JP6241167B2 - Seismic reinforcement method for jetty - Google Patents

Seismic reinforcement method for jetty Download PDF

Info

Publication number
JP6241167B2
JP6241167B2 JP2013194456A JP2013194456A JP6241167B2 JP 6241167 B2 JP6241167 B2 JP 6241167B2 JP 2013194456 A JP2013194456 A JP 2013194456A JP 2013194456 A JP2013194456 A JP 2013194456A JP 6241167 B2 JP6241167 B2 JP 6241167B2
Authority
JP
Japan
Prior art keywords
pier
aging
amorphous
solidified material
existing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013194456A
Other languages
Japanese (ja)
Other versions
JP2015059362A (en
Inventor
一優 関
一優 関
高野 良広
良広 高野
有三 赤司
有三 赤司
典央 伊勢
典央 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013194456A priority Critical patent/JP6241167B2/en
Publication of JP2015059362A publication Critical patent/JP2015059362A/en
Application granted granted Critical
Publication of JP6241167B2 publication Critical patent/JP6241167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、岸壁や護岸に施工される桟橋の耐震補強方法に関する。 The present invention relates to a seismic reinforcement method for a pier constructed on a quay or a revetment.

例えば、ガントリークレーンが設置されている係留施設として、横桟橋が知られている(例えば、特許文献1参照)。このような係留施設では、土留護岸と海側に向けて張り出した桟橋が複数の支持杭によって下方から支持されているのが一般的である。
そして、従来の耐震基準(例えば震度5弱)に基づいて構築された既設桟橋では、例えば震度5強以上の大規模地震の場合において支持杭の水平抵抗力が不足しているため、既設桟橋の補強が行われている。
For example, a horizontal jetty is known as a mooring facility where a gantry crane is installed (see, for example, Patent Document 1). In such mooring facilities, it is common that the pier extending toward the earth retaining bank and the sea side is supported from below by a plurality of support piles.
And in the existing pier constructed based on the conventional seismic standards (for example, seismic intensity 5 weak), the horizontal resistance of the supporting pile is insufficient in the case of a large earthquake with seismic intensity 5 or higher. Reinforcement is performed.

従来の一般的な桟橋の耐震補強構造としては、図6に示すように、既設桟橋100上に杭打機101を配置し、既設の桟橋支持杭102の他に新たに複数本の増杭103を打ち込むことで既設桟橋100の耐震強度を高める補強が行われている。   As a conventional general seismic reinforcement structure for a pier, as shown in FIG. 6, a pile driving machine 101 is arranged on an existing pier 100, and a plurality of additional piles 103 are newly added in addition to the existing pier support pile 102. The reinforcement which raises the earthquake-proof strength of the existing jetty 100 is performed.

特開2002−4241号公報Japanese Patent Laid-Open No. 2002-4241

しかしながら、従来の桟橋の耐震補強方法では、杭打機で増杭を打設する場合において、その打設作業中は大型の杭打機によって既設桟橋上のスペースを占有することとなり、その打設作業を行う期間はクレーン等の荷役設備を利用することができず、上述したような岸壁における操業の停止期間が発生することから、操業に制約を受けるという問題があった。 However, in the conventional seismic reinforcement method for piers, when an additional pile is placed with a pile driver, the large pile driver will occupy the space on the existing pier during the placement work. There is a problem that the operation is restricted because the handling period such as a crane cannot be used during the work period and the operation stop period at the quay as described above occurs.

本発明は、上述する問題点に鑑みてなされたもので、クレーン等の荷役設備の操業の制約を抑えて桟橋の耐震補強作業を行うことができる桟橋の耐震補強方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a quake-proof reinforcement method capable of performing quake-proof reinforcement work of a pier while suppressing restrictions on operation of a cargo handling facility such as a crane. To do.

上記目的を達成するため、本発明に係る桟橋の耐震補強方法では、支持杭に支持されている既設桟橋を設定震度に対応する耐震強度となるように補強するための桟橋の耐震補強方法であって、前記既設桟橋の下方全域において、施工時は流動性を保つとともに、現場養生により経時的に固化し、所定の強度を発現する不定形経時性固化材料が、前記支持杭に位置する朔望平均干潮位埋設されるように打設され、前記不定形経時性固化材料は、(1)式を満足する一軸圧縮強度であることを特徴としている。 To achieve the above object, the earthquake-proof reinforcement method of pier according to the present invention, meet pier Retrofit methods for reinforcing such a seismic intensity corresponding to existing pier is supported by the supporting piles set Intensity In addition, in the entire area below the existing pier, while maintaining fluidity during construction, it is solidified over time due to on-site curing, and an irregular aging solidified material that expresses a predetermined strength is the envy average located in the support pile The amorphous aging solidified material is placed so that a low tide level is buried, and is characterized by a uniaxial compressive strength that satisfies the formula (1) .

