JP4885325B1 - Construction management system for ground improvement method - Google Patents

Construction management system for ground improvement method Download PDF

Info

Publication number
JP4885325B1
JP4885325B1 JP2011118234A JP2011118234A JP4885325B1 JP 4885325 B1 JP4885325 B1 JP 4885325B1 JP 2011118234 A JP2011118234 A JP 2011118234A JP 2011118234 A JP2011118234 A JP 2011118234A JP 4885325 B1 JP4885325 B1 JP 4885325B1
Authority
JP
Japan
Prior art keywords
ground
ground improvement
improvement material
soil
screw rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011118234A
Other languages
Japanese (ja)
Other versions
JP2012246658A (en
Inventor
一義 上村
幸男 遠西
辰夫 高橋
久 深田
上  周史
強 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Shimizu Corp
Fudo Tetra Corp
Aomi Construction Co Ltd
Original Assignee
Tenox Corp
Shimizu Corp
Fudo Tetra Corp
Aomi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenox Corp, Shimizu Corp, Fudo Tetra Corp, Aomi Construction Co Ltd filed Critical Tenox Corp
Priority to JP2011118234A priority Critical patent/JP4885325B1/en
Application granted granted Critical
Publication of JP4885325B1 publication Critical patent/JP4885325B1/en
Priority to SG2013086632A priority patent/SG195116A1/en
Priority to PCT/JP2012/063387 priority patent/WO2012161282A1/en
Priority to SG10201407573TA priority patent/SG10201407573TA/en
Publication of JP2012246658A publication Critical patent/JP2012246658A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】信頼性の高い推定排土量をスピーディに算出可能な地盤改良工法における施工管理システムを提供する。
【解決手段】先端部に攪拌羽根を有するスクリューロッドを地中に貫入せしめ、地中に地盤改良材を注入して、攪拌羽根の回転により地盤改良材と土砂とを攪拌混合しつつスクリューロッドを引き抜くとともに、地盤改良材の注入量相当分の土砂を地中から排土する地盤改良工法に適用され、スクリューロッドの深度、回転数、貫入速度および引抜速度、並びに地盤改良材の注入量を検出して監視する施工管理システムにおいて、改良地盤に対する地盤改良材スラリー注入量の比率を地盤改良材混入率とし、予め求められた地盤改良材混入率と排土係数との関係から、所定の地盤改良材混入率に基づいて排土係数を設定し、設定された排土係数と回転数とに基づいてスクリューロッドによる推定排土量を演算し、その推定排土量を管理項目として監視する構成とした。
【選択図】図2
A construction management system in a ground improvement method capable of speedily calculating an estimated amount of soil removal with high reliability is provided.
A screw rod having a stirring blade at the tip is inserted into the ground, a ground improvement material is injected into the ground, and the screw rod is stirred and mixed with the ground improvement material and earth and sand by rotation of the stirring blade. It is applied to the ground improvement method that pulls out and removes soil equivalent to the injection amount of the ground improvement material from the ground, and detects the depth, rotation speed, penetration speed and extraction speed of the screw rod, and the injection amount of the ground improvement material. In the construction management system to be monitored, the ratio of the ground improvement material slurry injection amount to the improved ground is defined as the ground improvement material mixing rate, and the predetermined ground improvement from the relationship between the ground improvement material mixing rate and the soil removal coefficient determined in advance. Set the soil removal coefficient based on the material contamination rate, calculate the estimated soil removal amount by the screw rod based on the set soil removal coefficient and rotation speed, and use the estimated soil removal amount as the management item. It was configured to monitor Te.
[Selection] Figure 2

Description

本発明は深層混合処理工法の範疇に属する地盤改良工法に適用する施工管理システムに関する。   The present invention relates to a construction management system applied to a ground improvement method that belongs to the category of deep mixing treatment method.

深層混合処理工法は、セメントスラリー等の地盤改良材を原地盤に注入して土砂と攪拌混合することにより改良杭を原地盤に多数形成し、以て原地盤の強度を増大せしめることを基本とする地盤改良工法である。   The deep mixing treatment method is based on the fact that a large number of improved piles are formed in the original ground by injecting a ground improvement material such as cement slurry into the original ground and stirring and mixing with the earth and sand, thereby increasing the strength of the original ground. This is a ground improvement method.

図6はそのような深層混合処理工法に適用される処理機1とそれに適用される施工管理システムの概要図である。処理機1は先端部に攪拌羽根2を備えたスクリューロッド3をベースマシン4により鉛直に支持し、駆動装置5によりスクリューロッド3を回転させて改良対象範囲の最深部まで貫入させた後、スクリューロッド3の先端部に設けてある吐出口から地盤改良材としてのセメントスラリーを地中に注入しつつ、かつ注入したセメントスラリーと土砂とを攪拌羽根2により攪拌混合しながらスクリューロッド3を引き抜くことで改良杭を形成するように構成されている。   FIG. 6 is a schematic diagram of the processing machine 1 applied to such a deep mixing processing method and a construction management system applied thereto. The processing machine 1 vertically supports a screw rod 3 having a stirring blade 2 at the tip by a base machine 4 and rotates the screw rod 3 by a driving device 5 to penetrate to the deepest part in the range to be improved. Pulling out the screw rod 3 while injecting cement slurry as a ground improvement material into the ground from the discharge port provided at the tip of the rod 3 and stirring and mixing the injected cement slurry and earth and sand with the stirring blade 2 It is configured to form an improved pile.

