JP2006070436A - Aseismatic reinforcing method for gravity type quaywall - Google Patents

Aseismatic reinforcing method for gravity type quaywall Download PDF

Info

Publication number
JP2006070436A
JP2006070436A JP2004251316A JP2004251316A JP2006070436A JP 2006070436 A JP2006070436 A JP 2006070436A JP 2004251316 A JP2004251316 A JP 2004251316A JP 2004251316 A JP2004251316 A JP 2004251316A JP 2006070436 A JP2006070436 A JP 2006070436A
Authority
JP
Japan
Prior art keywords
caisson
quay
sand
ground
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251316A
Other languages
Japanese (ja)
Inventor
Shoji Takeoka
正二 竹岡
Toshihiko Miwa
俊彦 三輪
Masashi Funahashi
政司 舟橋
Natsuo Hara
夏生 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2004251316A priority Critical patent/JP2006070436A/en
Publication of JP2006070436A publication Critical patent/JP2006070436A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aseismatic reinforcing method for a gravity type quaywall that can cut down a construction period/a construction cost required for repair work while considering environment without lowering the stability of the ground. <P>SOLUTION: The aseismatic reinforcing method for the gravity type quaywall for repairing and aseismatically reinforcing the existing gravity type quaywall constructed by installing a hollow caisson 13 surrounded by side wall parts and filling sand 14 in a hollow part of the caisson 13, comprises a process for inserting landslide preventing anchors 22 through the inside of the caisson 13 vertically downward from the top of the caisson 13 to drive the anchors 22 into the ground 11, 12. In addition, constitution comprising a process for substituting an inside filling material (such as seawater) 23 lighter in weight than sand, for a part of the sand 14 filled in the hollow part, can also be exemplified. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、重力式岸壁の耐震補強技術に関するものである。詳しくは、耐震性を増やす目的で重力式岸壁を補強する重力式岸壁の耐震補強工法に関するものである。   The present invention relates to a seismic reinforcement technique for a gravity quay. Specifically, it relates to a seismic reinforcement method for a gravity quay that reinforces a gravity quay for the purpose of increasing earthquake resistance.

重力式岸壁は、コンクリートの箱(ケーソン)の中に砂と水を詰めて、その重さで陸側(背面)の土を止める形式の土留め壁のことをいう。この重力式岸壁は重力により生じる地盤との摩擦力で背面の土を止めている。   Gravity-type quay is a type of retaining wall that is filled with sand and water in a concrete box (caisson) and stops the soil on the land side (back side) with its weight. This gravitational quay stops the back soil by the frictional force with the ground caused by gravity.

重力式岸壁は、震度法と呼ばれる設計法で設計されている。すなわち、供用期間中に発生する確率が高い地震動であるレベルの地震(比較的小さく、頻繁に発生する地震のレベル;レベル1という)に対して安全度が保てるように(すなわち、構造物が無傷で耐えるように)設計されている。   The gravity quay is designed by a design method called seismic intensity method. In other words, the level of safety is maintained against earthquakes of a level that is a seismic motion with a high probability of occurring during the service period (relatively small and frequently occurring earthquake level; referred to as level 1) (that is, the structure is intact). Designed to withstand).

ところで、レベル1に耐える設計法で設計された重力式岸壁は、供用期間中に発生する確率は低いが大きな強度を持つ地震動であるレベルの地震(想定しうる範囲でかなり大きい地震;レベル2という)が発生した場合には、被災する可能性が高い。   By the way, the gravity type quay designed by the design method that can withstand level 1 is an earthquake of a level that is a seismic motion that has a high intensity but a low probability of occurring during the service period ) Is likely to be damaged.

