JP2010133140A - Rotary penetrating pile construction system - Google Patents

Rotary penetrating pile construction system Download PDF

Info

Publication number
JP2010133140A
JP2010133140A JP2008309495A JP2008309495A JP2010133140A JP 2010133140 A JP2010133140 A JP 2010133140A JP 2008309495 A JP2008309495 A JP 2008309495A JP 2008309495 A JP2008309495 A JP 2008309495A JP 2010133140 A JP2010133140 A JP 2010133140A
Authority
JP
Japan
Prior art keywords
construction
pile
penetrating pile
rotating
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008309495A
Other languages
Japanese (ja)
Inventor
Makoto Ikeda
真 池田
Kazuyasu Kurosaki
和保 黒崎
Hirotaka Kusaka
裕貴 日下
Yukio Abe
幸夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008309495A priority Critical patent/JP2010133140A/en
Publication of JP2010133140A publication Critical patent/JP2010133140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary penetrating pile construction system allowing operation close to the operation of a skilled operator even if an operator with little experience operates. <P>SOLUTION: The construction state of a rotary penetrating pile is continuously measured at carrying out the rotational penetration of the rotary penetrating pile into a predetermined position in the ground. One or a plurality of specific operations performed at a construction apparatus when measurement data vary exceeding a predetermined range are set based on construction data by the prior operation of a skilled operator. When the measurement data exceed a predetermined range during construction, the specific operation is performed by automatic control or by the operator's operation. Rotational torque applied to the rotary penetrating pile during construction, a push-in force, construction speed, the rotating speed per unit time of the rotary penetrating pile, the amount of sediment intrusion into the rotary penetrating pile, etc. are measured as the measurement data. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転貫入杭の施工を自動またはオペレータによる操作を伴う半自動で行う回転貫入杭施工システムに関するものである。   The present invention relates to a rotary penetrating pile construction system for automatically or semi-automatically carrying out construction of a rotary penetrating pile.

構造物基礎に回転貫入杭が広く用いられており、回転貫入杭の形態としては例えば鋼管の先端または中間に翼を設けたものなどが用いられている。   Rotating penetrating piles are widely used for structure foundations, and as the form of rotating penetrating piles, for example, a steel pipe provided with wings at the tip or middle thereof is used.

このような回転貫入杭の施工は、従来から、オペレータの手動操作で行われている場合が多い。その場合、熟練したオペレータは、施工時の杭の貫入速度や管内土の測定データ等をモニターしつつ、事前の地盤調査等からの情報や杭径等の施工条件と照らし合わせて、経験的にトルクや押込み力、回転方向等を操作している。   Conventionally, the construction of such a rotating penetrating pile is often performed by an operator's manual operation. In that case, the skilled operator will monitor the pile penetration speed during construction and the measurement data of the soil in the pipe, and empirically compare it with information from previous ground surveys and construction conditions such as pile diameter. Operating torque, pushing force, rotation direction, etc.

従来のこのような回転貫入杭の施工技術に関しては、例えば、特許文献1に、施工中に杭などに作用するトルクや軸力を測定して、地盤強度を正確に求めようとする技術が記載されている。   As for the conventional construction technique of such a rotational penetrating pile, for example, Patent Document 1 describes a technique for measuring the torque and axial force acting on the pile and the like during construction to accurately determine the ground strength. Has been.

特許文献2には、施工中のトルクや軸力を制御し、過大なトルクで回転杭が破損しないようにした技術が記載されている。   Patent Document 2 describes a technique in which torque and axial force during construction are controlled so that a rotating pile is not damaged by excessive torque.

特許文献3には、施工中の各種計測データをもとに、施工管理するシステムが記載されている。   Patent Literature 3 describes a system for managing construction based on various measurement data during construction.

また、特許文献4には、鋼管杭を貫入する施工ポイント別に、データを蓄積して行き、管理を行う技術が記載されている。   Patent Document 4 describes a technique for storing and managing data for each construction point penetrating a steel pipe pile.

特開2005−220568号公報JP 2005-220568 A 特開2005−023775号公報JP 2005-023775 A 特開2002−021076号公報JP 2002-021076 A 特開2006−299669号公報JP 2006-299669 A

地盤状況に合わせて回転杭施工装置のオペレータが、回転トルク、鉛直押込み力、回転速度、正逆回転等を適切に選択して行う施工では、不確定要素が非常に多いため、特定の複数の制御要素についてある程度の法則性が得られたとしても、個々の制御の組み合わせが、必ずしも最適な制御とはならず、施工効率(速度)と施工品質がオペレータの熟練度や勘によるところが大きい。   In construction where the operator of the rotary pile construction device appropriately selects the rotational torque, vertical pushing force, rotational speed, forward / reverse rotation, etc. according to the ground situation, there are a lot of uncertain elements, so a specific multiple Even if a certain degree of law is obtained for the control element, the combination of the individual controls is not necessarily the optimum control, and the construction efficiency (speed) and construction quality depend largely on the skill level and intuition of the operator.