また、その処理機1により改良杭を形成する場合における施工管理システムは、スラリー流量計6、スクリューロッド3の軸回転計7、駆動装置5の電流検出計8、スクリューロッド3の深度計9および昇降速度計10を備え、それら各センサによる検出値を管理装置11に入力して、セメントスラリーの注入量、スクリューロッド3の回転数、到達深度、貫入速度および引き抜き速度を管理項目として監視するように構成されている。符号12はベースマシン4に設置されているオペレーションモニタ、13はデータ保存用のパソコンである。   Moreover, the construction management system in the case of forming an improved pile by the processing machine 1 includes a slurry flow meter 6, a shaft tachometer 7 of the screw rod 3, a current detector 8 of the drive device 5, a depth meter 9 of the screw rod 3, and An elevation speed meter 10 is provided, and detection values from these sensors are input to the management device 11 so as to monitor the amount of cement slurry injected, the number of rotations of the screw rod 3, the depth of penetration, the penetration speed, and the withdrawal speed as management items. It is configured. Reference numeral 12 denotes an operation monitor installed in the base machine 4, and 13 denotes a data storage personal computer.

ここで、上記のような従来一般の深層混合処理工法では、地盤改良材(セメントスラリー)を原地盤に対して多量に注入するため原地盤の体積が増大することが不可避であり、それに起因して原地盤が盛り上がったり、周辺地盤に対して悪影響を及ぼすことが懸念されたりしていた。   Here, in the conventional general deep mixing method as described above, it is inevitable that the volume of the original ground increases because a large amount of ground improvement material (cement slurry) is injected into the original ground. As a result, there were concerns that the ground would swell and adversely affect the surrounding ground.

そこで、上記のような深層混合処理工法における周辺地盤に対する悪影響を防止するための対策として、地盤改良材(セメントスラリー)の注入量(吐出量)相当分の土砂を原地盤から排土することで原地盤の体積膨張を回避するという排土式の深層混合処理工法やその施工管理システムが本出願人からも提案されている(例えば、特許文献1参照)。この地盤改良工法で重要な点は、地盤改良材の注入量と排土量とのバランスがとれているかという点であり、この双方の量を把握することが施工管理のポイントとなっている。ただし、地盤改良材の注入量については流量計で計測できるが、施工中の実際の排土量についての把握は困難である。そこで、特許文献1では、実測試験において、実測排土量V1および(スクリュー断面積S)×(スクリューピッチP)×(軸回転数N)の値を求め、これらの結果からK=V1/(S×P×N)を基に排土係数Kを求めていた。具体的には、(S×P×N)を横軸、V1を縦軸とする直交座標上に、(S×P×N)の値に対するV1の値の点をいくつか落とし込む。これらの点から一次近似式を求める。この一次近似式における傾きがKとなる。そして、この設定された排土係数Kとその後の実施工における実測可能なS,P,N値とから、V=K×S×P×Nの算定式によって実施工での推定排土量Vを求めていた。   Therefore, as a measure to prevent adverse effects on the surrounding ground in the above-mentioned deep mixing treatment method, soil equivalent to the injection amount (discharge amount) of ground improvement material (cement slurry) is discharged from the original ground. The present applicant has also proposed a soil-excluded deep mixing process method and its construction management system for avoiding volume expansion of the original ground (see, for example, Patent Document 1). An important point in this ground improvement method is whether the amount of ground improvement material injected and the amount of soil discharged are balanced, and it is the point of construction management to grasp both amounts. However, the amount of ground improvement material injected can be measured with a flow meter, but it is difficult to grasp the actual amount of soil discharged during construction. Therefore, in Patent Document 1, in an actual measurement test, an actual measured amount of soil V1 and a value of (screw cross-sectional area S) × (screw pitch P) × (shaft rotation speed N) are obtained, and K = V1 / ( The soil removal coefficient K was obtained based on (S × P × N). Specifically, several points of the value of V1 with respect to the value of (S × P × N) are dropped on the orthogonal coordinates having (S × P × N) as the horizontal axis and V1 as the vertical axis. From these points, a first order approximate expression is obtained. The slope in this linear approximation is K. Then, from the set soil discharge coefficient K and the S, P, N values that can be actually measured in the subsequent work, the estimated amount V of soil discharged in the work is calculated according to the calculation formula V = K × S × P × N. I was looking for.

特許第3583307号公報Japanese Patent No. 3583307

しかしながら、この実測試験は、施工現場ごと、土質ごとに3回以上は行う必要があり手間と時間のかかることであった。また、信頼性の担保のためにはそれなりに相当数のデータ数が必要であるが、実測試験では相当数のデータを得ることが難しい傾向にあった。   However, this actual measurement test needs to be performed at least three times for each construction site and every soil, which is time-consuming and time-consuming. In addition, a considerable number of data is required to ensure reliability, but it has been difficult to obtain a considerable number of data in an actual test.

そこで、本発明は、上記事情に鑑みてなされたものであり、信頼性の高い推定排土量をスピーディに算出可能な地盤改良工法における施工管理システムを提供するものである。   Then, this invention is made | formed in view of the said situation, and provides the construction management system in the ground improvement construction method which can calculate the estimated amount of soil removal with high reliability rapidly.

