JP2008019561A - Construction method of countermeasure against liquefaction under breakwater caused by creation of underground wall - Google Patents

Construction method of countermeasure against liquefaction under breakwater caused by creation of underground wall Download PDF

Info

Publication number
JP2008019561A
JP2008019561A JP2006190048A JP2006190048A JP2008019561A JP 2008019561 A JP2008019561 A JP 2008019561A JP 2006190048 A JP2006190048 A JP 2006190048A JP 2006190048 A JP2006190048 A JP 2006190048A JP 2008019561 A JP2008019561 A JP 2008019561A
Authority
JP
Japan
Prior art keywords
breakwater
sandy soil
soil layer
underground wall
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006190048A
Other languages
Japanese (ja)
Other versions
JP4982631B2 (en
Inventor
Takahiro Sugano
高弘 菅野
Susumu Iai
進 井合
Tetsuo Hida
哲男 飛田
Shigeki Sugita
繁樹 杉田
Shoichiro Matsumoto
正一郎 松本
Masaaki Mitsufuji
正明 三藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Original Assignee
Kyoto University
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Penta Ocean Construction Co Ltd, National Institute of Maritime Port and Aviation Technology filed Critical Kyoto University
Priority to JP2006190048A priority Critical patent/JP4982631B2/en
Publication of JP2008019561A publication Critical patent/JP2008019561A/en
Application granted granted Critical
Publication of JP4982631B2 publication Critical patent/JP4982631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method of countermeasures against liquefaction under a breakwater which enables construction to be inexpensively performed in a short period of time, and can effectively prevent the occurrence of a liquefaction phenomenon. <P>SOLUTION: A rubble-mound 11 is created on a sandy soil layer 10 on the bottom of the sea. The breakwater is constituted by installing a concrete dam body 12 on the rubble-mound 11. Under the breakwater, a pair of impermeable or semipermeable underground walls A are created in the sandy soil layer 10 under the slightly outside sections of both the front and back edges of the dam body 12 along both edges of them. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,海底の砂質地盤上に構築されている防波堤下の地盤が、地震発生時に液状化することによる防波堤の沈下や倒壊をより小さいものとし、防波堤機能が損なわれないようにする地中壁造成による防波堤下の液状化対策工法に関する。   In the present invention, the ground under the breakwater built on the sandy ground of the seabed is designed to make the breakwater sunk or collapse due to liquefaction when an earthquake occurs and to prevent the breakwater function from being impaired. It relates to a liquefaction countermeasure method under a breakwater by creating a middle wall.

一般に、突堤や沖堤等の防波堤は,波浪等の外力に対して滑動及び転倒を生じさせないだけの支持力を確保できるような地盤上に築造する。   In general, breakwaters such as jetties and offshore dikes are constructed on the ground so as to secure a supporting force that does not cause sliding and overturning against external forces such as waves.

従来、防波堤下にあってこれを支持している砂質地盤としては、粘性土からなる原地盤を砂で置き換えた置換砂質土である場合や、原地盤が波浪等の外力に対して防波堤の滑動や転倒を生じさせないだけの支持力を有している砂質土である場合がある。   Conventionally, the sandy ground under and supporting the breakwater is a replacement sandy soil in which the original ground made of clay soil is replaced with sand, or the ground is against a wave or other external force. In some cases, it is sandy soil having a supporting force that does not cause sliding or falling.

しかし、このような波浪等の外力に対して充分な支持力を有している砂質地盤であっても、地震発生時に液状化現象によって支持力を失い、防波堤を沈下させることが想定され、地震によって液状化現象が発生すると砂質土層に体積変化が生じて堤体が沈下したり、傾いたり、場合によっては倒壊するという事態が予想される。   However, even in sandy ground that has sufficient support for external forces such as waves, it is assumed that the support will be lost due to the liquefaction phenomenon at the time of the earthquake and the breakwater will sink. When a liquefaction phenomenon occurs due to an earthquake, a volume change occurs in the sandy soil layer, and the dam body is expected to sink, tilt, or in some cases collapse.

堤体が一定以上沈下したり傾いたりすると波浪遮断機能が損なわれ、港内側への越波量が増大し、港内の静穏度が確保されなくなる。また、地震発生後に津波が押し寄せると津波の越波量が増大し、背後の陸地に対する浸水被害を食い止めるための機能が損なわれるという問題がある。   If the levee body sinks or tilts more than a certain level, the wave blocking function is impaired, the amount of overtopping to the inside of the port increases, and the calmness within the port cannot be ensured. In addition, when a tsunami comes after an earthquake, the amount of overtopping of the tsunami increases, and there is a problem that the function to stop flooding damage to the land on the back is impaired.

従来、このような砂質地盤上に防波堤を築造する場合における液状化対策としては、サンドコンパクションパイル工法(例えば特許文献1及び2)がある。これは図12に示すように、防波堤築造前に、その下の砂質土層1内にサンドコンパクションパイルの造成等の地盤改良工法によって液状化が防止できるように改良地盤2を造成し、その上に捨石マウンド3を造成し、その上にコンクリートケーソンや場所打ちコンクリートによるコンクリート堤体4を設置する方法である。   Conventionally, as a countermeasure for liquefaction when building a breakwater on such sandy ground, there is a sand compaction pile method (for example, Patent Documents 1 and 2). As shown in FIG. 12, before construction of the breakwater, an improved ground 2 is created in the sandy soil layer 1 below so that liquefaction can be prevented by a ground improvement method such as creation of a sand compaction pile. This is a method in which a rubble mound 3 is created on top of which a concrete dam body 4 made of concrete caisson or cast-in-place concrete is installed.