しかしながら、熟練したオペレータを多数確保することは難しく、人件費も高くなる。   However, it is difficult to secure a large number of skilled operators, and labor costs are high.

本発明は、上述のような課題の解決を図ったものであり、経験の少ないオペレータが運転する場合にも、熟練したオペレータの運転操作に近い操作が可能となる回転貫入杭施工システムを提供することを目的としたものである。   The present invention is intended to solve the above-described problems, and provides a rotary penetrating pile construction system that enables operation close to that of a skilled operator even when an operator with little experience operates. It is for the purpose.

本願の請求項1に係る発明は、回転貫入杭を地盤中の所定位置まで回転貫入するにあたり、回転貫入杭の施工状態を連続的に測定し、その測定データに基づいて、回転杭施工装置の操作を自動制御によりまたはオペレータの操作により行う回転貫入杭施工システムにおいて、前記施工状態に関する測定データに所定の範囲を超える変動があった場合の施工装置に対する1または複数の特定操作を、事前の熟練オペレータの操作による施工データに基づいて設定しておき、施工中に前記測定データが所定の範囲を超えたときに、前記特定操作を自動制御によりまたはオペレータの操作により行うようにしたことを特徴とするものである。   The invention according to claim 1 of the present application continuously measures the construction state of the rotating penetrating pile when rotating the rotating penetrating pile to a predetermined position in the ground, and based on the measurement data, In a rotary penetrating pile construction system in which operation is performed by automatic control or by an operator's operation, one or a plurality of specific operations on construction equipment when the measurement data related to the construction state exceeds a predetermined range, It is set based on construction data by an operator's operation, and when the measurement data exceeds a predetermined range during construction, the specific operation is performed by automatic control or by an operator's operation. To do.

施工状態に関する測定データに所定の範囲を超える変動があった場合というのは、施工において、例えば事前に把握されていた地盤データなどからは予測できない支障が生じ、地盤中に杭がスムーズに貫入して行かない場合などであり、その場合、施工装置にかかる負荷が大きくなり、回転トルクが大きくなったり、貫入速度(あるいは単位時間あたりの貫入量)が小さくなったり、あるいは複数の測定データが組み合わさって特定の変化を示すことで、異常が把握される。   If the measurement data related to the construction condition fluctuates beyond the specified range, the construction will cause problems that cannot be predicted from the ground data that has been grasped in advance, for example, and the piles will penetrate smoothly into the ground. In such a case, the load on the construction equipment increases, the rotational torque increases, the penetration speed (or penetration per unit time) decreases, or multiple measurement data are combined. An abnormality is grasped by showing a specific change.

その場合に、熟練したオペレータが操作している場合には、経験や勘に基づいた操作を繰り返すことで対処できるのが一般的であるが、自動施工や経験の浅いオペレータの操作による場合、その対処に多くの時間を要したり、対処できずに熟練したオペレータに頼らざるを得ない状況が生じることがある。   In that case, when a skilled operator is operating, it is common to be able to cope by repeating the operation based on experience and intuition, but in the case of automatic construction or operation by an inexperienced operator, There are cases where it takes a lot of time to deal with the situation or a situation in which it is impossible to deal with the situation and a skilled operator must be relied upon.

それに対し、本発明によれば、現場や状況に応じた熟練オペレータが行う操作があらかじめ記憶され、それに基づいて操作がなされることで、熟練オペレータの操作に近い操作による対処が可能となる。   On the other hand, according to the present invention, an operation performed by a skilled operator corresponding to the site or situation is stored in advance, and an operation based on the operation is performed, so that it is possible to cope with an operation close to the operation of the skilled operator.

請求項2は、請求項1に係る回転貫入杭施工システムにおいて、前記施工状態に関する測定データとして、施工中の、前記回転貫入杭に加わる回転トルク、押込み力、施工速度、回転貫入杭の単位時間当たり回転数および回転貫入杭内への土砂の浸入量またはこれらに関連する物理量のうちの1以上が含まれることを特徴とするものである。   Claim 2 is a rotary intrusion pile construction system according to claim 1, as measurement data relating to the construction state, rotational torque applied to the rotary penetration pile during construction, pushing force, construction speed, unit time of the rotary penetration pile It is characterized in that one or more of the number of hits and the amount of earth and sand intruded into the rotating intrusion pile or the physical quantity related thereto are included.

これらは、一般的な自動制御においても必要とされる場合が多いものであるが、施工中におけるこれらの測定データをもとに、熟練オペレータの特定操作の必要性が判断され、その操作が実施されることになる。   These are often required even in general automatic control, but based on these measurement data during construction, the necessity of specific operations by skilled operators is judged and implemented. Will be.

請求項3は、請求項1または2に係る回転貫入杭施工システムにおいて、前記特定操作に、施工装置による前記回転貫入杭の正逆回転、揺動、押込み、または引抜きの操作のうちの1以上の操作または組合せが含まれることを特徴とするものである。   Claim 3 is the rotary penetrating pile construction system according to claim 1 or 2, wherein the specific operation includes at least one of forward / reverse rotation, swing, push-in or pull-out operation of the rotary penetrating pile by a construction device. These operations or combinations are included.

