JP6669543B2 - Construction method of backing structure and mixed material - Google Patents

Construction method of backing structure and mixed material Download PDF

Info

Publication number
JP6669543B2
JP6669543B2 JP2016055558A JP2016055558A JP6669543B2 JP 6669543 B2 JP6669543 B2 JP 6669543B2 JP 2016055558 A JP2016055558 A JP 2016055558A JP 2016055558 A JP2016055558 A JP 2016055558A JP 6669543 B2 JP6669543 B2 JP 6669543B2
Authority
JP
Japan
Prior art keywords
mixed material
layer
backing
steelmaking slag
stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016055558A
Other languages
Japanese (ja)
Other versions
JP2017172107A (en
Inventor
裕一 田中
裕一 田中
彩人 堤
彩人 堤
山田 耕一
耕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2016055558A priority Critical patent/JP6669543B2/en
Publication of JP2017172107A publication Critical patent/JP2017172107A/en
Application granted granted Critical
Publication of JP6669543B2 publication Critical patent/JP6669543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Revetment (AREA)

Description

本発明は、裏込構造を施工する方法およびそのための混合材料に関する。   The present invention relates to a method of applying a backing structure and a mixed material therefor.

護岸・岸壁の築造の際に、裏込石を通して裏埋土が吸い出されてしまうことを防止するために裏込石の法面に防砂シートが敷設されるが、防砂シートの被災による裏埋土の吸い出しや陥没が報告されている。また、裏込石法面の均しやシートの接続等に潜水作業が必要となるため、大深度での施工の際には困難が伴う。かかる問題を解決するために、裏込石法面にFAモルタル等を適用することが提案されている(非特許文献1)。また、流動化状態の粘土やさらに固化材を充填した多数の袋を捨石の裏込石法面に敷設する方法、裏埋土に浸透固化液を注入する方法が提案されている(特許文献1,2)。   When constructing seawalls and quays, sand-proofing sheets are laid on the slopes of the backing stones to prevent the buried soil from being sucked out through the backing stones. Drainage and sinking of soil has been reported. Also, since diving work is required for leveling the backing stone slope and connecting the sheets, difficulties are involved in construction at a large depth. In order to solve such a problem, it has been proposed to apply FA mortar or the like to the backing stone slope (Non-Patent Document 1). Further, a method has been proposed in which a large number of bags filled with fluidized clay and further solidified material are laid on the backing stone slope of rubble, and a method of injecting an infiltration solidifying liquid into backfill (Patent Document 1). , 2).

特開平07-82722号公報JP 07-82722 A 特開2003-13437号公報JP 2003-13437 A

平成13年度研究論文集「FAモルタルの防砂シート代替材としての適用に関する技術的検討」元木卓也・鶴谷広一・吉平健治 平成14年8月発行 発行所 財団法人沿岸開発技術研究センター(http://www.cdit.or.jp/ronbun/2002/H13-29.pdf)2001 Research Papers "Technical Study on the Application of FA Mortar as a Sandproofing Sheet Substitute Material" Takuya Motoki, Koichi Tsuruya, Kenji Yoshihira Published August 2002 Issued by Japan Coastal Development Institute of Technology (http: / /www.cdit.or.jp/ronbun/2002/H13-29.pdf)

しかし、上記公知の方法には次のような問題が指摘されている。すなわち、セメントなどの固化材を使用した材料では、クラック等が生じて吸い出し防止機能が低下する可能性がある。ポンプ打設の際に流動性のある材料が裏込石の空隙に落下して材料のロスが生じる可能性がある。材料の流動性が高いため勾配を大きくするためには、増粘剤の添加、土嚢等を用いて土留を行う等の対策が必要となる。また、粘土や固化材を充填した多数の袋を用意するのは手間がかかり、また、浸透固化液の注入法は裏埋土の施工前には適さない。   However, the following problems are pointed out in the above-mentioned known methods. That is, in the case of a material using a solidifying material such as cement, cracks and the like may occur, and the function of preventing suction is reduced. During pumping, the fluid material may fall into the voids of the backing stones, causing a loss of material. In order to increase the gradient due to the high fluidity of the material, it is necessary to take measures such as addition of a thickener and soil retention using a sandbag or the like. Also, it takes time and effort to prepare a large number of bags filled with clay or solidifying material, and the method of injecting the infiltration solidification liquid is not suitable before the construction of the backfill.

本発明は、上述のような従来技術の問題に鑑み、水中構造物の背面側に裏込石と裏埋土とから構築される裏込構造において吸い出し防止機能を維持可能な裏込構造を施工する方法およびそのための混合材料を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention constructs a backing structure capable of maintaining a suction prevention function in a backing structure constructed from a backing stone and a backfill on the back side of an underwater structure. And a mixed material therefor.

上記目的を達成するための裏込構造の施工方法は、裏込石と裏埋土とから構成される裏込構造を水中構造物の背面側に構築する裏込構造の施工方法であって、含水比を100〜300%に調整した粘性土と粒径37.5mm以下の製鋼スラグとを、前記粘性土が内割り体積比で70〜90%、前記製鋼スラグが内割り体積比で30〜10%となるように混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加した混合材料を前記裏込石上に水中打設することを特徴とする。
The construction method of the backing structure to achieve the above object is a construction method of a backing structure that builds a backing structure composed of backing stones and backfill on the back side of the underwater structure, Cohesive soil whose water content is adjusted to 100 to 300% and steelmaking slag having a particle diameter of 37.5 mm or less are divided into 70 to 90% by volume ratio of the clayey soil and 30 to 10% by volume of steelmaking slag. %, And a mixed material in which a fibrous substance is added in an outer volume ratio of 0.1 to 1.0% is poured into the backing stone underwater.

この裏込構造の施工方法によれば、粘性土と製鋼スラグと繊維状物質との混合材料を裏込石上に打設することで、裏埋土の吸い出し防止層を形成することができるが、かかる吸い出し防止層を形成する混合材料は、繊維状物質を添加することで、クラックの発生が抑制され、さらには、たとえ変形によりクラックが発生しても、その後強度の回復を図ることができるので、吸い出し防止層による吸い出し防止機能を確実に維持することができる。また、かかる混合材料は、その流動性が固化材を用いた材料と比較すると小さいため、また、製鋼スラグの粒子によるアーチ作用のため、裏込石の空隙に落下し難く、したがって、無駄になる材料を減らすことができる。   According to the construction method of this backing structure, by pouring a mixed material of cohesive soil, steelmaking slag, and fibrous material onto the backing stone, it is possible to form a suction prevention layer of the backfill, By adding a fibrous substance to the mixed material forming such a suction-prevention layer, the generation of cracks is suppressed, and even if cracks are generated by deformation, the strength can be recovered thereafter. In addition, the function of preventing suction by the suction prevention layer can be reliably maintained. In addition, such a mixed material has a lower fluidity than a material using a solidified material, and because of the arching action of the particles of the steelmaking slag, it is difficult for the mixed material to fall into the void of the backing stone, and therefore, is wasted. Material can be reduced.

上記裏込構造の施工方法において、前記混合材料からなる層を前記裏込石の法面に形成し、次に、前記形成された層に接するように前記裏埋土を構築することができる。上述のように混合材料の流動性は比較的小さいので、裏込石の法面の勾配が大きくなっても増粘剤の添加や土嚢等を用いて土留を行う等の対策が不要であり、また、法面勾配の大小の制約がなくなるので、裏込構造の設計の自由度が高まる。   In the above method of constructing a backing structure, a layer made of the mixed material may be formed on a slope of the backing stone, and then the backfill may be constructed so as to be in contact with the formed layer. Since the fluidity of the mixed material is relatively small as described above, even if the slope of the backing stone slope becomes large, there is no need to take measures such as addition of a thickener or soil retention using a sandbag or the like, In addition, since there is no restriction on the magnitude of the slope, the degree of freedom in designing the backing structure is increased.