実際、1995年兵庫県南部地震においては、阪神・淡路地区の重力式岸壁が軒並み被災し、重力式の土留め壁が海側(前面)に2〜3m(大きいところでは4〜5m)動いてしまった。このため、船舶からの物資の輸送ルートが閉ざされ、港湾としての機能を果たすことが困難な状態に陥った。このことから、従来の設計法で想定された地震動(レベル1)を上回る地震動(レベル2)に対しても、ある程度の被害を受けるが、大規模な変形により周囲に甚大な被害を及ぼさない程度に押さえることができ、所期の機能を保持できるようにように設計する合理的な対応に迫られている。   In fact, in the 1995 Hyogoken-Nanbu Earthquake, the gravitational quay in the Hanshin-Awaji area was damaged all over and the gravitational retaining wall moved to the sea side (front) by 2 to 3 meters (4 to 5 meters at larger locations). Oops. For this reason, the transportation route of goods from the ship was closed, and it became difficult to fulfill the function as a port. For this reason, even if the ground motion (level 2) exceeds the ground motion (level 1) assumed by the conventional design method, it will suffer to some extent, but it will not cause much damage to the surroundings due to large-scale deformation. Therefore, it is necessary to rationally design the system so that it can hold the intended function.

このような背景の中、国土交通省においては、レベル2地震の際にも、物流拠点として使用できる港湾の整備を目標に岸壁の耐震強化を推進している。また、1999年4月に改訂された「港湾の施設の技術上の基準・同解説」では、耐震性能設計の概念を導入し、レベル1及びレベル2と定めた地震動のそれぞれに対応する技術上の基準に基づき耐震強化施設の設計を行う、と記載された。すなわち、レベル1地震動に対しては「健全性の確保」の耐震性能を有する震度法による断面設計を行い、レベル2地震動に対しては「所期の機能の保持」の耐震性能を有する震度法による断面設計を行う。   Against this background, the Ministry of Land, Infrastructure, Transport and Tourism is promoting seismic reinforcement of the quay with the goal of developing a port that can be used as a logistics base even in the event of a Level 2 earthquake. In addition, the “Technical Standards and Explanations for Harbor Facilities” revised in April 1999 introduced the concept of seismic performance design, and technical standards corresponding to each of the level 1 and level 2 earthquake motions. It was stated that the seismic strengthening facility will be designed based on the above standards. In other words, the seismic intensity method with the seismic performance of “Ensuring soundness” for Level 1 earthquake motions, and the seismic intensity method with the seismic performance of “Maintaining functions” for Level 2 earthquake motions. Perform cross-sectional design by.

そこで、従来の設計基準で施工された既設の港湾施設を耐震強化岸壁に改修する工事が行われている。例えば、重力式岸壁の場合、既設の岸壁を耐震強化岸壁に改修工事を行う工法としては、(a)岸壁法線を前出しする工法と、(b)法線を変更しない工法との何れかで行われている。   Therefore, work is underway to repair existing harbor facilities constructed according to conventional design standards to seismic strengthened quays. For example, in the case of a gravitational quay, the existing quay can be retrofitted into a seismic reinforced quay, either (a) a method that advances the quay normal or (b) a method that does not change the normal It is done in

すなわち、(a)岸壁法線を前出しする工法では、既設岸壁の前面に新規の桟橋を構築したり、前面に打設したコンクリートと一体化させ堤体重量を増加させるなどの工法が行われている。また、(b)法線を変更しない工法としては、背面土圧低減を目的とした背面土砂の改良や中詰め材の重量化などの工法が行われている。   In other words, (a) In the construction method in which the quay normal is put forward, a construction method such as constructing a new jetty on the front of the existing quay or integrating with the concrete placed on the front is carried out. ing. Moreover, (b) As a construction method which does not change the normal line, construction methods such as improvement of the backside earth and weight of the padding material for the purpose of reducing the backside earth pressure are performed.