また既設の防波堤に対する液状化対策として、図13に示すような嵩上げ工法がある。これは堤体4の真上を静水面から必要な高さまで嵩上げしておくものであり、堤体4上に嵩上げ部5を場所打ちコンクリートによって構築し、堤体の滑動、転倒に対する安定を確保するために必要に応じて拡幅し、重量を確保する。   Further, as a liquefaction countermeasure for the existing breakwater, there is a raising method as shown in FIG. This is to raise the height just above the levee body 4 from the static water surface to the required height, and build the raised portion 5 on the dam body 4 with cast-in-place concrete to ensure stability against sliding and falling of the dam body. In order to do so, it is widened as necessary to ensure weight.

更に堤体の拡幅と同様に堤体の滑動、転倒に対する安定を確保するために防波堤港内側に1〜70kg/個程度の石を必要量投入して裏込め盛石部6を造成する。
特開平8−27759号公報 特開平7−207653号公報
Furthermore, in order to ensure stability against the sliding and falling of the levee body as well as the widening of the levee body, a required amount of stone of about 1 to 70 kg / piece is put inside the breakwater port to create the backfilling stone portion 6.
JP-A-8-27759 JP 7-207653 A

上述した従来の、新設防波堤築造に際し、防波堤下となる砂質土層内にサンドコンパクションパイルの造成などによる地盤改良を施す方法では、その地盤改良範囲が広範となるため、工費が増大するとともに、工期も長くなるという問題がある。   In the conventional construction of the new breakwater described above, the method of applying ground improvement by creating a sand compaction pile in the sandy soil layer under the breakwater increases the construction cost, because the ground improvement range is wide, There is a problem that the construction period becomes longer.

また、既設の防波堤に対する嵩上げ工法では、砂質土層の液状化そのものを防止することはできず、液状化現象が生じたときは堤体が相当の沈下を起こし、防波堤法線が直線状ではなくなり、防波堤としての機能を十分に発揮できなくなるおそれがある。   Moreover, the raising method for the existing breakwater cannot prevent liquefaction of the sandy soil layer itself, and when the liquefaction phenomenon occurs, the levee body undergoes considerable subsidence, and the breakwater normal is not straight. There is a risk that the function as a breakwater cannot be fully achieved.

また、予想される津波の高さが大きくなればなるほど、波力に対する滑動や転倒を防止するために堤体幅を相当量大きくする必要が生じる。同様に滑動に対する安定性を確保するために港内側への裏込石の投入量を多くしなければならず、嵩上げ高さを大きくする場合にはそれに応じてコスト高となり、しかも防波堤下の砂質土層にかかる重量が大きくなり、これが沈下の要因となるおそれがあるなどの問題がある。   In addition, as the expected height of the tsunami increases, it is necessary to increase the dam body width by a considerable amount in order to prevent sliding and falling over the wave force. Similarly, in order to ensure stability against sliding, the amount of lining stones inside the port must be increased, and when raising the height, the cost increases accordingly, and the sand under the breakwater There is a problem that the weight applied to the soil layer increases, which may cause settlement.

本発明は上述の如き従来の問題に鑑み、既設、新設の何れの防波堤に対して施工する場合を問わず、低コストで短期間に施工することができ、しかも液状化現象による堤体の沈下を効果的に防止することができる防波堤下の液状化対策工法の提供を目的としてなされたものである。   In view of the conventional problems as described above, the present invention can be applied in a short period of time at low cost regardless of whether it is applied to any existing or new breakwater, and the settlement of the levee body due to liquefaction phenomenon It was made for the purpose of providing a liquefaction countermeasure method under a breakwater that can effectively prevent the dam.

上述の如き従来の課題を解決し、所期の目的を達成するための請求項1に記載の発明の特徴は、海底の砂質土層上に捨石マウンドを造成し、該捨石マウンド上にコンクリート製の堤体を設置して構成された防波堤下の液状化対策工法であって、前記堤体の前後両縁部に沿ってそのやや外側下の前記砂質土層内に、一対の不透水性又は難透水性の地中壁を造成することにある。   The feature of the invention described in claim 1 for solving the conventional problems as described above and achieving the intended purpose is that a rubble mound is formed on a sandy soil layer on the seabed, and concrete is formed on the rubble mound. A liquefaction countermeasure method under a breakwater constructed by installing a dam body, and a pair of impervious water in the sandy soil layer slightly below the front and rear edges of the levee body The purpose is to create underground walls with low permeability or poor permeability.

請求項2に記載の発明の特徴は、上記請求項1の構成に加え、前記防波堤が新設の防波堤であり、前記捨石マウンド造成前に防波堤下となる前記砂質土層内に前記地中壁を構築することにある。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the breakwater is a newly installed breakwater, and the underground wall is formed in the sandy soil layer that becomes a breakwater before the rubble mound is formed. Is to build.