また、低流動性の前記混合材料を水中打設して第1層を形成し、次に、高流動性の前記混合材料を前記第1層上に水中打設して第2層を形成することで2層構造とすることができる。   Further, the first layer is formed by casting the mixed material having low fluidity underwater, and then the second layer is formed by casting the mixed material having high fluidity underwater on the first layer. Thus, a two-layer structure can be obtained.

また、前記混合材料のフロー値を82mm以上90mm未満に調整して第1層を形成し、次に、前記フロー値を90mm以上に調整して前記第1層上に第2層を形成することで2層構造とすることができる。   Further, the flow rate of the mixed material is adjusted to 82 mm or more and less than 90 mm to form a first layer, and then the flow value is adjusted to 90 mm or more to form a second layer on the first layer. To form a two-layer structure.

上述のように、吸い出し防止層を2層構造とすることで、吸い出し防止機能の維持と、裏込石の空隙に落下する材料の低減と、増粘剤の添加や土留を行う等の対策の不要化との各効果をいっそう確実に得ることができる。   As described above, by making the suction prevention layer a two-layer structure, it is possible to maintain the suction prevention function, reduce the material falling into the voids of the backing stone, and take measures such as adding a thickener and retaining soil. The respective effects of unnecessaryness can be more reliably obtained.

なお、混合材料の流動性・フロー値の調整は、粘性土の含水比、製鋼スラグの混合量および繊維状物質の添加量の少なくともいずれか1つを変更することで、実施することができる。また、比較的低流動性の混合材料を第1層として水中打設し、次に、同じ配合割合の混合材料に対し水中打設時または水中打設後に衝撃・振動を与えることで流動性を高めることで第2層を形成するようにしてもよい。   The fluidity / flow value of the mixed material can be adjusted by changing at least one of the water content of the clayey soil, the mixing amount of the steelmaking slag, and the addition amount of the fibrous substance. In addition, a relatively low-flow mixed material is cast in water as the first layer, and then the mixed material having the same compounding ratio is subjected to impact / vibration during or after casting in water to improve fluidity. The second layer may be formed by increasing the height.

また、前記第1層をグラブ投入により形成し、前記第2層をポンプ打設により形成することが好ましい。   Further, it is preferable that the first layer is formed by glove injection, and the second layer is formed by pumping.

上記目的を達成するための混合材料は、裏込石と裏埋土とから構成される裏込構造において前記裏込石上に前記裏埋土の吸い出し防止のために適用される材料であって、含水比を100〜300%に調整した粘性土と粒径37.5mm以下の製鋼スラグとを、前記粘性土が内割り体積比70〜90%で、前記製鋼スラグが内割り体積比30〜10%で含みさらに繊維状物質を外割り体積比0.1〜1.0%含むものである。
The mixed material for achieving the above object is a material applied for preventing suction of the backfill on the backfill in a backfill structure composed of backfill and backfill, Cohesive soil whose water content is adjusted to 100 to 300% and steelmaking slag having a particle size of 37.5 mm or less are divided into 70 to 90% by volume, and 30 to 10% by volume of the steelmaking slag. And a fibrous substance in an outer volume ratio of 0.1 to 1.0% .

この混合材料によれば、裏込石上に打設することで、裏埋土の吸い出し防止層を形成することができるが、かかる吸い出し防止層において、繊維状物質によりクラックの発生が抑制され、さらには、たとえ変形によりクラックが発生しても、その後強度の回復を図ることができるので、吸い出し防止層による吸い出し防止機能を維持することができる。また、かかる混合材料は、その流動性が固化材を用いた材料と比較すると小さいため、また、製鋼スラグの粒子によるアーチ作用のため、裏込石の空隙に落下し難く、したがって、無駄になる材料を減らすことができる。   According to this mixed material, it is possible to form a layer for preventing suction of the buried soil by being cast on the backing stone, but in such a layer for preventing suction, generation of cracks is suppressed by the fibrous substance, However, even if cracks occur due to deformation, the strength can be recovered thereafter, so that the suction preventing function of the suction preventing layer can be maintained. In addition, such a mixed material has a lower fluidity than a material using a solidified material, and because of the arching action of the particles of the steelmaking slag, it is difficult for the mixed material to fall into the void of the backing stone, and therefore, is wasted. Material can be reduced.

本発明の裏込構造の施工方法および混合材料によれば、水中構造物の背面側に裏込石と裏埋土とから構築される裏込構造において裏込石上で吸い出し防止機能を確実に維持することができる。   ADVANTAGE OF THE INVENTION According to the construction method and mixed material of the backing structure of this invention, in the backing structure constructed from a backing stone and a backfill on the back side of an underwater structure, a suction prevention function is reliably maintained on the backing stone. can do.

本実施形態によるケーソン式の護岸・岸壁構造を概略的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the caisson type revetment / quayside structure by this embodiment schematically. 図1の吸い出し防止層13をポンプ打設により施工する様子を示す概略図である。It is the schematic which shows a mode that the suction prevention layer 13 of FIG. 1 is constructed by pumping. 図1の吸い出し防止層13をグラブ投入により施工する様子を示す概略図である。It is the schematic which shows a mode that the suction prevention layer 13 of FIG. 1 is constructed by grab injection. 図1の吸い出し防止層13を2層構造にした構成例を示す要部断面図である。FIG. 2 is a cross-sectional view of a main part showing a configuration example in which the suction prevention layer 13 of FIG. 1 has a two-layer structure. 本実施例において表1の混合材料について実施した一軸圧縮試験から得られた応力ひずみ線図を示す図である。It is a figure which shows the stress-strain diagram obtained from the uniaxial compression test performed about the mixed material of Table 1 in this Example. 本実施例において強度回復の確認のために表2の混合材料について実施した一軸圧縮試験から得られた圧縮ひずみと圧縮応力比との関係を示す図(a)(b)である。It is a figure (a) and (b) which show the relationship between the compression strain and the compression stress ratio obtained from the uniaxial compression test performed about the mixed material of Table 2 for confirmation of strength recovery in this Example. 本実施例において表3の混合材料についてJHS A 313に基づいて実施したフロー試験の結果を示すグラフである。4 is a graph showing the results of a flow test performed based on JHS A 313 for the mixed materials shown in Table 3 in this example. 本実施例において表3の混合材料についてJIS R5201に基づいて実施したモルタルフロー試験の結果を示すグラフである。4 is a graph showing the results of a mortar flow test performed on the mixed materials in Table 3 based on JIS R5201 in this example. 本実施例において表4に示す混合材料について実施したフロー試験の結果を示すグラフである。5 is a graph showing the results of a flow test performed on the mixed materials shown in Table 4 in this example. 本実施例において表5に示す混合材料について実施したフロー試験の結果を示すグラフである。9 is a graph showing the results of a flow test performed on the mixed materials shown in Table 5 in this example.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態によるケーソン式の護岸・岸壁構造を概略的に示す断面図である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a sectional view schematically showing a caisson-type seawall / quay structure according to the present embodiment.

図1のように、本実施形態による護岸・岸壁構造は、内部1aに中詰砂が充填された重力式のケーソン1と、捨石により水底に構築されケーソン1が設置されるマウンド2と、護岸・岸壁の岸側(図1の紙面右側)に構築される裏込構造10と、を有する。この護岸・岸壁構造の上部には必要な上部工(図示省略)が設置される。   As shown in FIG. 1, the revetment / quay structure according to the present embodiment includes a gravity caisson 1 in which the inside 1 a is filled with filling sand, a mound 2 constructed on the bottom of the water by rubble and the caisson 1 is installed, and a revetment. A backing structure 10 constructed on the shore side (right side in FIG. 1) of the quay wall. Necessary superstructures (not shown) will be installed above the revetment and quay structures.