しかし、従来の改修工法は、(a)岸壁法線を前出しする工法の場合、環境に与える負
荷が大きく、航路幅が縮小してしまうといった問題や、堤体の重量増加に伴う地盤の安定性低下などの問題を抱えている。また、(b)法線を変更しない工法の場合、背後地での広範囲にわたる地盤改良を必要とするなどの問題や、中詰め材の重量増加に伴う地盤の安定性低下などの問題も抱えている。更に、これら従来の改修工法は、広範囲で施工し、多くの資材を使用することから改修工事に要する工期・工事費が多くかかるといったコスト高の問題も抱えている。
However, the conventional refurbishment method has the following problems: (a) In the case of the method of projecting the quay normal, the load on the environment is large and the width of the channel is reduced, and the stability of the ground due to the increase in the weight of the levee body Have problems such as decline in sex. In addition, (b) In the case of a construction method that does not change the normal, there are problems such as the need for extensive ground improvement in the background, and problems such as a decrease in ground stability due to an increase in the weight of the filling material. Yes. Furthermore, these conventional refurbishment methods have a problem of high costs such as a large construction period and construction costs required for renovation work because they are constructed over a wide area and use many materials.

本発明は、上記の技術的課題を解決するためになされたもので、その目的とするところは、環境に配慮し、地盤の安定性を低下させず、改修工事に要する工期・工事費を低く抑えることができる重力式岸壁の耐震補強工法を提供することを技術的課題とする。   The present invention has been made to solve the above technical problems, and its purpose is to consider the environment, not to lower the stability of the ground, and to reduce the construction period and construction cost required for the repair work. It is a technical problem to provide a seismic reinforcement method for gravity quay that can be suppressed.

本発明は、重力式岸壁の耐震補強工法であり、前述の技術的課題を解決すべく以下のような構成とされている。
すなわち、本発明の重力式岸壁の耐震補強工法は、
地滑り防止用アンカーを、前記ケーソンの天端から鉛直下向きに前記ケーソン内を貫通させて、地盤に打設する工程を備えたことを特徴とする。この構成によれば、鉛直下向きにアンカー力を導入することにより滑動抵抗力を増加させることができる。地滑り防止用アンカーは、ピッチや本数を適切に配置することにより、地盤反力分布を均等化させることができる。地滑り防止用アンカーの配置は、港内側のみ、港外側と港内側の併用の2種類を条件に応じて使い分ける。
The present invention is a seismic reinforcement method for a gravity quay and has the following configuration in order to solve the above technical problem.
That is, the seismic reinforcement method of gravity quay of the present invention is
The landslide prevention anchor is provided with a step of passing through the caisson vertically downward from the top end of the caisson and placing it on the ground. According to this configuration, the sliding resistance force can be increased by introducing the anchor force vertically downward. The landslide prevention anchor can equalize the ground reaction force distribution by appropriately arranging the pitch and the number of the anchors. There are two types of anchors for preventing landslides, depending on the conditions.

また、本発明の重力式岸壁の耐震補強工法において、前記中空部に中詰めした砂の一部を前記砂より軽量の中詰め材に置換する工程を備えた構成も例示できる。この構成によれば、基礎地盤が軟弱な場合、中詰砂を砂より軽量の中詰め材に置換することにより堤体重量を軽量化して地盤反力を低減し、支持力安定性の低下を防止することができる。更に、砂より軽量の中詰め材として海水を用いることで、地震時の慣性力を低減することが可能となる。   Moreover, in the seismic reinforcement method of gravity type quay of the present invention, a configuration including a step of replacing part of the sand packed in the hollow portion with a padding material that is lighter than the sand can be exemplified. According to this configuration, when the foundation ground is soft, the embankment sand is replaced with a filling material that is lighter than the sand, thereby reducing the weight of the dam body and reducing the ground reaction force, thereby reducing the bearing stability. Can be prevented. Furthermore, by using seawater as a filling material that is lighter than sand, the inertial force during an earthquake can be reduced.