請求項3に記載の発明の特徴は、上記請求項1の構成に加え、前記防波堤が、既設の防波堤であり、該既設の防波堤下の砂質土層内に前記地中壁を構築することにある。   According to a third aspect of the present invention, in addition to the configuration of the first aspect, the breakwater is an existing breakwater, and the underground wall is constructed in a sandy soil layer under the existing breakwater. It is in.

請求項4に記載の発明の特徴は、上記請求項1、2又は3の構成に加え、上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内にセメント系固化材を混入させることにより造成することにある。   According to a fourth aspect of the present invention, in addition to the constitution of the first, second or third aspect, the pair of impermeable or hardly permeable underground walls are cemented solidified in the sandy soil layer. It is to create by mixing materials.

請求項5に記載の発明の特徴は、上記請求項1、2又は3の構成に加え、上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内に矢板を打設することによって造成することにある。   According to a fifth aspect of the present invention, in addition to the configuration of the first, second, or third aspect, the pair of impermeable or hardly permeable underground walls hits a sheet pile in the sandy soil layer. It is to create by setting up.

本発明においては、砂質土層上に捨石マウンドを造成し、該捨石マウンド上にコンクリート製の堤体を設置して構成された防波堤の液状化対策に際し、堤体の前後両縁部に沿ってそのやや外側下の前記砂質土層内に、セメント系固化材を混入させることや矢板の打設等によって一対の不透水性又は難透水性の地中壁を造成することにより、堤体直下の砂質土層には液状化現象が発生するが、地中壁によるせん断変形抑止効果によって地中壁間の砂質土層の体積変化が抑制され、その結果堤体の沈下が抑制される。   In the present invention, a rubble mound is formed on a sandy soil layer and a concrete dam body is installed on the rubble mound. By creating a pair of impervious or hardly permeable underground walls by mixing cement-based solidified material or placing a sheet pile in the sandy soil layer slightly outside The liquefaction phenomenon occurs in the sandy soil layer directly below, but the volume change of the sandy soil layer between the underground walls is suppressed by the effect of suppressing shear deformation by the underground wall, and as a result, the settlement of the levee body is suppressed. The

また、本発明の防波堤の液状化対策においては、防波堤下の地盤全域に処理を施すのではなく、その一部に地中壁を造成するものであるため、新設の防波堤における液状化対策として施工する場合であっても、従来のサンドコンパクションパイルの造成による工法に比べ、低コストで短期間に施工することができる。   In addition, in the breakwater liquefaction countermeasure of the present invention, since the ground wall is not formed on the entire ground below the breakwater, but a part of the ground wall is created, it is constructed as a liquefaction countermeasure for the newly built breakwater. Even if it does, it can construct in a short time at low cost compared with the construction method by the creation of the conventional sand compaction pile.

更に、既設の防波堤に対して施工する場合においても、従来の嵩上げ工法のように嵩高にして沈下が生じた際にも必要な高さを確保しようとするものではなく、液状化による沈下そのものを防止するものであるため、安全性がより高いという効果がある。   Furthermore, even when constructing an existing breakwater, it is not intended to secure the required height even when subsidence occurs by raising the bulk as in the conventional raising method, but the subsidence itself due to liquefaction is not achieved. Since it is what prevents, there exists an effect that safety | security is higher.

次に、本発明の実施の形態について図面を用いて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による液状化対策を施した防波堤及びその下の地盤の断面を示している。図において符号10は防波堤下の原地盤が砂質土である場合の砂質土層を示しており、11はその上に10〜200kg/個程度の重さの基礎用捨石を投入して造成した捨石マウンド、12は捨石マウンド11上に載置したコンクリートケーソン又は場所打ちコンクリートからなる堤体である。   FIG. 1 shows a cross section of a breakwater and a ground below the breakwater countermeasure according to the present invention. In the figure, reference numeral 10 indicates a sandy soil layer in the case where the original ground under the breakwater is sandy soil, and 11 is formed by throwing foundation rubble weighing about 10-200 kg / piece onto it. The rubble mound 12 is a dam body made of concrete caisson or cast-in-place concrete placed on the rubble mound 11.

捨石マウンド11の上面は、堤体12下を除き、その表面を1t/個程度の重さの被覆石13によって被覆されているとともに、堤体12の根元部分の前後に根固石14を積み上げている。   The upper surface of the rubble mound 11 is covered with a covering stone 13 having a weight of about 1 t / piece except for the bottom of the dam body 12, and the solid stone 14 is stacked before and after the root portion of the dam body 12. ing.

本発明における液状化対策は、堤体12のやや両外側位置の砂質土層10内に、堤体12の縁部に沿った方向にそれぞれ連続させた地盤改良による地中壁A,Aが造成されている。   The countermeasure against liquefaction in the present invention is that the underground walls A and A are improved by the ground improvement continuously in the direction along the edge of the dam body 12 in the sandy soil layer 10 slightly outside the dam body 12. It has been created.

この地中壁A,Aは砂質土層10内にセメントスラリー等のセメント系の流動性を有する固化材を混入させて地盤改良を施すことによって、周囲の砂質土層に比べて剛性が高い不透水性又は難透水性の壁体としたものである。   The underground walls A and A are hardened in comparison with the surrounding sandy soil layer by mixing the sandy soil layer 10 with a cement-type fluidized solidifying material such as cement slurry to improve the ground. It is a highly impermeable or hardly permeable wall.