Figure 0006241167
Figure 0006241167

本発明では、既設桟橋の下方全域に不定形経時性固化材料が打設され、既設桟橋を支持する支持杭をその朔望平均干潮位(L.W.L)まで不定形経時性固化材料によって埋設することによって、支持杭の水平耐力を向上させることができ、既設桟橋の耐震補強を効率よく、かつ確実に行うことができる。In the present invention, the amorphous aging solidification material is placed in the entire area below the existing pier, and the supporting pile supporting the existing pier is buried with the irregular aging solidification material to the desired average low tide level (LWL). By doing so, the horizontal proof stress of the support pile can be improved, and the seismic reinforcement of the existing jetty can be performed efficiently and reliably.

この場合、不定形経時性固化材料が施工時において流動性を有することから、例えば圧送ポンプによって打設することができ、打設箇所となる既設桟橋から離れた岸壁や海上の船上に前記圧送ポンプを配置して配管で前記打設箇所に不定形経時性固化材料を圧送する施工が可能となる。そのため、増杭を打設するといった従来の耐震補強のように既設桟橋上に杭打機等の大型重機を配置する必要がなくなり、重機などで既設桟橋上を占有することがなくなる利点がある。したがって、不定形経時性固化材料の打設作業中でも既設桟橋を使用することが可能となることから、桟橋での荷役設備の操業の停止期間を短くすることができ、クレーンの休止期間を短縮することが可能となる。In this case, since the amorphous aging solidified material has fluidity at the time of construction, it can be driven by, for example, a pressure pump, and the pressure pump can be placed on a quay or a ship on the sea that is away from the existing jetty as a placement location. Thus, it is possible to perform construction in which an amorphous aging solidified material is pumped to the placement site by piping. For this reason, there is no need to place a large heavy machine such as a pile driver on the existing pier as in the conventional seismic reinforcement such as placing an additional pile, and there is an advantage that the heavy machine or the like does not occupy the existing pier. Therefore, it is possible to use the existing jetty even during the placement work of the irregular aging solidification material, so that the suspension period of the cargo handling equipment operation at the jetty can be shortened, and the suspension period of the crane can be shortened. It becomes possible.

また、本発明では、不定形経時性固化材料の一軸圧縮強度が上記の(1)式に基づいて算出した強度による補強を行うことで、設計震度に対して水平耐力を得ることができる構造となる。 Further, in the present invention, the uniaxial compressive strength of the amorphous aging solidified material is reinforced by the strength calculated based on the above formula (1), whereby the horizontal proof stress can be obtained with respect to the design seismic intensity. Become.

また、本発明に係る桟橋の耐震補強方法では、前記不定形経時性固化材料は、泥土の改質土であることが好ましい。
とくに、前記泥土の改質土は、セメント系固化処理材、石灰系固化処理材、又は製鋼スラグを泥土に添加したものであることがより好ましい。
Moreover, in the seismic reinforcement method for a pier according to the present invention, it is preferable that the amorphous aging solidified material is a modified soil of mud.
In particular, the modified soil of the mud is more preferably a cement-based solidified material, a lime-based solidified material, or steelmaking slag added to the mud.

この場合、不定形経時性固化材料として泥土にセメント系固化処理材または石灰系固化処理材および製鋼スラグを混合してできる改質土を用いることができ、例えば泥土として浚渫土を用いることが可能であるため、浚渫土の処分費が不要となることから、工事費を低減することができる。   In this case, it is possible to use modified soil made by mixing cement-based solidified material or lime-based solidified material and steelmaking slag into mud as an irregular aging solidified material. For example, dredged soil can be used as mud. Therefore, since the disposal cost of dredged soil is not required, the construction cost can be reduced.

本発明の桟橋の耐震補強方法によれば、不定形経時性固化材料を打設する方法により既設桟橋上を占有する大型重機を配置する必要がなくなるので、荷役設備の操業の制約を抑えて桟橋の耐震補強作業を行うことができるという効果を奏する。 According to the quake-resistant reinforcement method of the pier of the present invention, it is not necessary to arrange a large heavy machine that occupies the existing pier by the method of placing an amorphous aging solidification material, so that the operation of the cargo handling facility can be suppressed and There is an effect that the seismic reinforcement work can be performed.

