson 20 is installed on the seabed, and then the caisson 20 is filled with sand 21 and It is constructed by a caisson method which is completed with a concrete lid 22 on top.
[0003]
In addition, when the seabed is relatively soft, a trapezoidal foundation rubble layer 23 is formed by laying a large amount of foundation rubble (such as crushed stone and crushed stone) and built on it. Furthermore, if necessary, the ground improvement is performed by replacing the lower ground 24 of the foundation rubble layer 23 with high-quality soil (replacement sand).
[0004]
By the way, most of the damage caused by the earthquake of this type of port structure is due to the so-called liquefaction of the ground.
[0005]
The Great Hanshin Earthquake has just suffered great damage, and early development of seismic reinforcement methods for harbor structures such as the caisson quay that has already been built is desired.
Up to now, various methods have been developed as seismic reinforcement methods for existing structures such as harbor structures. For example, a liquefaction prevention method that reduces the pore water pressure by driving a perforated sheet pile into the surrounding ground layer (replacement sand) of an existing structure to release excess pore water, or a perforated hollow that penetrates the structure A method of driving piles to the support ground to prevent slipping and liquefaction during an earthquake, as well as drilling through the structure and liquefying the sand directly below or the replacement sand part penetrating the foundation rubble layer The construction method etc. which prevent are known.
[0006]
[Problems to be solved by the invention]
However, any of the above methods may adversely affect the surrounding ground during construction.For example, the foundation rubble that forms the foundation rubble layer due to loose ground during construction or variations in the improved structure There is a problem that there is a possibility of inviting.
[0007]
The present invention was made to solve the above-described problems, and in particular, an earthquake-proof reinforcement method for an existing structure that enables stable ground improvement to a bay structure such as a caisson quay already constructed. The purpose is to provide.
[0008]
[Means for Solving the Problems]
The seismic reinforcement method for an existing structure according to claim 1 is a seismic reinforcement method for an existing structure constructed on a foundation rubble layer constructed by laying a large amount of foundation rubble on the seabed ground, A step of drilling from the upper part of the existing structure to the lower end of the foundation rubble layer with a drilling bit while holding the wall in the casing, and pulling out the drilling bit from the tip of the casing into the foundation rubble layer A basic rubble solidified layer is formed by a process of gradually raising the casing while injecting a solidified material, and then the basic rubble solidified layer is used as an upper lock cover, while holding the hole wall with the casing by a drill bit. Drilling from the upper part of the existing structure to the seabed ground below the foundation rubble solidification layer, and pulling out the casing and the drilling bit to solidify the foundation rubble A step of installing a jetting / stirring rod in the lower seabed ground, and jetting the solidifying material from the tip of the rod into the seabed ground below the foundation rubble solidified layer from the tip of the rod The solidified improved body is formed in the seabed ground below the foundation rubble solidified layer by a step of gradually lifting.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 (a) and 1 (b) show an example of a caisson-type gulf structure and its seismic reinforcement method. In the figure, a large number of rubble and crushed stones are laid on the seabed to form a trapezoidal crushed stone layer 1 The caisson quay 2 is constructed on the foundation rubble layer 1 as a caisson-type gulf structure.
[0011]
The caisson quay 2, after sinking a concrete box (hereinafter referred to as “caisson”) 3 made on the ground onto the foundation rubble layer 1, the caisson 3 is filled with a large amount of sand 4 and the caisson 3 It is constructed with a concrete lid 5 on top.
[0012]
Moreover, the submarine ground 6 below the foundation rubble layer 1 is replaced with high-quality soil (sand) over a certain range, and the ground is improved. In addition, a large amount of backfilling spar 7 is filled behind the caisson 3, and a backfilling soil 8 is filled behind the backfilling stone 7.
[0013]
Next, the seismic reinforcement method for the caisson-type gulf structure thus constructed will be described in order (see FIGS. 2A to 2F).
(1) First, a hole is drilled from the upper part or the inside of the caisson-type gulf structure 2 (for example, the ground or the inside of the caisson 3) to the lower end of the foundation rubble layer 1. Drilling is performed by the drill bit 10 without holding the hole wall with the casing 9. Moreover, you may use a super-high-speed jet together in order to improve drilling efficiency as needed.
(2) Next, the drill bit 10 is pulled out, and then the solidified material is discharged from the tip of the casing 9 into the basic rubble layer 1 while gradually lifting the casing 9.
[0014]
At that time, for example, underwater non-separable concrete is used as the solidifying material, and the amount of the solidifying material is appropriately determined according to the porosity and the filling range of the basic rubble layer 1. By solidifying the solidified material discharged into the foundation rubble layer 1, the foundation rubble layer 1 is integrated like a rock mass to form a hard rock cover (base rubble solidification layer).
Next, while holding the hole wall in the casing 9 again, the casing is dug up to the lower end of the improved soil (the lower surface of the layer to be liquefied) formed in the seabed ground below the foundation rubble layer 1 by the drill bit 10. .
Next, the drill bit 10 and the casing 9 are pulled out, and then the injection / stirring rod 11 is installed.
Next, by gradually lifting the injection / stirring rod 11 while injecting the solidified material into the improved soil from the tip, the improved soil and the solidified material are stirred and mixed up to the lower end of the foundation rubble layer 1. The solidified improvement body 12 to be formed is created.
[0015]
At that time, the solidified material is directly integrated into the ground by ultra-high speed jet to reliably integrate the adjacent solidified improvement bodies 12 by the blast effect, and to achieve close contact between the preceding solidification improved body and the subsequent solidification improved body. To do.
[0016]
The above operations are repeated within a predetermined plane range to create a plurality of solidified bodies 12 in the seabed ground below the foundation rubble layer 1 . At that time, since the foundation rubble layer 1 is integrated like a rock and forms a hard rock cover (foundation rubble solidified layer), the fall of the foundation rubble that forms the foundation rubble layer 1 due to loosening during ground improvement In addition, it is possible to reliably prevent variations and the like of the solidified improvement body 12 and to perform extremely reliable ground improvement.
[0017]
In addition, as a method of improving the ground of the seabed below the foundation rubble layer 1 , it is not always necessary to use the method as described above. In short , the seabed ground below the foundation rubble layer 1 is improved to a hard and stable ground. Any known method may be used as long as it can be performed.
[0018]
【The invention's effect】
The present invention has the above-described configuration. In particular, by solidifying the foundation rubble layer, it is possible to reliably prevent the foundation rubble from dropping due to loosening during ground improvement and the variation of the solidified improvement body. It can be carried out.
[0019]
Moreover, since the solidified body of the foundation rubble layer acts as an upper cover (lock cover) during the ground improvement construction, the solidified improved body can be reliably formed.
Furthermore, there is no gap in the basic rubble layer, and it is possible to prevent the outflow of slime and the pollution of seawater.
[Brief description of the drawings]
FIGS. 1A and 1B are cross-sectional views showing a caisson quay and its seismic reinforcement method.
FIGS. 2A to 2F are construction diagrams showing an example of a ground improvement method performed for the purpose of seismic reinforcement in a support ground of a caisson quay.
FIG. 3 is a cross-sectional view showing an example of a caisson quay.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Foundation rubble layer 2 Caisson quay 3 Caisson 4 Sand 5 Concrete lid 6 Ground 7 Backfill quarry stone 8 Backfill soil 9 Casing 10 Drilling bit 11 Injection / stirring rod 12 Solidification improvement body