上記の課題を解決するために、請求項1に記載した発明は、先端部に攪拌羽根を有するスクリューロッドを地中に貫入せしめ、該スクリューロッドを介して地中に地盤改良材を注入して、前記攪拌羽根の回転により前記地盤改良材と土砂とを攪拌混合しつつ前記スクリューロッドを引き抜くとともに、前記地盤改良材の注入量相当分の土砂を前記スクリューロッドにより地中から排土する地盤改良工法を実施する際に適用され、前記スクリューロッドの深度、回転数、貫入速度および引抜速度、並びに前記地盤改良材の注入量を検出して監視する施工管理システムにおいて、改良地盤に対する前記地盤改良材スラリー注入量の比率を地盤改良材混入率とし、予め地盤条件別に求められた地盤改良材混入率と排土係数との関係から、所定の地盤改良材混入率に基づいて排土係数を設定し、設定された該排土係数と前記回転数とに基づいて前記スクリューロッドによる推定排土量を演算し、その推定排土量を管理項目として監視する構成としたことを特徴としている。

In order to solve the above-mentioned problem, the invention described in claim 1 is to insert a screw rod having a stirring blade at a tip portion into the ground and inject a ground improvement material into the ground through the screw rod. The ground improvement is performed by pulling out the screw rod while stirring and mixing the ground improvement material and the earth and sand by the rotation of the stirring blade, and discharging soil equivalent to the injection amount of the ground improvement material from the ground by the screw rod. In the construction management system, which is applied when carrying out a construction method and detects and monitors the depth, rotation speed, penetration speed and drawing speed of the screw rod, and the injection amount of the ground improvement material, the ground improvement material for the improved ground the ratio of slurry injection volume and soil improvement material mixing rate, the relationship between the pre-ground conditions by on the obtained soil improvement material mixing rate and earth removal coefficient, a predetermined ground Set the soil removal coefficient based on the good material mixing rate, calculate the estimated soil removal amount by the screw rod based on the set soil removal coefficient and the rotation speed, and monitor the estimated soil removal amount as a management item It is characterized by having a configuration to do.

請求項1に記載した発明によれば、地盤改良材混入率に基づいて排土係数を設定し、その排土係数に基づいて推定排土量を演算することができ、該推定排土量を管理項目とすることで、信頼性の高い推定排土量をスピーディに算出することができる。その結果、原地盤の変位を抑制しつつ工期やコストに貢献できる効果がある。   According to the invention described in claim 1, it is possible to set the soil removal coefficient based on the soil improvement material mixing rate, and to calculate the estimated soil removal amount based on the soil removal coefficient, By setting it as a management item, it is possible to quickly calculate an estimated amount of soil removal with high reliability. As a result, there is an effect that it is possible to contribute to the construction period and cost while suppressing the displacement of the original ground.

請求項2に記載した発明は、前記推定排土量を前記地盤改良材の注入量と比較して施工の良否を判定する構成としたことを特徴としている。   The invention described in claim 2 is characterized in that the estimated amount of soil removal is compared with the injection amount of the ground improvement material to determine whether construction is good or bad.

請求項2に記載した発明によれば、推定排土量を地盤改良材の注入量と比較して施工良否を判定することにより、施工信頼性を十分に確保することができ、修正施工の必要性が明確になる。   According to the invention described in claim 2, the construction reliability can be sufficiently ensured by determining the construction quality by comparing the estimated amount of soil removal with the amount of the ground improvement material injected, and it is necessary to carry out correction construction. Sex becomes clear.

本発明の地盤改良工法における施工管理システムによれば、地盤改良材混入率に基づいて排土係数を設定し、その排土係数に基づいて推定排土量を演算することができ、該推定排土量を管理項目とすることで、信頼性の高い推定排土量をスピーディに算出することができる。その結果、原地盤の変位を抑制しつつ工期やコストに貢献できる効果がある。   According to the construction management system in the ground improvement method of the present invention, it is possible to set the soil removal coefficient based on the soil improvement material mixing rate, and to calculate the estimated soil discharge amount based on the soil removal coefficient. By using the soil volume as a management item, it is possible to quickly calculate the estimated soil discharge volume with high reliability. As a result, there is an effect that it is possible to contribute to the construction period and cost while suppressing the displacement of the original ground.

本発明の実施形態である施工管理システムの概要を示す図である。It is a figure which shows the outline | summary of the construction management system which is embodiment of this invention. 同システムにおいて用いる排土係数(粘性土の場合)の決定法を示す図である。It is a figure which shows the determination method of the soil discharge coefficient (in the case of cohesive soil) used in the system. 同システムにおける管理データの一例を示す図である。It is a figure which shows an example of the management data in the same system. 同システムにおける管理データの他の例を示す図である。It is a figure which shows the other example of the management data in the same system. 同システムにおいて用いる排土係数(砂質土の場合)の決定法を示す図である。It is a figure which shows the determination method of the soil discharge coefficient (in the case of sandy soil) used in the system. 従来の深層混合処理工法における処理機と施工管理システムの概要を示す図である。It is a figure which shows the outline | summary of the processing machine and construction management system in the conventional deep mixing processing method.