本発明の実施の形態による桟橋の耐震補強構造を用いて補強された既設桟橋を示す縦断面図である。It is a longitudinal cross-sectional view which shows the existing jetty reinforced using the earthquake-proof reinforcement structure of the jetty by embodiment of this invention. 水深4.5mの場合の不定形経時性固化材料の必要強度を計算した結果を示す図である。It is a figure which shows the result of having calculated the required intensity | strength of the amorphous aging solidification material in case the water depth is 4.5 m. 水深14.5mの場合の不定形経時性固化材料の必要強度を計算した結果を示す図である。It is a figure which shows the result of having calculated the required intensity | strength of the amorphous aging solidification material in case the water depth is 14.5m. 水深20mの場合の不定形経時性固化材料の必要強度を計算した結果を示す図である。It is a figure which shows the result of having calculated the required intensity | strength of the amorphous aging solidification material in the case of water depth 20m. 本実施の形態の耐震補強構造による施工状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the construction state by the earthquake-proof reinforcement structure of this Embodiment. 従来の桟橋の耐震補強構造による施工状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the construction state by the seismic reinforcement structure of the conventional jetty.

以下、本発明の実施の形態による桟橋の耐震補強方法について、図面に基づいて説明する。 Hereinafter, with the earthquake-proof reinforcement method embodiments according to the pier of the present invention will be described with reference to the drawings.

図1は、本実施の形態の桟橋の耐震補強方法を用いて既設桟橋1が補強された状態を示している。本実施の形態による桟橋の耐震補強構造は、岸壁2に建設されている既設桟橋1を所定の耐震強度となるように補強するための構造である。
ここで、以下の説明では、岸壁2を挟んで海に向かう方向を海側といい、海側と反対方向を陸側という。また、海岸線に沿って延びる方向(図1で紙面に直交する方向)を延長方向という。
FIG. 1 shows a state where an existing pier 1 is reinforced using the quake-proof reinforcement method of the pier of this embodiment. The seismic reinforcement structure of the pier according to the present embodiment is a structure for reinforcing the existing pier 1 constructed on the quay 2 so as to have a predetermined seismic strength.
Here, in the following description, the direction toward the sea across the quay 2 is referred to as the sea side, and the direction opposite to the sea side is referred to as the land side. Moreover, the direction (direction orthogonal to the paper surface in FIG. 1) extending along the coastline is referred to as the extension direction.

岸壁2は、延長方向に沿って設けられた護岸鋼矢板21と、護岸鋼矢板21から離間をあけた陸側において延長方向に所定間隔をあけて打設されているクレーン基礎支持杭22と、クレーン基礎支持杭22の杭頭部を巻き込んで打設されたコーピング23と、護岸鋼矢板21に対して陸側に間隔をあけて地盤中に打設された控え工24と、護岸鋼矢板21の上端部21a側及び控え工24を連結するタイロッド25と、護岸鋼矢板21とコーピング23との間に設けられている路盤26と、を備えている。
そして岸壁2には、移動式のガントリークレーン等(図示省略)が設置されており、そのクレーンの移動用レール(図示省略)が既設桟橋1とコーピング23上に延長方向に沿って平行に敷設されている。
The quay 2 includes a revetment steel sheet pile 21 provided along the extension direction, and a crane foundation support pile 22 that is placed at a predetermined interval in the extension direction on the land side spaced apart from the revetment steel sheet pile 21. A coping 23 that is driven by involving the pile head of the crane foundation support pile 22, a preparatory work 24 that is placed in the ground at a distance from the revetment steel sheet pile 21 on the land side, and a revetment steel sheet pile 21. The tie rod 25 which connects the upper end part 21a side and the laying work 24, and the roadbed 26 provided between the revetment steel sheet pile 21 and the coping 23 is provided.
A movable gantry crane or the like (not shown) is installed on the quay 2, and a moving rail (not shown) for the crane is laid in parallel on the existing pier 1 and the coping 23 along the extending direction. ing.

既設桟橋1は、護岸鋼矢板21から所定の距離だけ張り出して延在し、この既設桟橋1の張出し部分が複数の桟橋支持杭11によって下方から支持されている。既設桟橋1は、所定の厚さを有するコンクリート板状体であり、渡板27を介して路盤26に接続されている。   The existing pier 1 extends and extends a predetermined distance from the revetment steel sheet pile 21, and the projecting portion of the existing pier 1 is supported from below by a plurality of pier support piles 11. The existing jetty 1 is a concrete plate-like body having a predetermined thickness, and is connected to the roadbed 26 via a bridge plate 27.

桟橋支持杭11は、例えば鋼管杭が用いられ、海底の支持地盤に打設されている。   For example, a steel pipe pile is used as the pier support pile 11 and is placed on a support ground on the seabed.

タイロッド25は、延長方向に沿って間隔をあけて複数本が配列され、それぞれ地表面から所定の深さの位置に配置されている。   A plurality of tie rods 25 are arranged at intervals along the extending direction, and each tie rod 25 is arranged at a predetermined depth from the ground surface.

