JPH05263584A - Shield tunneling machine - Google Patents

Shield tunneling machine

Info

Publication number
JPH05263584A
JPH05263584A JP41122690A JP41122690A JPH05263584A JP H05263584 A JPH05263584 A JP H05263584A JP 41122690 A JP41122690 A JP 41122690A JP 41122690 A JP41122690 A JP 41122690A JP H05263584 A JPH05263584 A JP H05263584A
Authority
JP
Japan
Prior art keywords
earth
density
excavation
sand
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41122690A
Other languages
Japanese (ja)
Other versions
JPH083317B2 (en
Inventor
Kazumi Inoue
和巳 井上
Masakatsu Mochizuki
正克 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiho Construction Co Ltd
Original Assignee
Daiho Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiho Construction Co Ltd filed Critical Daiho Construction Co Ltd
Priority to JP2411226A priority Critical patent/JPH083317B2/en
Publication of JPH05263584A publication Critical patent/JPH05263584A/en
Publication of JPH083317B2 publication Critical patent/JPH083317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To grasp definitely the properties of earth and sand filled up and pressurized in a cutter chamber during shielding operation, carry out proper shield control and build transverse pits swiftly during earth pressure shield excavation in any natural ground. CONSTITUTION:A bulkhead 12 is installed to the front of a shield cylinder where a cutter chamber 6 is installed by way of this bulkhead. To the front of the cutter chamber is installed a drill 3. An earth discharge device 8 is connected to the rear side of the cutter chamber. In a shield machine designed as described above, a density/humidity measuring instrument 21a which measures the density and or the moisture content, is installed to the bulkhead and or an excavator or the like by using a radio isotope(RI) and directly measures the density and or the humidity content of the earth and sand in the cutter chamber. This detected value helps an operator to estimate and grasp the properties of the earth and sand so that stabilized excavation may be carried out by controlling the above measurement.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は地中にトンネルを構築す
る際に用いられるシールド機、詳しくはラジオアイソト
ープを用いて切羽室内に取込まれた掘削土砂の密度、含
水量を測定して掘進管理を行うようにしたシールド機に
関する。 【0002】 【従来の技術】従来の土圧式シールドにおいて、切羽の
安定、さらには安定した掘進を維持するための掘進制御
方法としては、土圧管理、添加剤注入管理、排土管理等
が互いに関係づけられて行われている。すなわち、切羽
安定の直接的な方法として土圧管理があり、掘削土砂、
あるいは掘削土砂と添加剤との混合体を切羽室内および
スクリューコンベア内に充満させてシールドジャッキの
推力により、切羽室内に圧力を発生させ、切羽に作用す
る地山の土圧および地下水圧に対抗させて切羽を抑えて
いる。 【0003】この場合、切羽室内圧力は、切羽室内に設
けた土圧計によって常時計測するとともに、この検出圧
力値が地山の崩壊が生じない下限値および地盤の隆起を
生じない上限値の範囲内で地山に変形を生じない静止土
圧に保つようにシールドジャッキの推進速度およびスク
リューコンベアの回転等を調整して掘削土量と排土量と
をバランスさせて掘進管理を行っている。 【0004】このとき、切羽室内およびスクリューコン
ベア内に充満加圧された掘削土砂が適当な塑性流動性と
下透水性を持つことが必要条件である。この掘進管理と
して従来ではシールド機に設けられた回転カッターの抵
抗トルク値の管理巾を設定し、これを一定値に保つよ
う、適宜掘削土砂に添加剤を注入し、それらを機械的に
混練して土性を上記土質に変換させている。変換効果の
確認は上記回転カッタートルク値および排土スランプ
値、含水比の計測等排土性状を観察して行い、結果を掘
進にフィールドバックしながら掘進管理を行っている。 【0005】 【発明が解決しようとする課題】しかしながら、切羽室
内の掘削土砂あるいは掘削土砂と添加剤との混合体の混
練したことによる土性変換効果の確認は混練抵抗トルク
値によって判断可能であるが、検出される回転カッター
トルク値は、切削抵抗トルクと混練抵抗トルクとの和で
あり、また、切削抵抗トルクは掘削土質、掘進速度等に
よって変化するため、正確な混練抵抗トルク値を検出
し、混練効果を確認することが不充分であった。 【0006】このように、回転カッター抵抗トルクによ
って混練効果を確認する方法は間接的であり、練混ぜら
れた土砂の性状を常時、正確に把握することが困難であ
り、混練土砂の不均一、過流動性等は実際に排土される
までに感知できず、排土装置内での閉塞あるいは排土口
からの土砂の噴発などの危険性があった。また、掘削地
山の地層変化の激しい複雑な互層掘進においては掘削混
練土砂を均一に管理することがより困難であり、特に高
水圧下では排土装置からの噴発が起り易いという課題が
あった。 【0007】本発明は上記のことに鑑み提案されたもの
で、その目的とするところは、土圧式シールドの掘進に
おいて、あらゆる地山においても、掘進中に切羽室に充
満加圧された土砂の性状を確実に把握し、適確な掘進管
理を行うことを可能とし、速やかに横抗を築造し得るシ
ールド機を提供するにある。 【0008】 【課題を解決するための手段】本発明は上記目的を達成
するために、要するに、シールド筒の前部に隔壁を設
け、この隔壁を介し切羽室が設けられ、この切羽室の前
方に掘削具が設けられ、かつ切羽室の後方に排土装置が
接続されたシールド機において、隔壁および/もしくは
掘削具等にラジオアイソトープ(RI)を用いて密度お
よび/もしくは含水量を測定する密度・水分測定器を設
けて切羽室内の土砂の密度および/あるいは含水量を直
接的に計測し、この検出値により土砂の性状を推測把握
し、これを管理することにより安定した掘進を行うこと
を要旨としている。 【0009】 【作用】切羽室および排土装置内には、掘削土砂あるい
は掘削土砂と添加剤とが混合された土砂が適当な塑性流
動性と不透水性という性質を持つ所謂『泥土』に変換さ
れて加圧充填されている。一般に、土砂の流動性はその
含水量によって異なり含水量が多い程、流動し易い性質
がある。したがって、切羽室内および排土装置内に充填
されている掘削土砂の性質を均一に保って、安定した掘
進を維持するために、本発明では上記した構成のように
切羽室内の掘削土砂の密度および/あるいは含水量を計
測し、この計測値を一定に保つようにシールド機の掘進
の管理を行うようにし、例えば噴発性の過流動性の土砂
であるときは切羽室内でそれを知ることが可能であり、
排土までに充分な時間的余裕があるため、事故が起きる
前に余裕をもって添加剤の注入量を速やかに減ずるなど
の対処を行うことができるようにしている。 【0010】 【実施例1】図1(イ)、(ロ)は、本発明の第1実施
例を示す土圧式シールド機1の正面図、縦断図である。
しかして、この実施例におけるシールド機1は、例えば
略円筒状をなすシールド外筒2の前面にある正逆回転自
在な掘削具3で掘進部の切羽4を掘削し、その掘削土砂
5をシールド外筒2の前方内の切羽室6内に充満させ
て、主に掘削土砂5や周知の手段により機内から注入し
た添加剤との混合体で切羽4を保持すると共に、掘削土
量に見合った排土7を例えばスクリューコンベアやベル
トコンベア等の如き排土装置8を介して外部へ排土させ
ながら掘進する構成となっている。なお、掘削具3の構
成は、カッタースポーク、掘削ビット、コピーカッタ
ー、フィッシュテール等を備えた一般的な構成であり、
また、例えば掘削具3の後方には攪拌具18a、18bが設
けられている。その他、攪拌具は回転シャフト11の外周
上に突設することも可能であることは勿論である。 【0011】図中9は上記掘削具3を構成する放射状を
なすカッタースポーク、10は掘削具3のカッタースポー
ク9の前部に取り付けられた掘削ビットであり、カッタ
ースポーク9の略中央部に連結された回転シャフト11の
先端が連結され、かつこの回転シャフト11は隔壁12に設
けられた軸受により軸支されている。また、隔壁12の後
方に設けられた掘削具駆動モータ13が、歯車機構を介し
回転シャフト11に連結され、これにより掘削具3が駆動
され、また、スクリューコンベア8にはこれを駆動する
スクリューコンベアモータ14が取り付けられている。セ
グメント15は、掘進に伴って略円筒状に構築され、地山
Gとセグメント15との間隙には裏込材16の如き充填物が
充填される。 【0012】しかして、この実施例では切羽室6内に取
込まれた掘削土砂や添加剤との混合体にて成る土砂の土
質を直接測定するために、隔壁12の好位置に土砂の密度
および/もしくは含水量を測定する密度・水分測定器21
aが前方に、つまり切羽室6側に向けて設けられ、ま
た、掘削具3の構成要素であるカッタースポーク9にも
密度・水分測定器21bが後方、つまり切羽室6側に向け
て設けられている。なお、カッタースポーク9に設けら
れている密度・水分測定器21bは外周側に位置され、掘
削具3が1回転することにより、切羽室6内の掘削土砂
の略全体の土質を測定し得るようになっている。また、
密度・水分測定21a、21bには得られたデーター信号を
外部に取り出し、後続の電子回路を包有してなる装置で
データ処理するためのケーブル22が接続されている。 【0013】図2(イ)は本発明の実施例における隔壁
12に設けた密度・水分測定器21aの検出カプセル23を伸
ばし、検出する状態の縦断図、第2図(ロ)は検出カプ
セル23を遮蔽箱24に納めた図である。すなわち、密度・
水分測定器21aを構成する内部が中空状の遮蔽箱24の前
部が隔壁12の開口部に取り付けられ、遮蔽箱24の前部か
ら、検出カプセル23が切羽室6側に対し出没自在となっ
ている。図中26は遮蔽箱24内に設けられ、かつ検出カプ
セル23と接続されたジャッキであり、このジャッキ26を