以上説明したように、本発明によれば、(1)岸壁の法線を変更しないため、環境に与える負荷を最小限に抑えることができ、航路幅への影響もない。(2)港外側・港内側のアンカー力を適切に配分することにより、改修前よりも地盤反力分布を均等にすることができるため、支持力や円形すべりに対する地盤の安定性が向上する。(3)基礎地盤が軟弱な場合には、中詰め砂を海水に置換することにより鉛直力を改修前と同程度とし、地盤反力の増加を防止する。また、海水に置換することによって地震時の慣性力を低減することが可能となり、さらに地震時の安定性が向上する。(4)ケーソン堤体幅程度の改修範囲で施工が可能であるため、工事中も背後地が利用できる。(5)アンカーの設置のみで耐震強化岸壁化が図れるため、従来工法と比較して工期・工事費ともに抑えることができる。   As described above, according to the present invention, (1) since the normal line of the quay is not changed, the load on the environment can be minimized, and there is no influence on the width of the channel. (2) By appropriately allocating the anchor force on the outside and inside of the port, the ground reaction force distribution can be made more uniform than before the refurbishment, so that the stability of the ground against the supporting force and the circular slip is improved. (3) If the foundation ground is soft, replace the filling sand with seawater to make the vertical force the same level as before repair and prevent an increase in ground reaction force. Moreover, it becomes possible to reduce the inertia force at the time of an earthquake by substituting with seawater, and also the stability at the time of an earthquake improves. (4) Since construction is possible within the range of caisson levee width, the hinterland can be used even during construction. (5) Since the seismic strengthening quay can be achieved only by installing an anchor, both the construction period and construction cost can be reduced compared with the conventional method.

従って、本発明は、環境に考慮し、地盤の安定性を低下させず、改修工事に要する工期・工事費を抑えることができる重力式岸壁の耐震補強工法を提供することができる。   Therefore, the present invention can provide a seismic reinforcement method for a gravitational quay that can reduce the work period and construction cost required for the renovation work without lowering the stability of the ground in consideration of the environment.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。なお、本発明に係る最良の形態の重力式岸壁の耐震補強工法は、港湾や漁港における既設の重力式岸壁(図2参照)を耐震強化岸壁に改修工事し、図1に示すように、形成されるものである。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings. In addition, the seismic reinforcement method of gravity quay of the best form according to the present invention is to renovate existing gravity quay (see Fig. 2) at a harbor or fishing port to seismic reinforced quay and form as shown in Fig. 1 It is what is done.

[既設の重力式岸壁の概要]
まず、既設の重力式岸壁について図2に基づき説明する。
既設の重力式岸壁は、港湾や漁港における係船岸などの護岸構造物であり、高潮や津波、波浪などから港湾施設や後背地を防護するためのものである。
[Overview of existing gravity quay]
First, the existing gravity quay will be described with reference to FIG.
The existing gravity quay is a revetment structure such as a mooring berth in a harbor or fishing port, and is intended to protect harbor facilities and hinterland from storm surges, tsunamis, and waves.

既設の重力式岸壁は、図2に示すように、改良した地盤11上に捨石をマウンド状に積み上げて基礎とした基礎捨石部12を形成し、この基礎捨石部12上に中空箱状のケーソン13を載置したものである。   As shown in FIG. 2, the existing gravity quay forms a foundation rubble portion 12 as a foundation by stacking rubble in a mound shape on the improved ground 11, and a hollow box-shaped caisson on the foundation rubble portion 12. 13 is placed.

