JP5681988B2 - Breakwater reinforcement method and reinforced breakwater - Google Patents

Breakwater reinforcement method and reinforced breakwater Download PDF

Info

Publication number
JP5681988B2
JP5681988B2 JP2011043777A JP2011043777A JP5681988B2 JP 5681988 B2 JP5681988 B2 JP 5681988B2 JP 2011043777 A JP2011043777 A JP 2011043777A JP 2011043777 A JP2011043777 A JP 2011043777A JP 5681988 B2 JP5681988 B2 JP 5681988B2
Authority
JP
Japan
Prior art keywords
foundation
hole
reinforcing
breakwater
rubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011043777A
Other languages
Japanese (ja)
Other versions
JP2012180669A (en
Inventor
将 水谷
将 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2011043777A priority Critical patent/JP5681988B2/en
Publication of JP2012180669A publication Critical patent/JP2012180669A/en
Application granted granted Critical
Publication of JP5681988B2 publication Critical patent/JP5681988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Description

本発明は、既存の防波堤の転倒耐力及び滑動抵抗力の強化を図るための防波堤の補強方法及び補強された補強防波堤に関する。   TECHNICAL FIELD The present invention relates to a breakwater reinforcing method and a reinforced reinforcing breakwater for reinforcing the tipping strength and sliding resistance of an existing breakwater.

従来の防波堤の一例として、水底に石材を積み上げて構築された捨石基礎の上にケーソン等からなる堤構造体を載置した構造のものが知られている。   As an example of a conventional breakwater, a structure in which an embankment structure made of caisson or the like is placed on a rubble foundation constructed by stacking stones on a water bottom is known.

近年では、異常気象等の影響により、施工当初の予想を上回るエネルギーを有する波浪が押し寄せ、このような波浪により従来の防波堤では、捨石基礎上の堤構造体が捨石基礎に対して滑動してしまい防波堤機能が損なわれる虞があった。   In recent years, due to the influence of abnormal weather and the like, waves with more energy than expected at the beginning of construction have rushed, and such waves cause the dam structure on the rubble foundation to slide relative to the rubble foundation. There was a risk that the breakwater function would be impaired.

そこで、このような堤構造体の滑動を防止するために、ケーソン等からなる堤構造体に増設用のケーソン等を連結させて構造物全体の重量を増加させ捨石基礎に対する滑動抵抗力を増大させる方法(例えば、特許文献1)や堤構造体と捨石基礎との間に摩擦マットを介材させ、両者間の摩擦を増大させるようにした方法(例えば特許文献2)が開発されている。   Therefore, in order to prevent such a dike structure from sliding, an additional caisson or the like is connected to the dike structure made of caisson or the like to increase the weight of the entire structure and increase the sliding resistance against the rubble foundation. Methods (for example, Patent Document 1) and methods (for example, Patent Document 2) in which a friction mat is interposed between a bank structure and a rubble foundation to increase friction between the two have been developed.

特開2008−190254号公報JP 2008-190254 A 特開平9−221761号公報Japanese Patent Laid-Open No. 9-221761

しかしながら上述の如き従来の堤体構造体の重量を増加させる方法では、既存の堤構造体に別個のケーソン等増設し、それらを一体化させるので、増設ケーソンの構築費用や水中での一体化作業に費用が嵩むという問題があった。   However, in the conventional method of increasing the weight of the dike structure as described above, a separate caisson is added to the existing dike structure, and they are integrated. However, there was a problem that the cost increased.

また、従来の摩擦マットを使用する方法では、摩擦マットを既存の防波堤に設置することは困難であり、また、この様なマットを敷設しても大幅な摩擦係数の増加は望めず、費用対効果が低いという問題があった。   In addition, it is difficult to install the friction mat on the existing breakwater by the method using the conventional friction mat, and even if such a mat is laid, a significant increase in the coefficient of friction cannot be expected. There was a problem that the effect was low.

本発明は、このような従来の問題に鑑み、既存の防波堤に対しても効率よく施工でき、且つ波浪に対して高い転倒耐力及び滑動抵抗力が得られる防波堤の補強法及び補強防波堤の提供を目的としてなされたものである。   In view of such conventional problems, the present invention provides a breakwater reinforcing method and a reinforced breakwater that can be efficiently applied to existing breakwaters and that can obtain high tipping resistance and sliding resistance against waves. It was made as a purpose.

上述の如き従来の問題を解決し、所期の目的を達成するための請求項1に記載の発明の特徴は、平坦な水底に石材を積み上げて構築された既存の捨石基礎の上に堤構造体を載置し、内海と外海とを隔てるように設置されてなる防波堤の補強方法おいて、前記既存の捨石基礎を構成する石材間に固化材を注入し、該固化材を固化させることにより前記堤構造体下に補強基礎部を形成して捨石基礎の重量を増加させ、前記堤構造体及び前記補強基礎部を貫通し、且つ水底地盤まで達する貫通孔を形成し、該貫通孔に鋼棒等からなる連結部材を挿通させた後、前記貫通孔内面と前記連結部材との間にグラウトを充填し、前記堤構造体と前記補強基礎部が形成された捨石基礎とを一体化させる防波堤の補強方法にある。 In order to solve the above-mentioned conventional problems and achieve the intended purpose, the feature of the invention described in claim 1 is that a bank structure is built on an existing rubble foundation constructed by stacking stones on a flat water bottom. In the method of reinforcing a breakwater that is placed so that the body is placed and separates the inland sea from the outside sea , a solidifying material is injected between the stone materials constituting the existing rubble foundation, and the solidifying material is solidified. A reinforcement foundation is formed under the bank structure to increase the weight of the rubble foundation, and a through hole is formed that penetrates the bank structure and the reinforcement foundation and reaches the bottom of the water. after inserting the coupling member consisting of rods or the like, the filling the grout between the through-hole inner surface and said coupling member, Ru is integrated with riprap foundation the reinforcing base portion and the dam structures are formed It is in the reinforcement method of the breakwater.