以下、本発明の施工管理システムの具体的な実施形態について図1を参照して説明する。本実施形態の施工管理システムが適用される地盤改良工法は、図6に示した改良機1による排土式の深層混合処理工法である。つまり、図6の改良機1において、攪拌羽根2を備えたスクリューロッド3を地盤中に回転しながら、かつ水とセメントからなるセメントスラリー(地盤改良材スラリー)を注入しないで所定の改良深度まで貫入到達させ、その後スクリューロッド3を回転させて最深部の着底改良を施し、そしてスクリューロッド3を回転させてスクリューロッド3の先端部のスラリー吐出口(図6においてはスラリー吐出口の図示はないが、スラリー吐出口は、図6のスクリューロッド3の下端位置と複数段の攪拌羽根2のうち最上段の攪拌羽根2の近傍位置に設けられている。着底改良時にはスクリューロッド下端のスラリー吐出口から地盤改良材スラリーを注入するが、スクリューロッド3引抜き時の地盤改良材スラリーの注入は、最上段の攪拌羽根2近傍のスラリー吐出口から行う。)から地盤改良材スラリーを注入しながら攪拌羽根2で地盤を攪拌混合しつつスクリューロッド3を引き抜く地盤改良工法において、地盤改良材スラリー注入量相当分の土砂を排出することで、地盤改良材スラリー注入に伴う地盤変位を低減させる工法である。本実施形態の施工管理システムは、図6に示した従来の施工管理システムを基本としつつ、その管理項目に従来とは算出方法を異ならせた「排土量」を付加して改良機1による排土量を監視し、それを適正に維持することで原地盤の変位(盛り上がりや周辺地盤への悪影響)を防止するように構成されている。さらに、本実施形態の施工管理システムではセメントスラリーと土砂との攪拌混合状態を定量的に把握してそれを適正に管理するべく従来と同様に「羽根切り回数」も管理項目としている。   Hereinafter, a specific embodiment of the construction management system of the present invention will be described with reference to FIG. The ground improvement method to which the construction management system of the present embodiment is applied is a soil-discharging type deep mixing treatment method using the improvement machine 1 shown in FIG. That is, in the improvement machine 1 of FIG. 6, while rotating the screw rod 3 provided with the stirring blade 2 into the ground, and without injecting cement slurry (ground improvement material slurry) composed of water and cement to a predetermined improvement depth. Then, the screw rod 3 is rotated to improve the bottoming of the deepest portion, and the screw rod 3 is rotated to rotate the slurry discharge port at the tip of the screw rod 3 (in FIG. 6, the slurry discharge port is illustrated). 6, the slurry discharge port is provided in the vicinity of the lower end position of the screw rod 3 and the uppermost stirring blade 2 among the plural stages of the stirring blades 2. When the bottoming is improved, the slurry at the lower end of the screw rod is provided. The ground improvement material slurry is injected from the discharge port. The ground improvement material slurry is injected when the screw rod 3 is pulled out. In the ground improvement method in which the ground improvement material slurry is pulled out while the ground is stirred and mixed with the stirring blades 2 while the ground improvement material slurry is being injected from the nearby slurry discharge port. By doing so, it is a method of reducing the ground displacement accompanying the ground improvement material slurry injection. The construction management system according to the present embodiment is based on the conventional construction management system shown in FIG. 6, but adds the “soil discharge amount” that is different from the calculation method to the management items and uses the improved machine 1. By monitoring the amount of soil discharged and maintaining it properly, it is configured to prevent displacement of the original ground (swelling and adverse effects on the surrounding ground). Furthermore, in the construction management system of the present embodiment, the “blade cutting frequency” is also a management item in the same manner as in the past in order to quantitatively grasp the stirring and mixing state of cement slurry and earth and sand and manage them appropriately.

すなわち、本実施形態の施工管理システムは、図1にその概要を示すように、品質管理上の管理項目として「材料」、「配合」、「混合(羽根切り回数)」を設定し、出来形管理上の管理項目として「打設位置」、「打設深度」、「着底」を設定し、地盤の変位管理上の管理項目として「排土量」を設定している。   That is, the construction management system of the present embodiment sets “material”, “combination”, and “mixing (number of blade cuttings)” as control items for quality control, as shown in FIG. “Positioning position”, “Placement depth”, and “Bottom” are set as management items for management, and “Soil discharge amount” is set as a management item for displacement management of the ground.

従来と共通する管理項目のうち、「材料」は地盤改良材としてのセメントスラリーの状態(セメント量や水量)を管理するもの、「配合」はスラリー流量計6により検出されるスラリー注入量と昇降速度計10により検出されるスクリューロッド3の昇降速度とにより単位深度当たりの注入量が適正であるか否かを管理するもの、「打設位置」はトランシット等による測量により改良杭の形成位置を管理するもの、「打設深度」は深度計9によりスクリューロッド3の位置を検出してそれを管理するもの、「着底」は電流計8により検出される駆動装置5の作動状態と昇降速度計10により検出される貫入速度とからスクリューロッド3の先端が改良対象範囲の最深部に達したか否かを管理するものである。   Among the management items common to the past, “material” is used to manage the state of cement slurry (cement amount and water amount) as a ground improvement material, and “mixing” is the slurry injection amount detected by the slurry flow meter 6 and the elevation The “placement position” is used to control whether the injection amount per unit depth is appropriate based on the lifting speed of the screw rod 3 detected by the speedometer 10. What is managed, “placement depth” is the one that detects the position of the screw rod 3 by the depth meter 9 and manages it, and “bottom” is the operating state of the drive device 5 detected by the ammeter 8 and the lifting speed. Whether or not the tip of the screw rod 3 has reached the deepest part of the improvement target range is managed based on the penetration speed detected by the total 10.

また、本実施形態において付加した管理項目のうち、「排土量」は軸回転計7により検出されるスクリューロッド3の回転数と、スクリュー形状および排土係数とにより推定排土量を演算し、それがスラリー注入量と同等になるように管理するものである。   Among the management items added in the present embodiment, the “soil removal amount” is calculated by calculating the estimated soil removal amount based on the rotational speed of the screw rod 3 detected by the shaft tachometer 7, the screw shape and the soil removal coefficient. , It is managed so as to be equivalent to the slurry injection amount.