そして、ケーソン13を載置した後、ケーソン13の内部に中詰め材(この実施の形態では中詰め砂)14を充填し、ケーソン13の背後地側に裏込石15を基礎捨石部12からケーソン13上部まで盛り上げ、ケーソン13及び裏込石15の上部に上部工を構築する。すなわち、既設の重力式岸壁は、ケーソン13の中に砂14を詰めて、その重力により生じる基礎捨石部12(及び地盤11)との摩擦力で陸側(背後地側)の土(裏込石15)を止めている。   Then, after the caisson 13 is placed, the inside of the caisson 13 is filled with a filling material (in this embodiment, filling sand) 14, and the backstone 15 is placed on the back ground side of the caisson 13 from the basic rubble portion 12. Raise to the upper part of the caisson 13, and construct the superstructure on the upper part of the caisson 13 and the back stone 15. That is, the existing gravitational quay is filled with sand 14 in the caisson 13, and the soil (backside) on the land side (back ground side) due to the frictional force with the foundation rubble 12 (and the ground 11) generated by the gravity. Stone 15) is stopped.

上部工は、ケーソン13及び裏込石15の上部に積み上げた埋立土16と、更に埋立土16を覆う上部コンクリート17と、で構築する。   The superstructure is constructed with landfill 16 stacked on top of the caisson 13 and the backfill stone 15 and further with the upper concrete 17 covering the landfill 16.

[重力式岸壁の耐震補強工法の説明]
次に、本発明の重力式岸壁の耐震補強工法について説明する。なお、ここでは既設の重力式岸壁(図2参照)を図1に示す重力式岸壁に改修するものとして説明する。
[Explanation of seismic reinforcement method for gravity quay]
Next, the seismic reinforcement method for the gravity quay according to the present invention will be described. Here, the description will be made assuming that the existing gravity quay (see FIG. 2) is modified to the gravity quay shown in FIG.

この重力式岸壁の耐震補強工法は、(1)上部工の撤去、(2)アンカー打設、(3)中詰め材の置換、(4)上部工の構築、の施工手順により行われる。   This seismic reinforcement method for gravity quay is carried out according to the construction procedures of (1) removal of superstructure, (2) anchor placement, (3) replacement of filling material, and (4) construction of superstructure.

まず、上部工の撤去作業を行う。上部工の撤去作業は、後述するアンカー打設と中詰め材の置換との作業を容易にするために行うものであり、上部工の撤去は、ケーソン13の上側のみでよい。具体的には、ブレーカおよびバックホウを用いて上部工である上部コンクリート17と埋立土16を撤去する。   First, the superstructure is removed. The removal work of the superstructure is performed to facilitate the work of anchor placement and replacement of the filling material, which will be described later, and the superstructure can be removed only on the upper side of the caisson 13. Specifically, the upper concrete 17 and the landfill 16 which are superstructures are removed using a breaker and a backhoe.

次に、アンカー打設作業を行う。なお、地滑り防止用アンカー22(図1参照)は、摩擦型アンカーを用いる。摩擦型アンカー22は、アンカー体周面と定着地盤との摩擦抵抗により、アンカー引抜力を定着地盤に伝達する。また、摩擦型アンカー22は、アンカー体22a・引張り部22b・アンカー頭部22cから構成される。アンカー引張り部22bの材料には、高張力が作用することから、鋼材のリラクゼーションを少なくする等の理由により、一般にPC鋼材(PC鋼棒、PC鋼より線等)が用いられる。   Next, anchor placement work is performed. The landslide prevention anchor 22 (see FIG. 1) is a friction anchor. The friction type anchor 22 transmits the anchor pulling force to the fixing ground by the frictional resistance between the anchor body peripheral surface and the fixing ground. The friction type anchor 22 includes an anchor body 22a, a tension portion 22b, and an anchor head portion 22c. Since high tension acts on the material of the anchor tension portion 22b, PC steel (PC steel rod, PC steel strand, etc.) is generally used for reasons such as reducing the relaxation of the steel.

アンカー打設作業では、まず、アンカー用孔21を削孔し、このアンカー用孔21に沿って摩擦型アンカー22を打設する。   In the anchor placing operation, first, the anchor hole 21 is drilled, and the friction type anchor 22 is placed along the anchor hole 21.