介して検出カプセル23は伸縮が自在であり、検出時には
(イ)に示すように、切羽室6側に伸び突出した状態と
なり、その位置で固定できるようになっている。この場
合、隔壁12の前部には切羽室6の前方側へ突出した有底
円筒状の固定攪拌具18cが設けられ、この固定攪拌具18
c内の中空部に検出カプセル23が突出し、切羽室6内の
土砂によって検出カプセル23が損傷し事故が生じるのを
防止するように構成されている。なお、検出しない時に
は(ロ) に示すように、ジャッキ26を縮めることによ
り、遮蔽箱24内に検出カプセル23を納めることができ、
このようにして検出カプセル23は遮蔽箱24に対し出し入
れ自由となっている。 【0014】この検出カプセル23を備える密度・水分検
出器21aは周知技術である放射性同位体RI(ラジオア
イソトープ)を用いたもので、検出カプセル23の内部に
は線源25が設けられ、遮蔽箱24内の前方には線源25から
の放射線量を測定する検出器29、および標準体28等が設
けられている。また、検出器29は演算装置30および表示
器31とケーブル22、32を介して接続されている。線源25
には放射線を放射する放射性物質、例えば密度測定用と
してコバルト60(Co・60)や含水量測定用としてカリフ
ォルニウム252(cf−252)等をステンレスの円筒容器に入
れたものが用いられる。 【0015】動作にあったては、図2(イ)、(ハ)に
示す如く、線源25から放射された放射線Rを検出カプセ
ル23および切羽室6内の土砂5中を通って検出器29に照
射し、このとき透過した放射線量を測定することで切羽
室6内の土砂5中の密度や水分量を測定できる。検出器
29にて検出した放射線量は、電気信号に変換してケーブ
ル22を介して演算装置30に入力され、演算された後に表
示用信号がケーブル32を介して表示器31に入力されて、
密度および/あるいは含水量が表示される。なお、検出
演算された、土砂の湿潤密度をρt (g/cm3)、含水量を
ρw(g/cm3)とすると含水比WはW=ρw/(ρt −ρw)×
100(%)で算出される。 【0016】このようにして、密度・水分検出器21aに
より、常時、切羽室6内に充満した土砂5の密度および
/あるいは含水量を計測することが可能であり、これに
より、掘削土砂5の『泥土』変換効果、混練効果を確認
することが可能である。例えば隔壁12に適数個設けた密
度・水分検出器21aの検出値に大きなバラツキがあれば
混練が不十分と判断され、密度の小さいあるいは含水量
の大きな土砂は流動性が過大であり、スクリューコンベ
ア8の排土口17から噴発する可能性がある。この場合、
掘進・排土を一旦停止して、混練を十分に行うことで、
切羽室6内の土砂の性状を均一化して、排土口17からの
噴発を未然に防ぐことが可能である。また、安定した掘
進中の切羽室6内の土砂5の密度ρc および含水比Wc
は、回転カッタートルク過大あるいは排土装置内での閉
塞を起こす限界値と排土口17から噴発を生じる限界値と
の、ある一定の範囲内にあり、検出値をこの範囲内で一
定に保つよう掘進管理を行うことで、土砂5が常時、均
一の性状の泥土となり安定した掘進が行える。 【0017】なお、放射性同位体は時間の経過と共に放
射線量が減衰する性質を持っている。上記のコバルト60
(Co−60)やカリフォルニウム252(Cf−252)は比較的半減
期が短く、測定値の正確を期すために一定の期間、例え
ば1週間に1回程度線源25の減衰度合を計測し校正する
必要がある。次に図2(ロ)に示す校正方法を説明す
る。 検出カプセル23内の線源25はジャッキ26により遮
蔽箱24に納められ、放射線Rを標準体28に当て、これを
通過して検出器29に入る。そこで検出された値と予め標
準体28の放射線の通過量を測定した値とを比較し、線源
25の放射線の減衰を確認して演算装置30の補正を行う。 【0018】なお、標準体28は物理・化学的に性質が安
定し、時間経過でほとんど変質しない物質、例えばアク
リルやガラス等で形成されている。また、線源25の合計
線量が100マイクロキュリー以下の低レベルのものを用
いれば法的な規制を受けず特別な取扱い資格も不要であ
る。図2(ハ)は、カッタースポーク9に設けた密度・
水分測定器21bの検出する状態の縦断図であり、この密
度・水分測定器21bも上述のものと同様に構成され、カ
ッタースポーク9の後方に突設された固定攪拌具18Cの
中空部内に検出カプセル23がジャッキ26を介し出没自在
となっていて、切羽室6内の土砂5の密度・含水量を測
定できるようになっている。 【0019】なお、上記実施例では、密度・水分測定器
21a、21bを隔壁12側と掘削具3側にそれぞれ設けた場
合について示したが、その他の場所、例えば回転シャフ
ト11を中空状にして、その部分にセットすることも可能
であり、また、何れか一箇所だけ設ける構成としても良
い。また、測定に際しては土砂5の密度と含水量の両者
に限らず、何れか一方を測定してそれに基づき掘進管理
を行い得る。 【0020】図3は本発明の掘進フロー図の一例を示す
ものであり、図中における記号S/Jはシールドジャッ
キ、S/Cはスクリューコンベア、Wcは切羽室内土砂
の管理含水比、Wmin はWc の下限値、WmaxはWc の
上限値、We は実際に掘進中の切羽室内土砂の含水比を
示す。本発明では、切羽室6内における土砂の性状が検
出される含水比によって確認可能であり、この含水比が
安定掘進状態となる、ある一定の範囲(管理巾)となる
よう、適宜添加剤の注入管理を行うことで、土砂5が、
常時、均一の性状の泥土となり、カッタートルク過大お
よび排土装置内での閉塞あるいは排土口17から噴発する
こともなく安定した掘進管理を行える。 【0021】なお、含水比の管理中は、以下の不等式に
示すように設定し、閉塞あるいは噴発が予兆される値以
内に余裕をもって設定すればより安定した掘進管理が行
える。 上記、掘進管理フローは含水比によって管理する例であ
るが、密度によって管理しても同様の効果が得られ、ま
た、両者を基準として管理してもよい。 【0022】このように、切羽室6内にある土砂の性状
を測定して管理するようにすれば、万一、掘進中に閉塞
あるいは噴発が予兆されてもその性状の土砂は切羽室6
内にあって、排土装置内に達しておらず、これら現象を
より早く察知できるため、早めの防止策が可能である。 【0023】 【発明の効果】以上のように本発明によれば、掘削土
砂、あるいは掘削土砂と添加剤との混合体により切羽を
保持するシールド機の切羽室内の土砂の密度および/あ
るいは含水量を測定する密度・水分測定器を設けたの
で、切羽室内の掘削土砂の密度および/あるいは含水量
を計測でき、この検出値により切羽室内および排土装置
内の泥土の性状が明確に把握でき、複雑な互層や土質調
査に困難性を伴う大深度においても切羽室内土砂の密度
および/あるいは含水量を均一に管理することで、掘進
管理が容易となり、また切羽室内の検出値により泥土の
性状を観察するようにしているため、噴発や閉塞等の予
兆をより早く察知でき、それに応じて早めに対処できる
ので、トラブルを事前に防止し、円滑に掘進を行うこと
ができる、という効果がある。 【0024】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shield machine used when constructing a tunnel in the ground, more specifically, excavated earth and sand taken into a face chamber by using a radioisotope. The present invention relates to a shield machine that measures the density and water content of a slab and controls excavation. In a conventional earth pressure type shield, earth pressure management, additive injection management, earth removal management and the like are mutually effective as excavation control methods for maintaining stable face and maintaining stable excavation. It is related and done. In other words, there is earth pressure management as a direct method of stabilizing the face, excavating sediment,
Alternatively, a mixture of excavated soil and additives is filled in the face of the face and the screw conveyor, and the thrust of the shield jack generates pressure in the face of the face to counteract the earth pressure and groundwater pressure of the ground that acts on the face. To control the face. In this case, the pressure in the face chamber is constantly measured by an earth pressure gauge provided in the face chamber, and the detected pressure value is within a range of a lower limit value in which ground collapse does not occur and an upper limit value in which ground uplift does not occur. The excavation control is performed by adjusting the propulsion speed of the shield jack and the rotation of the screw conveyor so as to maintain a static earth pressure that does not cause the ground deformation. At this time, it is a necessary condition that the excavated earth and sand filled and pressurized in the face chamber and the screw conveyor have appropriate plastic fluidity and lower water permeability. As this excavation control, conventionally, the control width of the resistance torque value of the rotary cutter provided in the shield machine is set, and in order to keep it at a constant value, additives are appropriately injected into the excavated earth and sand and they are mechanically kneaded. Soil properties are converted to the above soil properties. The conversion effect is confirmed by observing the soil removal properties such as the measurement of the rotary cutter torque value, the soil slump value, and the water content ratio, and the excavation management is performed while the results are fielded back to the excavation. However, it