図1の裏込構造10は、ケーソン1の背面1b側(岸側)に砕石から構築される裏込石11と、裏込石11の法面11a上に構築される吸い出し防止層13と、吸い出し防止層13に接するように岸側(図1の紙面右側)に土砂から構築される裏埋土12と、を有する。   The backing structure 10 of FIG. 1 includes a backing stone 11 constructed from crushed stone on the back surface 1 b side (shore side) of the caisson 1, a suction prevention layer 13 constructed on a slope 11 a of the backing stone 11, A backfill 12 constructed from earth and sand is provided on the shore side (right side in FIG. 1) so as to be in contact with the suction prevention layer 13.

吸い出し防止層13は、含水比を100〜300%に調整した粘性土(内割り体積比で70〜90%)と粒径37.5mm以下の製鋼スラグ(内割り体積比で10〜30%)とを混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加した混合材料から構成される。   The suction-prevention layer 13 is made of a cohesive soil whose water content is adjusted to 100 to 300% (70 to 90% in the inner volume ratio) and a steelmaking slag having a particle size of 37.5 mm or less (10 to 30% in the inner volume ratio). And a mixed material in which a fibrous substance is further added in an outer volume ratio of 0.1 to 1.0%.

かかる混合材料からなる吸い出し防止層13により、裏込構造10の裏埋土12の土砂が裏込石11の砕石の隙間およびマウンド2の捨石の隙間を通してケーソン1の前面側に吸い出されて裏埋土12が減少してしまう吸い出し現象を防止することができる。   With the suction-prevention layer 13 made of such a mixed material, the earth and sand of the buried soil 12 of the backing structure 10 is sucked to the front side of the caisson 1 through the gap between the crushed stones of the backing stone 11 and the gap between the rubble stones of the mound 2 and the back. It is possible to prevent a suction phenomenon in which the buried soil 12 is reduced.

上述の粘性土としては、浚渫土の他、購入材料、たとえば山粘土、ベントナイトなどを使用できる。含水比を100〜300%に調整して使用する。   As the above-mentioned cohesive soil, in addition to dredged soil, purchased materials such as mountain clay and bentonite can be used. Adjust the water content to 100-300% before use.

上述の製鋼スラグは粒径37.5mm以下であり、目標強度等に応じて、製鋼スラグの混合量を粘性土に対し10〜30%(体積比)の範囲で調整する。なお、製鋼スラグとして、高炉で製造された銑鉄を転炉で精錬する工程で生成される粒状体である転炉系製鋼スラグを用いることが好ましい。   The steelmaking slag described above has a particle size of 37.5 mm or less, and the mixing amount of the steelmaking slag is adjusted within a range of 10 to 30% (volume ratio) with respect to the viscous soil according to the target strength and the like. In addition, it is preferable to use a converter steelmaking slag which is a granular material generated in a step of refining pig iron produced in a blast furnace in a converter as the steelmaking slag.

上述の繊維状物質として各種繊維を使用可能であり、たとえば、ポリエステル、ポリプロピレン、ポリエチレン、ビニロン等を使用できる。繊維の寸法は任意であるが、製鋼スラグのザラザラした表面に繊維が引っかかるため、混練時に事前の短繊維をほぐす手間を省略することが可能である。また、細い繊維を使用することにより、少ない繊維量で効果を発揮することが可能である。添加量は外割り体積比で0.1〜1.0%の範囲で調整される。   Various fibers can be used as the above-mentioned fibrous substance, for example, polyester, polypropylene, polyethylene, vinylon, and the like. The size of the fiber is arbitrary, but since the fiber is caught on the rough surface of the steelmaking slag, it is possible to omit the work of loosening short fibers in advance during kneading. In addition, by using thin fibers, the effect can be exhibited with a small amount of fibers. The amount of addition is adjusted within the range of 0.1 to 1.0% in terms of the outer volume ratio.

本実施形態による混合材料によれば、粘性土に製鋼スラグを混合することで、強度を向上させることができる。また、繊維状物質の添加により粒状材料である製鋼スラグに繊維状物質が絡みやすくなることで、高い変形追随性を有するとともに、ひずみが加えられても強度低下が抑制され、クラックの発生を抑制することができる。さらに、この混合材料にクラックが発生しても、その後、強度の回復を期待することができる。   According to the mixed material according to the present embodiment, the strength can be improved by mixing the steelmaking slag with the clayey soil. In addition, the addition of the fibrous substance makes it easier for the fibrous substance to become entangled with the steelmaking slag, which is a granular material, so that it has a high deformation followability and suppresses the decrease in strength even when strain is applied, thereby suppressing the occurrence of cracks. can do. Furthermore, even if cracks occur in the mixed material, it is possible to expect the strength to recover thereafter.

本実施形態による混合材料によれば、かかる混合材料からなる吸い出し防止層13におけるクラック発生が抑制されるとともに、変形によりクラックが生じた場合でも、その後強度の回復を期待できるので、クラック発生の問題を回避でき、このため、吸い出し防止層13による裏埋土吸い出し防止機能を確実に維持することができる。   According to the mixed material according to the present embodiment, the occurrence of cracks in the suction-prevention layer 13 made of such mixed material is suppressed, and even if cracks occur due to deformation, the strength can be expected to recover thereafter. Therefore, the function of preventing the backfill soil from being sucked out by the suction preventing layer 13 can be reliably maintained.

また、本実施形態の混合材料は、セメントなどの固化材を使用した材料と比較して流動性が小さいため、また、製鋼スラグの粒子によるアーチ作用のため、裏込石11を構成する砕石の空隙に落下し難くなり、このため、無駄になる材料を減らすことができ、材料コストが嵩まない。また、裏込石11の法面11aの勾配が大きくなっても増粘剤の添加や土嚢等を用いて土留を行う等の対策が不要であり、また、法面勾配の大小の制約がなくなるので、裏込構造の設計の自由度が高まる。   In addition, the mixed material of the present embodiment has a lower fluidity than a material using a solidifying material such as cement, and has an arching effect due to particles of steelmaking slag. This makes it difficult to fall into the gap, so that the amount of wasted material can be reduced and the material cost does not increase. In addition, even if the slope of the slope 11a of the backing stone 11 becomes large, there is no need to take measures such as adding a thickener or retaining soil using sandbags, etc., and there is no restriction on the magnitude of the slope. Therefore, the degree of freedom in designing the backing structure is increased.

また、本実施形態の混合材料において、粘性土の含水比が100%以上であると、製鋼スラグや繊維状物質との施工性が低下せずに良好で、含水比300%以下であると、強度が低下せずに良好である。製鋼スラグの混合量が体積比30%以下であると、流動性・施工性が低下せずに良好であり、また、体積比10%以上であると、強度の向上が期待できる。また、繊維状物質の添加量が体積比0.1%以上であると、強度低下抑制・変形追随性付与・強度回復の効果を得ることができ、また、添加量が体積比1.0%以下であると、流動性・施工性を確保できるとともに添加量が多くなり過ぎずにコストがさほどかさまない。   Further, in the mixed material of the present embodiment, if the water content of the viscous soil is 100% or more, the workability with the steelmaking slag and the fibrous material is good without being reduced, and if the water content is 300% or less, Good without reduction in strength. When the mixing ratio of the steelmaking slag is 30% or less by volume, the fluidity and workability are good without being reduced, and when the mixing ratio is 10% or more, improvement in strength can be expected. When the amount of the fibrous substance is at least 0.1% by volume, the effect of suppressing the decrease in strength, imparting deformation followability and recovering the strength can be obtained, and when the amount of addition is at most 1.0% by volume. In addition, the fluidity and workability can be ensured, and the addition amount does not become too large, so that the cost is not so high.