アンカー用孔21は、ケーソン13の天端から鉛直下向きにケーソン13の側壁部を挿通させて地盤(基礎捨石部12、基礎地盤)まで削孔される。   The anchor hole 21 is drilled to the ground (the foundation rubble portion 12, the foundation ground) by inserting the side wall portion of the caisson 13 vertically downward from the top end of the caisson 13.

次に、アンカー用孔21に摩擦型アンカー22を挿入し、アンカー体22aを基礎地盤に打設する。このように、摩擦型アンカー22を打設して、鉛直下向きにアンカー力を導入することにより堤体の滑動抵抗力を増加させる。   Next, the friction type anchor 22 is inserted into the anchor hole 21, and the anchor body 22a is driven on the foundation ground. In this way, the frictional anchor 22 is driven and the anchor force is introduced vertically downward to increase the sliding resistance of the levee body.

次に、中詰め材の置換作業を行う。すなわち、クラムシェルにて中詰め砂14を撤去し、中詰め砂14より軽量の中詰め材、例えば海水23に置換する。特に、基礎地盤が軟弱
地盤である場合は、摩擦型アンカー22を基礎地盤に打設したことが、地盤の支持力や円弧滑りにおいて不利に作用する虞もあり、かかる場合、ケーソン13の中詰め砂14の一部を砂14より軽量の中詰め材(海水23)に置換することによって堤体の軽量化を図り、地盤反力を低減させる。
Next, replacement work for the filling material is performed. That is, the filling sand 14 is removed with a clam shell, and is replaced with a filling material that is lighter than the filling sand 14, for example, seawater 23. In particular, when the foundation ground is soft ground, driving the friction anchors 22 on the foundation ground may adversely affect the ground support force and arc slip. By replacing a part of the sand 14 with a lighter filling material (seawater 23) than the sand 14, the weight of the dam body is reduced and the ground reaction force is reduced.

次に、上部工の構築作業を行う。すなわち、ケーソン13及び裏込石15の上部に埋立土16を積み上げ、更に上部コンクリート17で埋立土16を覆い、上部工を構築する。   Next, superstructure construction work is performed. That is, the landfill 16 is piled up on the upper part of the caisson 13 and the back lining stone 15, and the landfill 16 is further covered with the upper concrete 17 to construct the superstructure.

この実施の形態によれば、鉛直下向きにアンカー力を導入することにより滑動抵抗力を増加させることができる。摩擦型アンカー22は、配置やピッチを適切に行うことにより、地盤反力分布を均等化させることができる。摩擦型アンカー22の配置は、港内側のみ、港外側と港内側の併用の2種類を条件に応じて使い分ける。また、基礎地盤が軟弱な場合は、中詰砂14を海水23に置換することにより堤体(ケーソン、砂及び水)13の重量を軽量化して地盤反力を低減し、支持力安定性の低下を防止することができる。   According to this embodiment, the sliding resistance force can be increased by introducing the anchor force vertically downward. The friction type anchor 22 can equalize the ground reaction force distribution by appropriately arranging and pitching. As for the arrangement of the friction type anchor 22, only the inner side of the port and the combination of the outer side and the inner side of the port are used depending on the conditions. In addition, when the foundation ground is soft, replacing the padded sand 14 with seawater 23 reduces the weight of the dam body (caisson, sand and water) 13 and reduces the ground reaction force, thereby improving the bearing capacity stability. A decrease can be prevented.