請求項2に記載の発明の特徴は、請求項1の構成に加え、下端部に削孔用ビットを着脱可能に備えるケーシング部材を使用し、該ケーシング部材を回転させながら前記堤体構造体上面部より下降させ、前記堤構造体から前記捨石基礎に亘って貫通した貫通孔を形成するとともに該貫通孔の内側面を前記ケーシング部材で被覆し、しかる後、前記ケーシング部材を引き抜きながら、該ケーシング部材の先端より前記固化材を吐出させることにより前記石材間に前記固化材を注入することにある。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, a casing member having a drilling bit detachably attached to a lower end portion thereof is used, and the upper surface of the dam body structure is rotated while rotating the casing member. A through-hole penetrating from the bank structure to the rubble foundation and covering the inner surface of the through-hole with the casing member, and then pulling out the casing member while removing the casing member. The solidifying material is injected between the stone materials by discharging the solidifying material from the tip of the member.

請求項3に記載の発明の特徴は、請求項1又は2の何れかの構成に加え、前記堤構造体及び前記捨石基礎を貫通し、且つ水底地盤まで達する貫通孔を形成した後、該貫通孔を通して前記水底地盤内に攪拌ロッドを挿入し、該攪拌ロッドの先端部より周囲に固化材を噴射するとともに攪拌して前記ロッド周辺の前記水底地盤を改良することにある。   According to a third aspect of the present invention, in addition to the structure according to any one of the first and second aspects, a through-hole that penetrates the bank structure and the rubble foundation and reaches the water bottom ground is formed. The object is to insert a stirring rod into the water bottom ground through a hole, and to inject the solidified material around the tip of the stirring rod and stir to improve the water bottom ground around the rod.

請求項4に記載の発明の特徴は、請求項1〜3の何れか1の構成に加え、前記連結部材の上端部を堤構造体に定着させることにある。 According to a fourth aspect of the present invention, in addition to the structure of any one of the first to third aspects , the upper end portion of the connecting member is fixed to the bank structure.

請求項5に記載の発明の特徴は、平坦な水底に石材を積み上げて構築された既存の捨石基礎と、該捨石基礎上に載置された堤構造体とを備え、内海と外海とを隔てるように設置されてなる補強防波堤において、前記堤構造体下の前記既存の捨石基礎の各石材間の隙間に固化材を注入・固化させることにより補強基礎部が形成され、重量を増加させた捨石基礎と、前記堤構造体及び前記補強基礎部に亘って貫通し、且つ水底地盤まで達する貫通孔と、該貫通孔に挿通させた連結部材と、前記貫通孔と前記連結部材との間に充填されたグラウトとを備え、前記堤構造体と前記補強基礎部が形成された捨石基礎とを一体化させている補強防波堤にある。 Features of the invention described in claim 5, the existing riprap foundation built by stacking a stone on a flat water bottom, e Bei a dam structure body placed on該捨stone foundation, the open sea and inland In the reinforced breakwater installed so as to be separated , a reinforcing foundation was formed by injecting and solidifying the solidified material in the gaps between the stone materials of the existing rubble foundation under the dam structure, increasing the weight A rubble foundation, a through-hole penetrating over the bank structure and the reinforcing foundation and reaching the bottom of the ground, a connecting member inserted through the through-hole, and between the through-hole and the connecting member The reinforced breakwater includes a filled grout and integrates the bank structure and the rubble foundation on which the reinforcing foundation is formed .

本発明に係る防波堤の補強方法は、上述したように、水底に石材を積み上げて構築された捨石基礎の上に堤構造体を載置してなる防波堤の補強方法おいて、前記捨石基礎を構成する石材間に固化材を注入し、該固化材を固化させることにより前記堤構造体下に補強基礎部を形成することにより、捨石基礎の強度が増し、捨石基礎上に堤構造体を安定した状態で載置することができる。また、固化材を注入したことにより防波堤構造物全体の自重が増すことで、水底地盤から受ける鉛直方向反力が増大し、それに伴い水底地盤に対する滑動抵抗力が増大する。   As described above, the breakwater reinforcement method according to the present invention is the breakwater reinforcement method in which a breakwater structure is placed on a stone foundation constructed by stacking stones on the bottom of the water. By injecting a solidifying material between the stone materials to be formed and solidifying the solidifying material, by forming a reinforcing foundation under the bank structure, the strength of the rubble foundation is increased, and the bank structure is stabilized on the rubble foundation. It can be placed in a state. Moreover, since the weight of the entire breakwater structure increases due to the injection of the solidifying material, the vertical reaction force received from the water bottom ground increases, and accordingly, the sliding resistance against the water bottom ground increases.