本実施形態においては推定排土量の演算は次のようにして行う。推定排土量Vはスクリュー断面積SとスクリューピッチPと回転数Nの関数であり、その比例定数を排土係数Kとして、以下のように表される。
V=K・S・P・N …(1)
V:推定排土量(m
K:排土係数
S:スクリュー断面積(m
P:スクリューピッチ(m)
N:軸回転数(回)
上記(1)式では、スクリュー断面積SとスクリューピッチPは改良機1の固有の定数であるから、排土係数Kの値が決まれば、あとは貫入から引き抜きまでの軸回転数Nを測定することのみで推定排土量Vを演算することができる。
In the present embodiment, the estimated amount of soil removal is performed as follows. The estimated soil removal amount V is a function of the screw cross-sectional area S, the screw pitch P, and the rotation speed N, and is expressed as follows, with the proportionality constant as the soil removal coefficient K.
V = K · S · P · N (1)
V: Estimated amount of soil removed (m 3 )
K: soil removal coefficient S: screw cross-sectional area (m 2 )
P: Screw pitch (m)
N: Shaft rotation speed (times)
In the above equation (1), the screw cross-sectional area S and screw pitch P are inherent constants of the improved machine 1, so once the value of the soil removal coefficient K is determined, the shaft rotational speed N from penetration to withdrawal is measured. It is possible to calculate the estimated soil discharge amount V only by doing.

ここで、本願の発明者らは、排土係数Kと地盤改良材混入率xとの間に相関関係があるのではないかと考え、多数の工事実績に基づいて、排土係数Kと地盤改良材混入率xとの相関関係を調べた。その結果、図2に示すような地盤改良材混入率xと排土係数Kとの相関関係が得られた。図2はデータ数n=99のものであり、これから下記の式(図2での直線)が得られる。
K=0.5116x+0.0066 …(2)
x:地盤改良材混入率(%)
なお、上記(2)式は、地盤が粘性土の場合の式であり、相関係数r=0.81であるから強い相関があるといえる。同様の相関式は地盤の土質条件ごとに予め求めることができる。
Here, the inventors of the present application think that there is a correlation between the soil removal coefficient K and the ground improvement material mixing rate x, and based on a large number of construction results, the soil removal coefficient K and the ground improvement The correlation with the material mixing rate x was examined. As a result, a correlation between the ground improvement material mixing rate x and the soil discharge coefficient K as shown in FIG. 2 was obtained. FIG. 2 shows the number of data n = 99, from which the following equation (straight line in FIG. 2) is obtained.
K = 0.5116x + 0.0066 (2)
x: Ground improvement material mixing rate (%)
Note that the above equation (2) is an equation when the ground is cohesive soil, and it can be said that there is a strong correlation since the correlation coefficient r = 0.81. A similar correlation equation can be obtained in advance for each soil condition.

また、地盤改良材混入率xは、改良地盤に対する地盤改良材スラリーの注入量の容積比率のことであり、改良地盤の強度をどの程度にするかで決定されるものである。単位改良地盤(1m)に添加される地盤改良材の添加量(kg)は予め決めるが、例えば大よそ改良地盤1m当たりの添加量は100kg程度である。また、地盤改良材はセメントに水を加えた地盤改良材スラリー(セメントスラリー)として注入するものであり、セメント(C)に対する水(W)の添加比率W/Cも施工性を考慮して予め設定しておく。なお、W/C=100%程度に設定するのが一般的である。この場合、添加量100kgに相当する改良材スラリーは約133リットル(セメントの比重を3とする)である。改良地盤1m中に133リットルの改良材スラリーが注入・混入されている場合、地盤改良材混入率x=0.133(13.3%)となる。このように、地盤改良材混入率xは予め決めておく。そして、このx=0.133を上記(2)式に代入して排土係数K=0.075を算出しておく。 Further, the ground improvement material mixing rate x is a volume ratio of the injection amount of the ground improvement material slurry to the improved ground, and is determined by how much the strength of the improved ground is made. The addition amount (kg) of the ground improvement material added to the unit improvement ground (1 m 3 ) is determined in advance. For example, the addition amount per 1 m 3 of the improvement ground is about 100 kg. The ground improvement material is injected as a ground improvement material slurry (cement slurry) in which water is added to cement. The addition ratio W / C of water (W) to cement (C) is also taken into account in consideration of workability. Set it. In general, W / C is set to about 100%. In this case, the improvement material slurry corresponding to the added amount of 100 kg is about 133 liters (specific gravity of cement is 3). When 133 liters of the improved material slurry is injected and mixed in 1 m 3 of the improved ground, the ground improved material mixing ratio x = 0.133 (13.3%). Thus, the ground improvement material mixing rate x is determined in advance. Then, x = 0.133 is substituted into the above equation (2) to calculate the soil removal coefficient K = 0.075.