尚、この他、水ガラス系、特殊シリカ系又は高分子系の地盤改良用薬液を地盤中に浸透させて固化させることによって造成したものであっても良い。   In addition to this, a water glass-based, special silica-based or polymer-based ground improvement chemical solution may be formed by penetrating into the ground and solidifying.

この地中壁の厚さは、大きい程せん断変形抑止効果が大きくなり地震時の堤体沈下量がより抑制されることとなるが、必要な沈下抑制効果と経済性や施工性を考慮すると1.0〜3.0m程度が好ましい。   The greater the thickness of the underground wall, the greater the effect of suppressing shear deformation and the more the subsidence of the dam body during an earthquake is suppressed. However, considering the necessary subsidence suppression effect, economic efficiency and workability, 1 About 0.0-3.0 m is preferable.

この地中壁Aの造成には、従来水底の軟弱地盤に対して固化材を注入混合させて硬化させる地盤改良装置と同様の装置が使用できる。この装置は図2に示すように、外周にオーガ21を一体に備えた回転軸22を平行配置に備え、その各回転軸の下端部外周に複数の攪拌翼23を突設し、その一部の攪拌翼23に固化材吐出ノズル(図示せず)を設け、このノズルから回転軸22内を通して固化材を吐出させることができるようにするとともに、上端部に回転軸22を回転させる回転駆動機24を有する地盤改良機20を備えている。   For the formation of the underground wall A, a device similar to a ground improvement device for injecting and mixing a solidified material to a soft ground with a water bottom and hardening it can be used. As shown in FIG. 2, this apparatus includes a rotating shaft 22 integrally provided with an auger 21 on the outer periphery in a parallel arrangement, and a plurality of stirring blades 23 project from the outer periphery of the lower end of each rotating shaft. The agitating blade 23 is provided with a solidifying material discharge nozzle (not shown) so that the solidifying material can be discharged from the nozzle through the rotating shaft 22 and the rotating shaft 22 rotates the rotating shaft 22 at the upper end. A ground improvement machine 20 having 24 is provided.

この地盤改良機20を図5(a)に示すように、深層混合処理船25に立設したリーダー26に沿わせて上下駆動可能に設置し、地盤改良機20を深層混合処理船25から水底に向けて上下移動させることができるようにしている。   As shown in FIG. 5A, the ground improvement machine 20 is installed so as to be vertically movable along a leader 26 standing on the deep mixing treatment ship 25, and the ground improvement machine 20 is moved from the deep mixing treatment ship 25 to the bottom of the water. So that it can be moved up and down.

次に、砂質土層10上に防波堤を新設する際における実施例について説明する。   Next, an embodiment when a breakwater is newly installed on the sandy soil layer 10 will be described.

図3にその施工フローを示している。施工フローに示す敷砂工では、地中壁A,Aを造成しようとする砂質土層10の表面に上面に敷砂30を敷設する。この敷砂30は地中壁Aを造成するために地盤中に混合するセメントスラリー等の改良材が水中へ流出するのを防止するために敷設するものであり、厚さ1.0m程度とする。敷砂施工は図4に示すように底開式土運船31を使用し、底開により直接投入するか、グラブ付き自航運搬船を使用し、船上からグラブバケットにより投入する等、従来使用されている敷砂方法により実施する。   FIG. 3 shows the construction flow. In the laying sand work shown in the construction flow, the laying sand 30 is laid on the upper surface of the sandy soil layer 10 where the underground walls A and A are to be created. This laying sand 30 is laid to prevent the improving material such as cement slurry mixed in the ground to form the underground wall A from flowing into the water, and has a thickness of about 1.0 m. . As shown in Fig. 4, the laying sand construction is conventionally used, such as using an open-bottomed earth-moving ship 31 and putting it directly by opening the bottom or using a self-propelled transport ship with a grab and throwing it from the ship with a grab bucket. It is carried out by the existing sand method.

次いで地盤改良による地中壁造成工を施工する。この地中壁造成工は、前述した地盤改良機20を使用して実施するものであり、図5(a)に示すように深層混合処理船25を用い、地盤改良機20を砂質土層10の底部まで回転させながら挿入した後、引き上げながら回転させると同時に固化材を攪拌翼23のノズルから吐出させ、これによって砂質土層10の砂質土に固化材を混入させた柱状体20aを造成する。   Next, the underground wall construction work by ground improvement will be carried out. This underground wall construction work is carried out using the ground improvement machine 20 described above, and as shown in FIG. 5 (a), a deep mixing treatment vessel 25 is used to turn the ground improvement machine 20 into a sandy soil layer. The columnar body 20a in which the solidified material is discharged from the nozzle of the stirring blade 23 at the same time as it is rotated while being pulled up and then rotated while being pulled up, thereby mixing the solidified material into the sandy soil of the sandy soil layer 10. Create.