また、本発明において、下端部に削孔用ビットを着脱可能に備えるケーシング部材を使用し、該ケーシング部材を回転させながら前記堤体構造体上面部より下降させ、前記堤構造体から前記捨石基礎に亘って貫通した貫通孔を形成するとともに該貫通孔の内側面を前記ケーシング部材で被覆し、しかる後、前記ケーシング部材を引き抜きながら、該ケーシング部材の先端より前記固化材を吐出させることにより前記石材間に前記固化材を注入することにより、好適に捨石基礎を構成する石材間の隙間に固化材を注入することができる。   Further, in the present invention, a casing member provided with a drilling bit in a detachable manner at the lower end portion is used, and the casing member is lowered from the upper surface portion of the levee body structure while rotating, and the rubble foundation from the dam structure body And forming the through-hole penetrating through the inner surface of the through-hole with the casing member, and then discharging the solidified material from the tip of the casing member while pulling out the casing member. By inject | pouring the said solidification material between stone materials, a solidification material can be inject | poured into the clearance gap between the stone materials which comprise a rubble foundation suitably.

更に本発明において、前記堤構造体及び前記捨石基礎を貫通し、且つ水底地盤まで達する貫通孔を形成した後、該貫通孔を通して前記水底地盤内に攪拌ロッドを挿入し、該攪拌ロッドの先端部より周囲に固化材を噴射するとともに攪拌して前記ロッド周辺の前記水底地盤を改良することにより、防波堤構造物全体の重量増加による地盤沈下を防止し、効率よく地盤反力を作用させることができる。   Furthermore, in the present invention, after forming a through hole that penetrates the bank structure and the rubble foundation and reaches the bottom of the bottom, a stirring rod is inserted into the bottom of the bottom through the through hole, and the tip of the stirring rod By improving the water bottom ground around the rod by injecting solidified material to the surroundings and stirring, ground subsidence due to weight increase of the whole breakwater structure can be prevented, and ground reaction force can be applied efficiently. .

更にまた本発明において、前記補強基礎部を形成した後、前記堤構造体及び前記補強基礎部を貫通し、且つ水底地盤まで達する貫通孔を形成し、該貫通孔に鋼棒等からなる連結部材を挿通させた後、前記貫通孔内面と前記連結部材との間にグラウトを充填し、前記堤構造体と前記捨石基礎とを一体化させることにより、堤構造体の捨石基礎より受ける鉛直方向反力が増大し、それに伴い堤構造体と捨石基礎との間の滑動抵抗力も増大する。また、堤構造体と捨石基礎とを一体化させたことにより、堤構造体の転倒に対する耐力も増大する。   Furthermore, in the present invention, after forming the reinforcing base portion, a through hole is formed that penetrates the bank structure and the reinforcing base portion and reaches the bottom of the water, and a connecting member made of a steel rod or the like in the through hole. Is inserted between the inner surface of the through-hole and the connecting member, and the embankment structure and the rubble foundation are integrated, thereby causing a vertical reaction from the rubble foundation of the dam structure. As the force increases, the sliding resistance between the bank structure and the rubble foundation also increases. Moreover, by integrating the bank structure and the rubble foundation, the proof strength against the fall of the bank structure is also increased.

また、本発明において、前記連結部材の上端部を堤構造体に定着させることにより、堤構造体に好適に連結部材を定着させることができる。   Moreover, in this invention, a connection member can be suitably fixed to a bank structure by fixing the upper end part of the said connection member to a bank structure.

本発明に係る補強防波堤は、上述したように、水底に石材を積み上げて構築された捨石基礎と、該捨石基礎上に載置された堤構造体とを備えてなる補強防波堤において、前記捨石基礎は、前記堤構造体下に各石材間の隙間に固化材を注入・固化させることにより形成された補強基礎部を有することにより、捨石基礎の強度が増し、捨石基礎上に堤構造体を安定した状態で載置することができる。また、固化材を注入したことにより防波堤構造物全体の自重が増し、水底地盤から受ける鉛直方向反力が増大し、それに伴い水底地盤に対する滑動抵抗力が増大する。   As described above, the reinforced breakwater according to the present invention is a reinforced breakwater comprising a rubble foundation constructed by stacking stones on the bottom of the water, and a levee structure placed on the rubble foundation. Has a reinforced foundation formed by injecting and solidifying solidification material in the gaps between each stone under the bank structure, increasing the strength of the rubble foundation and stabilizing the bank structure on the rubble foundation It can be mounted in the state. Moreover, the weight of the whole breakwater structure increases by injecting the solidifying material, and the vertical reaction force received from the water bottom ground increases, and accordingly, the sliding resistance against the water bottom ground increases.

また、本発明において、前記堤構造体及び前記補強基礎部に亘って貫通した貫通孔を備え、該貫通孔に連結部材を挿通させるとともに前記貫通孔と前記連結部材との間にグラウトを充填させ、前記堤構造体と前記捨石基礎とを一体化させたことにより、堤構造体の捨石基礎より受ける鉛直方向反力が大きく、それに伴い堤構造体と捨石基礎との間の滑動抵抗力も大きい。また、堤構造体と捨石基礎とを一体化させたことにより、堤構造体の転倒に対する高い耐力が得られる。   Further, in the present invention, a through-hole penetrating the bank structure and the reinforcing base is provided, and a connecting member is inserted into the through-hole and a grout is filled between the through-hole and the connecting member. By integrating the bank structure and the rubble foundation, the vertical reaction force received from the rubble foundation of the bank structure is large, and accordingly, the sliding resistance between the bank structure and the rubble foundation is also large. Moreover, by integrating the bank structure and the rubble foundation, high proof strength against overturning of the bank structure can be obtained.