is possible to check the soil resistance conversion effect by kneading the excavated earth and sand or the mixture of the excavated earth and additive with the additive in the face face chamber by the kneading resistance torque value. However, the detected rotary cutter torque value is the sum of the cutting resistance torque and the kneading resistance torque.Because the cutting resistance torque changes depending on the excavation soil quality, excavation speed, etc., an accurate kneading resistance torque value can be detected. However, it was not enough to confirm the kneading effect. As described above, the method of confirming the kneading effect by the rotary cutter resistance torque is indirect, and it is difficult to constantly and accurately grasp the properties of the kneaded earth and sand. Superfluidity, etc. could not be sensed until the soil was actually discharged, and there was a risk of blockage in the soil discharge device or eruption of sediment from the soil discharge port. In addition, it is more difficult to uniformly manage the excavated kneaded soil in the case of complicated alternating excavation where the stratum of the excavated ground changes drastically, and there is a problem that spouting from the soil discharge device is likely to occur especially under high water pressure. It was The present invention has been proposed in view of the above, and an object of the present invention is to excavate earth pressure type shields by excavating earth and sand filled with pressure in a face chamber during excavation in any ground. The purpose of the present invention is to provide a shield machine that enables accurate grasping of properties and appropriate excavation management, and that can quickly build a lateral pit. In order to achieve the above-mentioned object, the present invention is, in short, provided with a partition wall in the front part of the shield cylinder, and a face chamber is provided through the partition wall, and a face chamber is provided in front of the face chamber. In a shield machine in which a drilling tool is installed in the ground and a soil discharging device is connected to the rear of the face chamber, the density and / or the water content is measured using a radioisotope (RI) for the partition wall and / or the drilling tool.・ A moisture meter is installed to directly measure the density and / or water content of the sediment in the face chamber, and the detected value is used to estimate and grasp the property of the sediment, and to manage this to perform stable excavation. It is a summary. In the cutting chamber and the soil discharging device, the excavated earth or the earth mixed with the additive and the excavated earth is converted into so-called "mud" having proper plastic fluidity and impermeable property. And is filled under pressure. In general, the fluidity of earth and sand depends on its water content, and the higher the water content, the easier it is for it to flow. Therefore, in order to maintain the property of the excavated earth and sand filled in the face chamber and the earth removing device uniformly and to maintain a stable excavation, the present invention has the density of the excavated earth and sand in the face chamber as described above. / Or measure the water content and manage the excavation of the shield machine so as to keep this measured value constant. For example, when it is eruptive superfluid sand, it is possible to know it in the face chamber. Is possible,
Since there is a sufficient time before soil removal, it is possible to take measures such as promptly reducing the amount of additive injection before the accident occurs. Embodiment 1 FIGS. 1A and 1B are a front view and a vertical sectional view of an earth pressure type shield machine 1 showing a first embodiment of the present invention.
Thus, the shield machine 1 in this embodiment excavates the face 4 of the excavation portion with the excavator 3 which can rotate in the forward and reverse directions on the front surface of the shield outer cylinder 2 having a substantially cylindrical shape, and shields the excavated earth and sand 5. The face 4 was filled in the front of the outer cylinder 2, and the face 4 was held mainly by the mixture of the excavated sand 5 and the additive injected from the inside by the well-known means. The earth excavation 7 is excavated while being discharged to the outside through an earth discharging device 8 such as a screw conveyor or a belt conveyor. The structure of the excavator 3 is a general structure including a cutter spoke, an excavation bit, a copy cutter, a fish tail, etc.
Further, for example, stirring tools 18a and 18b are provided behind the excavation tool 3. In addition, it goes without saying that the agitator can be provided so as to project on the outer circumference of the rotary shaft 11. In the figure, 9 is a radial cutter spoke which constitutes the excavator 3, and 10 is an excavation bit attached to the front part of the cutter spoke 9 of the excavator 3, which is connected to the substantially central portion of the cutter spoke 9. The tip of the rotary shaft 11 is connected, and the rotary shaft 11 is axially supported by a bearing provided in the partition wall 12. Further, an excavation tool drive motor 13 provided behind the partition wall 12 is connected to the rotary shaft 11 via a gear mechanism, whereby the excavation tool 3 is driven, and the screw conveyor 8 is a screw conveyor that drives the excavation tool 3. The motor 14 is attached. The segment 15 is constructed in a substantially cylindrical shape as the excavation proceeds, and a gap such as the backfill material 16 is filled in the gap between the ground G and the segment 15. However, in this embodiment, in order to directly measure the soil quality of the excavated soil taken in the face chamber 6 and the mixture with the additive, the density of the sand is placed at a good position of the partition wall 12. Density / moisture meter 21 for measuring water content
