JP6773282B2 - Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator - Google Patents

Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator Download PDF

Info

Publication number
JP6773282B2
JP6773282B2 JP2016211895A JP2016211895A JP6773282B2 JP 6773282 B2 JP6773282 B2 JP 6773282B2 JP 2016211895 A JP2016211895 A JP 2016211895A JP 2016211895 A JP2016211895 A JP 2016211895A JP 6773282 B2 JP6773282 B2 JP 6773282B2
Authority
JP
Japan
Prior art keywords
excavated soil
chamber
soil
construction management
earth pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016211895A
Other languages
Japanese (ja)
Other versions
JP2018071182A (en
Inventor
杉山 博一
博一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2016211895A priority Critical patent/JP6773282B2/en
Publication of JP2018071182A publication Critical patent/JP2018071182A/en
Application granted granted Critical
Publication of JP6773282B2 publication Critical patent/JP6773282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、土圧式シールド工法の施工管理方法、施工管理装置および土圧式シールド掘削機に関するものである。 The present invention relates to a construction management method of a soil pressure shield method, a construction management device, and a soil pressure shield excavator.

従来、シールドトンネル工事に適用される土圧式シールド工法が知られている。この工法は、カッター装置の背後に掘削土を取り込むためのチャンバーを設けた土圧式シールド掘削機を用いて、チャンバー内に取り込んだ掘削土に対して加水ベントナイトや高分子材料等の薬液等の加泥材(添加材)を添加して攪拌翼で攪拌することにより、掘削土に所定の塑性流動性を持たせてその土圧を切羽に作用させて切羽を安定に保持しつつ掘進を行う工法である。 Conventionally, the earth pressure type shield method applied to the shield tunnel construction is known. In this construction method, a soil pressure type shield excavator equipped with a chamber for taking in excavated soil behind the cutter device is used, and water-hydrated bentonite, chemicals such as polymer materials, etc. are added to the excavated soil taken into the chamber. A construction method in which mud material (additive material) is added and the excavated soil is stirred with a stirring blade to give the excavated soil a predetermined plastic fluidity and the soil pressure is applied to the face to stably hold the face while excavating. Is.

この土圧式シールド工法においては、掘削土による土圧を切羽に対して均一かつ安定に作用させることが重要であるため、チャンバー内における掘削土の塑性流動性を適切に設定しかつ安定に維持する必要がある。そのためには掘削土がチャンバー内全体において均一に塑性流動化しているか否かを掘削中に逐次確認する必要がある。特に昨今においては土圧式シールド工法の大断面化に伴い、チャンバー内の掘削土の塑性流動性を評価するニーズが高まっている。従来の掘削土の塑性流動性を評価し、可視化する技術としては、例えば特許文献1〜4に記載の技術が知られている。 In this earth pressure type shield method, it is important that the earth pressure from the excavated soil acts uniformly and stably on the face, so the plastic fluidity of the excavated soil in the chamber is appropriately set and maintained stable. There is a need. For that purpose, it is necessary to sequentially confirm during excavation whether or not the excavated soil is uniformly plastically fluidized in the entire chamber. In particular, in recent years, with the increase in the cross section of the soil pressure shield method, there is an increasing need to evaluate the plastic fluidity of excavated soil in a chamber. As a technique for evaluating and visualizing the plastic fluidity of conventional excavated soil, for example, the techniques described in Patent Documents 1 to 4 are known.

また、この技術に関連し、本発明者らは現時点で未公開の特許文献5(特願2015−141743号)、特許文献6(特願2015−051026号)および特許文献7(特願2015−136399号)を既に提案している。 Further, in relation to this technique, the present inventors have patent documents 5 (Japanese Patent Application No. 2015-141743), Patent Document 6 (Japanese Patent Application No. 2015-051026) and Patent Document 7 (Japanese Patent Application No. 2015-2015) which have not been published at present. No. 136399) has already been proposed.

特許文献1は、チャンバーに設置した回転体のトルクから掘削土の塑性流動性を定性的に判定する方法であり、塑性流動性を定量的に評価することはできない。 Patent Document 1 is a method of qualitatively determining the plastic fluidity of excavated soil from the torque of a rotating body installed in a chamber, and the plastic fluidity cannot be quantitatively evaluated.

特許文献2および特許文献3は、チャンバーに設置した回転体のトルクから塑性流動性や流動方向を定量的に評価し、事前に解析的にチャンバー内の塑性流動状態を推定したものと比較することで管理する方法である。これらは特殊な回転装置を用いた評価方法であるため、故障が発生する可能性が高い。ここでの解析は、従来の数値解析法(例えば、差分法、FEM、DEM等)を用いることが前提となっているが、高粘度大変形流動によって数値的に不安定な現象がおき、解析に不具合が生じることもある。 Patent Documents 2 and 3 quantitatively evaluate the plastic fluidity and the flow direction from the torque of the rotating body installed in the chamber, and compare them with those in which the plastic flow state in the chamber is estimated analytically in advance. It is a method of managing with. Since these are evaluation methods using a special rotating device, there is a high possibility that a failure will occur. The analysis here is premised on using a conventional numerical analysis method (for example, difference method, FEM, DEM, etc.), but a phenomenon of numerical instability occurs due to high viscosity and large deformation flow, and the analysis is performed. May cause problems.

特許文献4および特許文献5は、土圧計の変動状態から塑性流動性を間接的に評価する方法であり、直接的な評価を行うものではない。 Patent Document 4 and Patent Document 5 are methods for indirectly evaluating plastic fluidity from a fluctuating state of a soil pressure gauge, and do not directly evaluate.

特許文献6は、チャンバーに設置した回転体のトルクから塑性流動性を定量的に評価する方法であるが、特許文献2および特許文献3同様、特殊な回転装置を用いた評価方法であるため、装置の開発・設置費用や、故障発生のおそれがある。 Patent Document 6 is a method of quantitatively evaluating plastic fluidity from the torque of a rotating body installed in a chamber, but like Patent Documents 2 and 3, it is an evaluation method using a special rotating device. There is a risk of equipment development / installation costs and failure.

特許文献7は、粒子法解析(MPS解析)によりチャンバー内の撹拌流動状態を推定する方法である。ただし、土の塑性流動性(塑性粘度、降伏値等)をパラメータとして仮定する必要があるため、適用方法に課題がある。 Patent Document 7 is a method of estimating a stirring flow state in a chamber by particle method analysis (MPS analysis). However, since it is necessary to assume the plastic fluidity of soil (plastic viscosity, yield value, etc.) as parameters, there is a problem in the application method.