さらにまた、本発明において、前記貫通孔は、前記補強基礎部下の水底地盤まで到達され、前記連結部材の下端を前記水底地盤内に埋設させたことにより、捨石基礎と水底地盤との間に高い滑動抵抗力が得られ、且つ、防波堤全体の転倒に対する高い耐力が得られる。   Furthermore, in the present invention, the through hole reaches the water bottom ground below the reinforcing foundation, and the lower end of the connecting member is embedded in the water bottom ground, so that the through hole is high between the rubble foundation and the water bottom ground. Sliding resistance can be obtained, and high resistance against overturning of the entire breakwater can be obtained.

本発明に係る補強防波堤の一例を示す縦断面図である。It is a longitudinal section showing an example of a reinforced breakwater concerning the present invention. 本発明に係る防波堤の補強方法による補強を施す前の防波堤の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the breakwater before performing the reinforcement by the reinforcement method of the breakwater which concerns on this invention. 同上の固化材注入用貫通孔削孔工程の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the through-hole drilling process for solidification material injection | pouring same as the above. 同上の補強基礎部造成工程の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a reinforcement foundation part creation process same as the above. 同上の貫通孔削孔工程の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a through-hole drilling process same as the above. 同上の地盤改良工程の概略を示す拡大縦断面図である。It is an enlarged longitudinal cross-sectional view which shows the outline of a ground improvement process same as the above. 同上の一体化工程の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of an integration process same as the above. 補強基礎部造成工程の他の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of a reinforcement base part creation process.

次に、本発明に係る補強防波堤の実施の態様を、図1に示した実施例に基づいて説明する。尚、図中符号Aは水底地盤である。   Next, an embodiment of the reinforced breakwater according to the present invention will be described based on the embodiment shown in FIG. In addition, the code | symbol A in a figure is a water bottom ground.

この補強防波堤1は、水底地盤A上に構築された捨石基礎2と、捨石基礎2上に載置された堤構造体3とを備えた混成堤であって、内海と外海とを隔てるように設置されている。尚、図中防波堤1を介して左側を内海、右側を外海として説明する。   This reinforced breakwater 1 is a hybrid levee comprising a rubble foundation 2 constructed on the submarine ground A and a dam structure 3 placed on the rubble foundation 2 so as to separate the inner sea from the outer sea. is set up. In the figure, the left side will be described as the inland sea and the right side will be described as the open sea through the breakwater 1.

また、この補強防波堤1は、捨石基礎2下に形成された改良地盤層4に下面が支持されており、安定した状態で設置されている。   Further, the reinforced breakwater 1 is supported in a stable state with a lower surface supported by an improved ground layer 4 formed under the rubble foundation 2.

捨石基礎2は、多数の石材5,5...を水底地盤A上に積み上げて構築され、それぞれ外海側及び内海側に向けて傾斜した傾斜部2a,2aが形成されている。尚、この捨石基礎2を構成する石材5,5...は、大きさや形状等がそれぞれ異なり、これらを組み合わせて積み上げることにより各石材5,5間には隙間が形成されている。   The rubble foundation 2 is constructed by stacking a large number of stones 5, 5... On the water bottom ground A, and inclined portions 2 a and 2 a that are inclined toward the outer sea side and the inner sea side, respectively. It should be noted that the stone materials 5, 5... Constituting the rubble foundation 2 are different in size, shape, and the like, and a gap is formed between the stone materials 5, 5 by combining them.

また、この捨石基礎2には、堤構造体3下に補強基礎部6が形成されている。この補強基礎部6は、石材5,5...間の隙間に水中不分離コンクリートやセメント混合物(セメントミルク、モルタル)等からなる固化材7を注入・固化させることにより形成され、構造的に強度を増すとともに全体重量が増加して水底地盤Aに対する滑動抵抗も増すようになっている。   Further, the rubble foundation 2 is formed with a reinforcing foundation portion 6 below the bank structure 3. This reinforcing foundation 6 is formed by injecting and solidifying a solidified material 7 made of underwater non-separable concrete, cement mixture (cement milk, mortar) or the like in the gap between the stones 5, 5. As the strength increases, the overall weight increases, and the sliding resistance against the submarine ground A also increases.

尚、補強基礎部6は、堤構造体3の内外向き方向幅に対しその幅より広く形成されている。   The reinforcing foundation 6 is formed wider than the width in the inward / outward direction of the bank structure 3.

堤構造体3は、コンクリート製のケーソン8と、ケーソン8の上面部を閉鎖するコンクリート製の上部コンクリート9とをもって構成されている。   The bank structure 3 includes a concrete caisson 8 and a concrete upper concrete 9 that closes an upper surface portion of the caisson 8.