Claims (1)

海底地盤の上に大量の基礎捨石を敷き詰めて造成された基礎捨石層の上に構築された既設構造物の耐震補強工法であって、孔壁をケーシングで保持しながら削孔ビットによって前記既設構造物の上部から前記基礎捨石層の下端部まで削孔する工程と、前記削孔ビットを引き抜き、前記ケーシングの先端から前記基礎捨石層内に固化材を射出しながら前記ケーシングを徐々に引き上げる工程によって基礎捨石固化層を形成し、次に当該基礎捨石固化層を上部のロックカバーとして利用し、孔壁をケーシングで保持しながら削孔ビットによって前記既設構造物の上部から前記基礎捨石固化層より下方の海底地盤中まで削孔する工程と、前記ケーシングおよび削孔ビットを引き抜き、前記基礎捨石固化層より下方の海底地盤中に噴射・撹拌用ロッドを建て込む工程と、当該噴射・撹拌用ロッドを当該ロッドの先端から前記基礎捨石固化層より下方の海底地盤中に固化材をジェット噴射しながら徐々に引き上げる工程によって前記基礎捨石固化層より下方の海底地盤中に固化改良体を造成することを特徴とする既設構造物の耐震補強工法。A seismic reinforcement method for an existing structure built on a foundation rubble layer created by laying a large number of foundation rubble on the seabed ground, wherein the existing structure is formed by a drill bit while holding the hole wall with a casing. Drilling from the top of the object to the lower end of the foundation rubble layer, and pulling out the drill bit and gradually pulling up the casing while injecting solidified material into the foundation rubble layer from the tip of the casing Form the foundation rubble solidified layer, then use the foundation rubble solidified layer as the upper lock cover, hold the hole wall with the casing and drill the drill bit from the upper part of the existing structure below the foundation rubble solidified layer a step of boring to seabed in the casing and pull the drilling bit, said injection the basal riprap solidified layer during seabed below and stirring rod Tatekomu process and, seabed below said base riprap solidified layer by a process to increase slowly solidified material is jetting the injection and stirring rod below the seabed in the ground from said base riprap solidified layer from the tip of the rod A seismic reinforcement method for existing structures, characterized in that a solidified improvement body is created in the ground .
JP04830699A 1999-02-25 1999-02-25 Seismic reinforcement method for existing structures Expired - Lifetime JP4058551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04830699A JP4058551B2 (en) 1999-02-25 1999-02-25 Seismic reinforcement method for existing structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04830699A JP4058551B2 (en) 1999-02-25 1999-02-25 Seismic reinforcement method for existing structures

Publications (2)

Publication Number Publication Date
JP2000248527A JP2000248527A (en) 2000-09-12
JP4058551B2 true JP4058551B2 (en) 2008-03-12

Family

ID=12799749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04830699A Expired - Lifetime JP4058551B2 (en) 1999-02-25 1999-02-25 Seismic reinforcement method for existing structures

Country Status (1)

Country Link
JP (1) JP4058551B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4982632B2 (en) * 2006-07-11 2012-07-25 独立行政法人港湾空港技術研究所 Liquefaction countermeasure method under breakwater
JP4982631B2 (en) * 2006-07-11 2012-07-25 独立行政法人港湾空港技術研究所 Liquefaction countermeasure method under breakwater by underground wall construction
JP5288202B2 (en) * 2009-05-28 2013-09-11 独立行政法人港湾空港技術研究所 Impact resistance reinforcement method and impact resistance reinforcement structure for existing caisson
JP5681988B2 (en) * 2011-03-01 2015-03-11 五洋建設株式会社 Breakwater reinforcement method and reinforced breakwater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122627A (en) * 1982-12-28 1984-07-16 Penta Ocean Constr Co Ltd Construction of foundation under water
JPH01271515A (en) * 1988-04-25 1989-10-30 Sumitomo Metal Ind Ltd Aseismic reinforcing construction for structure
JPH0931967A (en) * 1995-07-19 1997-02-04 Tenox Corp Mixing and agitating device using mechanical agitation and high pressure jet combinedly
JPH1136281A (en) * 1997-07-17 1999-02-09 Toko Giken Kk Grout solidifying method and grouting device

Also Published As

Publication number Publication date
JP2000248527A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP2022502586A (en) Grouting consolidation method of ready-made piles guided by all-casing excavation, and the ready-made piles
CN105714834B (en) A kind of construction technology of hardpan preexisting hole grouting behind shaft or drift lining H profile steel stake
CN101260664A (en) Soft soil foundation large scale steel float lock head construction method
CN203403404U (en) High-efficiency cast-in-place pile device
KR20100086146A (en) Construction method for composite pile using digging and hardenning
CN104314092A (en) Open caisson construction method based on substitution method
CN106638579A (en) Construction method of coral sand foundation expanding cement mortar injection pile
KR100638178B1 (en) Marine structure and construction method thereof
JP4058551B2 (en) Seismic reinforcement method for existing structures
JP4982631B2 (en) Liquefaction countermeasure method under breakwater by underground wall construction
CN202626934U (en) Gravity wharf built on silty foundation
CN105155421B (en) Complete embedding circular construction method in a kind of single pile Single column pier river course shallow water
CN102425179B (en) Reinforced soil infiltration ditch structure supported by miniature steel pipe cast-in-place pile
CN107012792B (en) A kind of construction method of bridge substructure
JPH08184058A (en) Landslide protection construction
JP4066340B2 (en) Ground improvement method
JPH09195273A (en) Pile driven hole forming method for bulkhead
KR101337223B1 (en) Apparatus Equipped with Double Casing for Inserting Plastic Drain Board and Process thereof
JP4982632B2 (en) Liquefaction countermeasure method under breakwater
CN108487273A (en) A kind of foundation in water construction method
JP2000352053A (en) Existing pile dismantling construction method
JP2020122286A (en) Foundation structure for offshore wind power generation and construction method of foundation structure for offshore wind power generation
JPH0470422A (en) Open caisson method
JP4132320B2 (en) Foundation construction method
CN112431195B (en) Pile planting and grouting construction method for tubular piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term