これらの技術は塑性流動性を評価するまでの技術であり、その評価結果に基づいた施工管理方法(例えば加泥材の添加方法)については言及されていない。 These techniques are techniques up to the evaluation of plastic fluidity, and the construction management method (for example, the method of adding mud material) based on the evaluation result is not mentioned.

特開2003−97181号公報Japanese Unexamined Patent Publication No. 2003-97181 特開2005−90174号公報Japanese Unexamined Patent Publication No. 2005-90174 特開2007−191878号公報JP-A-2007-191878 特開2014−9545号公報Japanese Unexamined Patent Publication No. 2014-9545

ところで、従来の現場では、排土されてきた掘削土の塑性流動性を目視や触診で確認しながら、チャンバーに対する加泥材の注入位置や注入流量の調整を行っている。なお、加泥材の注入位置については、カッターに取り付けられている複数の注入口から選択している。 By the way, in the conventional field, the injection position and the injection flow rate of the mud material are adjusted to the chamber while visually and palpating the plastic fluidity of the excavated soil that has been discharged. The injection position of the mud material is selected from a plurality of injection ports attached to the cutter.

チャンバーに注入した加泥材は、これまでチャンバー内で一様に拡散していると考えられてきた。しかし、本発明者がチャンバー内に加泥材を注入した状況を模擬した可視化実験を行ったところ、図5に示すように、加泥材は注入した位置の同心円上のみ拡散し、特に中間部は模擬泥土と供回りしているだけであまり拡散が進まないことがわかった。 It has been thought that the mud material injected into the chamber is uniformly diffused in the chamber. However, when the present inventor conducted a visualization experiment simulating the situation where the mud material was injected into the chamber, as shown in FIG. 5, the mud material diffused only on the concentric circles at the injection position, especially in the middle portion. It was found that the diffusion did not progress so much just by accommodating with the simulated mud.

以上の状況を鑑み、本発明者は、実工事で注入位置と注入量を変えた場合の加泥材の拡散状況がある程度予測できれば、加泥材の注入方法の合理化が図れると考え、上記の特許文献7にも記載されている粒子法解析を利用した施工管理方法(加泥材の注入方法)を検討した。しかし、現在のところ粒子法解析は計算に膨大な時間が必要であり、刻々と状況が変化する現場で解析している時間的な余裕はない。そこで、粒子法解析による予測結果を現場管理に利用する以下の本発明を考案した。 In view of the above situation, the present inventor considers that the method of injecting the mud material can be rationalized if the diffusion state of the mud material can be predicted to some extent when the injection position and the injection amount are changed in the actual construction. A construction management method (injection method of mud material) using the particle method analysis described in Patent Document 7 was examined. However, at present, particle method analysis requires a huge amount of time for calculation, and there is not enough time to analyze in the field where the situation changes from moment to moment. Therefore, the following invention has been devised in which the prediction result by the particle method analysis is used for on-site management.

本発明は、上記に鑑みてなされたものであって、チャンバー内掘削土に対する加泥材の注入方法の合理化を図ることができる土圧式シールド工法の施工管理方法、施工管理装置および土圧式シールド掘削機を提供することを目的とする。 The present invention has been made in view of the above, and is a construction management method, a construction management device, and a soil pressure shield excavation of a soil pressure shield method capable of rationalizing a method of injecting a mud material into the excavated soil in a chamber. The purpose is to provide an opportunity.

上記した課題を解決し、目的を達成するために、本発明に係る土圧式シールド工法の施工管理方法は、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理方法であって、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定ステップと、掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価ステップと、推定ステップにより推定した推定結果の中から、評価ステップにより評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入ステップとを備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the construction management method of the earth pressure type shield method according to the present invention is injected into the excavated soil in the chamber by a stirring member provided in the chamber. It is a construction management method of the earth pressure type shield method that performs excavation while stabilizing the face by stirring the mud material to give plastic fluidity to the excavated soil and applying the soil pressure of this excavated soil to the face. Before excavation, a parameter study by particle method analysis with the injection condition of mud material as a parameter is performed in advance, and an estimation step for estimating the plastic flow state of the excavated soil in the chamber for each combination of parameters and excavation. From the evaluation step for evaluating the plastic flow state of the excavated soil in the chamber and the estimation result estimated by the estimation step, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation step was selected and selected. It is characterized by comprising an injection step of injecting mud material into the excavated soil in the chamber under injection conditions.

また、本発明に係る他の土圧式シールド工法の施工管理方法は、上述した発明において、推定ステップの粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであることを特徴とする。 Further, in the construction management method of the other soil pressure type shield method according to the present invention, in the above-described invention, the particle method analysis of the estimation step expresses the excavated soil as a collection of particles and calculates the movement of the particles. While being the subject of analysis by the particle method to be analyzed, the shape inside the chamber that agitates the excavated soil is approximated by a polyhedron, and a repulsive force is generated so that the particles do not pass through the surface forming the polyhedron. An analysis model was created in which the stirring member was represented by a movable moving wall while forming a rigid body with a wall in which the force was distributed, and the plastic flow state of the excavated soil into which the mud-filled material was injected in the created analysis model. It is characterized in that it is for flow analysis.

また、本発明に係る土圧式シールド工法の施工管理装置は、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理装置であって、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定手段と、掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価手段と、推定手段により推定した推定結果の中から、評価手段により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入手段とを備えることを特徴とする。 Further, in the construction management device of the earth pressure type shield method according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by a stirring member provided in the chamber, and the excavated soil is plastic. It is a construction management device of the earth pressure type shield method that imparts fluidity and applies the soil pressure of this excavated soil to the face to stabilize the face and perform excavation, and the conditions for injecting mud material before excavation. An estimation means for estimating the plastic flow state of the excavated soil in the chamber for each combination of parameters by performing a parameter study by particle method analysis using the above as a parameter, and the plastic flow state of the excavated soil in the chamber during excavation. From the evaluation means for evaluating the above and the estimation result estimated by the estimation means, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation means is selected, and the mud material is used in the chamber under the selected injection condition. It is characterized by being provided with an injection means for injecting into excavated soil.