ケーソン8は、矩形の底版8aと、底版8aの周縁より立ち上げた形状の周壁8bとを備えた上面部が開口した函状に形成され、その函状内部が隔壁8c,8cにより複数の内室部に分けられている。この各内室部内には、砂や石材等からなる中詰材10が充填されている。   The caisson 8 is formed in a box shape having a rectangular bottom plate 8a and a peripheral wall 8b having a shape rising from the periphery of the bottom plate 8a. The box-shaped interior includes a plurality of partitions 8c and 8c. Divided into rooms. Each inner chamber is filled with a filling material 10 made of sand, stone or the like.

また、この補強防波堤1には、堤構造体3及び補強基礎部6を貫通した貫通孔11が形成されており、この貫通孔11には、鋼棒等からなる連結部材12が堤構造体3及び補強基礎部6を貫通して挿通されるとともに、連結部材12と貫通孔11内周面との間にセメント、モルタル、合成樹脂材等からなるグラウト13が充填されている。   The reinforcing breakwater 1 is formed with a through hole 11 penetrating the bank structure 3 and the reinforcing foundation 6, and a connecting member 12 made of a steel rod or the like is connected to the bank structure 3 in the through hole 11. In addition, the grout 13 made of cement, mortar, synthetic resin material or the like is filled between the connecting member 12 and the inner peripheral surface of the through hole 11 while being inserted through the reinforcing base portion 6.

このグラウト13は、貫通孔11内に高圧で注入され、連結部材12を堤構造体3及び捨石基礎2に強固に固定するようになっている。   The grout 13 is injected into the through-hole 11 at high pressure, and the connecting member 12 is firmly fixed to the bank structure 3 and the rubble foundation 2.

また、連結部材12は、その上端部が上部コンクリート9の上面部にナット等の定着具14により定着されている。   Further, the upper end portion of the connecting member 12 is fixed to the upper surface portion of the upper concrete 9 by a fixing tool 14 such as a nut.

このように構成された補強防波堤1は、強度の高い補強基礎部6上に堤構造体3が載置され、且つ連結部材12を介して堤構造体3と補強基礎部6(捨石基礎2)とを連結させたことにより転倒に対して高い耐力が得られる。   In the reinforced breakwater 1 configured in this manner, the dam structure 3 is placed on the reinforced foundation 6 having high strength, and the dam structure 3 and the reinforcement foundation 6 (rubbing foundation 2) are connected via the connecting member 12. High proof strength against falling is obtained.

また、捨石基礎2と堤構造体3とを一体化させたことにより、堤構造体3が捨石基礎2より受ける鉛直上向きの反力が増大し、堤構造体3の捨石基礎2に対する滑動抵抗力が一体化していない場合に比べて増大している。   Moreover, by integrating the rubble foundation 2 and the dam structure 3, the vertical upward reaction force that the dam structure 3 receives from the rubble foundation 2 increases, and the sliding resistance force of the dam structure 3 to the rubble foundation 2 increases. Is increased as compared to the case where they are not integrated.

一方、連結部材12は、捨石基礎2下の水底地盤Aにまで到達しているので、堤防全体の水底地盤Aに対する滑動も防止される。   On the other hand, since the connecting member 12 reaches the bottom ground A below the rubble foundation 2, sliding of the entire dike with respect to the bottom ground A is also prevented.

また、石材5,5間に固化材7が注入された補強基礎部6を有することにより、補強基礎部6を有しない場合に比べて、防波堤1全体の重量が増加し、それに伴い水底地盤Aから受ける反力が大きくなるので、防波堤全体の水底地盤Aに対する滑動抵抗も大きくなる。   Moreover, by having the reinforcement base part 6 in which the solidification material 7 was inject | poured between the stone materials 5 and 5, compared with the case where it does not have the reinforcement base part 6, the weight of the breakwater 1 whole increases, and water bottom ground A accompanying it. Since the reaction force received from the tsunami increases, the sliding resistance of the entire breakwater against the water bottom ground A also increases.

尚、補強基礎部6下の水底地盤Aを地盤改良しておくことにより、地盤沈下を防止することができ、地盤より受ける反力をロスなく防波堤1に作用させることができる。   In addition, ground subsidence can be prevented by improving the water bottom ground A under the reinforcement foundation 6, and the reaction force received from the ground can be applied to the breakwater 1 without loss.

次に、本発明にかかる防波堤の補強方法について図2〜図7について説明する。尚、上述の実施例と同一の部分には同一符号を付して説明を省略する。   Next, the breakwater reinforcing method according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the part same as the above-mentioned Example, and description is abbreviate | omitted.

図2に示す防波堤は、既存の防波堤であって、捨石基礎2上に堤構造体3を載置することにより構成されている。   The breakwater shown in FIG. 2 is an existing breakwater, and is configured by placing a bank structure 3 on a rubble foundation 2.

まず、図3に示すように、下端に削孔用ビット20を取り付けたケーシング部材21を図示しない掘削装置により回転させながら上部コンクリート9の上面より下降させ、堤構造体3から捨石基礎2に亘って貫通した固化材注入用貫通孔22を形成する。   First, as shown in FIG. 3, the casing member 21 having the drilling bit 20 attached to the lower end is lowered from the upper surface of the upper concrete 9 while being rotated by an unillustrated excavator, and extends from the bank structure 3 to the rubble foundation 2. Then, a through hole 22 for injecting solidifying material is formed.