上記のようにして、所定の地盤改良材混入率xに基づいて上記(2)式から排土係数Kを算出設定する。あるいは、排土係数Kと地盤改良材混入率xの直交座標による上記(2)式の直線から、図上で地盤改良材混入率xに対応する排土係数Kを設定する。そして、設定された排土係数Kとスクリュー断面積S、スクリューピッチPとを管理装置11に入力しておけば、軸回転計7により検出した回転数Nを管理装置11に入力するだけで、上記(1)式により推定排土量Vが演算されて算出される。なお、軸回転計7からの軸回転数Nの出力を自動で管理装置11に入力するようにしておくのがよい。そのようにすれば、予め入力された排土係数K,スクリュー断面積S,スクリューピッチPによりスクリューロッド3を引き抜いた後、すぐに推定排土量Vが演算されて算出される。そして、本実施形態の施工管理システムにおいては、1本の改良杭を施工するごとにその推定排土量Vを演算し、それをスラリー流量計6により検出されるスラリー注入量と比較して施工良否の判定を行うようにされている。なお、回転数Nを調節すれば推定排土量Vを増減することができるから、必要であれば推定排土量Vが適正になるように刻々と制御することも可能である。   As described above, the soil removal coefficient K is calculated and set from the above equation (2) based on the predetermined ground improvement material mixing rate x. Alternatively, the soil removal coefficient K corresponding to the ground improvement material mixing rate x is set on the drawing from the straight line of the above equation (2) based on the orthogonal coordinates of the soil removal coefficient K and the ground improvement material mixing rate x. Then, if the set soil removal coefficient K, the screw cross-sectional area S, and the screw pitch P are input to the management device 11, the rotational speed N detected by the shaft tachometer 7 is only input to the management device 11. The estimated soil discharge amount V is calculated and calculated by the above equation (1). It is preferable that the output of the shaft rotational speed N from the shaft tachometer 7 is automatically input to the management device 11. By doing so, the estimated soil removal amount V is immediately calculated and calculated after the screw rod 3 is pulled out with the soil removal coefficient K, screw cross-sectional area S, and screw pitch P inputted in advance. And in the construction management system of this embodiment, every time one improved pile is constructed, the estimated amount of soil removal V is calculated, and the construction is compared with the amount of slurry injected detected by the slurry flow meter 6. The quality is judged. Note that, if the rotational speed N is adjusted, the estimated soil removal amount V can be increased or decreased, and if necessary, the estimated soil removal amount V can also be controlled momentarily.

また、本実施形態においての他の管理項目である「羽根切り回数」は、スクリューロッド3が単位長さ引き抜かれる際に各攪拌羽根2による羽根切りがなされた回数を示す値であり、次式で表されるものである。   In addition, the “number of blade cuttings” which is another management item in the present embodiment is a value indicating the number of times blade cutting is performed by each stirring blade 2 when the screw rod 3 is pulled out by a unit length. It is represented by

T=M×n/v …(3)
T:羽根切り回数(回/m)
M:攪拌羽根の総枚数(枚)
n:回転数(回/分)
v:引き抜き速度(m/分)
T = M × n / v (3)
T: Number of blade cuts (times / m)
M: Total number of stirring blades (sheets)
n: Number of rotations (times / minute)
v: Pulling speed (m / min)

上記(3)式における攪拌羽根2の総枚数Mは改良機固有の定数であるから、軸回転計7により検出される回転数nと速度計9により検出される引き抜き速度vとにより羽根切り回数Tを上式に基づき求めることができ、本管理装置11では攪拌羽根の総枚数Mを入力すれば自動的に羽根切り回数Tが演算・算出され、羽根切り回数が所定の管理範囲値内であるかどうか分かるようになっている。   Since the total number M of the stirring blades 2 in the above equation (3) is a constant unique to the improved machine, the number of blade cuttings is determined by the rotational speed n detected by the shaft tachometer 7 and the drawing speed v detected by the speedometer 9. T can be obtained based on the above equation, and the management device 11 automatically calculates and calculates the blade cutting frequency T when the total number M of stirring blades is input, and the blade cutting frequency is within a predetermined management range value. You can see if there is.

上記の各管理項目は管理装置(コンピューター)11に入力されて評価すなわち施工の良否の判定がなされ、それに基づき必要に応じて修正施工がなされる。そしてパソコン13に施工データが保存され、必要に応じて適宜の管理データ、たとえば図3に示すような「施工結果表」や図4に示すような「杭打設日報」がプリントアウトされる。   Each of the above management items is input to the management device (computer) 11 for evaluation, that is, whether the construction is good or bad, and based on the judgment, correction construction is performed as necessary. Then, the construction data is stored in the personal computer 13, and appropriate management data, for example, a “construction result table” as shown in FIG. 3 and a “pile placing daily report” as shown in FIG. 4 are printed out as necessary.

以上で説明した本実施形態の施工管理システムによれば、排土式の深層混合処理工法による地盤改良に際して従来と同様の品質管理と出来形管理を行い得ることに加え、実際の排土量に近い排土量をスピーディに推定することができ、精度の高い施工管理ができるとともに施工能率の向上に寄与する。   According to the construction management system of this embodiment described above, in addition to being able to perform the same quality control and finished shape management as before when performing ground improvement by the soil removal type deep mixing treatment method, It is possible to quickly estimate the amount of soil that is discharged near the earth, which enables high-precision construction management and contributes to the improvement of construction efficiency.

加えて、本実施形態の施工管理システムにおいては、羽根切り回数の管理を行うことでセメントスラリーと土砂との攪拌混合の度合いを定量的に把握できるので、優れた地盤改良効果を得ることができる。   In addition, in the construction management system of the present embodiment, the degree of stirring and mixing of cement slurry and earth and sand can be quantitatively grasped by managing the number of blade cuttings, so that an excellent ground improvement effect can be obtained. .

また、排土係数Kの演算は、施工管理システム内で土質ごとの複数の相関式がプログラムされていて、施工管理システム内で土質を選択して地盤改良材混入率xを入力すれば自動的に演算して算出設定できるようにしてもよいし、別途の計算機を用いての手計算により排土係数Kを算出設定し、この排土係数Kの算出値を施工管理システムに入力するようにしてもよい。その後の、排土係数Kから推定排土量Vを演算する方法は既述した通りである。図3の「施工結果表」は、地盤改良材混入率xを入力すれば自動的に推定排土量Vを演算するシステムの出力例である。   In addition, the calculation of the soil removal coefficient K is automatically performed if a plurality of correlation equations for each soil type are programmed in the construction management system, and the soil improvement material mixing rate x is selected by selecting the soil type in the construction management system. It is possible to calculate and set the soil discharge coefficient K by manual calculation using a separate computer, and input the calculated value of the soil discharge coefficient K to the construction management system. May be. The subsequent method of calculating the estimated soil discharge amount V from the soil discharge coefficient K is as described above. The “construction result table” in FIG. 3 is an output example of a system that automatically calculates the estimated soil discharge amount V when the ground improvement material mixing rate x is input.

尚、本発明は上述した実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な構造や構成などはほんの一例に過ぎず、適宜変更が可能である。   The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific structure and configuration described in the embodiment are merely examples, and can be changed as appropriate.

例えば、本実施形態では、地盤が粘性土の場合の排土係数の算出式を示したが、地盤が砂質土の場合の排土係数の算出式も粘性土の場合と同様に導き出すことができる。図5は、砂質土の場合の地盤改良材混入率xと排土係数Kとの相関関係を示すグラフである。図5はデータ数n=16のものであり、これから下記の式(図5での直線)が得られる。
K=0.4935x−0.0252 …(4)
なお、上記(4)式は相関係数r=0.858であるから強い相関があるといえる。このように、土質条件ごとに予め排土係数の算出式を求めておく、あるいは設定図表を作成しておくことにより、スピーディに推定排土量を算出することができる。ただし、本実施形態で説明した相関式は、実施工でのデータをさらに多く取り入れることにより変更され得るものである。この他、本実施形態の排土係数演算手法は、スクリューロッド貫入時に地盤改良材スラリーを地盤内に注入して攪拌する地盤改良工法にも適用できる。
For example, in the present embodiment, the calculation formula for the soil removal coefficient when the ground is a viscous soil is shown, but the calculation formula for the soil discharge coefficient when the ground is a sandy soil can also be derived in the same manner as when the soil is a clay soil. it can. FIG. 5 is a graph showing the correlation between the soil improvement material mixing rate x and the soil discharge coefficient K in the case of sandy soil. FIG. 5 shows the number of data n = 16, from which the following equation (straight line in FIG. 5) is obtained.
K = 0.4935x−0.0252 (4)
Note that since the above equation (4) has a correlation coefficient r = 0.858, it can be said that there is a strong correlation. In this way, the estimated soil removal rate can be calculated quickly by obtaining a formula for calculating the soil removal factor in advance for each soil condition or by creating a setting chart. However, the correlation equation described in the present embodiment can be changed by taking in more data from the implementation. In addition, the soil discharge coefficient calculation method of the present embodiment can also be applied to the ground improvement method in which the ground improvement material slurry is injected into the ground and stirred when the screw rod penetrates.

1…改良機 2…攪拌羽根 3…スクリューロッド 6…スラリー流量計 7…軸回転計 8…電流検出計 9…深度計 10…速度計 11…管理装置   DESCRIPTION OF SYMBOLS 1 ... Improvement machine 2 ... Stirring blade 3 ... Screw rod 6 ... Slurry flow meter 7 ... Shaft tachometer 8 ... Current detector 9 ... Depth meter 10 ... Speedometer 11 ... Management device

Claims (2)

先端部に攪拌羽根を有するスクリューロッドを地中に貫入せしめ、該スクリューロッドを介して地中に地盤改良材を注入して、前記攪拌羽根の回転により前記地盤改良材と土砂とを攪拌混合しつつ前記スクリューロッドを引き抜くとともに、前記地盤改良材の注入量相当分の土砂を前記スクリューロッドにより地中から排土する地盤改良工法を実施する際に適用され、前記スクリューロッドの深度、回転数、貫入速度および引抜速度、並びに前記地盤改良材の注入量を検出して監視する施工管理システムにおいて、
改良地盤に対する前記地盤改良材スラリー注入量の比率を地盤改良材混入率とし、
予め地盤条件別に求められた地盤改良材混入率と排土係数との関係から、所定の地盤改良材混入率に基づいて排土係数を設定し、
設定された該排土係数と前記回転数とに基づいて前記スクリューロッドによる推定排土量を演算し、その推定排土量を管理項目として監視する構成としたことを特徴とする地盤改良工法における施工管理システム。
A screw rod having a stirring blade at the tip is inserted into the ground, a ground improvement material is injected into the ground through the screw rod, and the ground improvement material and earth and sand are stirred and mixed by rotation of the stirring blade. While pulling out the screw rod while applying the ground improvement method of discharging soil equivalent to the injection amount of the ground improvement material from the ground by the screw rod, the depth of the screw rod, the rotation speed, In the construction management system for detecting and monitoring the penetration speed and the drawing speed, and the injection amount of the ground improvement material,
The ratio of the ground improvement material slurry injection amount to the improved ground is the ground improvement material mixing rate,
From the relationship between the soil improvement material mixing rate and the soil removal coefficient previously determined for each ground condition , set the soil removal coefficient based on the predetermined ground improvement material mixing rate,
In the ground improvement method characterized in that the estimated soil removal amount by the screw rod is calculated based on the set soil removal coefficient and the rotation speed, and the estimated soil removal amount is monitored as a management item. Construction management system.
前記推定排土量を前記地盤改良材の注入量と比較して施工の良否を判定する構成としたことを特徴とする請求項1に記載の地盤改良工法における施工管理システム。   The construction management system in the ground improvement method according to claim 1, wherein the estimated soil discharge amount is compared with the injection amount of the ground improvement material to determine whether the construction is good or bad.
JP2011118234A 2011-05-26 2011-05-26 Construction management system for ground improvement method Active JP4885325B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011118234A JP4885325B1 (en) 2011-05-26 2011-05-26 Construction management system for ground improvement method
SG2013086632A SG195116A1 (en) 2011-05-26 2012-05-24 Ground improvement method, and system for managing construction in ground improvement method
PCT/JP2012/063387 WO2012161282A1 (en) 2011-05-26 2012-05-24 Ground improvement method, and system for managing construction in ground improvement method
SG10201407573TA SG10201407573TA (en) 2011-05-26 2012-05-24 Ground improvement method, and system for managing construction in ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118234A JP4885325B1 (en) 2011-05-26 2011-05-26 Construction management system for ground improvement method