図1の符号3は、補強部として打設された不定形経時性固化材料を示している。不定形経時性固化材料3は、桟橋支持杭11が朔望平均干潮位(Low Water Level:L.W.L)まで埋まるように打設されている。不定形経時性固化材料3としては、施工時は流動性を保つとともに、現場養生により経時的に固化し、所定の強度を発現する特性を有する材料であって、泥土にセメント系固化処理材又は石灰系固化処理材、或いは、製鋼スラグを泥土に添加したものが挙げられる。   The code | symbol 3 of FIG. 1 has shown the amorphous aging solidification material cast | placed as a reinforcement part. The amorphous aging solidification material 3 is placed so that the pier support pile 11 is buried up to a mean water level (LWL). The amorphous aging solidifying material 3 is a material that maintains fluidity at the time of construction and solidifies over time by on-site curing and exhibits a predetermined strength. The thing which added the lime type solidification processing material or the steelmaking slag to the mud is mentioned.

なお、不定形経時性固化材料3は、固化し所定の強度を発現した状態または固化する前の状態(フレッシュコンクリートを含む)である。
また、改質土は、不定形経時性固化材料のうち、泥土に固化処理材(セメント、石灰、製鋼スラグ)を添加したものである。
The amorphous aging solidified material 3 is in a state where it has been solidified and exhibits a predetermined strength or in a state before solidification (including fresh concrete).
In addition, the modified soil is a material obtained by adding a solidification material (cement, lime, steelmaking slag) to mud soil among the amorphous aging solidification materials.

ここで、補強効果を得るための不定形経時性固化材料3の必要強度の算出方法について説明する。
水深を4.5m、14.5m、20mと変化させた場合の、計算により求められた不定形経時性固化材料の必要強度を、それぞれ図2〜図4に示す。
図1に示すように、地震時に既設桟橋1に作用する水平力は震度により変化し、震度が大きくなった場合には作用する水平力が増加する。また、岸壁2の水深が深い場合には、桟橋支持杭11の突出長が長くなることから、桟橋支持杭11の水平抵抗力が低下する。そのため、既設桟橋1に作用する水平力は設計震度に依り、桟橋支持杭11が保持する水平抵抗は水深に依ることから、不定形経時性固化材料3の必要強度は設計震度と水深に依ることになる。
Here, a method for calculating the required strength of the amorphous aging solidified material 3 for obtaining the reinforcing effect will be described.
The required strength of the amorphous aging solidified material obtained by calculation when the water depth is changed to 4.5 m, 14.5 m, and 20 m is shown in FIGS.
As shown in FIG. 1, the horizontal force acting on the existing pier 1 during an earthquake changes depending on the seismic intensity, and when the seismic intensity increases, the acting horizontal force increases. Moreover, when the water depth of the pier 2 is deep, since the protrusion length of the pier support pile 11 becomes long, the horizontal resistance of the pier support pile 11 falls. Therefore, the horizontal force acting on the existing pier 1 depends on the design seismic intensity, and the horizontal resistance held by the pier support pile 11 depends on the water depth. Therefore, the required strength of the amorphous aging solidification material 3 depends on the design seismic intensity and the water depth. become.

上記の関係より、水深を変化させた場合の計算結果を用いて、不定形経時性固化材料3に必要な強度は(1)式にて表すことができる。   From the above relationship, the strength required for the amorphous aging solidified material 3 can be expressed by the equation (1) using the calculation result when the water depth is changed.

Figure 0006241167
Figure 0006241167

図2に示す設計水深が4.5mの場合で桟橋杭(桟橋支持杭11に相当)の仕様で杭径φが700mm、板厚tが12mmの条件において、無補強ケースで地震動の大きさが180gal(設計水平震度が0.18)だと、不定形経時性固化材料による補強が無くても設計震度により生じる水平力に耐える(判定:OK)。また、同条件において、無補強ケースで地震動の大きさが250gal(設計水平震度が0.25)だと、その設計震度に対して水平耐力が不足する(判定:NG)。そして、同条件において、不定形経時性固化材料による補強を施したケースで地震動の大きさが250gal(設計水平震度が0.25)だと、不定形経時性固化材料の一軸圧縮強度が上記の(1)式に基づいて算出した100kN/mによる補強を行うことで、その設計震度に対して水平耐力を得ることができる構造となる(判定:OK)。なお、図2における不定形経時性固化材料の一軸圧出強度は、(1)式で300×(0.25−0.18)×4.5の結果が94.5kN/mとなり、100kN/mとしている。 In the case where the design water depth shown in FIG. 2 is 4.5 m and the specifications of the pier pile (corresponding to the pier support pile 11) and the pile diameter φ is 700 mm and the plate thickness t is 12 mm, the magnitude of seismic motion is not increased in the unreinforced case. If it is 180 gal (design horizontal seismic intensity is 0.18), it can withstand the horizontal force generated by the design seismic intensity even if there is no reinforcement with an amorphous aging solidified material (judgment: OK). Under the same conditions, if the magnitude of the seismic motion is 250 gal (design horizontal seismic intensity is 0.25) in the unreinforced case, the horizontal strength is insufficient for the design seismic intensity (determination: NG). Under the same conditions, if the magnitude of the seismic motion is 250 gal (design horizontal seismic intensity is 0.25) in the case of reinforcement with the amorphous aging solidified material, the uniaxial compressive strength of the amorphous aging solidified material is By performing reinforcement with 100 kN / m 2 calculated based on the equation (1), a structure capable of obtaining a horizontal proof stress with respect to the design seismic intensity is obtained (determination: OK). In addition, the uniaxial extrusion strength of the amorphous aging solidified material in FIG. 2 is 94.5 kN / m 2 with the result of 300 × (0.25−0.18) × 4.5 in the equation (1) being 100 kN. / M 2 .

また、図3に示す設計水深が14.5mの場合、図4に示す設計水深が20mの場合についても図2の設計水深が4.5mの場合と同じように、(1)式に基づいて不定形経時性固化材料の一軸圧縮強度を算出することができる。具体的には、図3の設計水深が14.5mの場合、桟橋杭の仕様で杭径φが1100mm、板厚tが19mmの条件において、不定形経時性固化材料の一軸圧縮強度が上記の(1)式に基づいて算出した310kN/mによる補強を行うことで、その設計震度に対して水平耐力を得ることができる構造となる(判定:OK)。また、図4の設計水深が20mの場合、桟橋杭の仕様で杭径φが1600mm、板厚tが25mmの条件において、不定形経時性固化材料の一軸圧縮強度が上記の(1)式に基づいて算出した420kN/mによる補強を行うことで、その設計震度に対して水平耐力が得られる構造となる(判定:OK)。 Moreover, when the design water depth shown in FIG. 3 is 14.5 m, the case where the design water depth shown in FIG. 4 is 20 m is based on the equation (1) as in the case where the design water depth shown in FIG. 2 is 4.5 m. The uniaxial compressive strength of the amorphous aging solidified material can be calculated. Specifically, when the design water depth of FIG. 3 is 14.5 m, the uniaxial compressive strength of the amorphous aging solidified material is as described above under the pier pile specifications where the pile diameter φ is 1100 mm and the plate thickness t is 19 mm. By performing the reinforcement with 310 kN / m 2 calculated based on the equation (1), a structure capable of obtaining a horizontal strength against the design seismic intensity is obtained (determination: OK). In addition, when the design water depth in FIG. 4 is 20 m, the uniaxial compressive strength of the amorphous aging solidified material is expressed by the above formula (1) under the condition that the pile diameter φ is 1600 mm and the plate thickness t is 25 mm. By performing the reinforcement with 420 kN / m 2 calculated based on the structure, a horizontal proof stress can be obtained with respect to the design seismic intensity (determination: OK).

次に、本実施の形態の桟橋の耐震補強方法と、この耐震補強方法を実施することに基づく作用について、図面を用いて詳細に説明する。
先ず、図5に示すように、桟橋支持杭11から海側に間隔をあけて海中に土留鋼矢板5を打ち込み、その打ち込んだ土留鋼矢板5と岸壁2の護岸鋼矢板21との間に閉め切り領域Rを形成する。
Next, the quake-proof reinforcement method of the pier of this Embodiment and the effect | action based on implementing this quake-proof reinforcement method are demonstrated in detail using drawing.
First, as shown in FIG. 5, the earth retaining steel sheet pile 5 is driven into the sea with a gap from the pier support pile 11 to the sea side, and is closed between the earth retaining steel sheet pile 5 and the seawall steel sheet pile 21 of the quay 2. Region R is formed.

次に、形成した閉め切り領域Rに不定形経時性固化材料を打設することで、既設桟橋1の下方に不定形経時性固化材料3を施工する。具体的には、岸壁2のクレーン支持杭22よりもさらに陸側に、施工時において流動性を有する不定形経時性固化材料を送り出すための圧送ポンプ6を配置し、その圧送ポンプ6から配管7により打設箇所となる閉め切り領域Rまで不定形経時性固化材料を圧送する。なお、圧送ポンプ6に投入される不定形経時性固化材料は、施工箇所とは別の場所で、上述したように泥土とセメント系固化処理材または石灰系固化処理材、或いは製鋼スラグとを混合させた改質土を圧送ポンプ6まで搬送させるようにしてもよいし、圧送ポンプ6の設置箇所で投入直前に混合させるようにしても良い。   Next, the amorphous aging solidifying material 3 is applied below the existing jetty 1 by placing an amorphous aging solidifying material in the closed cut region R formed. Specifically, a pressure-feed pump 6 for sending an amorphous aging solidified material having fluidity at the time of construction is arranged further on the land side than the crane support pile 22 of the quay 2, and a pipe 7 is connected to the pressure-feed pump 6. Thus, the amorphous aging solidified material is pumped to the closed region R which is the placement site. In addition, the irregular aging solidification material thrown into the pressure pump 6 is mixed with mud and cement solidification treatment material or lime solidification treatment material or steelmaking slag as described above at a place different from the construction place. You may make it convey the made modified soil to the pressure feed pump 6, and may make it mix just before injection | throwing-in in the installation location of the pressure feed pump 6. FIG.

続いて、圧送ポンプ6に投入された不定形経時性固化材料を閉め切り領域R内に向けて圧送し、土留鋼矢板5を型枠としてその内側の閉め切り領域R内に不定形経時性固化材料を充填する。このとき、不定形経時性固化材料の充填と共に閉め切り領域R内に溜まっていた海水は土留鋼矢板5を越えて海に流出することになる。
そして、図1に示すように、閉め切り領域Rの所定の高さまで充填した不定形経時性固化材料が固化し、この不定形経時性固化材料3に桟橋支持杭11の上端に位置するL.W.Lまで埋め込まれた状態となり、本実施の形態による既設桟橋1の耐震補強工事が完了となる。
土留鋼矢板5は、改質体3とともに残置させてよい。
Subsequently, the amorphous aging solidified material charged into the pressure feed pump 6 is pumped toward the closed region R, and the amorphous aging solidified material is placed in the inner closed region R using the retaining steel sheet pile 5 as a mold. Fill. At this time, the seawater that has accumulated in the closed region R along with the filling of the amorphous aging solidified material flows over the earth retaining steel sheet pile 5 into the sea.
As shown in FIG. 1, the amorphous aging solidified material filled up to a predetermined height in the closed region R is solidified, and the amorphous aging solidified material 3 is placed at the upper end of the pier support pile 11. W. As a result, the seismic reinforcement work for the existing jetty 1 according to the present embodiment is completed.
The earth retaining steel sheet pile 5 may be left together with the modified body 3.

なお、不定形経時性固化材料3の打設方法としては、上述したように岸壁2に圧送ポンプ6を配置する方法に制限されることはない。例えば、既設桟橋1の耐震補強工事と同時に近くの海上で浚渫工事が行われる場合には、その浚渫土を利用した周知の管中混合固化処理工法を採用することができる。すなわち、浚渫土を打設箇所まで送る圧送管の途中で、浚渫土に固化処理材を添加し管内で混練させ、排出口からはその改質土を打設する工法を用いてもよい。   Note that the method for placing the amorphous aging solidifying material 3 is not limited to the method of disposing the pump 6 on the quay 2 as described above. For example, when dredging work is performed near the sea at the same time as the seismic reinforcement work for the existing jetty 1, a well-known mixed solidification method in the pipe using the dredged soil can be employed. That is, a method may be used in which a solidification material is added to the kneaded material and kneaded in the tube in the middle of the pressure feeding pipe for sending the kneaded material to the placement site, and the modified soil is cast from the discharge port.

このように、本実施の形態による桟橋の耐震補強方法では、既設桟橋1の下方全域に不定形経時性固化材料3が打設され、既設桟橋1を支持する桟橋支持杭11をそのL.W.Lまで固化した不定形経時性固化材料3によって埋設することによって、桟橋支持杭11の水平耐力を向上させることができ、既設桟橋1全体の耐震補強を効率よく、かつ確実に行うことができる。 Thus, in the seismic reinforcement method of the pier according to the present embodiment, the amorphous aging solidification material 3 is placed in the entire lower part of the existing pier 1, and the pier support pile 11 that supports the existing pier 1 is attached to the L.P. W. By embedding with the amorphous aging solidified material 3 solidified to L, the horizontal strength of the pier support pile 11 can be improved, and the existing pier 1 as a whole can be efficiently and reliably reinforced with earthquake resistance.

この場合、本実施の形態のように不定形経時性固化材料を圧送ポンプ6によって打設することができ、打設箇所となる既設桟橋1から離れた岸壁2や海上の船上に圧送ポンプ6を配置して配管で前記打設箇所に不定形経時性固化材料を圧送する施工が可能となる。そのため、増杭を打設するといった従来の耐震補強のように既設桟橋1上に杭打機等の大型重機を配置する必要がなくなり、重機などで既設桟橋1上を占有することがなくなる。
したがって、不定形経時性固化材料の打設作業中でも既設桟橋1を使用することが可能となることから、既設桟橋1での荷役設備の操業の停止期間を短くすることができ、クレーンの休止期間を短縮することが可能となる。
In this case, as in the present embodiment, the amorphous aging solidification material can be driven by the pumping pump 6, and the pumping pump 6 is placed on the quay 2 away from the existing pier 1 or the ship on the sea, which is the driving site. It is possible to perform the construction in which the amorphous aging solidified material is pumped to the placement site by placement and piping. Therefore, it is not necessary to arrange a large heavy machine such as a pile driver on the existing pier 1 as in the conventional seismic reinforcement such as placing an additional pile, and the existing pier 1 is not occupied by a heavy machine.
Therefore, since the existing pier 1 can be used even during the placement work of the amorphous aging solidification material, the suspension period of the cargo handling equipment operation at the existing pier 1 can be shortened, and the crane suspension period Can be shortened.

また、本実施の形態では、不定形経時性固化材料として泥土にセメント系固化処理材または石灰系固化処理材、或いは製鋼スラグを混合してできる改質土を用いることができ、例えば泥土として浚渫土を用いることが可能であるため、この場合には浚渫土の処分費が不要となり、工事費を低減することができる。   Further, in the present embodiment, a modified soil obtained by mixing a cement-based solidified material, a lime-based solidified material, or steelmaking slag with mud can be used as the irregular aging solidified material. Since soil can be used, in this case, the disposal cost of dredged soil becomes unnecessary, and the construction cost can be reduced.

上述した本実施の形態による桟橋の耐震補強方法では、不定形経時性固化材料3を打設する方法により既設桟橋1上を占有する大型重機を配置する必要がなくなるので、荷役設備の操業の制約を抑えて桟橋の耐震補強作業を行うことができるという効果を奏する。 In the quake-proof reinforcement method according to the present embodiment described above, it is not necessary to arrange a large heavy machine that occupies the existing pier 1 by the method of placing the amorphous aging solidification material 3, so that the operation of the cargo handling equipment is restricted. There is an effect that the seismic reinforcement work of the pier can be performed while suppressing the above.

以上、本発明による桟橋の耐震補強方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した実施の形態では、不定形経時性固化材料としての改質土が泥土にセメント系固化処理材、石灰系固化処理材、又は製鋼スラグを添加してなる材料としているが、これに限定されることはなく、例えばコンクリート等の泥土を含まないものを不定形経時性固化材料として採用することも可能である。
As mentioned above, although embodiment of the earthquake-proof reinforcement method of the jetty by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the embodiment described above, the modified soil as the amorphous aging solidification material is a material obtained by adding cement-based solidification treatment material, lime-based solidification treatment material, or steelmaking slag to mud, The material is not limited and, for example, a material that does not contain mud such as concrete can be used as the amorphous aging solidification material.

また、既設桟橋1の形状、桟橋支持杭11の径寸法や本数などの構成に限定されることはない。例えば、本実施の形態では、既設桟橋1の張出し部が4本の桟橋支持杭11によって下方から支持されているが、桟橋の張出し長さにより4本以上または4本以下であってもかまわない。   Moreover, it is not limited to structures, such as the shape of the existing pier 1, the diameter size of a pier support pile 11, and a number. For example, in the present embodiment, the overhanging portion of the existing pier 1 is supported from below by four pier support piles 11, but may be four or more or four or less depending on the pier overhang length. .

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.

1 既設桟橋
2 岸壁
3 不定形経時性固化材料
5 土留鋼矢板
6 圧送ポンプ
11 桟橋支持杭
21 護岸鋼矢板
22 クレーン基礎支持杭
G 地盤
R 閉め切り領域
DESCRIPTION OF SYMBOLS 1 Existing jetty 2 Quay wall 3 Amorphous aging solidification material 5 Earth retaining steel sheet pile 6 Pumping pump 11 Pier support pile 21 Revetment steel sheet pile 22 Crane foundation support pile G Ground R Closed area

Claims (3)