この削孔作業は、順次ケーシング部材21を継ぎ足しながら捨石基礎2の底部に達するまで行い、固化材注入用貫通孔22内側面をケーシング部材21により覆い、後述する固化材7が漏れ出ないようにする。尚、削孔作業においては、高圧噴射ジェットを併用して作業効率を高めるようにしてもよい。   This drilling operation is performed until the bottom of the rubble foundation 2 is reached while sequentially adding the casing member 21 so that the inner surface of the through hole 22 for solidifying material injection is covered with the casing member 21 so that the solidified material 7 described later does not leak out. To do. In the hole drilling operation, the working efficiency may be increased by using a high-pressure jet.

次に、捨石基礎2の傾斜部2a表面を図示しないシート又は板材により被覆するとともに固化材注入用貫通孔22内を通して削孔用ビット20を引き抜き、その状態で固化材注入用貫通孔22を通して固化材7を注入する。   Next, the surface of the inclined portion 2a of the rubble foundation 2 is covered with a sheet or plate material (not shown), the drilling bit 20 is pulled out through the through hole 22 for solidifying material injection, and solidified through the through hole 22 for solidifying material injection in that state. Material 7 is injected.

この固化材注入作業は、図4に示すように、ケーシング部材21を引き抜きながら、ケーシング部材21の下端から固化材7を吐出させることにより行い、それにより固化材7が固化材注入用貫通孔22の内周面より周囲の石材5,5...間の隙間に流入する。尚、注入する固化材7の量は、捨石基礎2内の空隙率、注入範囲等の条件に基づき決定される。   As shown in FIG. 4, this solidifying material injection operation is performed by discharging the solidifying material 7 from the lower end of the casing member 21 while pulling out the casing member 21, so that the solidifying material 7 is passed through the through hole 22 for solidifying material injection. Flows into the gap between the surrounding stones 5, 5. In addition, the quantity of the solidification material 7 to inject | pour is determined based on conditions, such as the porosity in the rubble foundation 2, an injection | pouring range.

この作業を捨石基礎2の上端部に至るまで行い、固化材7を養生固化させることにより堤構造体3下に補強基礎部6が形成される。   This operation is performed up to the upper end portion of the rubble foundation 2, and the solidifying material 7 is cured and solidified, whereby the reinforcing foundation portion 6 is formed under the bank structure 3.

次に、図5に示すように、下端に削孔用ビット20が備えられたケーシング部材21を再び回転させながら下降させ、堤構造体3及び補強基礎部6を貫通し、補強基礎部6下の水底地盤Aの所定の深さに至るまで削孔して貫通孔11を形成する。   Next, as shown in FIG. 5, the casing member 21 provided with the drilling bit 20 at the lower end is lowered while rotating again, penetrates the bank structure 3 and the reinforcing foundation 6, and below the reinforcing foundation 6. The through hole 11 is formed by drilling to a predetermined depth of the water bottom ground A.

貫通孔11が形成された後、削孔用ビット20及びケーシング部材21を引き抜き、図6に示すように、貫通孔11を通して攪拌ロッド23を水底地盤A内に挿入する。   After the through hole 11 is formed, the drilling bit 20 and the casing member 21 are pulled out, and the stirring rod 23 is inserted into the water bottom ground A through the through hole 11 as shown in FIG.

そして、攪拌ロッド23を回転させながら先端部より周囲の土砂に向けて固化材24を噴射させることにより、攪拌ロッド23周辺の土砂が攪拌されて土砂と固化材24が混合される。この作業を攪拌ロッド23を引き上げながら行い、補強基礎部6の下に改良地盤層4が形成される。   Then, the solidifying material 24 is jetted toward the surrounding earth and sand from the tip while rotating the stirring rod 23, whereby the earth and sand around the stirring rod 23 is stirred and the earth and solidifying material 24 are mixed. This work is performed while pulling up the stirring rod 23, and the improved ground layer 4 is formed under the reinforcing base portion 6.

次に、図7に示すように、鋼棒等からなる連結部材12を貫通孔11内に通し、堤構造体3、補強基礎部6を貫通させる。また、連結部材12の下端部が改良地盤層4中に挿入されて埋設される。   Next, as shown in FIG. 7, the connecting member 12 made of a steel rod or the like is passed through the through hole 11, and the bank structure 3 and the reinforcing foundation portion 6 are penetrated. Further, the lower end portion of the connecting member 12 is inserted and embedded in the improved ground layer 4.

そして、貫通孔11内の連結部材12周辺にグラウト13を高圧で注入した後、このグラウト13を養生し固化させる。   And after inject | pouring the grout 13 by the high voltage | pressure around the connection member 12 in the through-hole 11, this grout 13 is hardened and solidified.

このグラウト13が硬化することにより、グラウト13を介して連結部材12が堤構造体3及び補強基礎部6(捨石基礎2)に強固に固定され、それにより連結部材12を介して堤構造体3と補強基礎部6とが連結され、一体化がなされる。   When the grout 13 is hardened, the connecting member 12 is firmly fixed to the bank structure 3 and the reinforcing foundation 6 (the rubble foundation 2) through the grout 13, and thereby the bank structure 3 through the connecting member 12. And the reinforcing base 6 are connected and integrated.