また、本発明に係る他の土圧式シールド工法の施工管理装置は、上述した発明において、推定手段の粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであることを特徴とする。 Further, in the construction management device of the other soil pressure type shield method according to the present invention, in the above-described invention, the particle method analysis of the estimation means expresses the excavated soil as a collection of particles and calculates the movement of the particles. While being the subject of analysis by the particle method to be analyzed, the shape inside the chamber that agitates the excavated soil is approximated by a polyhedron, and a repulsive force is generated so that the particles do not pass through the surface forming the polyhedron. An analysis model was created in which the stirring member was represented by a movable moving wall while forming a rigid body with a wall in which the force was distributed, and the plastic flow state of the excavated soil into which the mud-filled material was injected in the created analysis model. It is characterized in that it is for flow analysis.

また、本発明に係る土圧式シールド掘削機は、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド掘削機であって、上述した土圧式シールド工法の施工管理装置を備えることを特徴とする。 Further, in the earth pressure type shield excavator according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by a stirring member provided in the chamber to give plastic fluidity to the excavated soil. It is a soil pressure type shield excavator that performs excavation while stabilizing the face by applying the soil pressure of the excavated soil to the face, and is characterized by being provided with the construction management device of the above-mentioned soil pressure type shield method. ..

本発明に係る土圧式シールド工法の施工管理方法によれば、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理方法であって、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定ステップと、掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価ステップと、推定ステップにより推定した推定結果の中から、評価ステップにより評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入ステップとを備えるので、チャンバー内の掘削土に対する加泥材の注入条件(注入位置、注入流量など)の適正化、合理化を図ることができるという効果を奏する。 According to the construction management method of the earth pressure type shield method according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by the stirring member provided in the chamber, and the excavated soil is plasticized. It is a construction management method of the earth pressure type shield method that imparts fluidity and applies the soil pressure of this excavated soil to the face to stabilize the face and perform excavation, and the conditions for injecting mud material before excavation. An estimation step of estimating the plastic flow state of the excavated soil in the chamber for each combination of parameters by performing a parameter study by particle method analysis using the above as a parameter, and the plastic flow state of the excavated soil in the chamber at the time of excavation. From the evaluation step for evaluating the above and the estimation result estimated by the estimation step, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation step is selected, and the mud is used in the chamber under the selected injection condition. Since it is provided with an injection step for injecting into the excavated soil, it is possible to optimize and rationalize the injection conditions (injection position, injection flow rate, etc.) of the mud material into the excavated soil in the chamber.

また、本発明に係る他の土圧式シールド工法の施工管理方法によれば、推定ステップの粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであるので、解析対象が掘削土のような高粘度で大変形する流動体でも安定的に解析することができ、チャンバー内全体における掘削土の塑性流動状態を安定的に評価することができるという効果を奏する。 Further, according to the construction management method of another soil pressure type shield method according to the present invention, the particle method analysis of the estimation step expresses the excavated soil as a collection of particles and analyzes the movement of the particles by calculation. While being the subject of analysis of the method, the shape inside the chamber that stirs the excavated soil is approximated by a polyhedron, and a virtual repulsive force that generates a repulsive force so that the particles do not pass through the surface forming the polyhedron is distributed. An analysis model was created in which the stirring member was represented by a movable wall, and the plastic flow state of the excavated soil into which the mud-filled material was injected in the created analysis model was analyzed. Therefore, it is possible to stably analyze even a fluid with high viscosity and large deformation such as excavated soil, and to stably evaluate the plastic flow state of the excavated soil in the entire chamber. It has the effect of being able to do it.

また、本発明に係る土圧式シールド工法の施工管理装置によれば、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理装置であって、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定手段と、掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価手段と、推定手段により推定した推定結果の中から、評価手段により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入手段とを備えるので、チャンバー内の掘削土に対する加泥材の注入条件(注入位置、注入流量など)の適正化、合理化を図ることができるという効果を奏する。 Further, according to the construction management device of the earth pressure type shield method according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by the agitating member provided in the chamber, and the excavated soil is agitated. It is a construction management device of the earth pressure type shield method that performs excavation while stabilizing the face by imparting plastic fluidity to the face and applying the soil pressure of this excavated soil to the face. An estimation means for estimating the plastic flow state of the excavated soil in the chamber for each combination of parameters by performing a parameter study by particle method analysis using the injection conditions as parameters, and the plasticity of the excavated soil in the chamber at the time of excavation. From the evaluation means for evaluating the flow state and the estimation result estimated by the estimation means, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation means is selected, and the mud material is placed in the chamber under the selected injection condition. Since the injection means for injecting into the excavated soil is provided, it is possible to optimize and rationalize the injection conditions (injection position, injection flow rate, etc.) of the mudguard material into the excavated soil in the chamber.

また、本発明に係る他の土圧式シールド工法の施工管理装置によれば、推定手段の粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであるので、解析対象が掘削土のような高粘度で大変形する流動体でも安定的に解析することができ、チャンバー内全体における掘削土の塑性流動状態を安定的に評価することができるという効果を奏する。 Further, according to the construction management device of another soil pressure type shield method according to the present invention, the particle method analysis of the estimation means expresses the excavated soil as a collection of particles and analyzes the movement of the particles by calculation. While being the subject of analysis of the method, the shape inside the chamber that agitates the excavated soil is approximated by a polyhedron, and a virtual repulsive force that generates a repulsive force so that the particles do not pass through the surface forming the polyhedron is distributed. An analysis model was created in which the stirring member was represented by a movable wall, and the plastic flow state of the excavated soil into which the mud was injected was analyzed. Therefore, it is possible to stably analyze even a fluid whose analysis target is highly viscous and greatly deformed, such as excavated soil, and to stably evaluate the plastic flow state of the excavated soil in the entire chamber. It has the effect of being able to do it.

また、本発明に係る土圧式シールド掘削機によれば、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド掘削機であって、上述した土圧式シールド工法の施工管理装置を備えるので、チャンバー内の掘削土に対する加泥材の注入条件(注入位置、注入流量など)の適正化、合理化を図る土圧式シールド掘削機を提供することができるという効果を奏する。 Further, according to the earth pressure type shield excavator according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by a stirring member provided in the chamber and plastically flowed into the excavated soil. It is a soil pressure type shield excavator that digs while stabilizing the face by imparting properties and applying the soil pressure of this excavated soil to the face, and since it is equipped with the construction management device of the above-mentioned soil pressure type shield method, it is a chamber. It has the effect of being able to provide a soil pressure type shield excavator that optimizes and rationalizes the injection conditions (injection position, injection flow rate, etc.) of the mud material into the excavated soil inside.