支持杭に支持されている既設桟橋を設定震度に対応する耐震強度となるように補強するための桟橋の耐震補強方法であって、
前記既設桟橋の下方全域において、施工時は流動性を保つとともに、現場養生により経時的に固化し、所定の強度を発現する不定形経時性固化材料が、前記支持杭に位置する朔望平均干潮位埋設されるように打設され、
前記不定形経時性固化材料は、(1)式を満足する一軸圧縮強度であることを特徴とする桟橋の耐震補強方法。
Figure 0006241167
A quake-proof reinforcement method for a pier for reinforcing an existing pier supported by a support pile so as to have an earthquake-proof strength corresponding to a set seismic intensity,
In the entire lower area of the existing pier, while maintaining fluidity during construction, it is solidified over time by on-site curing, and an irregular aging solidified material that expresses a predetermined strength is the envy average low tide level located in the support pile Was laid to be buried,
The quake-resistant reinforcement method for a pier, wherein the amorphous aging solidified material has a uniaxial compressive strength that satisfies the formula (1) .
Figure 0006241167
前記不定形経時性固化材料は、泥土の改質土であることを特徴とする請求項に記載の桟橋の耐震補強方法The method for seismic reinforcement of a pier according to claim 1 , wherein the amorphous aging solidification material is a modified soil of mud. 前記泥土の改質土は、セメント系固化処理材、石灰系固化処理材、又は製鋼スラグを泥土に添加したものであることを特徴とする請求項に記載の桟橋の耐震補強方法The method for seismic reinforcement of a pier according to claim 2 , wherein the modified soil of the mud is a cement-based solidified material, a lime-based solidified material, or steelmaking slag added to the mud.
JP2013194456A 2013-09-19 2013-09-19 Seismic reinforcement method for jetty Active JP6241167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194456A JP6241167B2 (en) 2013-09-19 2013-09-19 Seismic reinforcement method for jetty

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194456A JP6241167B2 (en) 2013-09-19 2013-09-19 Seismic reinforcement method for jetty

Publications (2)

Publication Number Publication Date
JP2015059362A JP2015059362A (en) 2015-03-30
JP6241167B2 true JP6241167B2 (en) 2017-12-06

Family

ID=52817126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194456A Active JP6241167B2 (en) 2013-09-19 2013-09-19 Seismic reinforcement method for jetty

Country Status (1)

Country Link
JP (1) JP6241167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002271A (en) * 2017-06-13 2019-01-10 Jfeスチール株式会社 Earthquake disaster suppression method of existing steel pipe pile type pier and steel pipe pile type pier
KR102262861B1 (en) * 2019-04-23 2021-06-08 한국조선해양 주식회사 Quay structure reinforced pier type erection and method for reinforcement quay structure using pier type erection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729726A (en) * 1980-07-31 1982-02-17 Nippon Kokan Kk <Nkk> Filling method for space below foundation
JPH09279540A (en) * 1996-04-16 1997-10-28 Sumitomo Metal Ind Ltd Earthquake resistant reinforcing structure for gravity type harbor structure
US6986319B2 (en) * 2003-09-17 2006-01-17 Norrie Kim L Tethered sectional pier system
JP4452603B2 (en) * 2004-11-01 2010-04-21 前田建設工業株式会社 Pile type pier reinforcement method, reinforcement structure, and pile type pier
JP2009279540A (en) * 2008-05-23 2009-12-03 Jsr Corp Filter and manufacturing method for composition for electronic material
JP5581047B2 (en) * 2009-12-14 2014-08-27 株式会社三和 Method for producing fluidized soil

Also Published As

Publication number Publication date
JP2015059362A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
CN102011391B (en) Reinforcement processing method of soft foundation
JP6166264B2 (en) How to build a retaining wall
CN104452829B (en) A kind of pile-raft foundation float Structure and construction method
WO2015135471A1 (en) Hollow cylindrical pier for fixing offshore platform structure to bed and method of installing and constructing same
KR20110072755A (en) Underwater base for seawater bridge column
JP5787172B2 (en) Lifting method of breakwater
KR20090130502A (en) Process for reinforcing base and preventing wash-out of earth under the bridges
CN103233444B (en) Underwater dumped rockfill bedding and side slope Anti-scouring structure and construction method thereof
CN113174958A (en) Construction method for foundation pit of adjacent road under poor ground condition
KR20120012504A (en) Cast in place concrete pile With precast type Caisson
CN107100160B (en) A kind of construction technology for lower storage reservoir check dam vibro-replacement stone column
KR101256274B1 (en) Reverse Drill Method With precast type Caisson and Jacket
JP6241167B2 (en) Seismic reinforcement method for jetty
CN102733407A (en) Two-ring grouted single pile foundation
JP5681988B2 (en) Breakwater reinforcement method and reinforced breakwater
CN108316237B (en) Revetment retaining wall
JP2008019561A (en) Construction method of countermeasure against liquefaction under breakwater caused by creation of underground wall
JP4131447B2 (en) Wall structure and method for forming the same
KR100768552B1 (en) steel well foundation construction and equipment
CN102605775B (en) Combination pile of flexible pile and rigid pile concentrically arranged at upper end and lower end and pile forming method
CN106149624A (en) A kind of gravity type quay being applicable to roadbed of alluvial silt and construction method thereof
CN204326119U (en) A kind of pile-raft foundation float Structure
JP4104467B2 (en) Seawall structure and seawall construction method
RU145661U1 (en) Sheet piling
KR20050092144A (en) Arch steel pipe sheet piles use of arching effect and its wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R151 Written notification of patent or utility model registration

Ref document number: 6241167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350