すなわち、この実施の形態によれば、(1)岸壁の法線を変更しないため、環境に与える負荷を最小限に抑えることができ、航路幅への影響もない。(2)港外側・港内側のアンカー力を適切に配分することにより、改修前よりも地盤反力分布を均等にすることができるため、支持力や円形すべりに対する地盤の安定性が向上する。(3)基礎地盤が軟弱な場合には、中詰め砂をこの砂より軽量の中詰め材(海水)に置換することにより鉛直力を改修前と同程度とし、地盤反力の増加を防止する。また、砂より軽量の中詰め材(海水)に置換することによって地震時の慣性力を低減することが可能となり、さらに地震時の安定性が向上する。(4)ケーソン堤体幅程度の改修範囲で施工が可能であるため、工事中も背後地が利用できる。(5)アンカーの設置のみで耐震強化岸壁化が図れるため、従来工法と比較して工期・工事費ともに抑えることができる。   That is, according to this embodiment, (1) since the quay normal is not changed, the load on the environment can be minimized, and there is no influence on the channel width. (2) By appropriately allocating the anchor force on the outside and inside of the port, the ground reaction force distribution can be made more uniform than before the refurbishment, so that the stability of the ground against the supporting force and the circular slip is improved. (3) If the foundation ground is soft, replace the padding sand with a padding material (seawater) that is lighter than this sand to make the vertical force the same level as before repair and prevent an increase in the ground reaction force. . Moreover, it becomes possible to reduce the inertia force at the time of an earthquake by substituting with a lighter filling material (seawater) than sand, and the stability at the time of an earthquake is further improved. (4) Since construction is possible within the range of caisson levee width, the hinterland can be used even during construction. (5) Since the seismic strengthening quay can be achieved only by installing an anchor, both the construction period and construction cost can be reduced compared with the conventional method.

なお、この実施の形態では、地滑り防止用アンカーとして、摩擦型アンカーを用いたが、地滑り防止用アンカーは摩擦型アンカーに限定されるものではなく、鉛直下向きにアンカー力を導入することにより堤体の滑動抵抗力を増加させる機能を有するものであればよい。   In this embodiment, the friction type anchor is used as the landslide prevention anchor. However, the landslide prevention anchor is not limited to the friction type anchor, and the embankment is formed by introducing the anchor force vertically downward. Any material may be used as long as it has a function of increasing the sliding resistance.

本発明の重力式岸壁の耐震補強工法を示す断面図である。It is sectional drawing which shows the seismic reinforcement construction method of the gravity type quay of this invention. 改修前の重力式岸壁を示す断面図である。It is sectional drawing which shows the gravity-type quay before repair.

符号の説明Explanation of symbols

11 改良した地盤
12 基礎捨石部
13 ケーソン
14 中詰め砂
15 裏込石
16 埋立土
17 上部コンクリート
21 アンカー用孔
22 地滑り防止用アンカー(摩擦型アンカー)
22a アンカー体
22b 引張り部
22c アンカー頭部
23 海水
DESCRIPTION OF SYMBOLS 11 Improved ground 12 Foundation rubble part 13 Caisson 14 Filled sand 15 Backing stone 16 Landfill soil 17 Upper concrete 21 Anchor hole 22 Landslide prevention anchor (friction type anchor)
22a Anchor body 22b Tensile part 22c Anchor head 23 Seawater

Claims (3)

側壁部に囲まれた中空のケーソンを設置し、前記ケーソンの中空部に砂を詰めて施工した既設の重力式岸壁を、補修して耐震補強する重力式岸壁の耐震補強工法であって、
地滑り防止用アンカーを、前記ケーソンの天端から鉛直下向きに前記ケーソン内を挿通させて、地盤に打設する工程を備えたことを特徴とする重力式岸壁の耐震補強工法。
A seismic reinforcement method for a gravity quay where a hollow caisson surrounded by a side wall is installed and an existing gravity quay constructed by filling sand into the hollow part of the caisson is repaired and seismically reinforced,
An anti-seismic reinforcement method for a gravitational quay, comprising a step of inserting a landslide prevention anchor into the ground by vertically passing through the inside of the caisson from the top end of the caisson.
前記中空部に中詰めした砂の一部を前記砂より軽量の中詰め材に置換する工程を備えたことを特徴とする請求項1に記載の重力式岸壁の耐震補強工法。   The method for seismic reinforcement of a gravity quay according to claim 1, further comprising a step of replacing a part of the sand packed in the hollow portion with a padding material that is lighter than the sand. 前記砂より軽量の中詰め材は、海水であることを特徴とする請求項2に記載の重力式岸壁の耐震補強工法。   The seismic reinforcement method for a gravity quay according to claim 2, wherein the filling material lighter than sand is seawater.
JP2004251316A 2004-08-31 2004-08-31 Aseismatic reinforcing method for gravity type quaywall Pending JP2006070436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251316A JP2006070436A (en) 2004-08-31 2004-08-31 Aseismatic reinforcing method for gravity type quaywall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251316A JP2006070436A (en) 2004-08-31 2004-08-31 Aseismatic reinforcing method for gravity type quaywall