a is provided to the front, that is, facing the face of the face 6 and the cutter / spoke 9 that is a component of the excavator 3 is provided with a density / water content measuring device 21b rearward, that is, to the face of the face 6 ing. It should be noted that the density / moisture measuring device 21b provided on the cutter spoke 9 is located on the outer peripheral side, and the excavator 3 rotates once so that the soil quality of the entire excavated soil in the face chamber 6 can be measured. It has become. Also,
A cable 22 is connected to the density / water content measurement 21a, 21b for taking out the obtained data signal to the outside and processing the data by a device including a subsequent electronic circuit. FIG. 2A shows a partition wall in the embodiment of the present invention.
The detection capsule 23 of the density / moisture measuring instrument 21a provided in 12 is extended and detected in a longitudinal section, and FIG. 2B shows the detection capsule 23 housed in a shielding box 24. That is, the density
The front part of the shielding box 24 having a hollow inside which constitutes the moisture measuring device 21a is attached to the opening of the partition wall 12, and the detection capsule 23 can be freely retracted from the front side of the shielding box 24 to the face chamber 6 side. ing. Reference numeral 26 in the drawing denotes a jack provided in the shielding box 24 and connected to the detection capsule 23, and the detection capsule 23 can be freely expanded and contracted through this jack 26, and at the time of detection, as shown in (a), It is in a state of extending and projecting to the side of the face chamber 6 and can be fixed at that position. In this case, a fixed stirrer 18c having a bottomed cylindrical shape and protruding toward the front side of the face chamber 6 is provided at the front part of the partition wall 12.
The detection capsule 23 projects into the hollow portion of c and is configured so as to prevent the detection capsule 23 from being damaged by the earth and sand in the face chamber 6 and causing an accident. When not detected, the detection capsule 23 can be housed in the shielding box 24 by retracting the jack 26 as shown in (b).
In this way, the detection capsule 23 can be freely moved in and out of the shielding box 24. The density / moisture detector 21a provided with the detection capsule 23 uses a radioisotope RI (radioisotope) which is a well-known technique. A radiation source 25 is provided inside the detection capsule 23 and a shielding box is provided. A detector 29 for measuring the radiation dose from the radiation source 25, a standard body 28, and the like are provided in front of the inside of 24. Further, the detector 29 is connected to the arithmetic unit 30 and the display 31 via cables 22 and 32. Source 25
For this, a radioactive substance that emits radiation, for example, cobalt 60 (Co · 60) for density measurement, californium 252 (cf-252) for water content measurement, etc., is used in a stainless steel cylindrical container. In operation, as shown in FIGS. 2 (a) and 2 (c), the radiation R radiated from the radiation source 25 passes through the detection capsule 23 and the earth and sand 5 in the face chamber 6 to the detector. It is possible to measure the density and the amount of water in the earth and sand 5 in the face chamber 6 by irradiating 29 and measuring the amount of radiation transmitted at this time. Detector
The radiation dose detected at 29 is converted into an electric signal and input to the arithmetic unit 30 via the cable 22, and after being calculated, the display signal is input to the display unit 31 via the cable 32,
Density and / or water content is displayed. The moisture content W is W = ρw / (ρt −ρw) ×, where ρt (g / cm 3 ) is the wet density of the soil and ρw (g / cm 3 ) is the water content.
Calculated as 100 (%). In this way, the density and moisture detector 21a can always measure the density and / or the water content of the earth and sand 5 filled in the face chamber 6, whereby the excavated earth and sand 5 can be measured. It is possible to confirm the "mud" conversion effect and kneading effect. For example, if there are large variations in the detected values of the density / water content detectors 21a provided on the partition wall 12, it is determined that the kneading is insufficient, and the sand with a low density or a high water content has excessive fluidity, There is a possibility of eruption from the soil discharge port 17 of the conveyor 8. in this case,
By temporarily stopping the excavation and soil removal and performing sufficient kneading,
It is possible to make the properties of the earth and sand in the face chamber 6 uniform and prevent the eruption from the earth discharge port 17 in advance. In addition, the density ρc and the water content Wc of the earth and sand 5 in the face chamber 6 during stable excavation