図1は、本発明に係る土圧式シールド工法の施工管理方法の実施の形態を示す概略フローチャート図である。FIG. 1 is a schematic flowchart showing an embodiment of a construction management method of the earth pressure shield method according to the present invention. 図2は、パラメータスタディの例であり、(1)は加泥材のパラメータ設定例、(2)は(1)で設定したパラメータに対する解析結果例である。FIG. 2 shows an example of a parameter study, (1) is an example of setting parameters of a mud material, and (2) is an example of analysis results for the parameters set in (1). 図3は、塑性流動性の可視化表示例である。FIG. 3 is an example of a visualization display of plastic fluidity. 図4は、本発明に係る土圧式シールド工法の施工管理装置の実施の形態を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing an embodiment of a construction management device of the earth pressure shield method according to the present invention. 図5は、従来の加泥材注入模擬実験における加泥材の拡散状況を示すチャンバー内断面図であり、上図はカッタースポークの最外周から注入した場合、下図は中間部から注入した場合である。FIG. 5 is a cross-sectional view inside the chamber showing the diffusion state of the mud material in the conventional mud material injection simulation experiment. The upper figure is the case where the material is injected from the outermost circumference of the cutter spoke, and the lower figure is the case where the material is injected from the middle part. is there.

以下に、本発明に係る土圧式シールド工法の施工管理方法、施工管理装置および土圧式シールド掘削機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the construction management method, the construction management device, and the embodiment of the soil pressure shield excavator according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.

[土圧式シールド工法の施工管理方法]
まず、本発明に係る土圧式シールド工法の施工管理方法について説明する。
[Construction management method of earth pressure shield method]
First, a construction management method of the earth pressure shield method according to the present invention will be described.

本発明に係る土圧式シールド工法の施工管理方法は、チャンバー内に設けられた攪拌部材により、チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理方法であり、推定ステップS1と評価ステップS2と注入ステップS3とを備える。 In the construction management method of the earth pressure type shield method according to the present invention, the excavated soil in the chamber and the mud material injected therein are agitated by a stirring member provided in the chamber to give the excavated soil plastic fluidity. It is a construction management method of the earth pressure type shield method in which the excavated soil is applied and the earth pressure of the excavated soil is applied to the face to stabilize the face while excavating, and includes an estimation step S1, an evaluation step S2, and an injection step S3.

ここで、チャンバー内に設けられた攪拌部材は、チャンバー内の掘削土とここに注入される加泥材を攪拌する機能を有する部材であればいかなる部材であってもよく、例えばカッタースポーク側に設置された攪拌翼、カッタースポークとは独立して回転駆動するアジテータ、カッタースポークそのもの、チャンバー隔壁に固定されている固定翼などを例示することができる。したがって、本発明はこのような攪拌部材を備えた土圧式シールド掘削機に適用され得る。 Here, the stirring member provided in the chamber may be any member as long as it has a function of stirring the excavated soil in the chamber and the mud material injected therein, for example, on the cutter spoke side. Examples thereof include an installed stirring blade, an agitator that rotates and drives independently of the cutter spoke, the cutter spoke itself, and a fixed blade fixed to the chamber partition wall. Therefore, the present invention can be applied to a soil pressure type shield excavator provided with such a stirring member.

図1に示すように、推定ステップS1は、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、チャンバー内における掘削土の塑性流動状態をパラメータの組み合わせごとに推定するものである。 As shown in FIG. 1, in the estimation step S1, a parameter study by particle method analysis using the injection condition of the mud material as a parameter is performed in advance before excavation, and the plastic flow state of the excavated soil in the chamber is combined with the parameters. It is estimated for each.

要するに、粒子法解析は計算に膨大な時間を要するため、掘進の前に粒子法解析により、各現場のシールド掘削機の形状、泥土の粘性条件、加泥材の注入位置、注入流量などの注入条件をいくつか想定したパラメータスタディを実施しておき、その結果を把握しておく。 In short, since the particle method analysis requires a huge amount of time for calculation, the particle method analysis is used before excavation to inject the shape of the shield excavator at each site, the viscosity condition of the mud, the injection position of the mud material, the injection flow rate, etc. Perform a parameter study assuming some conditions and grasp the results.

ここで、推定ステップS1の粒子法解析は、例えば上記の特許文献7に記載の方法を用いることができる。この場合、掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象としてモデル化する。このとき掘削土を、適切な方法で粘性パラメータが付与された流動体でモデル化してもよい。この場合、例えば流動体の物性が降伏値と塑性粘度で記述されるビンガム流体でモデル化してもよい。なお、このモデル化においては、流動解析の高速化を図るため、流動時には粘塑性流体となり、不動時には高粘性流体となる等価線形近似でビンガム流体を扱うようにしてもよい。また、ビンガム流体に限らず、例えば、せん断速度と粘度の関係式を与えてモデル化した流動体や、せん断速度とせん断応力の関係を与えてモデル化した流動体などを解析対象の掘削土としてもよい。 Here, for the particle method analysis in the estimation step S1, for example, the method described in Patent Document 7 can be used. In this case, the excavated soil is expressed as a collection of particles, and the movement of the particles is modeled as an analysis target of the particle method that is analyzed by calculation. At this time, the excavated soil may be modeled by a fluid body to which the viscosity parameter is given by an appropriate method. In this case, for example, the physical properties of the fluid may be modeled by a Bingham fluid described by the yield value and the plastic viscosity. In this modeling, in order to speed up the flow analysis, the Bingham fluid may be treated by an equivalent linear approximation that becomes a viscous plastic fluid when flowing and a highly viscous fluid when immobile. Further, not limited to the Bingham fluid, for example, a fluid modeled by giving a relational expression between a shear rate and a viscosity, a fluid body modeled by giving a relational relationship between a shear rate and a shear stress, etc. are used as excavated soil to be analyzed. May be good.

一方、掘削土を攪拌するチャンバー内の形状をポリゴン(多面体)で近似して、ポリゴンをなす面を、粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とする解析モデルを作成する。ここで、チャンバーを形成する外壁の部分は固定ポリゴン壁で、攪拌部材は移動ポリゴン壁(移動壁)で表現する。この移動ポリゴン壁は、回転軸の周りに回転移動可能である。そして、作成した解析モデルにおける加泥材が注入された掘削土の塑性流動状態をコンピュータを用いて流動解析する。 On the other hand, the shape inside the chamber that agitates the excavated soil is approximated by polygons (polyhedrons), and the faces forming the polygons are made rigid bodies by walls that distribute virtual repulsive forces that generate repulsive forces so that particles do not pass through. Create an analytical model. Here, the portion of the outer wall forming the chamber is represented by a fixed polygon wall, and the stirring member is represented by a moving polygon wall (moving wall). This moving polygon wall is rotatable around the axis of rotation. Then, the plastic flow state of the excavated soil into which the mud material is injected in the created analysis model is flow-analyzed using a computer.

図2(1)は、上記の推定ステップS1のパラメータスタディにおける加泥材のパラメータ設定例、(2)は設定例のパラメータに対する解析結果例である。円盤状のチャンバー外周部、中間部、中央部からそれぞれ300L/minで加泥材を注入した場合の注入開始120秒後すなわちカッター1回転後の状況を示している。また、この図においては、泥土要素は消去し、加泥材要素のみを表示している。 FIG. 2 (1) is an example of parameter setting of the mud material in the parameter study of the above estimation step S1, and FIG. 2 (2) is an example of analysis results for the parameters of the setting example. The situation is shown 120 seconds after the start of injection, that is, after one rotation of the cutter, when the mud material is injected at 300 L / min from the outer peripheral portion, the intermediate portion, and the central portion of the disk-shaped chamber. Further, in this figure, the mud element is erased and only the mud element is displayed.

評価ステップS2は、掘進時にチャンバー内における掘削土の塑性流動状態を評価するものである。評価する掘削土の塑性流動性は、必要に応じてコンピュータのディスプレイ等に可視化表示することが望ましい。このようにすれば、利用者はカッター回転時にディスプレイの表示内容を監視することでチャンバー内の掘削土の塑性流動性をリアルタイムに精度良く連続的に把握することができる。 The evaluation step S2 evaluates the plastic flow state of the excavated soil in the chamber at the time of excavation. It is desirable to visualize and display the plastic fluidity of the excavated soil to be evaluated on a computer display or the like as necessary. In this way, the user can accurately and continuously grasp the plastic fluidity of the excavated soil in the chamber in real time by monitoring the display contents when the cutter is rotated.

注入ステップS3は、上記の推定ステップS2により推定した推定結果の中から、評価ステップS2により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材をチャンバー内の掘削土に注入するものである。 In the injection step S3, a predetermined injection condition suitable for the plastic flow state evaluated in the evaluation step S2 is selected from the estimation results estimated in the above estimation step S2, and the mud material is placed in the chamber under the selected injection condition. It is injected into excavated soil.

本実施の形態では、評価ステップS2により例えば図3に示すような塑性流動状態の悪い部分(硬すぎ、軟らかすぎ)が現れた場合、上記のパラメータスタディの結果の中からその状況に適した注入条件(注入位置、注入流量)を選択して実行する。塑性流動状態の硬軟度合の評価については、例えば上記の特許文献4、5に記載の評価方法を適用することができる。 In the present embodiment, when a portion having a poor plastic flow state (too hard or too soft) appears in the evaluation step S2, for example, as shown in FIG. 3, injection suitable for the situation is made from the results of the above parameter study. Select and execute the conditions (injection position, injection flow rate). For the evaluation of the degree of hardness and softness in the plastic flow state, for example, the evaluation methods described in Patent Documents 4 and 5 described above can be applied.

加泥材の注入後、図3に示すような可視化表示された画面で塑性流動状態を評価しながら、加泥材の注入条件を再度選択して実行する(フィードバック処理)。土圧式シールド掘削機の掘進中、この処理を繰り返すことによって、チャンバー内の掘削土の塑性流動状態を良好に保持できるようになる。 After the injection of the mud material, the injection conditions of the mud material are selected and executed again while evaluating the plastic flow state on the visualized screen as shown in FIG. 3 (feedback processing). By repeating this process during excavation of the earth pressure type shield excavator, the plastic flow state of the excavated soil in the chamber can be well maintained.

従来は、経験的に加泥材の注入位置、注入量を設定し、排土された土の塑性流動状態を観察し、微調整を繰り返して施工管理が行われてきた。そのため、塑性流動性の急激な変化に対して対応が遅れるケースも散見されたが、上記の特許文献4、5等に記載の塑性流動性を可視化表示する技術を適用することで素早い対応が取れるようになった。 Conventionally, construction management has been carried out by empirically setting the injection position and injection amount of the mud material, observing the plastic flow state of the discharged soil, and repeating fine adjustment. Therefore, there are some cases where the response to a sudden change in plastic fluidity is delayed, but a quick response can be taken by applying the technology for visualizing and displaying the plastic fluidity described in Patent Documents 4 and 5 above. It became so.

本実施の形態によれば、掘削前に推定ステップS2により予め推定した推定結果の中から、掘削時に評価ステップS2により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材をチャンバー内の掘削土に注入するという簡便な手順により、従来よりも確実で素早い対応が可能となり、チャンバー内掘削土に対する加泥材の注入条件(注入位置、注入流量)の適正化、合理化を図ることができる。なお、不必要な部分に加泥材を多く投入すると、残土を産業廃棄物として排出しなければならなくなるが、本実施の形態によれば、不必要な部分に加泥材を投入しないようにできるので、加泥材使用量の削減につながり、コストダウンが図れる。 According to the present embodiment, a predetermined injection condition suitable for the plastic flow state evaluated in the evaluation step S2 at the time of excavation is selected from the estimation results estimated in advance in the estimation step S2 before excavation, and the selected injection condition is used. The simple procedure of injecting the mud material into the excavated soil in the chamber enables a more reliable and quick response than before, and optimizes the injection conditions (injection position, injection flow rate) of the mud material into the excavated soil in the chamber. , Can be rationalized. If a large amount of mud material is added to unnecessary parts, the residual soil must be discharged as industrial waste. However, according to this embodiment, the mud material should not be added to unnecessary parts. Since it can be done, it leads to reduction of the amount of mud material used and cost reduction can be achieved.

[土圧式シールド工法の施工管理装置]
次に、本発明に係る土圧式シールド工法の施工管理装置について説明する。
[Construction management device for earth pressure shield method]
Next, the construction management device of the earth pressure shield method according to the present invention will be described.

図4に示すように、本発明に係る土圧式シールド工法の施工管理装置10は、上記の本発明に係る土圧式シールド工法の施工管理方法を装置として具現化したものであり、推定手段12と、評価手段14と、注入手段16とを備える。 As shown in FIG. 4, the construction management device 10 of the earth pressure shield method according to the present invention embodies the construction management method of the earth pressure shield method according to the present invention as an apparatus, and is referred to as the estimation means 12. The evaluation means 14 and the injection means 16 are provided.

推定手段12は、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、チャンバー内における掘削土の塑性流動状態をパラメータの組み合わせごとに推定するものであり、CPUを有するコンピュータ、推定結果を可視化表示可能なディスプレイなどにより構成することができる。推定手段12は、上記の推定ステップS1と同様の処理を行えるようになっている。 The estimation means 12 performs a parameter study by particle method analysis using the injection condition of the mud material as a parameter in advance before excavation, and estimates the plastic flow state of the excavated soil in the chamber for each combination of parameters. , A computer having a CPU, a display capable of visualizing and displaying the estimation result, and the like. The estimation means 12 can perform the same processing as the estimation step S1 described above.

評価手段14は、掘進時にチャンバー内における掘削土の塑性流動状態を評価するものであり、CPUを有するコンピュータ、評価結果を可視化表示可能なディスプレイなどにより構成することができる。評価手段14は、上記の評価ステップS2と同様の処理を行えるようになっている。 The evaluation means 14 evaluates the plastic flow state of the excavated soil in the chamber at the time of excavation, and can be configured by a computer having a CPU, a display capable of visualizing and displaying the evaluation result, and the like. The evaluation means 14 can perform the same processing as the evaluation step S2 described above.

注入手段16は、推定手段12により推定した推定結果の中から、評価手段14により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材をチャンバー内の掘削土に注入するものであり、CPUを有するコンピュータ、所定の位置から加泥材を所定の流量で注入可能な装置により構成することができる。注入手段16は、上記の注入ステップS3と同様の処理を行えるようになっている。 The injection means 16 selects a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation means 14 from the estimation results estimated by the estimation means 12, and excavates the mud material in the chamber under the selected injection condition. It can be configured by a computer having a CPU and a device capable of injecting mud material at a predetermined flow rate from a predetermined position. The injection means 16 can perform the same processing as the above-mentioned injection step S3.

本実施の形態によれば、注入手段16が掘削前に推定手段12により予め推定した推定結果の中から、掘削時に評価手段14により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材をチャンバー内の掘削土に注入することにより、従来よりも確実で素早い対応が可能となり、チャンバー内掘削土に対する加泥材の注入条件(注入位置、注入流量)の適正化、合理化を図ることができる。 According to the present embodiment, the injection means 16 selects and selects a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation means 14 at the time of excavation from the estimation results estimated in advance by the estimation means 12 before excavation. By injecting the mud material into the excavated soil in the chamber under the same injection conditions, it is possible to respond more reliably and quickly than before, and the appropriate injection conditions (injection position, injection flow rate) of the mud material into the excavated soil in the chamber. It can be rationalized and rationalized.

[土圧式シールド掘削機]
次に、本発明に係る土圧式シールド掘削機について説明する。
[Soil pressure type shield excavator]
Next, the soil pressure type shield excavator according to the present invention will be described.

本発明に係る土圧式シールド掘削機は、チャンバー内に設けられた攪拌部材により、チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド掘削機であって、上記の本発明に係る土圧式シールド工法の施工管理装置10を備えたものである。したがって、本実施の形態によれば、上記の施工管理装置10で説明したものと同様の作用効果を奏することができる。 In the soil pressure type shield excavator according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by a stirring member provided in the chamber to impart plastic fluidity to the excavated soil. It is a soil pressure type shield excavator that excavates while stabilizing the face by applying the soil pressure of the excavated soil to the face, and is equipped with the construction management device 10 of the soil pressure type shield method according to the present invention. is there. Therefore, according to the present embodiment, it is possible to obtain the same effects as those described in the above-mentioned construction management device 10.

以上説明したように、本発明に係る土圧式シールド工法の施工管理方法によれば、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理方法であって、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定ステップと、掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価ステップと、推定ステップにより推定した推定結果の中から、評価ステップにより評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入ステップとを備えるので、チャンバー内の掘削土に対する加泥材の注入条件(注入位置、注入流量など)の適正化、合理化を図ることができる。 As described above, according to the construction management method of the earth pressure type shield method according to the present invention, the excavated soil in the chamber and the mud material injected therein are agitated by the stirring member provided in the chamber. It is a construction management method of the earth pressure type shield method that imparts plastic fluidity to the excavated soil of the lever and applies the soil pressure of this excavated soil to the face to stabilize the face and perform excavation. An estimation step of estimating the plastic flow state of the excavated soil in the chamber for each combination of parameters by performing a parameter study by particle method analysis using the injection condition of the mud material as a parameter, and the above-mentioned in the chamber at the time of excavation. From the evaluation step for evaluating the plastic flow state of the excavated soil and the estimation result estimated by the estimation step, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation step is selected, and the mud material is selected under the selected injection condition. Is provided with an injection step for injecting the soil into the excavated soil in the chamber, so that the conditions for injecting the mud material (injection position, injection flow rate, etc.) into the excavated soil in the chamber can be optimized and rationalized.

また、本発明に係る他の土圧式シールド工法の施工管理方法によれば、推定ステップの粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであるので、解析対象が掘削土のような高粘度で大変形する流動体でも安定的に解析することができ、チャンバー内全体における掘削土の塑性流動状態を安定的に評価することができる。 Further, according to the construction management method of another soil pressure type shield method according to the present invention, the particle method analysis of the estimation step expresses the excavated soil as a collection of particles and analyzes the movement of the particles by calculation. While being the subject of analysis of the method, the shape inside the chamber that stirs the excavated soil is approximated by a polyhedron, and a virtual repulsive force that generates a repulsive force so that the particles do not pass through the surface forming the polyhedron is distributed. An analysis model was created in which the stirring member was represented by a movable wall, and the plastic flow state of the excavated soil into which the mud-filled material was injected in the created analysis model was analyzed. Therefore, it is possible to stably analyze even a fluid with high viscosity and large deformation such as excavated soil, and to stably evaluate the plastic flow state of the excavated soil in the entire chamber. it can.

また、本発明に係る土圧式シールド工法の施工管理装置によれば、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理装置であって、掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定手段と、掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価手段と、推定手段により推定した推定結果の中から、評価手段により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入手段とを備えるので、チャンバー内の掘削土に対する加泥材の注入条件(注入位置、注入流量など)の適正化、合理化を図ることができる。 Further, according to the construction management device of the earth pressure type shield method according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by the stirring member provided in the chamber, and the excavated soil is agitated. It is a construction management device of the earth pressure type shield method that performs excavation while stabilizing the face by imparting plastic fluidity to the face and applying the soil pressure of this excavated soil to the face. An estimation means for estimating the plastic flow state of the excavated soil in the chamber for each combination of parameters by performing a parameter study by particle method analysis using the injection conditions as parameters, and the plasticity of the excavated soil in the chamber at the time of excavation. From the evaluation means for evaluating the flow state and the estimation result estimated by the estimation means, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation means is selected, and the mud material is placed in the chamber under the selected injection condition. Since the injection means for injecting into the excavated soil is provided, it is possible to optimize and rationalize the injection conditions (injection position, injection flow rate, etc.) of the mudguard material into the excavated soil in the chamber.

また、本発明に係る他の土圧式シールド工法の施工管理装置によれば、推定手段の粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであるので、解析対象が掘削土のような高粘度で大変形する流動体でも安定的に解析することができ、チャンバー内全体における掘削土の塑性流動状態を安定的に評価することができる。 Further, according to the construction management device of another soil pressure type shield method according to the present invention, the particle method analysis of the estimation means expresses the excavated soil as a collection of particles and analyzes the movement of the particles by calculation. While being the subject of analysis of the method, the shape inside the chamber that agitates the excavated soil is approximated by a polyhedron, and a virtual repulsive force that generates a repulsive force so that the particles do not pass through the surface forming the polyhedron is distributed. An analysis model was created in which the stirring member was represented by a movable wall, and the plastic flow state of the excavated soil into which the mud was injected was analyzed. Therefore, it is possible to stably analyze even a fluid whose analysis target is highly viscous and greatly deformed, such as excavated soil, and to stably evaluate the plastic flow state of the excavated soil in the entire chamber. it can.

また、本発明に係る土圧式シールド掘削機によれば、チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド掘削機であって、上述した土圧式シールド工法の施工管理装置を備えるので、チャンバー内の掘削土に対する加泥材の注入条件(注入位置、注入流量など)の適正化、合理化を図る土圧式シールド掘削機を提供することができる。 Further, according to the earth pressure type shield excavator according to the present invention, the excavated soil in the chamber and the mud-filled material injected therein are agitated by a stirring member provided in the chamber and plastically flowed into the excavated soil. It is a soil pressure type shield excavator that performs excavation while stabilizing the face by imparting properties and applying the soil pressure of this excavated soil to the face, and since it is equipped with the construction management device of the soil pressure type shield method described above, it is a chamber. It is possible to provide a soil pressure type shield excavator for optimizing and rationalizing the injection conditions (injection position, injection flow rate, etc.) of the mud material into the excavated soil inside.

以上のように、本発明に係る土圧式シールド工法の施工管理方法、施工管理装置および土圧式シールド掘削機は、攪拌部材により、チャンバー内の掘削土を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法に有用であり、特に、チャンバー内掘削土に対する加泥材の注入方法の合理化を図るのに適している。 As described above, the construction management method, the construction management device, and the soil pressure type shield excavator of the earth pressure type shield method according to the present invention agitate the excavated soil in the chamber by the stirring member to give the excavated soil plastic fluidity. It is useful for the earth pressure type shield method that performs excavation while stabilizing the face by applying the soil pressure of this excavated soil to the face, and in particular, it aims to rationalize the method of injecting mud material into the excavated soil in the chamber. Suitable for.

10 土圧式シールド工法の施工管理装置
12 推定手段
14 評価手段
16 注入手段
10 Construction management device for earth pressure shield method 12 Estimating means 14 Evaluation means 16 Injection means

Claims (5)

チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理方法であって、
掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定ステップと、
掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価ステップと、
推定ステップにより推定した推定結果の中から、評価ステップにより評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入ステップとを備えることを特徴とする土圧式シールド工法の施工管理方法。
The excavated soil in the chamber and the mud material injected therein are agitated by a stirring member provided in the chamber to impart plastic fluidity to the excavated soil, and the earth pressure of the excavated soil acts on the face. It is a construction management method of the earth pressure type shield method that excavates while stabilizing the face by making it.
Prior to excavation, a parameter study is performed by particle method analysis using the injection conditions of the mud material as parameters, and the plastic flow state of the excavated soil in the chamber is estimated for each combination of parameters.
An evaluation step for evaluating the plastic flow state of the excavated soil in the chamber during excavation, and
From the estimation results estimated by the estimation step, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation step is selected, and the mud material is injected into the excavated soil in the chamber under the selected injection condition. A construction management method of the earth pressure shield method, which is characterized by being provided with.
推定ステップの粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであることを特徴とする請求項1に記載の土圧式シールド工法の施工管理方法。 In the particle method analysis of the estimation step, the excavated soil is expressed as a collection of particles, and the movement of the particles is analyzed by the particle method, while the shape inside the chamber for stirring the excavated soil is analyzed. Approximately with a polyhedron, the surface forming this polyhedron is made into a rigid body by a wall in which a virtual repulsive force that generates a repulsive force is generated so that the particles do not pass, and the stirring member is represented by a movable moving wall. The soil pressure type shield method according to claim 1, wherein the analysis model is created, and the plastic flow state of the excavated soil into which the mud-filled material is injected is analyzed. Construction management method. チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド工法の施工管理装置であって、
掘進の前に予め加泥材の注入条件をパラメータとする粒子法解析によるパラメータスタディを行って、前記チャンバー内における前記掘削土の塑性流動状態をパラメータの組み合わせごとに推定する推定手段と、
掘進時に前記チャンバー内における前記掘削土の塑性流動状態を評価する評価手段と、
推定手段により推定した推定結果の中から、評価手段により評価した塑性流動状態に適する所定の注入条件を選択し、選択した注入条件で加泥材を前記チャンバー内の前記掘削土に注入する注入手段とを備えることを特徴とする土圧式シールド工法の施工管理装置。
The excavated soil in the chamber and the mud material injected therein are agitated by a stirring member provided in the chamber to impart plastic fluidity to the excavated soil, and the earth pressure of the excavated soil acts on the face. It is a construction management device of the earth pressure type shield method that excavates while stabilizing the face by making it.
An estimation means for estimating the plastic flow state of the excavated soil in the chamber for each combination of parameters by performing a parameter study by particle method analysis using the injection condition of the mud material as a parameter before excavation.
An evaluation means for evaluating the plastic flow state of the excavated soil in the chamber during excavation, and
From the estimation results estimated by the estimation means, a predetermined injection condition suitable for the plastic flow state evaluated by the evaluation means is selected, and the mud material is injected into the excavated soil in the chamber under the selected injection condition. A construction management device for the earth pressure shield method, which is characterized by being equipped with.
推定手段の粒子法解析は、前記掘削土を粒子の集まりとして表現するとともに、この粒子の動きを計算によって解析する粒子法の解析対象とする一方、前記掘削土を攪拌する前記チャンバー内の形状を多面体で近似して、この多面体をなす面を、前記粒子が通過しないように斥力が生じる仮想的な反発力を分布させた壁による剛体とするとともに、前記攪拌部材を移動可能な移動壁で表現した解析モデルを作成し、作成した前記解析モデルにおける加泥材が注入された前記掘削土の塑性流動状態を流動解析するものであることを特徴とする請求項3に記載の土圧式シールド工法の施工管理装置。 In the particle method analysis of the estimation means, the excavated soil is expressed as a collection of particles, and the movement of the particles is analyzed by the particle method, while the shape inside the chamber for stirring the excavated soil is analyzed. Approximately with a polyhedron, the surface forming this polyhedron is made into a rigid body by a wall in which a virtual repulsive force that generates a repulsive force is generated so that the particles do not pass, and the stirring member is represented by a movable moving wall. The soil pressure type shield method according to claim 3, wherein the analysis model is created, and the plastic flow state of the excavated soil into which the mud-filled material is injected is analyzed. Construction management equipment. チャンバー内に設けられた攪拌部材により、前記チャンバー内の掘削土とここに注入される加泥材を攪拌してこの掘削土に塑性流動性を付与し、この掘削土の土圧を切羽に作用させることによって切羽を安定化しつつ掘進を行う土圧式シールド掘削機であって、
請求項3または4に記載の土圧式シールド工法の施工管理装置を備えることを特徴とする土圧式シールド掘削機。
The excavated soil in the chamber and the mud material injected therein are agitated by a stirring member provided in the chamber to impart plastic fluidity to the excavated soil, and the earth pressure of the excavated soil acts on the face. It is an earth pressure type shield excavator that excavates while stabilizing the face by letting it.
A soil pressure shield excavator comprising the construction management device of the soil pressure shield method according to claim 3 or 4.
JP2016211895A 2016-10-28 2016-10-28 Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator Active JP6773282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016211895A JP6773282B2 (en) 2016-10-28 2016-10-28 Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211895A JP6773282B2 (en) 2016-10-28 2016-10-28 Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator

Publications (2)

Publication Number Publication Date
JP2018071182A JP2018071182A (en) 2018-05-10
JP6773282B2 true JP6773282B2 (en) 2020-10-21

Family

ID=62113001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211895A Active JP6773282B2 (en) 2016-10-28 2016-10-28 Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator

Country Status (1)

Country Link
JP (1) JP6773282B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109098725B (en) * 2018-08-25 2020-05-19 浙江中铁工程装备有限公司 Rectangular shield constructs machine with prevent back of body native device
CN111681525A (en) * 2020-06-04 2020-09-18 同济大学 Device and method for testing loading of shield soil bin muck flowing and tunneling system
CN114320322B (en) * 2021-12-23 2023-07-21 中交第二航务工程局有限公司 Method for improving earth pressure balance shield residue soil of weathered granite stratum

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607889A (en) * 1984-11-29 1986-08-26 Daiho Construction Co., Ltd. Shield tunnel boring machine
JP4024504B2 (en) * 2001-09-21 2007-12-19 大豊建設株式会社 Method for measuring mud soil plastic fluidization and shield machine equipped with the plastic fluidization measuring device
JP4156480B2 (en) * 2003-09-19 2008-09-24 株式会社大林組 Measuring device for sediment flow in chamber
JP4770472B2 (en) * 2006-01-17 2011-09-14 株式会社大林組 Promotion management method of earth pressure type shield method
JP5967426B2 (en) * 2012-07-02 2016-08-10 清水建設株式会社 Plastic fluidity evaluation method for excavated soil in chamber and earth pressure shield excavator in earth pressure shield method

Also Published As

Publication number Publication date
JP2018071182A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
Tekeste et al. Discrete element modeling of cultivator sweep-to-soil interaction: Worn and hardened edges effects on soil-tool forces and soil flow
JP6905364B2 (en) Plastic fluidity evaluation method, evaluation device and soil pressure type shield excavator of excavated soil in the chamber in the earth pressure type shield method
JP6773282B2 (en) Construction management method of earth pressure shield method, construction management equipment and earth pressure shield excavator
Forsström et al. Calibration and validation of a large scale abrasive wear model by coupling DEM-FEM: Local failure prediction from abrasive wear of tipper bodies during unloading of granular material
JP6416496B2 (en) Method for measuring and evaluating the properties of excavated soil in the chamber used for earth pressure shield method, shield excavator and earth and sand plastic fluidity test equipment
Zhao et al. Computational modelling of the mechanised excavation of deep tunnels in weak rock
Shiau et al. Relating volume loss and greenfield settlement
Dang et al. Influence of muck properties and chamber design on pressure distribution in EPB pressure chambers–Insights from computational flow simulations
Liu et al. Fluid-driven fractures in granular materials
de Leeuw et al. Linking submarine channel–levee facies and architecture to flow structure of turbidity currents: insights from flume tank experiments
JP4770472B2 (en) Promotion management method of earth pressure type shield method
Wang et al. Study on deepwater conductor jet excavation mechanism in cohesive soil
Hu et al. Evaluating rheology of conditioned soil using commercially available surfactants (foam) for simulation of material flow through EPB machine
Inazumi et al. Performance of mechanical agitation type of ground-improvement by CAE system using 3-D DEM
JP6524522B2 (en) Method of evaluating plasticity of excavated soil in chamber in earth pressure type shield method, evaluation device and earth pressure type shield drilling machine
Sabetamal et al. Coupled analysis of full flow penetration problems in soft sensitive clays
Dang et al. A Shear-Slip Mesh Update–Immersed Boundary Finite Element model for computational simulations of material transport in EPB tunnel boring machines
JP6664704B2 (en) Method and apparatus for evaluating plastic fluidity of excavated soil in chamber in earth pressure shield method, and earth pressure shield excavator
Dong et al. Microscopic sand production simulation and visual sanding pattern description in weakly consolidated sandstone reservoirs
Robbins et al. Errors in finite element analysis of backward erosion piping
Izadi et al. Squeeze cementing of micro-annuli: a visco-plastic invasion flow
JP4770471B2 (en) Shield machine design method
Wei et al. Share-soil interaction load and wear at various tillage conditions of a horizontally reversible plough
Hu et al. Simulation of soil-tool interaction using smoothed particle hydrodynamics (SPH)
Jeon et al. Comparing thixotropic and Herschel–Bulkley parameterizations for continuum models of avalanches and subaqueous debris flows

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6773282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150