Publications (1)

Publication Number Publication Date
JP2006070436A true JP2006070436A (en) 2006-03-16

Family

ID=36151347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251316A Pending JP2006070436A (en) 2004-08-31 2004-08-31 Aseismatic reinforcing method for gravity type quaywall

Country Status (1)

Country Link
JP (1) JP2006070436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180669A (en) * 2011-03-01 2012-09-20 Penta Ocean Construction Co Ltd Breakwater reinforcing method and reinforced breakwater
JP2012197600A (en) * 2011-03-22 2012-10-18 Penta Ocean Construction Co Ltd Reduction method and reduction structure for earthquake displacement of gravity type quay or sea bank
JP2013181331A (en) * 2012-03-01 2013-09-12 Shimizu Corp Breakwater structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180669A (en) * 2011-03-01 2012-09-20 Penta Ocean Construction Co Ltd Breakwater reinforcing method and reinforced breakwater
JP2012197600A (en) * 2011-03-22 2012-10-18 Penta Ocean Construction Co Ltd Reduction method and reduction structure for earthquake displacement of gravity type quay or sea bank
JP2013181331A (en) * 2012-03-01 2013-09-12 Shimizu Corp Breakwater structure

Similar Documents

Publication Publication Date Title
JP5787172B2 (en) Lifting method of breakwater
JP2011137366A (en) Method for planarizing unevenness of seabed
US20150078836A1 (en) Method of and system for installing foundation elements in an underwater ground formation
JP5136589B2 (en) Reinforcement beam and reinforcement method for underwater structure
US11713098B2 (en) Multiline ring anchor and installation method
JP5147361B2 (en) Repair and reinforcement structure for floating structures
JP2006070436A (en) Aseismatic reinforcing method for gravity type quaywall
JP5024943B2 (en) Bottom structure of undulating gate type breakwater
JPH09279540A (en) Earthquake resistant reinforcing structure for gravity type harbor structure
JP7309147B2 (en) Caisson, pneumatic caisson construction method and structure
JP7333291B2 (en) Foundation foot protection structure and foundation foot protection method
JP2010163771A (en) Structure and construction method for coping with liquefaction of structure
CN111236289A (en) Bridge group pile foundation anti-scouring bearing platform and construction method thereof
JP5282963B2 (en) Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
JP2006342666A (en) Method for antiseismic reinforcement of structure
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP6757577B2 (en) Vibration reduction structure of movable breakwater and installation method of movable breakwater
Douairi et al. Upgrading techniques for quay walls
JP2013249689A (en) Sealing structure of cell body
KR101076753B1 (en) Eco-friendly vessel mooring structure
RU53308U1 (en) MARINE SUBMERSIBLE PLATFORM
JP4773584B1 (en) Improved method of sheet pile mooring berth and temporary support frame used for this
KR101961655B1 (en) Quay wall and construction method using driven pile and box type pre-cast concrete structure
JP2023003461A (en) Improved structure of existing wharf and construction method of the improved structure
Flores Ganuza et al. Development of a Modular, Adaptable and Scalable Gravity Anchor System for Various Floating Foundations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Effective date: 20090526

Free format text: JAPANESE INTERMEDIATE CODE: A02