最後に、連結部材12の上端部をナット等の定着具14により堤構造体3の上面部、即ち上部コンクリート9の上面部に定着させて作業が完了する。   Finally, the upper end portion of the connecting member 12 is fixed to the upper surface portion of the bank structure 3, that is, the upper surface portion of the upper concrete 9 by the fixing tool 14 such as a nut, and the operation is completed.

尚、上述の実施例では、補強基礎部6下の水底地盤Aの地盤改良を行った例について説明したが、水底地盤Aが強固で改良の必要が無い場合には、上述の地盤改良工程を省いてもよい。   In addition, although the above-mentioned Example demonstrated the example which performed the ground improvement of the water bottom ground A under the reinforcement foundation part 6, when the water bottom ground A is strong and does not need improvement, the above-mentioned ground improvement process is carried out. May be omitted.

また、石材5,5...間への固化材7の注入は、図8に示すように、作業台船30より注入管31を斜め下向きに捨石基礎2内に挿入し、注入管31より固化材7を注入するようにしてもよい。   Further, as shown in FIG. 8, the solidification material 7 is injected between the stone materials 5, 5... By inserting the injection pipe 31 into the rubble foundation 2 obliquely downward from the work platform ship 30 and from the injection pipe 31. The solidifying material 7 may be injected.

A 水底地盤
1 補強防波堤
2 捨石基礎
3 堤構造体
4 改良地盤層
5 石材
6 補強基礎部
7 固化材
8 ケーソン
9 上部コンクリート
10 中詰材
11 貫通孔
12 連結部材
13 グラウト
14 定着具
20 削孔用ビット
21 ケーシング部材
22 固化材注入用貫通孔
23 攪拌ロッド
24 固化材
A Submerged ground 1 Reinforced breakwater 2 Rubble foundation 3 Dike structure 4 Improved ground layer 5 Stone 6 Reinforced foundation 7 Solidified material 8 Caisson 9 Upper concrete 10 Filling material 11 Through hole 12 Connecting member 13 Grout 14 Fixing tool 20 For drilling Bit 21 Casing member 22 Solidification material injection through hole 23 Stirring rod 24 Solidification material

Claims (5)

平坦な水底に石材を積み上げて構築された既存の捨石基礎の上に堤構造体を載置し、内海と外海とを隔てるように設置されてなる防波堤の補強方法おいて、
前記既存の捨石基礎を構成する石材間に固化材を注入し、該固化材を固化させることにより前記堤構造体下に補強基礎部を形成して捨石基礎の重量を増加させ、前記堤構造体及び前記補強基礎部を貫通し、且つ水底地盤まで達する貫通孔を形成し、該貫通孔に鋼棒等からなる連結部材を挿通させた後、前記貫通孔内面と前記連結部材との間にグラウトを充填し、前記堤構造体と前記補強基礎部が形成された捨石基礎とを一体化させることを特徴としてなる防波堤の補強方法。
In the method of reinforcing a breakwater, the embankment structure is placed on an existing rubble foundation constructed by stacking stones on a flat water floor, and the inland sea is separated from the outside sea .
Injecting a solidifying material between the stone materials constituting the existing rubble foundation, solidifying the solidified material, thereby forming a reinforcing foundation portion under the dam structure to increase the weight of the rubble foundation, And a through hole that penetrates the reinforcing foundation and reaches the bottom of the bottom, and a connecting member made of a steel rod or the like is inserted through the through hole, and then grouted between the inner surface of the through hole and the connecting member. The breakwater reinforcing method is characterized by integrating the bank structure and the rubble foundation on which the reinforcing foundation part is formed .
下端部に削孔用ビットを着脱可能に備えるケーシング部材を使用し、該ケーシング部材を回転させながら前記堤体構造体上面部より下降させ、前記堤構造体から前記捨石基礎に亘って貫通した貫通孔を形成するとともに該貫通孔の内側面を前記ケーシング部材で被覆し、しかる後、前記ケーシング部材を引き抜きながら、該ケーシング部材の先端より前記固化材を吐出させることにより前記石材間に前記固化材を注入する請求項1に記載の防波堤の補強方法。   Use a casing member that is detachably provided with a drilling bit at the lower end, and while lowering the casing member, the casing member is lowered from the upper surface of the bank structure structure, and penetrates from the bank structure to the rubble foundation. A hole is formed and the inner surface of the through hole is covered with the casing member, and then the solidifying material is discharged between the stone members by discharging the solidifying material from the tip of the casing member while pulling out the casing member. The method for reinforcing a breakwater according to claim 1, wherein a slag is injected. 前記堤構造体及び前記捨石基礎を貫通し、且つ水底地盤まで達する貫通孔を形成した後、該貫通孔を通して前記水底地盤内に攪拌ロッドを挿入し、該攪拌ロッドの先端部より周囲に固化材を噴射するとともに攪拌して前記ロッド周辺の前記水底地盤を改良する請求項1又は2に記載の防波堤の補強方法。 After forming a through-hole that penetrates the bank structure and the rubble foundation and reaches the bottom of the ground, a stirring rod is inserted into the bottom of the bottom through the through-hole, and a solidified material around the tip of the stirring rod. The method of reinforcing a breakwater according to claim 1 or 2 , wherein the water bottom ground around the rod is improved by spraying and stirring. 前記連結部材の上端部を堤構造体に定着させる請求項1〜3の何れか1に記載の防波堤の補強方法。 The method for reinforcing a breakwater according to any one of claims 1 to 3, wherein an upper end portion of the connecting member is fixed to the bank structure. 平坦な水底に石材を積み上げて構築された既存の捨石基礎と、該捨石基礎上に載置された堤構造体とを備え、内海と外海とを隔てるように設置されてなる補強防波堤において、
前記堤構造体下の前記既存の捨石基礎の各石材間の隙間に固化材を注入・固化させることにより補強基礎部が形成され、重量を増加させた捨石基礎と、前記堤構造体及び前記補強基礎部に亘って貫通し、且つ水底地盤まで達する貫通孔と、該貫通孔に挿通させた連結部材と、前記貫通孔と前記連結部材との間に充填されたグラウトとを備え、前記堤構造体と前記補強基礎部が形成された捨石基礎とを一体化させていることを特徴としてなる補強防波堤。
The existing riprap foundation built by stacking the stone on a flat water bottom, e Bei a dam structure body placed on該捨stone foundation, in reinforcing breakwater consisting installed to separate the inland sea and open sea,
A reinforced foundation is formed by injecting and solidifying a solidifying material in a gap between each stone material of the existing rubble structure under the dam structure, and the rubble structure and the reinforced structure with the weight increased. A bank having a through hole penetrating over the foundation and reaching the bottom of the ground; a connecting member inserted through the through hole; and a grout filled between the through hole and the connecting member. A reinforced breakwater, characterized in that a body and a rubble foundation on which the reinforcing foundation portion is formed are integrated .
JP2011043777A 2011-03-01 2011-03-01 Breakwater reinforcement method and reinforced breakwater Expired - Fee Related JP5681988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043777A JP5681988B2 (en) 2011-03-01 2011-03-01 Breakwater reinforcement method and reinforced breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043777A JP5681988B2 (en) 2011-03-01 2011-03-01 Breakwater reinforcement method and reinforced breakwater