Publications (2)

Publication Number Publication Date
JP4885325B1 true JP4885325B1 (en) 2012-02-29
JP2012246658A JP2012246658A (en) 2012-12-13

Family

ID=45851278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118234A Active JP4885325B1 (en) 2011-05-26 2011-05-26 Construction management system for ground improvement method

Country Status (1)

Country Link
JP (1) JP4885325B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112627175A (en) * 2020-12-18 2021-04-09 中铁第五勘察设计院集团有限公司 Cement mixing pile construction system and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062781B2 (en) * 2013-03-26 2017-01-18 五洋建設株式会社 Mechanical stirring vacuum compaction method
JP6237108B2 (en) * 2013-10-22 2017-11-29 株式会社大林組 Method for constructing improved soil cement
JP7057994B2 (en) * 2017-09-13 2022-04-21 株式会社大林組 Construction method of soil cement pile
JP7150656B2 (en) * 2019-03-29 2022-10-11 株式会社不動テトラ Ground Displacement Control Method for Slurry Agitation Deep Mixing Method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268917A (en) * 1985-09-19 1987-03-30 Fudo Constr Co Ltd Improvement for weak ground
JPH07292653A (en) * 1994-04-21 1995-11-07 Takenaka Doboku Co Ltd Soil improvement device
JPH0988057A (en) * 1995-09-21 1997-03-31 Shimizu Corp Ground improvement method and ground improvement device
JPH09177067A (en) * 1995-12-27 1997-07-08 Raito Kogyo Co Ltd Method and device for ground improvement
JP3583307B2 (en) * 1999-01-25 2004-11-04 不動建設株式会社 Construction management system in ground improvement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268917A (en) * 1985-09-19 1987-03-30 Fudo Constr Co Ltd Improvement for weak ground
JPH07292653A (en) * 1994-04-21 1995-11-07 Takenaka Doboku Co Ltd Soil improvement device
JPH0988057A (en) * 1995-09-21 1997-03-31 Shimizu Corp Ground improvement method and ground improvement device
JPH09177067A (en) * 1995-12-27 1997-07-08 Raito Kogyo Co Ltd Method and device for ground improvement
JP3583307B2 (en) * 1999-01-25 2004-11-04 不動建設株式会社 Construction management system in ground improvement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112627175A (en) * 2020-12-18 2021-04-09 中铁第五勘察设计院集团有限公司 Cement mixing pile construction system and method

Also Published As

Publication number Publication date
JP2012246658A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP4885325B1 (en) Construction management system for ground improvement method
EP2468960B1 (en) Ground drilling method and apparatus.
JP4958028B2 (en) Construction method of pile hole rooting layer, foundation pile construction management device, foundation pile construction management method
WO2012161282A1 (en) Ground improvement method, and system for managing construction in ground improvement method
JP4885326B1 (en) Ground improvement method
JP3437108B2 (en) Management method of ground improvement method and management device of ground improvement machine
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
JP3583307B2 (en) Construction management system in ground improvement method
JP6166833B1 (en) Management equipment for deep mixing equipment
JP6162053B2 (en) Setting method of construction specifications for high-pressure jet agitation method
JP4753132B2 (en) Pile hole drilling method
JP2010133140A (en) Rotary penetrating pile construction system
JP7058154B2 (en) High-pressure injection stirring method
JP6969212B2 (en) Support layer arrival judgment method and judgment support system
JP6153591B2 (en) Ground survey method and ground survey device
JPH11200355A (en) Investigation method for geological feature
JP4566254B2 (en) Ground improvement measuring device
JP6799253B2 (en) How to excavate the ground
JP7090320B2 (en) Arithmetic logic unit, excavator, calculation method, and computer program
JP2021161720A (en) Quality prediction method and quality control method of improvement body
JP2002038463A (en) Indicating device of executed condition in ground inprovement method
Lehane et al. Discussion of “Determination of Bearing Capacity of Open-Ended Piles in Sand” by Kyuho Paik and Rodrigo Salgado
JP2023040533A (en) Discharged slurry amount management system for penetration auxiliary water construction, and soil removal type deep layer mixing method
JPS6367319A (en) Hardness index gauge
JP2012149463A (en) Bedrock determination method by underground drilling data analysis

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250