これらの操作は、熟練オペレータが行う可能性のある特定操作を例示したものであるが、これらの操作は、熟練オペレータが地盤条件や施工機の性能を考慮した経験によって行われるため、一般的な数値制御では自動制御は困難である。   These operations are examples of specific operations that may be performed by skilled operators. However, these operations are performed by experienced operators taking into account the ground conditions and the performance of construction machines. Automatic control is difficult with numerical control.

請求項4および請求項5は、請求項2または3記載の回転貫入杭施工システムにおいて、前記施工状態に関する測定データのうちの前記回転貫入杭内への土砂の浸入量が、施工中の回転貫入杭上部の開口部を利用して、連続的に測定されるものであることを特徴とするものである。   Claims 4 and 5 are the rotary penetrating pile construction system according to claim 2 or 3, wherein the intrusion amount of earth and sand into the rotary penetrating pile in the measurement data relating to the construction state is the rotational penetrating during construction. It is characterized by being continuously measured using the opening in the upper part of the pile.

回転貫入杭内の土砂(以下、「管内土」という。)の浸入状況は、回転貫入杭の施工情報として重要な測定データの一つである。実際の施工では管内土の浸入状況がスムーズに進むように操作することが、施工時間の改善と杭周面地盤の撹乱を抑え支持力を低下させない施工につながる。   The infiltration state of sediment (hereinafter referred to as “pipe soil”) in the rotating penetrating pile is one of the important measurement data as construction information of the rotating penetrating pile. In actual construction, operating so that the infiltration condition of the pipe soil proceeds smoothly leads to construction that improves construction time and suppresses disturbance of the pile surface ground and does not lower the bearing capacity.

請求項4は、管内土の浸入状況を、施工中の回転貫入杭上部の開口部を利用して、非接触型の測定器で連続的に測定することを特徴とするものである。非接触型の測定器としては、光波や超音波を利用するものが例示される。この方法は、精度と経済性は劣るが回転杭の適用性の高い斜杭の施工時にも用いることができる。   The fourth aspect of the present invention is characterized in that the infiltration state of the pipe soil is continuously measured by a non-contact type measuring device by using the opening portion of the upper part of the rotating penetration pile under construction. Examples of the non-contact type measuring device include those using light waves and ultrasonic waves. This method is inferior in accuracy and economy, but can also be used during the construction of oblique piles with high applicability for rotating piles.

請求項5は、管内土の浸入量を、施工中の回転貫入杭上部の開口部を利用して、接触型の測定器で連続的に測定することを特徴とするものである。接触型の測定器としては、杭の開口部から先端に重錘を取り付けた測定ロープあるいは伸縮ロッドを杭内に挿入して、杭内に浸入した土砂の上面に接触させる形式のものが例示される。この方法は、斜杭の施工時には適用できないが直杭の施工時の測定では高い制度と経済性を得ることができる。   The fifth aspect of the present invention is characterized in that the infiltration amount of the soil in the pipe is continuously measured with a contact-type measuring instrument using the opening at the upper part of the rotating penetration pile under construction. Examples of contact-type measuring instruments include a measuring rope or telescopic rod with a weight attached to the tip from the opening of the pile, and a type of contact with the top surface of the soil that has entered the pile. The Although this method cannot be applied during the construction of slant piles, a high system and economic efficiency can be obtained by measurement during construction of straight piles.

回転杭の従来の施工では、管内土の管内への浸入量測定は継ぎ杭作業の始まる前など施工機械の停止時に錘を取り付けたメジャーを垂らして目視観測していたが、これでは、
(1) 機械を停止する必要が有り、作業時間のロスにつながる、
(2) 施工機の重要な操作情報にも関わらず連続的な記録、リアルタイムでの測定が困難なため、施工機操作の情報としては不十分で、適切な操作が困難である、
(3) 人による目視作業は、施工機械上からの作業の上、鋼管内に身を乗り出す必要がある、
などの課題があった。
In the conventional construction of rotating piles, the amount of infiltration into the pipe of the soil in the pipe was visually observed by hanging a measure attached with a weight when the construction machine stopped, such as before the start of the joint pile work,
(1) It is necessary to stop the machine, leading to loss of work time.
(2) Despite important operation information of construction equipment, continuous recording and real-time measurement are difficult, so it is insufficient as construction equipment operation information and appropriate operation is difficult.
(3) For human visual inspection, it is necessary to embark on the steel pipe after working on the construction machine.
There were issues such as.

これに対し、本発明によれば、例えば、前述の測定器を、杭上部の開口部付近またはそれより上の位置に取り付けておき、管内土の浸入量を連続的に測定することで、より適切な施工が可能になる。   On the other hand, according to the present invention, for example, the measuring instrument described above is attached to the vicinity of the opening of the upper part of the pile or a position above it, and by continuously measuring the amount of infiltration of the soil in the pipe, Appropriate construction becomes possible.

施工装置を運転操作する際、施工に影響を与える要因が多数、互いに複雑に影響し合っている場合、個々の要因ごと最適と考えられる操作を求めてもその組み合わせが結果的に最適となることはほとんどなく、現状においては熟練したオペレータの経験と勘による操作に及ばない場合がほとんどであるが、本発明によれば経験の少ないオペレータが運転する場合でも、熟練したオペレータの運転操作に近い操作が可能となる。   When operating the construction equipment, if there are many factors that affect the construction and they affect each other in a complex manner, the combination will result in the optimum even if an operation that is considered optimal for each factor is sought. Although there are almost no cases where the operation is based on the experience and intuition of a skilled operator in the present situation, even when an operator with little experience operates according to the present invention, the operation is close to the operation operation of a skilled operator. Is possible.

図1は、最良の形態として、本発明の具体的な実施形態の一例をフロー図として示したものである。図2は、制御機器の構成例を模式図として示したものであり、図3は、施工データの表示例を示したものである。   FIG. 1 is a flowchart showing an example of a specific embodiment of the present invention as the best mode. FIG. 2 shows a configuration example of the control device as a schematic diagram, and FIG. 3 shows a display example of construction data.

制御機器の構成例を示した図2において、符号1は集中制御室、2は無線操作の施工制御装置、3は回転杭施工機械、4は深度計、5は油圧式回転モータ、6は自動標高測定装置、7は回転貫入杭、8は回転施工機油圧装置、9は無線通信機を示す。   In FIG. 2 showing a configuration example of the control device, reference numeral 1 is a central control room, 2 is a construction control device for wireless operation, 3 is a rotary pile construction machine, 4 is a depth meter, 5 is a hydraulic rotary motor, and 6 is automatic. An altitude measuring device, 7 is a rotary penetration pile, 8 is a rotary construction machine hydraulic device, and 9 is a wireless communication device.

上記の個々の装置自体については、従来から使用されている機器や、市販の装置を用いることができる。
集中制御室1は、数値制御装置等を含み、回転貫入杭7の施工を自動制御により行えるようにしたものであり、現場における多数の回転貫入杭7の施工の制御および管理などを行う。
About said each apparatus itself, the apparatus currently used conventionally and a commercially available apparatus can be used.
The central control room 1 includes a numerical control device and the like, and is capable of performing the construction of the rotary penetrating pile 7 by automatic control, and controls and manages the construction of a large number of rotary penetrating piles 7 on the site.

施工制御装置2は、オペレータが個々の回転貫入杭7の施工を無線操作するためのものであり、オペレータが施工状況を判断して操作することができる。   The construction control device 2 is for an operator to wirelessly operate the construction of the individual rotary penetrating piles 7, and the operator can determine and operate the construction status.

回転杭施工機械3は、この図では油圧装置8に接続した油圧式回転モータ5の操作により、回転貫入杭7を正逆回転できるようにしたものを示している。回転杭施工機械3には深度計4を取り付け、時間ごとの施工深度を測定でき、これらから施工速度も算出できるようにしている。また、現場に設置した自動標高測定装置6によっても施工深度を測定することができる。   In this drawing, the rotary pile construction machine 3 shows a rotary pile pile 7 that can rotate forward and backward by operating a hydraulic rotary motor 5 connected to a hydraulic device 8. A depth gauge 4 is attached to the rotary pile construction machine 3, and the construction depth for each hour can be measured, and the construction speed can be calculated from these. The construction depth can also be measured by the automatic altitude measuring device 6 installed at the site.

図1のフロー図は、個々の回転貫入杭の貫入について、支持層(事前の地盤調査により把握)の所定位置に到達した時点を施工完了としたものである。   The flow diagram of FIG. 1 indicates that the construction is completed when reaching the predetermined position of the support layer (ascertained by the preliminary ground survey) for the penetration of each rotary penetrating pile.

なお、自動制御のためには、あらかじめ過去の施工における杭または地盤の状態に関する杭関連データ(例えば、回転貫入杭の材質、形状、寸法などのデータ、地盤柱状図における土質やN値のデータなど)、施工装置に関する施工装置関連データ(施工装置の性能など)、施工装置の運転操作に関する運転操作関連データなどの対応関係を、記憶手段に運転データベースとして記憶させておき、それらに基づいて施工機械の制御が行われるが、それらについては既存の制御技術が適用できるので、ここではそれらの説明は省略する。   In addition, for automatic control, pile-related data relating to the state of piles or ground in the past construction (for example, data on the material, shape, dimensions, etc. of rotating intrusion piles, soil quality and N-value data in the ground column diagram, etc.) ), Data related to construction equipment related to construction equipment (performance of construction equipment, etc.), operation related data related to operation of construction equipment, etc., stored in the storage means as an operation database, and based on these, construction machinery However, since the existing control technology can be applied to them, the description thereof is omitted here.

図1のフローにおいては、まず後述する特定操作に関連する係数(このフローにおけるk、α、s1、s2)の値を求める。 In the flow of FIG. 1, first, values of coefficients (k, α, s 1 , s 2 in this flow) related to a specific operation described later are obtained.

回転貫入施工時には、回転貫入杭にかかるトルクおよび押込み力のほか、杭の高さ方向位置を測定するための標高や深度、管内土の量等が測定される。管内土の量は、非接触型または接触型の測定器で連続的に測定される。   At the time of rotary penetration construction, in addition to the torque and pushing force applied to the rotary penetration pile, the altitude and depth for measuring the height direction position of the pile, the amount of soil in the pipe, and the like are measured. The amount of soil in the pipe is continuously measured with a non-contact type or contact type measuring instrument.

一方、杭のサイズや事前の地盤調査等の情報から、単位貫入時間(杭の所定長さ当たりの貫入に要する時間)の理論値や、地盤固さに応じた基準トルク値が算出される。
ここで、前記で測定データから算出される実際の単位貫入時間t(分)やトルク値T(kN・m)が、前記の理論値や基準トルク値と対比して所定の範囲内にあるかどうか判断する。
On the other hand, a theoretical value of unit penetration time (time required for penetration per predetermined length of the pile) and a reference torque value corresponding to the ground hardness are calculated from information such as the size of the pile and prior ground investigation.
Here, whether the actual unit penetration time t (minutes) and torque value T (kN · m) calculated from the measurement data are within a predetermined range in comparison with the theoretical value and the reference torque value. Judge whether.

フロー図における判断A1(t≦k・t0)における係数kは、例えば単位貫入時間の理論値t0(回転貫入杭の鋼管径Dp、回転翼の取付角、施工装置の回転数などから求めることができる)の概ね2倍程度を選択することができるが、その現場における熟練オペレータによる試験杭の施工データなどから決定される。 The coefficient k in the judgment A1 (t ≦ k · t 0 ) in the flow diagram is, for example, from the theoretical value t 0 of the unit penetration time (the steel pipe diameter D p of the rotary penetration pile, the mounting angle of the rotary blade, the rotation speed of the construction equipment, etc. Can be selected approximately twice as much as possible), but is determined from the construction data of the test pile by the skilled operator at the site.

同様に、フロー図における判断A2(T≦α・Dp・N、N:先端翼位置の地盤のN値)における係数α(通常、30〜50)も、熟練オペレータによる試験杭の施工データなどから決定される。 Similarly, the coefficient α (usually 30 to 50) in the judgment A2 (T ≦ α · Dp · N, N: N value of the ground at the tip wing position) in the flow chart is also the test pile construction data by the skilled operator, etc. Determined from.

ただし、これらの許容範囲の係数k、αの最適値は、現場ごとに異なる。そのため、現実の工事の際には、試験杭または最初の数本の杭の貫入を熟練者(熟練オペレータ)の手動操作で行うことにより、最適と判断される係数をあらかじめ求め、これを以降の杭貫入時の基準とする。   However, the optimum values of the coefficients k and α in these allowable ranges differ from site to site. Therefore, during actual construction, the test pile or the first few piles are manually inserted by an expert (skilled operator) to obtain the optimum coefficient in advance. It will be the standard for pile penetration.

例えば、熟練オペレータによる試験杭の施工の際、杭の単位貫入時間が理論値のk倍を超えたときに、熟練オペレータが、後述する特定操作を行ったとすれば、このkを基準とする。   For example, when the expert operator performs a specific operation to be described later when the unit penetration time of the pile exceeds k times the theoretical value when the test operator constructs the test pile, this k is used as a reference.

単位貫入時間t(判断A1)やトルク値T(判断A2)が所定範囲内に収まっている場合、高さや深さの測定値と事前の地盤調査の情報とから支持層に到達しているかを判断する。支持層に到達していれば、さらに所定位置まで貫入して施工を完了する。支持層に到達しておらず(判断A3)、回転貫入に伴う杭鋼管の閉塞がなければ(判断A4)、特に貫入条件(トルクや押込み力)を変更することなく、施工を続行する。   If the unit penetration time t (judgment A1) and torque value T (judgment A2) are within the specified range, it is determined whether the support layer has been reached from the measured values of height and depth and the information of previous ground surveys. to decide. If the support layer has been reached, the construction is completed by further penetrating to a predetermined position. If the pile does not reach the support layer (decision A3) and there is no blockage of the pile steel pipe due to the rotation penetration (determination A4), the construction is continued without changing the penetration conditions (torque and pushing force).

一方、例えば、単位貫入時間tが理論値t0から大きく離れている場合(前記のk倍以上)は、支持層に到達しているか否かを判断する(判断A5)。 On the other hand, for example, when the unit penetration time t is far away from the theoretical value t 0 (k times or more), it is determined whether or not the support layer has been reached (decision A5).

支持層に到達していているときは、貫入と引き抜きを伴う揺動を行いながら、所定位置まで貫入する(特定操作B1)。この揺動は、概ね1/2回転以内で杭を正逆回転(S1)させて行う。これも前述したように、試験杭等における熟練オペレータが行う操作から回転角の最適値を求めておく。 When reaching the support layer, it penetrates to a predetermined position while swinging with penetration and withdrawal (specific operation B1). This rocking is performed by rotating the pile forward and backward (S 1 ) within approximately ½ rotation. As described above, the optimum value of the rotation angle is obtained from an operation performed by a skilled operator in a test pile or the like.

支持層に到達していない場合も、貫入と引き抜きを伴う揺動を行う(特定操作B2)。この揺動は、前述の支持層内の場合よりも回転角が大きく概ね1/2回転〜2回転以内で杭を正逆回転させる。これも前述したように、試験杭等における熟練オペレータが行う操作から回転角の最適値を求めておく。   Even when the support layer has not been reached, rocking with penetration and withdrawal is performed (specific operation B2). This swing causes the pile to rotate forward and reverse within a rotation angle of approximately 1/2 rotation to 2 rotations larger than in the case of the above-mentioned support layer. As described above, the optimum value of the rotation angle is obtained from an operation performed by a skilled operator in a test pile or the like.

揺動の結果、単位貫入時間tやトルクTが所定範囲内となれば(判断A6)、その条件で貫入施工を続行する。   If the unit penetration time t and the torque T are within the predetermined ranges as a result of the swinging (determination A6), the penetration construction is continued under those conditions.

揺動しても、なお単位貫入時間tやトルクTが所定範囲内とならない場合、杭に押込み力を加える(特定操作B3)。このときの力のかけ方(大きさや速度)も熟練オペレータの実績から最適値を求めておく。   If the unit penetration time t and the torque T are not within the predetermined range even after swinging, a pushing force is applied to the pile (specific operation B3). At this time, an optimum value is obtained from the experience of the skilled operator as to how to apply force (size and speed).

この結果、単位貫入時間tやトルクTが所定範囲内となれば(判断A7)、その条件で貫入施工を続行する。   As a result, if the unit penetration time t and the torque T are within the predetermined ranges (determination A7), the penetration construction is continued under the conditions.

押込み力を加えても、なお単位貫入時間やトルクが所定範囲内とならない場合、前記揺動と押込力コントロールを、単位貫入時間やトルクが所定範囲となるまで繰り返す。ただし、所定の回数繰り返しても所定範囲とならない場合は(判断A8)、操作を中断し、熟練オペレータの手動操作等別の手段に切り替える(C)。   If the unit penetration time and the torque are not within the predetermined range even when the pushing force is applied, the swing and the pushing force control are repeated until the unit penetration time and the torque are within the predetermined range. However, if the predetermined range is not reached even after being repeated a predetermined number of times (decision A8), the operation is interrupted and switched to another means such as manual operation by an experienced operator (C).

また、図1のフロー図では省略しているが、単位貫入時間や施工時のトルクが所定の範囲内であっても、支持層以外の地層で管内土の鋼管内への浸入が止まったり、微増になった場合は、先端部で閉塞が始まっていることが予測されるため、閉塞させないように正逆回転の繰り返しや水噴射などの補助工法を用いて鋼管先端部の管内土を解す操作を行う。   In addition, although omitted in the flow diagram of FIG. 1, even if the unit penetration time and the torque at the time of construction are within a predetermined range, the penetration of the soil in the pipe into the steel pipe stops in the formation other than the support layer, If it increases slightly, it is predicted that clogging has started at the tip, so operation to unravel the pipe soil at the tip of the steel pipe using auxiliary methods such as repeated forward and reverse rotation and water injection to prevent clogging I do.

例えば、硬い中間層の施工中に鋼管先端部が良く締まった砂で閉塞した状態で下位の軟弱粘土層を回転貫入した場合、管内土が全く浸入しないため鋼管は貫入が止まり、同じ深度で空回りすることになる。   For example, if the lower soft clay layer is rotated and penetrated while the hard pipe is closed with sand that is well-tightened during the construction of a hard intermediate layer, the steel pipe will stop penetrating because it does not penetrate at all, and the steel pipe will not penetrate at the same depth. Will do.

以上、主として、図1のフロー図に従って説明したが、特定操作B1〜B3は、熟練オペレータの操作の再現となる操作の例を挙げたものであり、これらの操作に限定されるものではなく、再現する特定操作に応じて、判断に用いる測定データや判断の基準が選定される。   As described above, although mainly described according to the flowchart of FIG. 1, the specific operations B1 to B3 are examples of operations that reproduce the operations of skilled operators, and are not limited to these operations. In accordance with the specific operation to be reproduced, measurement data used for judgment and judgment criteria are selected.

本発明の具体的な実施形態の一例を示すフロー図である。It is a flowchart which shows an example of specific embodiment of this invention. 制御機器の構成例の模式図である。It is a schematic diagram of the structural example of a control apparatus. 施工データの表示例を示した図である。It is the figure which showed the example of a display of construction data.

符号の説明Explanation of symbols

1…数値制御装置含む集中制御室、2…無線操作の施工制御装置、3…回転杭施工機械、4…深度計、5…油圧式回転モータ、6…自動標高測定装置、7…回転貫入杭、8…回転施工機油圧装置、9…無線通信機 DESCRIPTION OF SYMBOLS 1 ... Central control room including a numerical control device, 2 ... Construction control device of radio operation, 3 ... Rotary pile construction machine, 4 ... Depth meter, 5 ... Hydraulic rotary motor, 6 ... Automatic altitude measuring device, 7 ... Rotary penetration pile , 8 ... Rotary construction machine hydraulic device, 9 ... Wireless communication device

Claims (5)

回転貫入杭を地盤中の所定位置まで回転貫入するにあたり、回転貫入杭の施工状態を連続的に測定し、その測定データに基づいて、回転杭施工装置の操作を自動制御によりまたはオペレータの操作により行う回転貫入杭施工システムにおいて、前記施工状態に関する測定データに所定の範囲を超える変動があった場合の施工装置に対する1または複数の特定操作を、事前の熟練オペレータの操作による施工データに基づいて設定しておき、施工中に前記測定データが所定の範囲を超えたときに、前記特定操作を自動制御によりまたはオペレータの操作により行うようにしたことを特徴とする回転貫入杭施工システム。   In rotating and penetrating a rotating penetrating pile to a predetermined position in the ground, the construction state of the rotating penetrating pile is continuously measured, and based on the measurement data, the operation of the rotating pile construction device is performed by automatic control or by the operator's operation. In the rotary penetration pile construction system to be performed, one or more specific operations for the construction device when the measurement data related to the construction state has a fluctuation exceeding a predetermined range are set based on the construction data by the operation of a skilled operator in advance. In addition, when the measurement data exceeds a predetermined range during construction, the specific operation is performed by automatic control or by an operator's operation. 前記施工状態に関する測定データとして、施工中の、前記回転貫入杭に加わる回転トルク、押込み力、施工速度、回転貫入杭の単位時間当たり回転数および回転貫入杭内への土砂の浸入量またはこれらに関連する物理量のうちの1以上が含まれることを特徴とする請求項1記載の回転貫入杭施工システム。   As the measurement data related to the construction state, the rotational torque applied to the rotating penetrating pile, the pushing force, the construction speed, the number of rotations per unit time of the rotating penetrating pile, and the amount of intrusion of earth and sand into the rotating penetrating pile, or these The rotation penetration pile construction system according to claim 1, wherein at least one of related physical quantities is included. 前記特定操作に、施工装置による前記回転貫入杭の正逆回転、揺動、押込み、または引抜きの操作のうちの1以上の操作または組合せが含まれることを特徴とする請求項1または2記載の回転貫入杭施工システム。   The said specific operation includes at least one operation or combination of forward / reverse rotation, swing, push-in, or pull-out operation of the rotary penetrating pile by a construction device. Rotating penetrating pile construction system. 前記回転貫入杭内への土砂の浸入量を、施工中の回転貫入杭上部の開口部を利用して、非接触型の測定器で連続的に測定することを特徴とする請求項2または3記載の回転貫入杭施工システム。   The intrusion amount of earth and sand into the rotary penetrating pile is continuously measured with a non-contact type measuring instrument using an opening at the upper part of the rotating penetrating pile under construction. Rotating penetrating pile construction system as described. 前記回転貫入杭内への土砂の浸入量を、施工中の回転貫入杭上部の開口部を利用して、接触型の測定器で連続的に測定することを特徴とする請求項2または3記載の回転貫入杭施工システム。
The intrusion amount of earth and sand into the rotating penetrating pile is continuously measured with a contact-type measuring instrument using an opening at the upper part of the rotating penetrating pile under construction. Rotating penetrating pile construction system.
JP2008309495A 2008-12-04 2008-12-04 Rotary penetrating pile construction system Pending JP2010133140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309495A JP2010133140A (en) 2008-12-04 2008-12-04 Rotary penetrating pile construction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309495A JP2010133140A (en) 2008-12-04 2008-12-04 Rotary penetrating pile construction system

Publications (1)

Publication Number Publication Date
JP2010133140A true JP2010133140A (en) 2010-06-17

Family

ID=42344672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309495A Pending JP2010133140A (en) 2008-12-04 2008-12-04 Rotary penetrating pile construction system

Country Status (1)

Country Link
JP (1) JP2010133140A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109124A (en) * 2012-11-30 2014-06-12 Sumitomo Forestry Co Ltd Underground penetration method for steel member
JP2016156193A (en) * 2015-02-25 2016-09-01 株式会社日立製作所 Operation support system and work machine comprising operation support system
JP2017066630A (en) * 2015-09-28 2017-04-06 株式会社技研製作所 Operation selection method of construction machine, operation selection device of construction machine, and automatic construction machine
JP2017089363A (en) * 2015-11-09 2017-05-25 株式会社東部 Automatic rotary penetration apparatus
JP2020084403A (en) * 2018-11-14 2020-06-04 日本製鉄株式会社 End bearing capacity estimation method of rotary press-in pile, end bearing capacity control system, construction control method and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199597A (en) * 1989-12-28 1991-08-30 Komatsu Ltd Operation of underground excavating machine for small diameter pipe
JPH10311193A (en) * 1997-05-09 1998-11-24 Furukawa Co Ltd Drill controlling device
JP2000230234A (en) * 1999-02-09 2000-08-22 Nippon Steel Corp Pipe earth measuring method in construction of open end steel pipe pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2005023775A (en) * 2003-06-12 2005-01-27 Nippon Steel Corp Work execution management method for rotary intrusion steel pipe pile
JP2005220568A (en) * 2004-02-04 2005-08-18 Toyoko Elmes Co Ltd Pile construction control system
JP2005264651A (en) * 2004-03-22 2005-09-29 Hitachi Constr Mach Co Ltd Construction control device for rotating pile
JP2006299669A (en) * 2005-04-21 2006-11-02 Nitto Seiko Co Ltd Pile construction control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199597A (en) * 1989-12-28 1991-08-30 Komatsu Ltd Operation of underground excavating machine for small diameter pipe
JPH10311193A (en) * 1997-05-09 1998-11-24 Furukawa Co Ltd Drill controlling device
JP2000230234A (en) * 1999-02-09 2000-08-22 Nippon Steel Corp Pipe earth measuring method in construction of open end steel pipe pile
JP2002021076A (en) * 2000-07-05 2002-01-23 Nippon Steel Corp System and method for controlling construction of rotatively press-fitted pile
JP2005023775A (en) * 2003-06-12 2005-01-27 Nippon Steel Corp Work execution management method for rotary intrusion steel pipe pile
JP2005220568A (en) * 2004-02-04 2005-08-18 Toyoko Elmes Co Ltd Pile construction control system
JP2005264651A (en) * 2004-03-22 2005-09-29 Hitachi Constr Mach Co Ltd Construction control device for rotating pile
JP2006299669A (en) * 2005-04-21 2006-11-02 Nitto Seiko Co Ltd Pile construction control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109124A (en) * 2012-11-30 2014-06-12 Sumitomo Forestry Co Ltd Underground penetration method for steel member
JP2016156193A (en) * 2015-02-25 2016-09-01 株式会社日立製作所 Operation support system and work machine comprising operation support system
JP2017066630A (en) * 2015-09-28 2017-04-06 株式会社技研製作所 Operation selection method of construction machine, operation selection device of construction machine, and automatic construction machine
JP2017089363A (en) * 2015-11-09 2017-05-25 株式会社東部 Automatic rotary penetration apparatus
JP2020084403A (en) * 2018-11-14 2020-06-04 日本製鉄株式会社 End bearing capacity estimation method of rotary press-in pile, end bearing capacity control system, construction control method and program
JP7155911B2 (en) 2018-11-14 2022-10-19 日本製鉄株式会社 Method for estimating tip bearing capacity of rotary press-in piles, tip bearing capacity management system, construction management method, and program

Similar Documents

Publication Publication Date Title
JP4958028B2 (en) Construction method of pile hole rooting layer, foundation pile construction management device, foundation pile construction management method
EP2468960B1 (en) Ground drilling method and apparatus.
US20170254039A1 (en) Systems and methods for coupling a drill rig to a screw pile
JP2010133140A (en) Rotary penetrating pile construction system
JP4070790B2 (en) Ground improvement method
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
JP4753132B2 (en) Pile hole drilling method
JP4885325B1 (en) Construction management system for ground improvement method
JP6345716B2 (en) Automatic rotary penetration device
JP2004270212A (en) Execution management device of pile driving method
JP6153591B2 (en) Ground survey method and ground survey device
JP6296451B2 (en) Monitoring system for sampling ground sample and sampling method using the same
JP2002021076A (en) System and method for controlling construction of rotatively press-fitted pile
JP4566254B2 (en) Ground improvement measuring device
WO2020218561A1 (en) Rotary pile construction method, pile group manufacturing method, pile group, rotary pile construction and management device, rotary pile construction and management system
JP2018071320A (en) Ground excavation method
JP4695056B2 (en) Construction management device
JP7090320B2 (en) Arithmetic logic unit, excavator, calculation method, and computer program
JP6864211B2 (en) Pile hole construction method, pile hole construction system and excavation rod
JP6926441B2 (en) Ground drilling drill control method
JP3348227B2 (en) Ground improvement method and ground improvement device
JP6307348B2 (en) Ground improvement measuring device
JP2563974B2 (en) Earth auger
JP4993719B2 (en) Soil columnar improvement equipment and its control program.
JP6856171B2 (en) Tip bearing capacity estimation method, tip bearing capacity management system, construction management method, and program for rotary press-fit piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011