Is within a certain range between the limit value that causes excessive rotation cutter torque or blockage in the soil discharging device and the limit value that causes ejection from the soil discharge port 17, and keep the detection value constant within this range. By performing the excavation management so as to keep the soil 5 at all times, the soil 5 becomes a mud having a uniform property and stable excavation can be performed. The radioactive isotope has a property that the radiation dose attenuates with the passage of time. Cobalt 60 above
(Co-60) and Californium 252 (Cf-252) have a relatively short half-life, and in order to ensure the accuracy of the measured value, the attenuation degree of the radiation source 25 is measured for a certain period, for example, once a week. Needs to be calibrated. Next, the calibration method shown in FIG. 2B will be described. The radiation source 25 in the detection capsule 23 is housed in a shield box 24 by a jack 26, the radiation R is applied to a standard body 28, passes through the standard body 28, and enters a detector 29. The value detected there was compared with the value obtained by measuring the amount of radiation passing through the standard body 28 in advance, and the
After confirming the radiation attenuation of 25, the arithmetic unit 30 is corrected. The standard body 28 is formed of a substance which is physically and chemically stable and hardly deteriorates over time, such as acrylic or glass. Moreover, if the total dose of the radiation source 25 is a low level of 100 microcuries or less, it is not subject to legal regulation and no special handling qualification is required. Figure 2 (c) shows the density of the cutter spoke 9
FIG. 6 is a vertical cross-sectional view of a state in which the moisture measuring instrument 21b detects, and this density / moisture measuring instrument 21b is also configured in the same manner as described above, and is detected in the hollow portion of the fixed stirring tool 18C projecting behind the cutter spoke 9. The capsule 23 is freely retractable via the jack 26, and the density and water content of the earth and sand 5 in the face chamber 6 can be measured. In the above embodiment, the density / moisture measuring device is used.
Although the case where 21a and 21b are respectively provided on the partition wall 12 side and the excavation tool 3 side has been shown, it is also possible to set the hollow shaft at another place, for example, the rotary shaft 11, and set it in that portion. Alternatively, the configuration may be provided in only one place. In addition, the measurement is not limited to both the density and the water content of the earth and sand 5, and either one can be measured and the excavation management can be performed based on that. FIG. 3 shows an example of the excavation flow chart of the present invention. In the figure, symbol S / J is a shield jack, S / C is a screw conveyor, Wc is a water content ratio of soil in the face chamber, and Wmin is The lower limit value of Wc, Wmax is the upper limit value of Wc, and We is the water content ratio of the earth and sand in the face chamber during the actual excavation. In the present invention, it is possible to confirm by the water content ratio that the property of the earth and sand in the face chamber 6 is detected, and the content of the additive is appropriately adjusted so as to be in a certain range (control width) in which the water content ratio is in a stable excavation state. By performing injection management, the earth and sand 5
The mud has a uniform property at all times, and stable excavation management can be performed without excessive cutter torque, blockage in the soil discharging device, or ejection from the soil discharging port 17. During the control of the water content ratio, the setting as shown by the following inequalities and the setting with a margin within the value predicting the occlusion or jetting allow more stable excavation control. Although the above-mentioned excavation management flow is an example in which it is managed by the water content ratio, the same effect can be obtained by managing it by the density, and both may be managed as a reference. As described above, if the properties of the earth and sand in the face chamber 6 are measured and managed, even if an obstruction or eruption is predicted during the excavation, the earth and sand will be in the form of the face chamber 6.
Since it does not reach the inside of the soil unloading device and these phenomena can be detected earlier, early preventive measures can be taken. As described above, according to the present invention, the density and / or water content of earth and sand in the face chamber of a shield machine that holds a face by excavated soil or a mixture of excavated soil and additives. Since a density / water content measuring device was installed to measure the density and / or water content of the excavated earth and sand in the face chamber, the detected values clearly identify the properties of the mud in the face chamber and the earth removing device. Even at large depths where complicated alternation and soil investigation are difficult, by uniformly controlling the density and / or water content of the soil in the face chamber, the excavation management becomes easier and the characteristics of the mud can be determined by the detected values in the face chamber. Since it is observed, it is possible to detect signs such as eruptions and blockages earlier, and respond accordingly, so that troubles can be prevented in advance and smooth excavation can be performed. , Is effective. [0024]