このようにして砂質土層10中に固化材を注入して柱状体20aを、図5(b)に示すように、その側部を互いに一体化させた状態で造成する作業を繰り返し、連続した地中壁Aを造成する。なお,砂質土のN値が大きく、改良作業に困難を要する場合は、作業船を用いた先行削孔により地盤を緩める等の補助工法を併用する。   In this way, the solidifying material is injected into the sandy soil layer 10 to repeat the operation of forming the columnar body 20a with its side portions integrated with each other as shown in FIG. The underground wall A is created. In addition, when the N value of sandy soil is large and the improvement work requires difficulty, an auxiliary construction method such as loosening the ground by prior drilling using a work ship is also used.

このようにして互いに平行な配置に一対の地中壁A,Aを順次水平方向に延長させた後、必要に応じて敷砂30を撤去する敷砂撤去工を施工する。この敷砂撤去工は、例えば、図6に示すようにグラブ船32等を使用して行う。   Thus, after extending a pair of underground wall A and A sequentially in a horizontal direction in the mutually parallel arrangement | positioning, the installation sand removal work which removes the installation sand 30 as needed is constructed. This laying sand removal work is performed using, for example, a grab ship 32 as shown in FIG.

この敷砂撤去工は、敷砂部分が固化材による改良が不十分で、その物性が不均質なためであり、物性が不均質な材料をそのまま基礎として使用するのが不適切と判断される場合に実施する。尚、敷砂および表層付近の盛り上り土砂の材質が均質であり基礎としての使用に適すると判断される場合には,その撤去は行わない。   It is judged that it is inappropriate to use the material with non-homogeneous physical properties as it is as the foundation for the sand removal work because the improvement of the sand by the solidified material is insufficient and the physical properties are inhomogeneous. If you do. In addition, when it is judged that the material of the ground sand and the uplifted soil near the surface layer is homogeneous and suitable for use as a foundation, it will not be removed.

次いで図1に示すように、従来と同様の方法によって捨石マウンド11を造成し、その上に堤体12を設置する。   Next, as shown in FIG. 1, a rubble mound 11 is formed by a method similar to the conventional method, and a bank body 12 is installed thereon.

次に、既設の防波堤下の砂質土層に対する実施例について説明する。   Next, the Example with respect to the sandy soil layer under the existing breakwater is demonstrated.

前述した地中壁Aの造成に際しては、先ず図7(イ)に示すように地盤改良機20を捨石マウンド11下の砂質土層10内に挿入できるようにするための地盤改良機挿入部40を形成する。この地盤改良機挿入部40は一時的に基礎捨石の一部を除去して捨石マウンド表裏に窓穴を形成するものであり、潜水夫により作業機を操作して捨石を除去することとしても良く、図8に示すように円筒状の回転筒41の先端に石材切削刃42を固定したコアカッター43からなる切削機を使用して円筒形に切り取ることにより形成してもよい。   When the above-described underground wall A is created, first, the ground improvement machine insertion portion for allowing the ground improvement machine 20 to be inserted into the sandy soil layer 10 under the rubble mound 11 as shown in FIG. 40 is formed. This ground improvement machine insertion part 40 removes a part of foundation rubble temporarily, and forms a window hole in the rubble mound front and back, and it is good also as operating a working machine by a diver and removing rubble. As shown in FIG. 8, it may be formed by cutting into a cylindrical shape using a cutting machine comprising a core cutter 43 in which a stone cutting blade 42 is fixed to the tip of a cylindrical rotating cylinder 41.

このようにして地盤改良機挿入部40を地盤改良機20の1〜数回分の挿入広さに形成し、その地盤改良機挿入部40を通して図7(ロ)に示すように地盤改良機20を砂質土層10の底部まで回転させながら挿入した後、引き上げながら回転させると同時に固化材を攪拌翼23のノズルから吐出させ、これによって砂質土層10の砂質土に固化材を混入させた柱状体20aを造成する。   In this way, the ground improvement machine insertion part 40 is formed to have an insertion width of one to several times of the ground improvement machine 20, and the ground improvement machine 20 is passed through the ground improvement machine insertion part 40 as shown in FIG. After inserting while rotating to the bottom of the sandy soil layer 10, the solidifying material is discharged from the nozzle of the stirring blade 23 at the same time as it is pulled up, thereby mixing the solidifying material into the sandy soil of the sandy soil layer 10. The columnar body 20a is formed.

このようにして柱状体20aを造成した後、図7(ハ)に示すように地盤改良機挿入部40に基礎捨石を戻して捨石マウンドをもとの状態に復元させる。この工程を繰り返して柱状態20a,20a……を多数幅方向に接した状態に造成して地盤改良による地中壁を造成する。   After the columnar body 20a is formed in this way, as shown in FIG. 7 (c), the basic rubble is returned to the ground improvement machine insertion section 40 to restore the rubble mound to its original state. By repeating this process, the column states 20a, 20a,...

尚、形成した地盤改良機挿入部40内に埋め戻し砂を充填しておき、地盤改良機20による固化材の混入を砂質土層10への固化材混入に続けて埋め戻し砂にも固化材の混入を行うようにしてもよく、この場合には図9示すように地盤改良機挿入部40が地中壁Aによって埋められることとなり、埋め戻しの必要がなくなる。   The formed ground improvement machine insertion portion 40 is filled with backfill sand, and the solidification material mixed by the ground improvement machine 20 is solidified into the backfill sand following the solidification material mixing into the sandy soil layer 10. The material may be mixed, and in this case, the ground improvement machine insertion portion 40 is filled with the underground wall A as shown in FIG.

尚、上述の実施例では、原地盤が砂質地盤であり、その砂質土層10上に築造した防波堤下の液状化対策について説明したが、図10(a)に示すように、原地盤が粘性土からなる支持力(N値)の小さい軟質原地盤50である場合において、その原地盤の1部を砂で置き換えた所謂置換砂で構成されている砂質土層10a上に築造されている防波堤下の液状化対策として、前述と同様に図10(b)に示すように施工しても良い。尚、前述した実施例と同じ部分には同じ符号を付して重複説明を省略する。   In the above-described embodiment, the raw ground is sandy ground, and the countermeasure for liquefaction under the breakwater built on the sandy soil layer 10 has been described. However, as shown in FIG. Is a soft ground 50 having a small bearing capacity (N value) made of cohesive soil, and is constructed on a sandy soil layer 10a composed of so-called replacement sand in which a part of the original ground is replaced with sand. As a countermeasure against liquefaction under the breakwater, it may be constructed as shown in FIG. The same parts as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

上述の各実施例では、一対の地中壁を砂質土層の砂質土内にセメント系固化材を混入させることによって造成しているが、この地中壁は上述の他、矢板を互いに接合させて順次打設することによって不透水性又は難透水性の地中壁を造成してもよい。この矢板の打設に際しては、既設防波堤下に施工する場合には、前述と同様に、打設位置の捨石マウンドの捨石を除去して矢板打設部を形成する。捨石除去に際しては、1個ずつ取り除いてもよく切削機を使用して切り取ることによって除去しても良い。また、使用する矢板は鋼矢板、鋼管矢板等の鋼製矢板の他コンクリート製矢板が使用できる。   In each of the above-described embodiments, a pair of underground walls are formed by mixing cement-based solidifying material in the sandy soil of the sandy soil layer. The underground wall which is impermeable or hardly permeable may be formed by joining and sequentially placing. When placing this sheet pile, if it is to be constructed under an existing breakwater, the rubble mound at the placement position is removed to form the sheet pile placement portion as described above. When removing rubble, it may be removed one by one or by cutting using a cutting machine. Moreover, the sheet pile to use can use steel sheet piles, steel pipe sheet piles, etc. other than concrete sheet piles.

効果の確認
次に、有限要素法による地震応答解析による、本発明による液状化対策工法の効果の確認について述べる。この解析では、解析のための構造物のモデル化を行い、そのモデル化の材料定数を設定し、更に入力地震動(最大振幅、波形)を選定して地震応答計算を行った。解析結果として水平、鉛直方向の最大及び残留変位量等が算出される。
a.数値解析概要
数値解析の概要図: 図11
対象構造物: 防波堤(幅B=15.0m程度)
防波堤下の砂質土層厚:H=20m程度
入力地震動:1968年十勝沖地震の際に八戸港で得られた記録より算定した八戸基盤入射波形。
最大加速度:400gal
地中壁厚さ:L=4.5m、L=1.5mの2種類
b.検討ケース
表1に示す通りの3ケースとした。
Confirmation of effect Next, confirmation of the effect of the liquefaction countermeasure method according to the present invention by an earthquake response analysis by the finite element method will be described. In this analysis, the structure for the analysis was modeled, the material constants for the modeling were set, and the seismic response was calculated by selecting the input ground motion (maximum amplitude, waveform). As analysis results, horizontal and vertical maximums and residual displacements are calculated.
a. Outline of numerical analysis Outline of numerical analysis: Fig. 11
Target structure: Breakwater (width B = 15.0m)
Sandy soil layer thickness under breakwater: H = 20m Input seismic motion: Hachinohe basement incident waveform calculated from records obtained at Hachinohe Port during the 1968 Tokachi-oki earthquake.
Maximum acceleration: 400 gal
Underground wall thickness: 2 types of L = 4.5m, L = 1.5m b. Study cases Three cases as shown in Table 1 were used.

Figure 2008019561


c.解析結果
堤体の残留時の最大沈下量の算出結果を表2に示した。
Figure 2008019561


c. Analysis results Table 2 shows the calculation results of the maximum subsidence when the bank remains.


Figure 2008019561


Figure 2008019561

以上の結果のように、本発明方法は、対策工を実施しなかった場合に比べ、0.29及び0.36(対策を施した場合の沈下量/対策なしの場合の沈下量)程度の沈下量に抑制できた。この結果から、地中壁幅が1.5m以上あれば充分にその効果があることが判明した。   As shown in the above results, the method of the present invention is about 0.29 and 0.36 (the amount of settlement when measures are taken / the amount of settlement when no measures are taken) compared to the case where measures are not taken. The amount of settlement was suppressed. From this result, it was found that if the underground wall width is 1.5 m or more, the effect is sufficiently obtained.

本発明による液状化対策を施した既設防波堤及びその下の地盤の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the existing breakwater which applied the countermeasure against liquefaction by this invention, and the ground under it. 本発明による液状化対策に使用する地盤改良機の一例を示す正面図である。It is a front view which shows an example of the ground improvement machine used for the liquefaction countermeasure by this invention. 本発明方法を新設の防波堤築造前に施工する場合のフロー図である。It is a flowchart in the case of constructing the method of the present invention before building a new breakwater. 同上の敷砂工を示す断面図である。It is sectional drawing which shows a laying sand work same as the above. (a)は同上の連続地中壁造成工を示す断面図、(b)は地中壁造成途中の横断面図である。(A) is sectional drawing which shows the continuous underground wall construction construction same as the above, (b) is a cross-sectional view in the middle of underground wall construction. 同上の敷砂撤去工を示す断面図である。It is sectional drawing which shows a laying sand removal work same as the above. (イ)〜(ハ)は、本発明を既設の防波堤下の砂質土層に実施する場合において、図2の地盤改良機を使用して本発明工法を実施する場合の施工工程を説明する略図的断面図である。(A) to (c) explain the construction process when the present invention construction method is carried out using the ground improvement machine of FIG. 2 when the present invention is carried out on a sandy soil layer under an existing breakwater. It is a schematic sectional drawing. 本発明工法における図7(イ)における地盤改良機挿入部の形成方法の他の例を示す断面図である。It is sectional drawing which shows the other example of the formation method of the ground improvement machine insertion part in Fig.7 (a) in this invention construction method. 本発明工法における地盤改良機挿入部内に地中壁を連続させて造成した状態の断面図である。It is sectional drawing of the state which built the underground wall continuously in the ground improvement machine insertion part in this invention construction method. 本発明方法を軟質原地盤の一部を砂で置き換えた置換砂からなる砂質土層上に築造された防波堤下に実施する例を示すもので、(a)液状化対策前の状態の断面図、(b)液状化対策後の状態の断面図である。The present invention shows an example in which the method of the present invention is carried out under a breakwater built on a sandy soil layer made of replacement sand in which a part of soft ground is replaced with sand, (a) a cross section before the liquefaction countermeasure (B) It is sectional drawing of the state after a liquefaction countermeasure. 本発明の効果の確認に用いた数値解析の概要図である。It is a schematic diagram of the numerical analysis used for confirmation of the effect of the present invention. 従来の防波堤下の液状化対策の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the conventional liquefaction countermeasure under a breakwater. 従来の既設防波堤に対する液状化対策の一例を示す断面図である。It is sectional drawing which shows an example of the liquefaction countermeasure with respect to the existing existing breakwater.

符号の説明Explanation of symbols

A 地中壁
10 砂質土層
11 捨石マウンド
12 堤体
13 被覆石
14 根固石
20 地盤改良機
20a 柱状体
21 オーガ
22 回転軸
23 攪拌翼
24 回転駆動機
25 深層混合処理船
26 リーダー
30 敷砂
31 グラブ付き自航運搬船
32 グラブ船
40 地盤改良機挿入部
41 回転筒
42 石材切削刃
43 コアカッター
50 軟質原地盤
A Underground wall 10 Sandy soil layer 11 Rubble mound 12 Deck body 13 Cover stone 14 Negotite 20 Ground improvement machine 20a Columnar body 21 Auger 22 Rotating shaft 23 Stirring blade 24 Rotating drive 25 Depth mixing treatment ship 26 Leader 30 Laying Sand 31 Self-propelled carrier ship with grab 32 Grab ship 40 Ground improvement machine insertion part 41 Rotating cylinder 42 Stone cutting blade 43 Core cutter 50 Soft raw ground

Claims (5)

海底の砂質土層上に捨石マウンドを造成し、該捨石マウンド上にコンクリート製の堤体を設置して構成された防波堤下の液状化対策工法であって、
前記堤体の前後両縁部に沿ってそのやや外側下の前記砂質土層内に、一対の不透水性又は難透水性の地中壁を造成することを特徴としてなる地中壁造成による防波堤下の液状化対策工法。
A liquefaction countermeasure method under a breakwater constructed by creating a rubble mound on a sandy soil layer on the seabed and installing a concrete dam body on the rubble mound,
According to the underground wall construction characterized by creating a pair of impervious or hardly permeable underground walls in the sandy soil layer slightly below the outer edge along both front and rear edges of the levee body A liquefaction countermeasure method under the breakwater.
前記防波堤が新設の防波堤であり、前記捨石マウンド造成前に防波堤下となる前記砂質土層内に前記地中壁を構築する請求項1に記載の地中壁造成による防波堤下の液状化対策工法。   2. The countermeasure for liquefaction under a breakwater by underground wall creation according to claim 1, wherein the breakwater is a newly installed breakwater, and the underground wall is constructed in the sandy soil layer that becomes the breakwater before the rubble mound is created. Construction method. 前記防波堤が、既設の防波堤であり、該既設の防波堤下の砂質土層内に前記地中壁を構築する請求項1に記載の地中壁造成による防波堤下の液状化対策工法。   The liquefaction countermeasure method under a breakwater by underground wall creation according to claim 1, wherein the breakwater is an existing breakwater, and the underground wall is constructed in a sandy soil layer under the existing breakwater. 上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内にセメント系固化材を混入させることにより造成する請求項1,2又は3に記載の地中壁造成による防波堤下の液状化対策工法。   The breakwater by underground wall construction according to claim 1, 2 or 3, wherein the pair of impermeable or hardly permeable underground walls are formed by mixing a cement-based solidified material in the sandy soil layer. The liquefaction countermeasure method below. 上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内に矢板を打設することによって造成する請求項1,2又は3に記載の地中壁造成による防波堤下の液状化対策工法。   The pair of impervious or hardly permeable underground walls is formed by placing a sheet pile in the sandy soil layer. Liquefaction countermeasure method.
JP2006190048A 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater by underground wall construction Active JP4982631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190048A JP4982631B2 (en) 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater by underground wall construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190048A JP4982631B2 (en) 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater by underground wall construction

Publications (2)

Publication Number Publication Date
JP2008019561A true JP2008019561A (en) 2008-01-31
JP4982631B2 JP4982631B2 (en) 2012-07-25

Family

ID=39075728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190048A Active JP4982631B2 (en) 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater by underground wall construction

Country Status (1)

Country Link
JP (1) JP4982631B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053443A (en) * 2011-09-02 2013-03-21 Penta Ocean Construction Co Ltd Caisson breakwater with anti-tip reinforcement
JP2013170354A (en) * 2012-02-17 2013-09-02 Shimizu Corp Raising technique for breakwater
CN108930249A (en) * 2018-07-24 2018-12-04 交通运输部天津水运工程科学研究所 A kind of permeable breakwater based on cementingization enrockment
JP2021134477A (en) * 2020-02-21 2021-09-13 日本製鉄株式会社 Support structure, gravity breakwater and construction method of gravity breakwater
CN114855711A (en) * 2022-04-15 2022-08-05 广东万奥建设工程有限公司 High-strength anti-seismic wide-body gravity dam structure and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645929B2 (en) * 1986-12-05 1994-06-15 五洋建設株式会社 Ground liquefaction prevention method
JPH08284126A (en) * 1995-04-18 1996-10-29 Ohbayashi Corp Repairing method of quay and quay structure
JP2000248527A (en) * 1999-02-25 2000-09-12 Kajima Corp Earthquake resistant reinforcing method for existing structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645929B2 (en) * 1986-12-05 1994-06-15 五洋建設株式会社 Ground liquefaction prevention method
JPH08284126A (en) * 1995-04-18 1996-10-29 Ohbayashi Corp Repairing method of quay and quay structure
JP2000248527A (en) * 1999-02-25 2000-09-12 Kajima Corp Earthquake resistant reinforcing method for existing structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053443A (en) * 2011-09-02 2013-03-21 Penta Ocean Construction Co Ltd Caisson breakwater with anti-tip reinforcement
JP2013170354A (en) * 2012-02-17 2013-09-02 Shimizu Corp Raising technique for breakwater
CN108930249A (en) * 2018-07-24 2018-12-04 交通运输部天津水运工程科学研究所 A kind of permeable breakwater based on cementingization enrockment
JP2021134477A (en) * 2020-02-21 2021-09-13 日本製鉄株式会社 Support structure, gravity breakwater and construction method of gravity breakwater
CN114855711A (en) * 2022-04-15 2022-08-05 广东万奥建设工程有限公司 High-strength anti-seismic wide-body gravity dam structure and construction method thereof
CN114855711B (en) * 2022-04-15 2024-01-30 广东万奥建设工程有限公司 High-strength anti-seismic wide gravity dam structure and construction method thereof

Also Published As

Publication number Publication date
JP4982631B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN105040595B (en) Main Pier of Bridges cushion cap foundation pit supporting construction on riverbed, gentle slope basement rock and construction method thereof
CN205134193U (en) Bridge owner mound cushion cap underground structure on gentle slope riverbed basement rock
JP4982631B2 (en) Liquefaction countermeasure method under breakwater by underground wall construction
JP6370295B2 (en) Embankment reinforcement structure and its construction method
CN105155421B (en) Complete embedding circular construction method in a kind of single pile Single column pier river course shallow water
JP6308996B2 (en) Seawalls and methods for reinforcing or constructing seawalls
JP4982632B2 (en) Liquefaction countermeasure method under breakwater
JP5681988B2 (en) Breakwater reinforcement method and reinforced breakwater
CN113494074B (en) Building foundation treatment method for area with liquefied soil bearing stratum
JP2726611B2 (en) How to set up an open caisson
JP4066340B2 (en) Ground improvement method
JPH03281826A (en) Excavation method in cohesive soil ground
CN111663493A (en) Repairing and reinforcing method suitable for block wharf after foundation damage
KR101008012B1 (en) Ground improving method running parallel ground solidification and excavation replacement
JP4058551B2 (en) Seismic reinforcement method for existing structures
JP5468052B2 (en) Gravity structure deepening method and gravity structure
Maddrell Lessons re-learnt from the failure of marine structures
Kit et al. Reuse and Recycling of Clayey Soil in Pasir Panjang Terminal Phases 3 and 4 Project in Singapore.
CN108396755A (en) Profundal zone antiseepage cofferdam structure and construction method
JP4482859B2 (en) Stabilization method behind the revetment
JP2784314B2 (en) How to set up an open caisson
JP2007231641A (en) Collapse prevention construction method for dike
Degen et al. Offshore Stone Columns-Equipment, Quality Control and Outlook for Future Applications
Gosden Binnie lecture 2020: 45 years of dam engineering, part 1
JPH03281818A (en) Soil improvement method for cohesive soil ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

R150 Certificate of patent or registration of utility model

Ref document number: 4982631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250