本実施形態の混合材料は、密度の大きい製鋼スラグを含むため、単位体積重量がFAモルタル(1.65)よりも大きい(1.8程度)。吸い出し防止層13においては、マウンド2を透過した透過波圧に対して自重で抵抗させる必要があるが、本混合材料は単位体積重量が大きくなるため、吸い出し防止層13の厚さを低減することが可能となり、材料・施工コストの低減に寄与できる。また、従来の防砂シートを必要としないので、裏込石法面の均しやシートの接続等のための大深度での潜水作業が不要となり、このため施工性が低下しない。   Since the mixed material of the present embodiment includes steelmaking slag having a high density, the unit volume weight is larger than the FA mortar (1.65) (about 1.8). In the suction prevention layer 13, it is necessary to resist the transmitted wave pressure transmitted through the mound 2 by its own weight. However, since the mixed material has a large unit volume weight, the thickness of the suction prevention layer 13 must be reduced. It is possible to reduce material and construction costs. Further, since the conventional sandproof sheet is not required, diving work at a large depth for leveling the backing stone slope and connecting the sheet is not required, and therefore, workability is not reduced.

図1の裏込構造10は、ケーソン1の背面1b側(岸側)に砕石を投入して裏込石11を施工し、次に、裏込石11の法面11a上に上述の混合材料を用いて吸い出し防止層13を施工し、次に、吸い出し防止層13に接して岸側に土砂を投入して裏埋土12を施工することで、構築することができる。   The backing structure 10 shown in FIG. 1 is configured such that crushed stone is put into the back surface 1b side (shore side) of the caisson 1 to construct the backing stone 11, and then the above-described mixed material is placed on the slope 11a of the backing stone 11. The construction can be performed by constructing the suction-prevention layer 13 by using the above-mentioned method and then putting earth and sand on the shore side in contact with the suction-prevention layer 13 to construct the backfill 12.

次に、上述の吸い出し防止層13の施工について図2,図3を参照してさらに説明する。図2は、図1の吸い出し防止層13をポンプ打設により施工する様子を示す概略図である。図3は、図1の吸い出し防止層13をグラブ投入により施工する様子を示す概略図である。   Next, the construction of the above-described suction prevention layer 13 will be further described with reference to FIGS. FIG. 2 is a schematic view showing a state in which the suction prevention layer 13 of FIG. 1 is constructed by pumping. FIG. 3 is a schematic view showing a state in which the suction-preventing layer 13 of FIG.

図2のように、混合打設艤装台船20上において浚渫土を貯留部21からベルトコンベア23により搬送し、製鋼スラグを貯留部22からベルトコンベア24により搬送し、所定の体積比で浚渫土および製鋼スラグをミキサ25へ供給するとともに、短繊維を所定の体積比でミキサ25に供給し、これらの浚渫土と製鋼スラグと短繊維とをミキサ25で混合してから、この混合材料を打設ポンプ26によりホース27、打設管28を通して裏込石11の法面11a上に水中打設し、吸い出し防止層13を施工する。打設管28はクレーン29により吊られて移動され所定位置に設置される。   As shown in FIG. 2, on the mixed casting outfitting barge 20, the dredged soil is transported from the storage unit 21 by the belt conveyor 23, the steelmaking slag is transported from the storage unit 22 by the belt conveyor 24, and the dredged soil is transported at a predetermined volume ratio. The steelmaking slag is supplied to the mixer 25, the short fibers are supplied to the mixer 25 at a predetermined volume ratio, and the dredged soil, the steelmaking slag, and the short fibers are mixed by the mixer 25, and the mixed material is beaten. Underwater is cast on the slope 11a of the backing stone 11 through the hose 27 and the setting pipe 28 by the setting pump 26, and the suction prevention layer 13 is applied. The casting pipe 28 is suspended and moved by a crane 29 and installed at a predetermined position.

図3のように、上述の混合材料Mを陸上プラントで作製し、この混合材料Mを土運船30で引き船31により運搬し、クレーン船32のクレーン33で吊られたグラブバケット34により土運船30の混合材料Mを所定量だけブロック状にして裏込石11の法面11aに投入することで水中打設し、吸い出し防止層13を施工する。   As shown in FIG. 3, the above-mentioned mixed material M is produced in a land plant, this mixed material M is transported by a tugboat 31 on an earthmoving ship 30, and soil is transferred by a grab bucket 34 suspended by a crane 33 of a crane ship 32. A predetermined amount of the mixed material M of the carrier 30 is formed into a block shape and poured into the slope 11a of the backing stone 11 so that the mixed material M is cast underwater, and the suction prevention layer 13 is constructed.

以上のように、本実施形態によれば、図1の裏込石11の法面11aに対し、上述の混合材料を図2のポンプ打設または図3のグラブ投入により水中打設することで、吸い出し防止層13を構築することができる。   As described above, according to the present embodiment, the above-described mixed material is submerged in the slope 11a of the backing stone 11 in FIG. 1 by the pumping in FIG. 2 or the glove in FIG. The anti-suction layer 13 can be constructed.

次に、図1の吸い出し防止層13を2層構造にした別の実施形態について図4を参照して説明する。図4は、図1の吸い出し防止層13を2層構造にした構成例を示す要部断面図である。   Next, another embodiment in which the suction preventing layer 13 of FIG. 1 has a two-layer structure will be described with reference to FIG. FIG. 4 is a cross-sectional view of a main part showing a configuration example in which the suction prevention layer 13 of FIG. 1 has a two-layer structure.

図4の吸い出し防止層13は、低流動性に調整された上述の混合材料を用いて裏込石11の法面11a上に形成された第1層13aと、高流動性に調整された上述の混合材料を用いて第1層13aの上に形成された第2層13b、とから構成される。   The first layer 13a formed on the slope 11a of the backing stone 11 by using the above-described mixed material adjusted to have low fluidity, and the above-described layer adjusted to have high fluidity are used as the suction prevention layer 13 in FIG. And a second layer 13b formed on the first layer 13a using a mixed material of

具体的には、上述の混合材料のフロー値を82mm以上90mm未満の低流動性に調整して第1層13aを形成し、次に、フロー値を90mm以上の高流動性に調整して第1層13a上に第2層13bを形成する。上述の混合材料の流動性・フロー値の調整は、粘性土の含水比、製鋼スラグの混合量および繊維状物質の添加量の少なくともいずれか1つを変更することで行うことができ、フロー値は、JHS A 313によるフロー試験により求めることができる。   Specifically, the first layer 13a is formed by adjusting the flow value of the above-described mixed material to a low fluidity of 82 mm or more and less than 90 mm, and then adjusting the flow value to a high fluidity of 90 mm or more, The second layer 13b is formed on the one layer 13a. The fluidity / flow value of the above-mentioned mixed material can be adjusted by changing at least one of the water content of the cohesive soil, the mixing amount of the steelmaking slag, and the addition amount of the fibrous substance. Can be determined by a flow test according to JHS A 313.

また、図4の吸い出し防止層13の施工は、第1層13aを図3のようなグラブ投入により形成し、第2層13bを図2のようなポンプ打設により形成することで、実施することが好ましい。   4 is implemented by forming the first layer 13a by glove injection as shown in FIG. 3 and forming the second layer 13b by pumping as shown in FIG. Is preferred.