【図面の簡単な説明】 【図1】(イ)、(ロ)はそれぞれ本発明の第1実施例
を示すシールド機の正面図および縦断面図である。 【図2】(イ)、(ロ)、(ハ)は密度・水分測定器の
断面図である。 【図3】本発明の掘進管理フロー図の一例を示す。 【符号の説明】 1 シールド機 2 シールド外筒 3 掘削具 4 切羽 5 掘削土砂 6 切羽室 7 排土 8 排土装置 9 カッタースポーク 10 掘削ビット 11 回転シャフト 12 隔壁 13 掘削具駆動モータ 14 スクリューコンベアモータ 15 セグメント 16 裏込材 17 排土口 18a 攪拌具 18c 固定攪拌具 21a 密度・水分測定器 22 ケーブル 12 検出カプセル 24 遮蔽箱 25 線源 26 ジャッキ 28 標準体 29 検出器 30 演算装置 31 表示器 32 ケーブル
BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1] (a) and (b) are respectively a front view and a vertical sectional view of a shield machine showing a first embodiment of the present invention. 2 (a), (b) and (c) are cross-sectional views of a density / water content measuring device. FIG. 3 shows an example of an excavation management flow chart of the present invention. [Explanation of symbols] 1 shield machine 2 shield outer cylinder 3 excavation tool 4 cutting face 5 excavation earth and sand 6 cutting face chamber 7 excavation 8 excavation device 9 cutter spoke 10 excavation bit 11 rotating shaft 12 partition wall 13 excavation tool drive motor 14 screw conveyor motor 15 Segment 16 Backing material 17 Soil outlet 18a Stirrer 18c Fixed stirrer 21a Density / moisture analyzer 22 Cable 12 Detection capsule 24 Shielding box 25 Source 26 Jack 28 Standard body 29 Detector 30 Computing device 31 Display 32 Cable

Claims (1)

【特許請求の範囲】 【請求項1】 シールド筒の前部に隔壁を設け、この隔
壁を介して切羽室が設けられ、この切羽室の前方に掘削
具が設けられ、かつ切羽室の後方に排土装置が接続され
たシールド機において、前記切羽室内土砂の密度および
/あるいは含水量を測定する密度・水分測定器を前記隔
壁および/あるいは掘削具等に設けたことを特徴とした
シールド機。 【請求項2】 密度・水分測定器はラジオアイソトープ
(RI)を用いた測定器にて成り、切羽室内の土砂の密
度および/あるいは含水量を測定し、この測定値を一定
に保つことで排土の性状を均一に管理して掘進制御する
システムを備えた 【請求項1】記載のシールド機。
Claim: What is claimed is: 1. A shield is provided with a partition wall at the front portion thereof, a face chamber is provided through the partition wall, an excavation tool is provided in front of the face chamber, and a cutting tool is provided behind the face chamber. In a shield machine to which an earth discharging device is connected, a density / moisture measuring device for measuring the density and / or water content of the soil in the face chamber is provided on the partition wall and / or excavator. 2. The density / water content measuring device is a measuring device using a radioisotope (RI), which measures the density and / or water content of the earth and sand in the face chamber and keeps the measured values constant to eliminate the waste. The shield machine according to claim 1, further comprising a system for uniformly controlling soil properties and controlling excavation.
JP2411226A 1990-12-17 1990-12-17 Shield machine Expired - Fee Related JPH083317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411226A JPH083317B2 (en) 1990-12-17 1990-12-17 Shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411226A JPH083317B2 (en) 1990-12-17 1990-12-17 Shield machine

Publications (2)

Publication Number Publication Date
JPH05263584A true JPH05263584A (en) 1993-10-12
JPH083317B2 JPH083317B2 (en) 1996-01-17

Family

ID=18520264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411226A Expired - Fee Related JPH083317B2 (en) 1990-12-17 1990-12-17 Shield machine

Country Status (1)

Country Link
JP (1) JPH083317B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094722A (en) * 2014-11-13 2016-05-26 西松建設株式会社 Method and device for detecting looseness in natural ground on working face side of shield machine
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
CN112129815A (en) * 2020-09-27 2020-12-25 盾构及掘进技术国家重点实验室 Intelligent rock slag detection system of double-mode shield spiral conveyor
JP2021031996A (en) * 2019-08-27 2021-03-01 清水建設株式会社 Device control system and device control method
JP2023062772A (en) * 2021-10-22 2023-05-09 株式会社大林組 Sediment characteristics measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814918A (en) * 1981-04-28 1983-01-28 エ−・ア−ルストロム・オサキ−テイオ Method and apparatus for purifying or screening suspension
JPS59177498A (en) * 1983-03-28 1984-10-08 石川島播磨重工業株式会社 Controller for shielded excavator
JPH01146098A (en) * 1987-12-01 1989-06-08 Daiho Constr Co Ltd Shielding machine
JPH03233095A (en) * 1990-02-07 1991-10-17 Toda Constr Co Ltd Monitoring device in sealed chamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814918A (en) * 1981-04-28 1983-01-28 エ−・ア−ルストロム・オサキ−テイオ Method and apparatus for purifying or screening suspension
JPS59177498A (en) * 1983-03-28 1984-10-08 石川島播磨重工業株式会社 Controller for shielded excavator
JPH01146098A (en) * 1987-12-01 1989-06-08 Daiho Constr Co Ltd Shielding machine
JPH03233095A (en) * 1990-02-07 1991-10-17 Toda Constr Co Ltd Monitoring device in sealed chamber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094722A (en) * 2014-11-13 2016-05-26 西松建設株式会社 Method and device for detecting looseness in natural ground on working face side of shield machine
JP2017106263A (en) * 2015-12-11 2017-06-15 大成建設株式会社 Plastic fluidity grasping method
JP2021031996A (en) * 2019-08-27 2021-03-01 清水建設株式会社 Device control system and device control method
CN112129815A (en) * 2020-09-27 2020-12-25 盾构及掘进技术国家重点实验室 Intelligent rock slag detection system of double-mode shield spiral conveyor
CN112129815B (en) * 2020-09-27 2024-03-15 盾构及掘进技术国家重点实验室 Intelligent rock slag detection system of double-mode shield spiral conveyor
JP2023062772A (en) * 2021-10-22 2023-05-09 株式会社大林組 Sediment characteristics measuring device

Also Published As

Publication number Publication date
JPH083317B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JP2934896B2 (en) Apparatus and method for calculating backfill injection amount in shield method
JP4024504B2 (en) Method for measuring mud soil plastic fluidization and shield machine equipped with the plastic fluidization measuring device
US3946605A (en) Apparatus and method of measuring fluctuations of excavated mud amount in a slurry line
JPH05263584A (en) Shield tunneling machine
JP2000104488A (en) Abrasion detecting method for roller bit
JP2791709B2 (en) Excavation control method of shield machine
JP6608272B2 (en) Tunnel excavation method and shield excavator
JP6246691B2 (en) Method and apparatus for measuring excavated sediment density of shield machine
JPH058318B2 (en)
JP2533811B2 (en) Shield machine
JPH01146098A (en) Shielding machine
JP2023069038A (en) Excavated soil property measuring device for rotary excavator
JP2010013894A (en) Measuring device for sediment flow in chamber and shield excavator
JPH0765461B2 (en) Monitoring device in shield chamber
JPH0344197B2 (en)
JPH06193044A (en) Execution control method for original position soil stirring method
JP2763580B2 (en) Excavated soil volume measuring device and excavation method
JPS6326480Y2 (en)
JPH06100058B2 (en) Earth pressure shield method
JPS58207492A (en) Method of controlling stability of coal face of shield excavator
JPS62164997A (en) Method of excavation construction by shielding machine
JPS5814918B2 (en) Excavation management method and device using closed face shield
JP6584311B2 (en) How to understand plastic fluidity
JPH05263589A (en) Shield tunneling machine
JP2863940B2 (en) Apparatus and method for calculating void volume in shield method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100117

LAPS Cancellation because of no payment of annual fees