Publications (2)

Publication Number Publication Date
JP2012180669A JP2012180669A (en) 2012-09-20
JP5681988B2 true JP5681988B2 (en) 2015-03-11

Family

ID=47012085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043777A Expired - Fee Related JP5681988B2 (en) 2011-03-01 2011-03-01 Breakwater reinforcement method and reinforced breakwater

Country Status (1)

Country Link
JP (1) JP5681988B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694382B1 (en) * 2016-06-30 2017-01-09 (주)상엔지니어링건축사사무소 Breakwater having caisson and floating type structure
CN109798219B (en) * 2019-01-17 2020-07-17 河海大学 Floating type wave energy conversion device
KR102202567B1 (en) * 2020-05-12 2021-01-12 김석문 Block Assembling Type Seawall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027149A (en) * 1998-07-09 2000-01-25 Toyo Constr Co Ltd Fixing method of caisson
JP4058551B2 (en) * 1999-02-25 2008-03-12 鹿島建設株式会社 Seismic reinforcement method for existing structures
JP2006070436A (en) * 2004-08-31 2006-03-16 Maeda Corp Aseismatic reinforcing method for gravity type quaywall
JP4920057B2 (en) * 2009-05-08 2012-04-18 強化土エンジニヤリング株式会社 Strengthening of water structure foundations

Also Published As

Publication number Publication date
JP2012180669A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
CN103958780B (en) The method for forming cementing retaining wall
CN104452829B (en) A kind of pile-raft foundation float Structure and construction method
JP5787172B2 (en) Lifting method of breakwater
CN103233444B (en) Underwater dumped rockfill bedding and side slope Anti-scouring structure and construction method thereof
CN101260664A (en) Soft soil foundation large scale steel float lock head construction method
JP5681988B2 (en) Breakwater reinforcement method and reinforced breakwater
KR100617949B1 (en) Pile Groups Construction Method of Weak Bedding Bone Using Caission
KR20130013287A (en) Wet-type constructing method of pier foundation
CN102733407A (en) Two-ring grouted single pile foundation
JP4982631B2 (en) Liquefaction countermeasure method under breakwater by underground wall construction
JP2004108142A (en) Method for construction of a control type revetment
JP6241167B2 (en) Seismic reinforcement method for jetty
CN204326119U (en) A kind of pile-raft foundation float Structure
JP5728206B2 (en) Construction method of partition revetment
CN109653223A (en) River anti-floating weighting board construction method
CN106149624A (en) A kind of gravity type quay being applicable to roadbed of alluvial silt and construction method thereof
JP6669543B2 (en) Construction method of backing structure and mixed material
JP4066340B2 (en) Ground improvement method
CN203188174U (en) Underwater riprap foundation bed and side-slope erosion prevention structure
JP4104467B2 (en) Seawall structure and seawall construction method
JP5468052B2 (en) Gravity structure deepening method and gravity structure
JPH08284126A (en) Repairing method of quay and quay structure
JP5492644B2 (en) Method and structure for reinforcing harbor structures
JP2004162426A (en) Foundation cell, cell foundation structure, and construction method for cell foundation structure
CN115897640B (en) Construction method of permeable breakwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141219

R150 Certificate of patent or registration of utility model

Ref document number: 5681988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees