JPH03281818A - Soil improvement method for cohesive soil ground - Google Patents

Soil improvement method for cohesive soil ground

Info

Publication number
JPH03281818A
JPH03281818A JP8091790A JP8091790A JPH03281818A JP H03281818 A JPH03281818 A JP H03281818A JP 8091790 A JP8091790 A JP 8091790A JP 8091790 A JP8091790 A JP 8091790A JP H03281818 A JPH03281818 A JP H03281818A
Authority
JP
Japan
Prior art keywords
ground
soil
drain
cohesive soil
consolidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8091790A
Other languages
Japanese (ja)
Other versions
JPH0833004B2 (en
Inventor
Tomoumi Yamada
山田 知海
Koji Tada
幸司 多田
Toru Taniguchi
徹 谷口
Masahiro Nakagawa
雅弘 中川
Yuji Tachikawa
舘川 裕次
Masami Ochiai
正水 落合
Takaaki Kubota
窪田 敬昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2080917A priority Critical patent/JPH0833004B2/en
Publication of JPH03281818A publication Critical patent/JPH03281818A/en
Publication of JPH0833004B2 publication Critical patent/JPH0833004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate the consolidation of a cohesive soil layer to improve soil of the ground by piercing a cohesive soil ground with a cohesive soil layer to form drain ditches reaching a lower water permeable layer, draining water forcedly from the drain ditches and, at the same time, making a loaded filling on the ground. CONSTITUTION:A cohesive soil layer (n1) is pierced into a cohesive soil ground (n) to reach a lower water permeable layer (n2), and plane and latticed drain ditches 1 and 1 are formed. Water is forcedly drained from the drain ditches 1 and 1 to lower the ground-water level W and, at the same time, a loaded filling M is made on the ground n to accelerate the consolidated phenomenon of the cohesive soil layer (n1). In addition, the drain ditches 1 are constituted of latticed thin type ditches 1a, circular holes 1b, 1b and 1c, the drain ditches 1 are filled with water permeable materials. The ultimate outside drain ditches 1A and 1A are excavated deeper than another drain ditches 1, and impermeable materials 7 and 7 are provided to the full lengths of them. The loaded filling M has the thickness equivalent to a settlement quantity due to consolidation of the ground 1, and the height of the ground after the improvement is the same height as that set in advance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粘性土地盤、特に正規圧密状態又は圧密未了の
状態にある沖積粘性土層の改良に関するものであり、更
に詳しくは、載荷盛土工法と、地盤内の地下水位低下工
法とを併用することにより、沖積粘性土層を圧密して土
質改良を図る工法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the improvement of cohesive soil layers, particularly alluvial cohesive soil layers in a normally consolidated state or an unconsolidated state. This relates to a construction method that aims to improve soil quality by consolidating alluvial clay layers by using a construction method and a method of lowering the groundwater level in the ground.

(従来の技術) 近年、臨海地域いわゆるウォータフロントと呼ばれる地
域での開発が盛んに行われている。
(Prior Art) In recent years, development has been actively carried out in coastal areas, so-called waterfront areas.

このような地域の沖積粘性土層地盤は、圧密未了であっ
たり、正規圧密状態であっても軟弱な粘性土層を主体と
して構成されることが多く、構造物の基礎地盤や宅地と
して利用するためには何らかの地盤改良を必要とする場
合が多い。
The alluvial cohesive soil in such areas is often unconsolidated, or even in a properly consolidated state, is mainly composed of a soft cohesive soil layer, making it difficult to use it as the foundation ground for structures or as housing land. In many cases, some form of ground improvement is required.

従来、このような軟弱な粘性土地盤の土質改良対策とし
ては種々の工法が提案され、実施されているが、比較的
経済的でかつ確実に改良効果が得られる工法として、載
荷盛土等による予圧密工法が知られている。
In the past, various construction methods have been proposed and implemented as measures to improve the soil quality of such soft and cohesive soil, but as a method that is relatively economical and can reliably produce improvement effects, pre-planning methods such as loading embankments have been proposed. Consolidation method is known.

この工法は構造物荷重に対応する圧密荷重を載荷盛土に
よって、予め軟弱な粘性土地盤に負荷して、構造物基礎
として十分な耐力を付与しようとするものである。
This construction method attempts to apply a consolidation load corresponding to the structural load to the soft, cohesive ground in advance using loaded embankments, thereby providing sufficient bearing capacity for the structure's foundation.

一方、前記の他に第6図に示すような粘性土地盤n内の
地下水位を低下させて、粘性土層n工の間隙水圧を減少
させることにより、該粘性土層n1に圧密現象を生ぜし
めて土質改良を行う工法がある(土質工学会「軟弱地盤
対策工法」参照)。
On the other hand, in addition to the above, by lowering the groundwater level in the cohesive soil layer n as shown in Fig. 6 and reducing the pore water pressure of the cohesive soil layer n, a consolidation phenomenon is caused in the cohesive soil layer n1. There is a construction method that improves the soil quality by compacting it (see "Soft ground countermeasures method" by Japan Society of Geotechnical Engineers).

(発明が解決しようとする課題) しかしながら、上記のような載荷盛土による土質改良工
法においては、 (1)粘性土層の層厚が大きいと、圧密に要する時間が
著しく長期化するので、サンドドレーン工法等の補助工
法を必要とする。
(Problems to be Solved by the Invention) However, in the soil improvement method using loaded embankment as described above, (1) If the thickness of the cohesive soil layer is large, the time required for consolidation becomes significantly long, so sand drain Requires auxiliary construction methods such as construction methods.

(2)段階的な盛土工法を必要とすることが多く、多大
な労力と費用を要する。
(2) Staged embankment construction methods are often required, which requires a great deal of labor and cost.

(3)盛土材の運搬を必要とするため、運搬経路の環境
が悪化する。
(3) Since it is necessary to transport embankment materials, the environment of the transport route deteriorates.

(4)余盛りを必要とする場合が多いので、余盛り厚さ
分の盛土撤去作業を必要とする。
(4) Since extra fill is often required, it is necessary to remove the embankment for the thickness of the extra fill.

(5)粉塵等が発生するなめ工事敷地周辺の環境問題を
誘発することがある。
(5) It may cause environmental problems around the construction site where dust etc. will be generated.

という問題があった。There was a problem.

また、前記地下水位低下による土質改良工法においては
、 (1)粘性土層が厚いと、改良効果を得るのに長時間を
要する。
In addition, in the soil improvement method by lowering the groundwater level, (1) If the clay layer is thick, it takes a long time to obtain the improvement effect.

(2)地下水位の低下が広い範囲にわたって影響するの
で、周辺地盤に対しても圧密沈下が生じ、そのための対
策として、工事敷地の周囲に遣水壁を構築する必要があ
る。
(2) Since the decline in the groundwater level affects a wide area, consolidation subsidence also occurs in the surrounding ground, and as a countermeasure for this, it is necessary to construct water walls around the construction site.

(3)地下水位低下による土質改良工法では、第7図の
(a)に示すように、粘性土地盤の表層部においては大
きな改良効果を得ることができない という種々の問題があった。
(3) As shown in Fig. 7(a), the soil improvement method by lowering the groundwater level has various problems in that it cannot achieve a large improvement effect on the surface layer of the clayey ground.

本発明は、上記のような問題に鑑みてなされたものであ
り、その目的は、従来技術の上記のような欠点を補完す
るために、載荷盛土と地下水位低下とを組み合わせるこ
とにより、地盤条件及び設計条件に適した経済的かつ合
理的な粘性土地盤の土質改良工法を提供することにある
The present invention was made in view of the above-mentioned problems, and its purpose is to improve the ground conditions by combining loading embankment and groundwater level lowering, in order to compensate for the above-mentioned drawbacks of the conventional technology. The purpose of the present invention is to provide an economical and rational soil improvement method for clay soil that is suitable for design conditions.

(課題を達成するための手段) 以上の課題を達成するための本発明の粘性土地盤の土質
改良工法の主たる構成は、改良対象範囲の地盤内に、改
良対象の粘性土層を貫通して下部透水層に到達し、かつ
平面的に連続した格子状の排水溝を形成し、該排水溝か
らの排水により地下水位を低下させて前記粘性土層の間
隙水圧を減少させると共に、前記地盤上に載荷盛土を行
って粘性土層に圧密現象を生ぜしめることを特徴とする
ことであり、かつ前記格子状の排水溝が格子状に掘削さ
れた薄型溝と、該薄型溝の交差部及び中途部に掘削され
た円形孔とによりなり、該排水溝内に透水性材料を充填
して構成されることであり、かつ前記格子状の排水溝に
おける最も外側の排水溝を、他の排水溝より深く掘削形
成すると共に、該排水溝の外側全長にわたって遮水材を
設置した構成にすることであり、前記載荷盛土を、圧密
理論に基づいて予め演算した圧密沈下量に見合う厚さの
載荷盛土とすることにより、改良後の地盤高さが予め設
定した地盤高さと同一になるようにした構成にすること
である。
(Means for Achieving the Object) The main structure of the soil improvement method for cohesive soil of the present invention to achieve the above-mentioned objects is to penetrate the cohesive soil layer to be improved within the ground within the area to be improved. A lattice-shaped drainage ditch that reaches the lower permeable layer and is continuous in a plane is formed, and drainage from the ditch lowers the groundwater level and reduces the pore water pressure of the cohesive soil layer, and The method is characterized in that a loading embankment is carried out to cause a consolidation phenomenon in a clayey soil layer, and the lattice-shaped drainage ditch includes a thin ditch excavated in a lattice-like manner, and an intersection and a middle part of the thin ditch. The drain groove is constructed by filling a water-permeable material into the drain groove, and the outermost drain groove in the lattice-shaped drain groove is separated from the other drain grooves. In addition to deep excavation, a water-blocking material is installed along the entire length of the outside of the drainage ditch. By doing so, the improved ground height is made to be the same as the preset ground height.

(作用) 而して、上記のような構成によれば、サンドドレーン等
の圧密工法を併用した場合と同等以上の圧密促進効果が
得られると共に、設計条件に応じた盛土高と地下水位低
下量の組合せを適宜選択できるので、経済的、合理的な
土質改良工法を提供することができる。更に、地盤表層
部においても必要充分な改良効果を得ることができる。
(Function) According to the above-mentioned configuration, it is possible to obtain a consolidation promotion effect equal to or greater than that obtained when consolidation methods such as sand drains are used together, and also to reduce the embankment height and groundwater level drop according to the design conditions. Since combinations of the above can be selected as appropriate, it is possible to provide an economical and rational soil improvement method. Furthermore, the necessary and sufficient improvement effect can be obtained even in the ground surface layer.

(実施例) 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図及び第2図は本発明の粘性土地盤の土質改良工法
の平面図及び断面図である。
FIGS. 1 and 2 are a plan view and a cross-sectional view of the soil improvement method for clay soil according to the present invention.

本発明は、先ず初めに粘性土地盤nに、第1図に示すよ
うな格子状の排水溝1を薄溝用掘削機Aで掘削形成する
In the present invention, first of all, drain grooves 1 in the form of a lattice as shown in FIG.

薄溝用掘削機Aは第3図に示すように、下端にパイロッ
トビット3aを装備した左右一対のサイドケーシング3
と、該サイドゲージング3に回転可能に軸支された左右
一対のディスクカッタ5と、前記サイドケーシング3の
中間に設けられ、且つ下端にリバースビット4aを装備
すると共に、土砂排出用リバース管4bを内蔵したセン
ターケーシング4と、上記パイロットビット3aと、デ
ィスクカッタ5と、リバースビット4aを回転駆動させ
る水中モータ6とから成っている。
As shown in Fig. 3, the thin groove excavator A has a pair of left and right side casings 3 equipped with a pilot bit 3a at the lower end.
A pair of left and right disc cutters 5 are rotatably supported by the side gauging 3, and a reverse bit 4a is provided at the lower end of the cutter 5, and a reverse pipe 4b is provided at the lower end. It consists of a built-in center casing 4, the pilot bit 3a, a disc cutter 5, and an underwater motor 6 that rotationally drives the reverse bit 4a.

また、前記センターケーシング4はサイドケーシング3
とほぼ同径となっており、左右一対のパイロットビット
3a及びディスクカッタ5は夫々が逆方向に回転するこ
とにより、互に回転トルクを相殺するようになっている
Further, the center casing 4 is a side casing 3.
The left and right pilot bits 3a and the disc cutter 5 rotate in opposite directions, thereby canceling out their rotational torques.

以上の構成からなる薄溝用掘削機Aを用いて、第4図に
示すような薄型溝1a及び円形孔1b、lcを粘性土地
盤nの粘性土層nlを貫通して下部透水層n2にいたる
まで掘削する。
Using the thin trench excavator A having the above configuration, a thin trench 1a and circular holes 1b, lc as shown in FIG. Dig all the way.

そして、第5図に示すように、該薄型溝1a中夫の円形
孔1cを中心として、薄溝用掘削機Aを90度回転させ
ると、該円形孔1cを中心とする交差した薄型溝1aが
掘削形成される。
As shown in FIG. 5, when the thin groove excavator A is rotated 90 degrees around the circular hole 1c of the thin groove 1a, the thin grooves 1a intersect with each other around the circular hole 1c. is formed by excavation.

このように、上記の掘削を順次繰り返すことにより、格
子状に掘削された薄型溝1aと、該薄型溝1aの交差部
及び中途部に掘削された円形孔1b、1cとから成る排
水溝1が掘削形成される。
By repeating the above-mentioned excavation in sequence, a drainage ditch 1 consisting of a thin groove 1a excavated in a lattice pattern and circular holes 1b and 1c excavated at the intersections and midpoints of the thin groove 1a is formed. Formed by drilling.

このとき、該排水溝1の間隔aは、薄溝用掘削機Aのデ
ィスクカッタ5の直径φと、パイロットビット3a及び
リバースビット4aの中心間隔1との組合せを適宜選択
することにより、任意に設定することができる。
At this time, the distance a between the drain grooves 1 can be arbitrarily determined by appropriately selecting a combination of the diameter φ of the disc cutter 5 of the thin trench excavator A and the center distance 1 of the pilot bit 3a and reverse bit 4a. Can be set.

従って、粘性土地盤nの土質定数(特に圧密係数Cvの
値)や設定工期に応じた排水溝1の間隔aを適宜選択す
ることができる。
Therefore, the spacing a of the drainage ditches 1 can be appropriately selected according to the soil constants (especially the value of the consolidation coefficient Cv) of the cohesive soil base n and the set construction period.

尚、前記排水溝1の掘削と共に、該排水溝1の周囲に適
宜数の復水弁mも掘削しておくとよい。
In addition to excavating the drainage ditch 1, it is also advisable to excavate an appropriate number of condensate valves m around the drainage ditch 1.

次に、このように掘削形成された排水溝1における最も
外側の排水溝IAを、第2図に示すように、他の排水溝
1よりも深く掘削形成し、その外側に遣水材7を設置す
る。
Next, as shown in FIG. 2, the outermost drainage ditch IA of the drainage ditches 1 thus excavated and formed is excavated and formed deeper than the other drainage ditches 1, and the water supply material 7 is installed on the outside thereof. do.

遮水材7としては鋼材と固結性材料との組合せや薄膜状
遮水材等を利用することができる。
As the water-shielding material 7, a combination of steel and a solidifying material, a thin film-like water-shielding material, etc. can be used.

該薄膜状遮水材を利用する場合は、ロール状の薄膜状遮
水材を最も外側の排水溝IAにおける円形孔1b、IC
に挿入し、該円形孔1b、ICを起点として排水溝IA
の外側の壁面に張り付けるようにするとよい。
When using the thin film-like water-shielding material, the roll-shaped thin film-like water-shielding material is inserted into the circular hole 1b in the outermost drainage ditch IA, IC
into the circular hole 1b, and drain groove IA starting from the IC.
It is best to attach it to the outside wall.

このようにして、最も外側の排水溝IAに遣水材7を設
置した後、排水溝1における各薄型溝1a及び円形孔1
b、ICに砂、礫、砕石等の透水係数の大きな自然材料
や人工材料を主体とする透水性材料2を充填すると共に
、該円形孔1b、ICに吐出管を連結した水中ポンプP
を適宜間隔ごとに設置し、該水中ポンプPにより地下水
を強制的に排水して工事敷地内の地下水位W(自然水位
)を低下させる。また、図中W°は低下後の地下水位を
示す。
After installing the water supply material 7 in the outermost drain IA in this way, each thin groove 1a and the circular hole 1 in the drain 1 are
b. A submersible pump P in which the IC is filled with a water-permeable material 2 mainly made of natural materials or artificial materials with a high hydraulic permeability coefficient such as sand, gravel, crushed stone, etc., and a discharge pipe is connected to the circular hole 1b and the IC.
are installed at appropriate intervals, and the submersible pump P forcibly drains groundwater to lower the groundwater level W (natural water level) within the construction site. In addition, W° in the figure indicates the groundwater level after the drop.

尚、この時強制排水された地下水は、通常、下水道へ放
流するが、前記した工事敷地周囲の復水弁mへ還流する
ことが望ましい。
Incidentally, the groundwater forcibly drained at this time is normally discharged into the sewerage system, but it is preferable that it be returned to the condensate valve m around the construction site described above.

このように、粘性土地盤nに掘削形成した排水溝1にお
ける最も外側の排水溝IAの外側に遮水材7を設置する
ことにより、地下水位W(自然水位)の低下が周辺地盤
へ影響するのを防止して、周辺地盤の圧密沈下を防ぐこ
とができる。
In this way, by installing the water shielding material 7 on the outside of the outermost drainage ditch IA in the drainage ditch 1 excavated and formed in the cohesive soil bed n, the drop in the groundwater level W (natural water level) will affect the surrounding ground. This can prevent consolidation settlement of the surrounding ground.

また、粘性土地盤n中の地下水を、円形孔1b、ICか
ら強制的に排水して地下水位W(自然水位)を低下させ
ることにより、該粘性土地盤nの圧密を進行させる(第
2図)。
In addition, by forcibly draining the groundwater in the cohesive land plate n through the circular hole 1b and IC to lower the groundwater level W (natural water level), the consolidation of the cohesive land plate n is promoted (see Fig. 2). ).

さらに、格子状の掘削孔]がドレーン機能を発揮するた
め、前記圧密かさらに促進される。
Furthermore, since the lattice-shaped excavated holes exhibit a drain function, the consolidation is further promoted.

しかしながら、地下水位W(自然水位)の低下、による
改良後の粘性土地盤りの強度は、該地盤nの表層部にお
いてはそれ程大きな改良効果を得ることができないため
(第7図の(a)参照)、本発明では、改良対象範囲の
粘性土地盤nの上面に適宜厚さの載荷盛土Mを行う。
However, the strength of the cohesive soil after improvement due to a decrease in the groundwater level W (natural water level) cannot be significantly improved in the surface layer of the soil ((a) in Figure 7). In the present invention, a loading embankment M of an appropriate thickness is applied to the upper surface of the clay ground n in the area to be improved.

この時の盛土高さHは、必要とされる改良後の地盤強度
及び、予め設定した改良後の地盤高さから経済的、かつ
合理的に決定することができる。
The embankment height H at this time can be determined economically and rationally from the required improved ground strength and the preset improved ground height.

すなわち、必要とされる改良後の地盤強度を得るための
地下水位低下量Δhと盛土高さHの組合せは多数存在す
るが、圧密理論に基づいて工期内の圧密沈下量を予め試
算しておくことにより2粘性土地盤nの沈下後の地盤高
さを設計地盤高さと同一になるように盛土高さHを定め
ればよい。
In other words, there are many combinations of groundwater level decline Δh and embankment height H to obtain the required ground strength after improvement, but the amount of consolidation settlement within the construction period should be estimated in advance based on consolidation theory. Therefore, the height H of the embankment may be determined so that the height of the ground after subsidence of the two-cohesive ground n is the same as the design ground height.

この時の圧密沈下量Sは下記の式により求めることがで
きる。
The consolidation settlement amount S at this time can be determined by the following formula.

5=U−S。5=U-S.

ここに、 U・工期中の平均圧密度 So:粘性土地盤の全沈下量 (U = 100%のときの沈下量であり、例えば下記
の式で求めることができる。) 0−e So;Σ       H8 1+e 。
Here, U・Average consolidation density during the construction period So: Total amount of settlement of the cohesive soil (This is the amount of settlement when U = 100%, and can be determined by the following formula, for example.) 0-e So; Σ H8 1+e.

So=Σmv−Δp−H。So=Σmv−Δp−H.

ここに、 Ho:各圧密層の層圧 e、eo:各圧密層の沈下後及び沈下前の間隙比mv 
、 Cc :各圧密層の体積圧縮係数及び圧縮指数ΔP
、Po :各圧密層の圧密圧力の増分及び圧密降伏応力 また、第8図は載荷盛土と地下水位低下とを併用した粘
性土地盤の土質改良工法の実施例において、粘性土地盤
の沈下量を実測した例である。
Here, Ho: Layer pressure e of each consolidation layer, eo: Gap ratio mv after and before settlement of each consolidation layer
, Cc: Volume compression coefficient and compression index ΔP of each consolidated layer
, Po: Increment of consolidation pressure and consolidation yield stress of each consolidation layer. Figure 8 also shows the amount of settlement of the clayey soil in an example of the soil improvement method for the clayey soil that uses a combination of loading embankment and lowering of the groundwater level. This is an example of actual measurements.

この実施例では載荷盛土Mを先に行った後、地下水位W
(自然水位)を低下させて、所定の地盤高さになるよう
最終的に盛土高さHを調整したものであるが、本発明に
おいては、先に地下水位W(自然水位)を低下させた後
に載荷盛土Mを行うことも可能であり、また、地下水位
W(自然水位)の低下と載荷盛土Mとを同時に行うこと
も任意である。
In this example, after the loading embankment M is carried out first, the groundwater level W
The embankment height H is finally adjusted to a predetermined ground height by lowering the groundwater level W (natural water level), but in the present invention, the groundwater level W (natural water level) is lowered first. It is also possible to perform the loading embankment M later, and it is also optional to perform the lowering of the groundwater level W (natural water level) and the loading embankment M at the same time.

上記した如く、本発明では粘性土地盤nにおける載荷盛
土Mと地下水低下による圧密現象を利用した合理的な土
質改良工法を提供するものであり、等の改良工法の原理
及び改良後の地盤強度の模式図を第7図に示す。
As mentioned above, the present invention provides a rational soil improvement method that utilizes the compaction phenomenon caused by the loading embankment M in a clayey soil platform and groundwater drop, and the principles of the improvement method and the ground strength after improvement are as follows. A schematic diagram is shown in FIG.

第7図の(a)は本発明による粘性土地盤nの土質改良
工法の概念図であり、地下水位低下と載荷盛土を合理的
に併用することにより、水位低下量Δh及び盛土高さH
に対応した粘性土地盤n内の有効応力の増加による圧密
現象を生せしめ、第7図の(b)に示すような改良後の
地盤強度を得るものである。
FIG. 7(a) is a conceptual diagram of the soil improvement method for clayey soil platform n according to the present invention, which shows that by rationally combining groundwater level lowering and loaded embankment, the water level decrease Δh and the embankment height H
This causes a consolidation phenomenon due to an increase in the effective stress in the cohesive soil bed corresponding to the above, and obtains the improved soil strength as shown in FIG. 7(b).

(発明の効果) 本発明は上記のような構成にしたことにより下記の効果
を有する。
(Effects of the Invention) The present invention has the following effects by having the above configuration.

■ 平面的に連続した格子状の排水溝を形成し、該排水
溝からの排水により地下水位を低下させて前記粘性土の
層の間隙水圧を減少させると共に、前記地盤上に載荷盛
土を行うことにより、必要最小限の盛土高さとすること
ができ、かつ地盤表層部においても必要充分な改良効果
を得ることができる。
■ Forming a grid-like drainage ditch that is continuous in a plane, lowering the groundwater level by draining water from the drainage ditch and reducing the pore water pressure in the layer of cohesive soil, and carrying out loading embankment on the ground. As a result, the height of the embankment can be set to the minimum necessary level, and the necessary and sufficient improvement effect can be obtained even in the ground surface layer.

■ 格子状の排水溝を格子状に掘削された薄型溝と、該
薄型溝の交差部及び中途部に掘削された円形孔とにより
形成し、かつ該排水溝内に透水性材料を充填したことに
より、バーチカルドレーン工法を採用した場合と同等以
上の圧密促進効果が得られるので、粘性土層の圧密時間
を短縮することができ、工期の短縮化を図ることができ
る。
■ A lattice-shaped drainage ditch is formed by thin grooves excavated in a lattice pattern and circular holes drilled at the intersections and midpoints of the thin grooves, and the drainage ditch is filled with a water-permeable material. As a result, a consolidation promotion effect equal to or greater than that obtained when the vertical drain method is adopted can be obtained, so that the consolidation time of the cohesive soil layer can be shortened, and the construction period can be shortened.

さらに、前記排水溝の間隔を任意に設定することができ
るので、土質定数と予定工期に適合した格子状の排水溝
の形成が可能となる。
Furthermore, since the intervals between the drainage ditches can be set arbitrarily, it is possible to form a lattice-shaped drainage ditch that matches the soil constants and scheduled construction period.

■ 格子状の排水溝における最も外側の排水溝を、他の
排水溝より深く掘削形成すると共に、該排水溝の外側全
長にわたって遣水材を設置したことにより、工事敷地の
周辺に別途に遮水壁を設(プなくても、工事敷地周辺の
環境を悪化させることなく、当該範囲に限定された地下
水位の低下を可能にすることができるので、周辺地盤の
沈下量の問題を減少することができる。
■ The outermost drain in the lattice-shaped drain was excavated deeper than the other drains, and a water barrier was installed along the entire length of the drain, thereby creating a separate impermeable wall around the construction site. It is possible to reduce the groundwater level within the area without degrading the environment around the construction site, even without installing a can.

■ 盛土高さと地下水位低下量とを沈下後の設定GLと
同一レベルになるように予め設定できるので、地盤条件
及び設計条件に応じた盛土高さと地下水位低下量の最適
の組合せを選択することができ、経済的、合理的な土質
改良工法を提供することができる。
■ Since the embankment height and groundwater level reduction can be set in advance to be at the same level as the set GL after settlement, it is possible to select the optimal combination of embankment height and groundwater level reduction according to the ground conditions and design conditions. It is possible to provide an economical and rational soil improvement method.

■ 円形孔を揚水井として利用するので、別途に揚水井
を設けることなく、工期の短縮及び工費の節減に寄与す
る。
■ Since the circular hole is used as a pumping well, there is no need to install a separate pumping well, which contributes to shortening the construction period and reducing construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の排水溝の平面図、第2図は同断面図、
第3図は薄溝用掘削機の正面図、第4図は薄型掘削機に
よって形成される排水溝孔の1エレメントを示す平面図
、第5図は排水溝の掘削方法を示す平面図、第6図は従
来の地下水位低下工法の断面図、第7図の(a)は本発
明の載荷盛土と地下水位低下工法とを併用した土質改良
工法による増加有効応力を示す模式図、同図の(b)は
改良後の地盤強度を示す模式図、第8図は設計GLに一
致するよう盛土高さを調整するために粘性土地盤の沈下
量を測定した図である。 また図中、 1:排水溝 n:粘性土地盤 nl :粘性土層 n2:下部透水層 W:地下水位(自然水位)  M:載荷盛土を示す。
FIG. 1 is a plan view of the drainage ditch of the present invention, FIG. 2 is a sectional view of the same,
FIG. 3 is a front view of the excavator for thin trenches, FIG. 4 is a plan view showing one element of a drain hole formed by the thin excavator, FIG. Figure 6 is a cross-sectional view of the conventional groundwater level lowering method, and Figure 7(a) is a schematic diagram showing the increased effective stress due to the soil improvement method using the loaded embankment of the present invention and the groundwater level lowering method in combination. (b) is a schematic diagram showing the soil strength after improvement, and FIG. 8 is a diagram showing the amount of settlement of the cohesive soil base measured in order to adjust the embankment height to match the design GL. In the figure, 1: Drainage ditch n: Cohesive soil layer nl: Cohesive soil layer n2: Lower permeable layer W: Groundwater level (natural water level) M: Loading embankment.

Claims (4)

【特許請求の範囲】[Claims] (1)改良対象範囲の地盤内に、改良対象の粘性土層を
貫通して下部透水層に到達し、かつ平面的に連続した格
子状の排水溝を形成し、該排水溝からの排水により地下
水位を低下させて前記粘性土層の間隙水圧を減少させる
と共に、前記地盤上に載荷盛土を行って粘性土層に圧密
現象を生ぜしめることを特徴とする粘性土地盤の土質改
良工法。
(1) A lattice-shaped drainage ditch is formed in the ground in the area to be improved, penetrating the clayey soil layer to be improved, reaching the lower permeable layer, and continuing on a plane, and draining water from the drainage ditch. A method for improving the soil quality of a cohesive soil bed, characterized by lowering the groundwater level to reduce the pore water pressure in the cohesive soil layer, and performing a loading embankment on the ground to cause a consolidation phenomenon in the cohesive soil layer.
(2)前記格子状の排水溝が格子状に掘削された薄型溝
と、該薄型溝の交差部及び中途部に掘削された円形孔と
によりなり、該排水溝内に透水性材料を充填して構成さ
れることを特徴とする特許請求の範囲第1項記載の粘性
土地盤の土質改良工法。
(2) The lattice-shaped drainage ditch consists of thin grooves excavated in a lattice pattern, and circular holes drilled at the intersections and midpoints of the thin grooves, and the drainage grooves are filled with a water-permeable material. 1. A method for improving the soil quality of a clay ground according to claim 1, characterized in that the method comprises:
(3)前記格子状の排水溝における最も外側の排水溝を
、他の排水溝より深く掘削形成すると共に、該排水溝の
外側全長にわたって遮水材を設置したことを特徴とする
特許請求の範囲第2項又は第3項記載の粘性土地盤の土
質改良工法。
(3) Claims characterized in that the outermost drain in the lattice-shaped drain is excavated deeper than the other drains, and a water-blocking material is installed along the entire length of the outside of the drain. A soil improvement method for clayey soil as described in paragraph 2 or 3.
(4)前記載荷盛土を、圧密理論に基づいて予め演算し
た圧密沈下量に見合う厚さの載荷盛土とすることにより
、改良後の地盤高さが予め設定した地盤高さと同一にな
るようにしたことを特徴とする特許請求の範囲第1項〜
第3項のいずれかに記載の粘性土地盤の土質改良工法。
(4) By making the above-mentioned loading embankment a loading embankment with a thickness commensurate with the amount of consolidation settlement calculated in advance based on consolidation theory, the ground height after improvement was made to be the same as the preset ground height. Claims 1-1 are characterized in that:
A soil improvement method for clayey soil as described in any of paragraph 3.
JP2080917A 1990-03-30 1990-03-30 Soil improvement method for cohesive soil Expired - Lifetime JPH0833004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080917A JPH0833004B2 (en) 1990-03-30 1990-03-30 Soil improvement method for cohesive soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080917A JPH0833004B2 (en) 1990-03-30 1990-03-30 Soil improvement method for cohesive soil

Publications (2)

Publication Number Publication Date
JPH03281818A true JPH03281818A (en) 1991-12-12
JPH0833004B2 JPH0833004B2 (en) 1996-03-29

Family

ID=13731760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080917A Expired - Lifetime JPH0833004B2 (en) 1990-03-30 1990-03-30 Soil improvement method for cohesive soil

Country Status (1)

Country Link
JP (1) JPH0833004B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247184A (en) * 2006-03-14 2007-09-27 Nishimatsu Constr Co Ltd Ground consolidation construction method
CN106869175A (en) * 2017-02-10 2017-06-20 同济大学 Assembled ultrasonic wave recharge pipe well
WO2020240779A1 (en) * 2019-05-30 2020-12-03 株式会社アサヒテクノ Ground improvement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964893B1 (en) * 2008-04-23 2010-06-23 어영자 Drainage system for soft ground having open channel combined with drainage member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223163A (en) * 1975-08-14 1977-02-21 Sanshin Seinetsu Kogyo Kk Method of producing spiral synthetic resin tube obliquely laminated
JPS6149017A (en) * 1984-08-13 1986-03-10 Toa Harbor Works Co Ltd Sand drain work
JPH01226913A (en) * 1988-03-04 1989-09-11 Taisei Corp Improvement works of weak ground

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223163A (en) * 1975-08-14 1977-02-21 Sanshin Seinetsu Kogyo Kk Method of producing spiral synthetic resin tube obliquely laminated
JPS6149017A (en) * 1984-08-13 1986-03-10 Toa Harbor Works Co Ltd Sand drain work
JPH01226913A (en) * 1988-03-04 1989-09-11 Taisei Corp Improvement works of weak ground

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247184A (en) * 2006-03-14 2007-09-27 Nishimatsu Constr Co Ltd Ground consolidation construction method
CN106869175A (en) * 2017-02-10 2017-06-20 同济大学 Assembled ultrasonic wave recharge pipe well
WO2020240779A1 (en) * 2019-05-30 2020-12-03 株式会社アサヒテクノ Ground improvement method

Also Published As

Publication number Publication date
JPH0833004B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
EP0810327B1 (en) Method and device for laying underground continuous walls
JP2002515098A (en) Apparatus and method for liquefaction improvement of liquefiable soil
CN110144871A (en) A kind of dark creek processing construction method
JPH03281818A (en) Soil improvement method for cohesive soil ground
CN110080234A (en) A method of it is excavated in the secondary central island of deep foundation pit of soft soil foundation
JPH09100524A (en) Development method of fill dam
JPH03281826A (en) Excavation method in cohesive soil ground
Wagener et al. Construction on dolomite in South Africa
CN113494074A (en) Building foundation treatment method for area with liquefied soil bearing layer
CN113047236A (en) Deep soft soil treatment method for earth-rock dam foundation and earth-rock dam
JP3002188B1 (en) Ground excavation method
CN112227380A (en) Foundation pit support and foundation treatment synergistic effect method, structure and underground structure construction method
Wilson et al. Earth and rockfill dams
Asthana et al. Foundation Treatment of Dams
Polańska et al. Barriers of Low Permeability to Water–Technical Solutions
Linney et al. Dewatering the Thanet Beds in SE London: three case histories
Wong Design of substructures against hydrostatic uplift
JPH03281817A (en) Consolidated acceleration method for cohesive soil ground
CN216130073U (en) Earth and rockfill dam
CN216194920U (en) Large immersed tube tunnel backfill structure with seismic isolation performance
JP4194679B2 (en) Ground improvement method to prevent liquefaction
Hong et al. Case study on ground improvement by high pressure jet grouting
Bell et al. Control of groundwater by exclusion
Almaleh et al. Ground stabilization for foundation and excavation construction in Florida karst topography
CN115846384A (en) Ectopic remediation ultra-deep distribution contaminated soil minimally invasive dredging method