本実施形態の混合材料は、セメントなどの固化材を使用した材料と比較してその流動性が低くなる傾向があるので、上述のように、裏込石11の砕石の空隙に落下することを防止できるのであるが、その一方、打設した混合材料同士の間に隙間ができ易く、隙間が形成されてしまうと、その部分が水みちとなり、吸い出し防止効果が低下してしまう。この問題に対し、図4の吸い出し防止層13の2層構造によれば、第1層13aを比較的低流動性の混合材料から形成することで、混合材料の空隙落下を防止するとともに、たとえ混合材料同士の間に隙間が形成されたとしても、その上に第2層13bを比較的高流動性の混合材料から形成するので、その隙間を埋めることができ、水みちの形成を防止できる。これにより、吸い出し防止層13における裏埋土の吸い出し防止機能の維持効果と混合材料の空隙落下防止効果とを確実に得ることができる。   Since the mixed material of the present embodiment tends to have lower fluidity than a material using a solidifying material such as cement, it is necessary to prevent the mixed material from falling into the crushed stone gap of the backing stone 11 as described above. On the other hand, a gap is likely to be formed between the poured mixed materials, and if the gap is formed, the portion becomes a water path, and the effect of preventing suction is reduced. In order to solve this problem, according to the two-layer structure of the suction-prevention layer 13 shown in FIG. 4, the first layer 13a is formed from a relatively low-flow mixed material, thereby preventing the mixed material from falling into gaps. Even if a gap is formed between the mixed materials, since the second layer 13b is formed from the mixed material having a relatively high fluidity thereon, the gap can be filled, and the formation of water channels can be prevented. . Thereby, the effect of maintaining the function of preventing the suction of the buried back soil in the suction prevention layer 13 and the effect of preventing the mixed material from falling into the voids can be reliably obtained.

なお、混合材料の流動性は、粘性土の含水比や製鋼スラグの混合量や短繊維の添加量により調整できるが、混合材料の打設時または打設後に振動や衝撃を与えることにより、混合材料の流動性を高めるようにしてもよい。かかる衝撃や振動は、バイブレーターや振動バケット等を用いて混合材料に与えることができる。   The fluidity of the mixed material can be adjusted by adjusting the water content of the viscous soil, the mixed amount of the steelmaking slag, and the added amount of the short fiber. The fluidity of the material may be increased. Such impact and vibration can be given to the mixed material using a vibrator, a vibration bucket, or the like.

また、たとえば、図4の2層構造の構築の際に、第1層13aを通常の混合材料から形成し、その同じ配合割合の混合材料に対し衝撃・振動を与えることで高流動性として第2層13bを形成するようにしてもよい。   In addition, for example, when the two-layer structure shown in FIG. 4 is constructed, the first layer 13a is formed from a normal mixed material, and the mixed material having the same compounding ratio is subjected to impact and vibration to achieve high fluidity. The two layers 13b may be formed.

本発明による混合材料について実施例によりさらに説明するが、本発明は本実施例に限定されるものではない。   The mixed material according to the present invention will be further described with reference to examples, but the present invention is not limited to the examples.

本実施例の混合材料は、含水比160%に調整した浚渫土(土粒子密度2.633g/cm3、液性限界101.3%)と、製鋼スラグ(室内試験のため粒径9.5mm以下に調整)とを混合し、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を所定の体積比で添加し混合したものである。実施例1〜6では短繊維の配合割合を体積比で0.1〜1.0vol%まで6段階に変え、比較例1では短繊維を配合していない。実施例1〜6および比較例1についての配合を次の表1に示す。 The mixed material of this example is a dredged soil adjusted to a water content of 160% (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) and steelmaking slag (adjusted to a particle size of 9.5 mm or less for laboratory testing) And polyester short fibers (fiber length 20 mm, fiber diameter 14.8 μm) are added at a predetermined volume ratio and mixed. In Examples 1 to 6, the blending ratio of short fibers was changed in six steps from 0.1 to 1.0 vol% in volume ratio, and in Comparative Example 1, short fibers were not blended. The formulations for Examples 1 to 6 and Comparative Example 1 are shown in Table 1 below.

Figure 0006669543
Figure 0006669543

表1のように繊維添加量をパラメータにした混合材料を作製し、養生7日後に一軸圧縮試験を実施した。この一軸圧縮試験から得られた応力ひずみ線図を図5に示す。なお、一軸圧縮試験は、JIS A 1216に基づいて実施した。   As shown in Table 1, a mixed material in which the amount of fiber added was used as a parameter was prepared, and a uniaxial compression test was performed 7 days after curing. FIG. 5 shows a stress-strain diagram obtained from the uniaxial compression test. The uniaxial compression test was performed based on JIS A1216.

図5の結果から、短繊維を混合しない比較例1では5%の圧縮ひずみに達する前から圧縮応力が低下したのに対し、実施例2〜6のように短繊維を体積比で0.2%vol以上添加すると、5%以上の大ひずみレベルにおいても圧縮応力が低下しない材料となることがわかる。また、短繊維を体積比で0.1vol%添加した実施例1では、圧縮ひずみが5%のとき圧縮応力が低下しないことがわかる。また、繊維添加量が体積比で0.2〜1.0vol%の実施例2〜6では、繊維の添加量に応じて5%以上の大ひずみレベルにおいて圧縮応力の保持効果が高くなることがわかる。つまり、繊維添加量が増すと、混合材料の変形追随性が向上し、クラックの発生が抑制される。   From the results in FIG. 5, in Comparative Example 1 in which the short fibers were not mixed, the compressive stress was reduced before reaching 5% compressive strain, whereas the short fibers were 0.2% vol in volume ratio as in Examples 2 to 6. It can be seen that the above addition results in a material whose compressive stress does not decrease even at a large strain level of 5% or more. Further, in Example 1 in which short fibers were added at a volume ratio of 0.1 vol%, it was found that the compressive stress did not decrease when the compressive strain was 5%. In addition, in Examples 2 to 6 in which the amount of added fiber is 0.2 to 1.0 vol% in volume ratio, it can be seen that the effect of retaining the compressive stress is increased at a large strain level of 5% or more according to the amount of added fiber. That is, when the fiber addition amount increases, the deformation following property of the mixed material is improved, and the occurrence of cracks is suppressed.

上述のように、繊維添加量が0.1〜1.0vol%の実施例1〜6では、繊維の添加量に応じてひずみ5%またはそれ以上における圧縮応力が低下せず、変形追随性が向上することがわかる。また、繊維添加量が1.0vol%を超えた場合においても圧縮応力が低下しないと考えられるが、5%のひずみレベルにおいて添加量を増やすことによる顕著な差が認められないこと、添加量の増加はコストアップの要因となることから、繊維添加量の上限は、1.0vol%と設定することが妥当であることがわかる。   As described above, in Examples 1 to 6 in which the fiber addition amount is 0.1 to 1.0 vol%, the compressive stress at a strain of 5% or more does not decrease depending on the fiber addition amount, and the deformation followability is improved. I understand. Also, it is considered that the compressive stress does not decrease even when the fiber addition amount exceeds 1.0 vol%, but no remarkable difference is observed by increasing the addition amount at the strain level of 5%. It is understood that it is appropriate to set the upper limit of the amount of added fiber to 1.0 vol%, since this causes a cost increase.

次に、含水比160%に調整した浚渫土(土粒子密度2.633g/cm3、液性限界101.3%)に、次の表2のように、実施例7として製鋼スラグ(室内試験のため粒径9.5mm以下に調整)を所定の体積比で、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を所定の体積比で添加し混合して混合材料を得た。繊維の添加量は、本実施形態による混合材料における繊維添加量(0.1〜1.0vol%)の中央値に近いことから0.5vol%とした。また、繊維の添加の有無によるせん断強度の回復性を比較するため、比較例2として繊維添加量を0vol%とした材料を得た。なお、繊維の比重を1.38g/cm3とすると、繊維添加量が0.5vol%の場合の単位体積あたりの繊維重量は6.9kg/m3となる。 Next, as shown in Table 2 below, as shown in Table 2 below, a steelmaking slag (grain for laboratory test) was prepared on dredged soil (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a water content of 160%. Polyester short fiber (fiber length: 20 mm, fiber diameter: 14.8 μm) was added at a predetermined volume ratio and mixed at a predetermined volume ratio to obtain a mixed material. The addition amount of the fiber was set to 0.5 vol% because it was close to the median of the addition amount of the fiber (0.1 to 1.0 vol%) in the mixed material according to the present embodiment. Further, in order to compare the recovery of the shear strength depending on the presence or absence of the addition of the fiber, a material in which the amount of the added fiber was 0 vol% was obtained as Comparative Example 2. Assuming that the specific gravity of the fiber is 1.38 g / cm 3 , the fiber weight per unit volume when the fiber addition amount is 0.5 vol% is 6.9 kg / m 3 .

Figure 0006669543
Figure 0006669543

上記混合材料から作製した供試体を28日間養生してから、5%のひずみレベルまで一軸圧縮した後、載荷を一旦停止し供試体をとりだし、85日間暴露した後、再び一軸圧縮試験を実施した。暴露方法は、供試体をラップで包み乾燥を防ぐ方法(気中暴露)による。なお、最初に与える圧縮のひずみレベルを5%とした理由は、比較例2の繊維添加量0vol%の供試体では、5%を超える圧縮ひずみを与えると、その後、供試体をとりだし暴露の準備をする際に供試体が崩壊してしまう恐れがあるためである。   After the specimen prepared from the above mixed material was cured for 28 days, after uniaxial compression to a strain level of 5%, the loading was temporarily stopped, the specimen was taken out, and after exposing for 85 days, the uniaxial compression test was performed again. . The method of exposure depends on the method of wrapping the specimen in wrap to prevent drying (air exposure). The reason for initially setting the compression strain level to 5% is that, in the specimen of Comparative Example 2 where the fiber addition amount is 0 vol%, when the compression strain exceeding 5% is applied, the specimen is thereafter taken out and prepared for exposure. This is because there is a risk that the specimen will collapse when performing the test.

図6(a)に比較例2、図6(b)に実施例7の各圧縮試験の結果を示す。図6(a)(b)の縦軸の圧縮応力は、圧縮ひずみ5%以下における圧縮応力の最大値により正規化(圧縮応力比)している。図6(a)のように繊維を添加していない場合、再負荷すると最初の圧縮時の一軸圧縮強さ以下であったのに対し、図6(b)のように繊維添加量を0.5vol%とした場合、浚渫土に製鋼スラグと繊維を添加することで、最初の圧縮時の一軸圧縮強さを超え、強度回復が確認できる。このように、本実施例の混合材料によれば、クラックが発生しても、その後の強度の回復を期待することができる。   FIG. 6A shows the result of each compression test of Comparative Example 2 and FIG. 6B shows the result of each compression test of Example 7. The compressive stress on the vertical axis in FIGS. 6A and 6B is normalized (compressive stress ratio) by the maximum value of the compressive stress at a compressive strain of 5% or less. When the fiber was not added as shown in FIG. 6 (a), when the reloading was performed, the uniaxial compressive strength at the time of the first compression was lower than the initial compression strength. On the other hand, as shown in FIG. %, The addition of steelmaking slag and fiber to the dredged soil exceeds the uniaxial compressive strength at the time of the initial compression, confirming the strength recovery. As described above, according to the mixed material of the present example, even if cracks occur, it is possible to expect subsequent strength recovery.

次に、粒径37.5mm以下の製鋼スラグを30vol%添加する条件で、浚渫土(土粒子密度2.668g/cm3、液性限界84.3%)の含水比を液性限界(wL)の百分率として125,150,175%と3段階に変え、ポリエステル短繊維の添加量を所定の体積比で変化させて混合材料を作製した。次の表3のように、実施例8〜12では短繊維の配合割合を体積比で0.1〜1.0vol%まで5段階に変え、比較例3では短繊維を配合していない。 Next, under the condition that 30 vol% of steelmaking slag having a particle diameter of 37.5 mm or less is added, the water content of the dredged soil (soil particle density 2.668 g / cm 3 , liquid limit 84.3%) is defined as a percentage of liquid limit (wL). The mixed material was prepared by changing the addition amount of the polyester short fiber at a predetermined volume ratio while changing the amount to 125, 150, and 175% in three stages. As shown in Table 3 below, in Examples 8 to 12, the blending ratio of short fibers was changed in five steps from 0.1 to 1.0 vol% in volume ratio, and in Comparative Example 3, no short fibers were blended.

Figure 0006669543
Figure 0006669543

表3の混合材料について日本道路公団規格JHS A 313に基づいてフロー試験を実施し、その結果を図7に示す。JHS A 313に基づくフロー試験では、縦80mm×直径80mmの円筒形の筒に混合材料を充填し、筒を引き上げた後の混合材料の直径を測定した。図7から、浚渫土の含水比と繊維添加量とにより、混合材料の流動性を調整できることがわかる。すなわち、図7の実線の範囲の配合をフロー値90mm以上の高流動性と設定し、図7の破線の範囲の配合をフロー値90mm未満(82mm以上)の低流動性と設定できる。なお、フロー値82mmは、良好な施工性・流動性を得る上での下限値である。   Flow tests were performed on the mixed materials shown in Table 3 based on the Japan Highway Public Corporation Standard JHS A 313, and the results are shown in FIG. In the flow test based on JHS A 313, the mixed material was filled in a cylindrical tube having a length of 80 mm and a diameter of 80 mm, and the diameter of the mixed material after the tube was pulled up was measured. FIG. 7 shows that the fluidity of the mixed material can be adjusted by the water content of the dredged soil and the amount of added fiber. That is, the composition in the range indicated by the solid line in FIG. 7 can be set to high fluidity with a flow value of 90 mm or more, and the composition in the range indicated by the broken line in FIG. 7 can be set to low fluidity with a flow value of less than 90 mm (82 mm or more). The flow value of 82 mm is a lower limit for obtaining good workability and fluidity.

次に、表3の混合材料についてJIS R5201に基づいてモルタルフロー試験を実施し、その結果を図8に示す。JIS R5201に基づくモルタルフロー試験では、西尾レントオール株式会社が販売するモルタルフロー試験器(JIS R5201適合品)を用いて、上部内径70mm、下部内径100mm、高さ60mmのフローコーンに混合材料を充填し、フローコーンを引き上げ、15秒間に15回ハンドルを回してフローテーブルを上下させた後に混合材料の直径を測定した。図8から、図7と同様に、浚渫土の含水比と繊維添加量とにより、混合材料の流動性を調整できることがわかる。また、混合材料に衝撃や振動を与えることにより、モルタルフロー値が大きくなり、流動性が大きくなることがわかる。たとえば、浚渫土の含水比1.25wL、繊維添加量0.5vol%のフロー値は図7のように82.5mmであり、充填した筒の直径から2.5mmしか広がらないのに対し、同じ配合で衝撃を与えたモルタルフロー試験を行った結果では図8のように123.5mmであり、下部内径100mmから23.5mm広がった。   Next, a mortar flow test was performed on the mixed materials shown in Table 3 based on JIS R5201, and the results are shown in FIG. In the mortar flow test based on JIS R5201, using a mortar flow tester (compliant with JIS R5201) sold by Nishio Rentall Co., Ltd., the mixed material is filled into a flow cone with an upper inner diameter of 70 mm, a lower inner diameter of 100 mm, and a height of 60 mm. Then, the flow cone was pulled up, and the handle was turned 15 times for 15 seconds to raise and lower the flow table, and then the diameter of the mixed material was measured. From FIG. 8, it is understood that the fluidity of the mixed material can be adjusted by the water content ratio of the dredged soil and the amount of added fiber, as in FIG. 7. In addition, it can be seen that, by giving an impact or vibration to the mixed material, the mortar flow value increases and the fluidity increases. For example, as shown in Fig. 7, the flow value of a dredged soil with a water content of 1.25 wL and a fiber addition of 0.5 vol% is 82.5 mm, and only 2.5 mm widens from the diameter of the filled cylinder. As a result of the given mortar flow test, it was 123.5 mm as shown in FIG.

次に、含水比126.5%(液性限界の150%)の浚渫土(土粒子密度2.668g/cm3、液性限界84.3%)に、表4のように、実施例13〜22として製鋼スラグ(粒径37.5mm以下)を所定の体積比(20vol%,30vol%)で混合し、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を体積比0.1〜1.0vol%添加し混合した混合材料についてJHS A 313に基づいてフロー試験を実施した。また、比較例4〜7として繊維添加量を0vol%,1.5vol%とした混合材料についても同様のフロー試験を実施した。 Next, as shown in Table 4, steelmaking slag was used as dredged soil (having a soil particle density of 2.668 g / cm 3 and a liquidity limit of 84.3%) having a water content of 126.5% (150% of the liquidity limit) as shown in Table 4. (Particle size 37.5mm or less) is mixed at a predetermined volume ratio (20vol%, 30vol%), and polyester short fiber (fiber length 20mm, fiber diameter 14.8μm) is added and mixed at a volume ratio of 0.1 to 1.0vol%. Was subjected to a flow test based on JHS A313. Similar flow tests were also performed on the mixed materials in which the fiber addition amounts were 0 vol% and 1.5 vol% as Comparative Examples 4 to 7.

Figure 0006669543
Figure 0006669543

これらの試験結果を図9に示す。図9から、製鋼スラグの混合量が20vol%の場合でも、30vol%の場合と同様に、短繊維の添加量が増えるに従い、フロー値が小さくなり流動性が低下することがわかる。短繊維を1.5vol%添加した比較例5,7と、1.0vol%の繊維添加量の実施例17,22と、を比べると、フロー値が82mm以上を確保するには、繊維添加量の上限は1.0vol%であることが好ましいことがわかる。   These test results are shown in FIG. FIG. 9 shows that, even when the mixing amount of steelmaking slag is 20 vol%, the flow value decreases and the fluidity decreases as the amount of added short fibers increases, as in the case of 30 vol%. Comparing Comparative Examples 5 and 7 in which 1.5 vol% of short fibers were added with Examples 17 and 22 in which 1.0 vol% of fiber was added, in order to secure a flow value of 82 mm or more, the upper limit of the fiber addition amount Is preferably 1.0 vol%.

次に、表5のように、実施例23〜25として含水比160%(液性限界の168%)に調整した浚渫土(土粒子密度2.633 g/cm3、液性限界101.3%)と製鋼スラグ(室内試験のため粒径9.5mm以下に調整)とを所定の体積比で混合し、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を体積比0.5vol%で添加し混合し、これに流動性を向上させるため、分散材(AMPS系)を2kg/m3添加した混合材料についてJHS A 313に基づいてフロー試験を実施した。また、比較例8として製鋼スラグの体積比を40vol%とした以外は同様の材料についてフロー試験を実施した。 Next, as shown in Table 5, as Examples 23 to 25, the dredged soil (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a water content of 160% (168% of liquid limit) and steelmaking Slag (adjusted to a particle size of 9.5 mm or less for laboratory testing) is mixed at a predetermined volume ratio, and polyester short fiber (fiber length 20 mm, fiber diameter 14.8 μm) is added and mixed at a volume ratio of 0.5 vol%. In order to improve the fluidity, a mixed material to which 2 kg / m 3 of a dispersant (AMPS type) was added was subjected to a flow test based on JHS A313. Also, as Comparative Example 8, a flow test was performed on the same material except that the volume ratio of the steelmaking slag was 40 vol%.

Figure 0006669543
Figure 0006669543

図10に試験結果を示す。図10から製鋼スラグの混合量が増えるにしたがって、フロー値が小さくなり、混合材料の流動性が低下することがわかる。製鋼スラグの混合量を40vol%とした比較例8は、フロー値が82mm未満となって、流動性がかなり低くなることがわかる。これに対し、製鋼スラグの混合量が30vol%以下の実施例23〜25はフロー値が82mmを超えて、流動性を確保できることがわかる。これにより、本混合材料において製鋼スラグの混合量を10〜30vol%とすることが妥当であることが確認できた。なお、製鋼スラグの混合量を30vol%とした際の材令28日の一軸圧縮強さは、300kN/m2程であった。 FIG. 10 shows the test results. FIG. 10 shows that as the mixing amount of the steelmaking slag increases, the flow value decreases, and the fluidity of the mixed material decreases. In Comparative Example 8 in which the mixing amount of the steelmaking slag was 40 vol%, the flow value was less than 82 mm, and it can be seen that the fluidity was considerably low. In contrast, in Examples 23 to 25 in which the mixing amount of the steelmaking slag was 30 vol% or less, the flow value exceeded 82 mm, and it can be seen that the fluidity could be secured. Thereby, it was confirmed that it is appropriate to set the mixing amount of the steelmaking slag to 10 to 30 vol% in the present mixed material. In addition, the uniaxial compressive strength on the 28th day when the mixing amount of the steelmaking slag was 30 vol% was about 300 kN / m 2 .

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、本発明による裏込構造を本実施形態ではケーソン式の護岸・岸壁構造に適用したが、本発明はこれに限定されず、他の水中構造物に適用でき、たとえば、矢板式の護岸・岸壁構造に適用してもよい。   The embodiments for carrying out the present invention have been described above, but the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention. For example, in the present embodiment, the backing structure according to the present invention is applied to a caisson-type seawall / quay structure, but the present invention is not limited to this, and can be applied to other underwater structures. It may be applied to quay structures.

また、図1の吸い出し防止層13を一層に構成した場合、混合材料の流動性を、混合材料の空隙落下を防止できかつ隙間の形成を防止できるように調整する。この場合、混合材料の流動性は、粘性土の含水比や製鋼スラグの混合量や短繊維の添加量により調整できるが、混合材料の打設時または打設後に混合材料に振動や衝撃を与えることで混合材料の流動性を高めるようにしてもよい。   When the suction-preventing layer 13 shown in FIG. 1 is formed as a single layer, the fluidity of the mixed material is adjusted so that the mixed material can be prevented from falling into gaps and can be prevented from forming gaps. In this case, the fluidity of the mixed material can be adjusted by the water content of the viscous soil, the mixed amount of the steelmaking slag, and the added amount of the short fiber. This may increase the fluidity of the mixed material.

また、図2では、艤装台船20上のプラントで浚渫土と製鋼スラグと短繊維とを混合し混合材料を作製したが、混合材料の作製方法は、これに限定されず、たとえば、陸上プラントで行うようにしてもよく、この場合は、作製した混合材料を土運船で運搬し、ポンプ打設を行う。また、図3では、混合材料を陸上プラントで作製したが、図2と同様に、艤装台船上のプラントで作製し、グラブ投入するようにしてもよい。   Further, in FIG. 2, the dredged soil, the steelmaking slag, and the short fiber are mixed in the plant on the outfitting barge 20 to produce a mixed material. However, the method of producing the mixed material is not limited thereto. In this case, the prepared mixed material is transported by an earth transport ship and pumping is performed. Further, in FIG. 3, the mixed material is produced in a land plant, but similarly to FIG. 2, it may be produced in a plant on an outfitting barge and gloved.

本発明によれば、水中構造物の背面側に裏込石と裏埋土とから構築される裏込構造において裏込石上で吸い出し防止機能を確実に維持できるので、裏埋土の吸い出し・裏埋土における陥没を防止できる。   According to the present invention, in the backing structure constructed from the backing stone and the backfill on the back side of the underwater structure, the function of preventing suction on the backing stone can be reliably maintained, so that the backfill soil is sucked and backed. Depression in buried soil can be prevented.

1 ケーソン、水中構造物
1b ケーソンの背面
2 マウンド
10 裏込構造
11 裏込石
11a 法面
12 裏埋土
13 吸い出し防止層
13a 第1層
13b 第2層
M 混合材料
DESCRIPTION OF SYMBOLS 1 Caisson, underwater structure 1b Back of caisson 2 Mound 10 Backing structure 11 Backing stone 11a Slope 12 Backfill 13 Suction prevention layer 13a First layer 13b Second layer M Mixed material

Claims (6)

裏込石と裏埋土とから構成される裏込構造を水中構造物の背面側に構築する裏込構造の施工方法であって、
含水比を100〜300%に調整した粘性土と粒径37.5mm以下の製鋼スラグとを、前記粘性土が内割り体積比で70〜90%、前記製鋼スラグが内割り体積比で30〜10%となるように混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加した混合材料を前記裏込石上に水中打設することを特徴とする裏込構造の施工方法。
A method of constructing a backing structure in which a backing structure composed of backing stone and backfill is constructed on the back side of the underwater structure,
Cohesive soil whose water content is adjusted to 100 to 300% and steelmaking slag having a particle diameter of 37.5 mm or less are divided into 70 to 90% by volume ratio of the clayey soil and 30 to 10% by volume of steelmaking slag. %, And a mixed material in which a fibrous substance is added in an outer volume ratio of 0.1 to 1.0% is cast in the backing stone underwater.
前記混合材料からなる層を前記裏込石の法面に形成し、次に、前記形成された層に接するように前記裏埋土を構築する請求項1に記載の裏込構造の施工方法。   The method of claim 1, wherein a layer made of the mixed material is formed on a slope of the backing stone, and then the backfill is constructed so as to be in contact with the formed layer. 低流動性の前記混合材料を水中打設して第1層を形成し、次に、高流動性の前記混合材料を前記第1層上に水中打設して第2層を形成することで2層構造とする請求項1または2に記載の裏込構造の施工方法。   By casting the mixed material having low fluidity underwater to form a first layer, and then casting the mixed material having high fluidity underwater on the first layer to form a second layer. The method according to claim 1 or 2, wherein the backing structure has a two-layer structure. 前記混合材料のフロー値を82mm以上90mm未満に調整して第1層を形成し、次に、前記フロー値を90mm以上に調整して前記第1層上に第2層を形成することで2層構造とする請求項1または2に記載の裏込構造の施工方法。   The first layer is formed by adjusting the flow value of the mixed material to 82 mm or more and less than 90 mm, and then the second layer is formed on the first layer by adjusting the flow value to 90 mm or more. 3. The method according to claim 1, wherein the backing structure has a layered structure. 前記第1層をグラブ投入により形成し、前記第2層をポンプ打設により形成する請求項3または4に記載の裏込構造の施工方法。   The method according to claim 3, wherein the first layer is formed by glove injection, and the second layer is formed by pumping. 裏込石と裏埋土とから構成される裏込構造において前記裏込石上に前記裏埋土の吸い出し防止のために適用される材料であって、
含水比を100〜300%に調整した粘性土と粒径37.5mm以下の製鋼スラグとを、前記粘性土が内割り体積比70〜90%で、前記製鋼スラグが内割り体積比30〜10%で含みさらに繊維状物質を外割り体積比0.1〜1.0%含む混合材料。
A material applied on the backing stone in the backing structure composed of the backing stone and the backfill to prevent the backfill from being sucked out,
Cohesive soil whose water content is adjusted to 100 to 300% and steelmaking slag having a particle size of 37.5 mm or less are divided into 70 to 90% by volume, and 30 to 10% by volume of the steelmaking slag. And a mixed material further containing a fibrous substance in an outer volume ratio of 0.1 to 1.0% .
JP2016055558A 2016-03-18 2016-03-18 Construction method of backing structure and mixed material Active JP6669543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055558A JP6669543B2 (en) 2016-03-18 2016-03-18 Construction method of backing structure and mixed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055558A JP6669543B2 (en) 2016-03-18 2016-03-18 Construction method of backing structure and mixed material

Publications (2)

Publication Number Publication Date
JP2017172107A JP2017172107A (en) 2017-09-28
JP6669543B2 true JP6669543B2 (en) 2020-03-18

Family

ID=59970575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055558A Active JP6669543B2 (en) 2016-03-18 2016-03-18 Construction method of backing structure and mixed material

Country Status (1)

Country Link
JP (1) JP6669543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6984251B2 (en) 2017-09-07 2021-12-17 トヨタ自動車株式会社 Fuel cell vehicle
JP7219896B2 (en) * 2019-07-05 2023-02-09 東亜建設工業株式会社 SOIL IMPROVEMENT SOIL MANUFACTURING METHOD AND SOIL IMPROVEMENT METHOD

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911545A (en) * 1998-09-23 1999-06-15 Heitkamp; Roy S. Method for stabilizing and repair of docks and seawalls
JP3681163B2 (en) * 2001-02-21 2005-08-10 独立行政法人港湾空港技術研究所 Backfill soil suction prevention method
JP4678496B2 (en) * 2005-05-23 2011-04-27 東洋建設株式会社 Impervious structure of waste disposal site
JP2008247677A (en) * 2007-03-30 2008-10-16 Denki Kagaku Kogyo Kk Grout composition and grout mortar using the same
JP5014961B2 (en) * 2007-11-16 2012-08-29 新日本製鐵株式会社 Mud modification material and modification method

Also Published As

Publication number Publication date
JP2017172107A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2023284432A1 (en) Solidified soil, underwater structure foundation protection structure, and construction method
CN110984213A (en) Offshore wind power single pile-friction cone composite foundation and construction method thereof
JP6669543B2 (en) Construction method of backing structure and mixed material
JP6786203B2 (en) Submarine construction material and submarine structure using this material
JP5054388B2 (en) Construction method of impermeable structure for sea surface waste disposal site
JP6308996B2 (en) Seawalls and methods for reinforcing or constructing seawalls
JP6755743B2 (en) Manufacturing method of fluidized soil cement
JP5681988B2 (en) Breakwater reinforcement method and reinforced breakwater
JP6361889B2 (en) Artificial shallow or tidal flat
JP2015059362A (en) Earthquake strengthening structure for pier
CN108560569B (en) Construction process for building dike by throwing dregs and squeezing silt
JP7525828B2 (en) Quay or revetment structure
JP2009167794A (en) Bottom surface anchor structure for placement type steel plate cell method and cell shell placement type steel plate cell method
JP2016084675A (en) Caisson type composite breakwater structure
JP6829758B2 (en) Submarine construction material and submarine structure using this material
JP6213749B2 (en) Artificial shallow or tidal flat
JP3608539B2 (en) How to use upsoil generated during offshore improvement work
Kit et al. Reuse and Recycling of Clayey Soil in Pasir Panjang Terminal Phases 3 and 4 Project in Singapore.
JP3582910B2 (en) Underwater embankment method for lightweight premixed soil
CN109736268A (en) A kind of underwater throwing method of dredged mud using pouch control pollution
JPH0132329B2 (en)
JP7145910B2 (en) Method for manufacturing artificial stone, method for conveying artificial stone, and artificial stone
JP4380129B2 (en) Installation method for underwater structure and block for underwater structure
JP2008082104A (en) Method of forming embankment
NL2017248B1 (en) Water resistant composition and method for deepening or widening a water bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200227

R150 Certificate of patent or registration of utility model

Ref document number: 6669543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150