JP6761709B2 - Face ground exploration method and equipment - Google Patents

Face ground exploration method and equipment Download PDF

Info

Publication number
JP6761709B2
JP6761709B2 JP2016173486A JP2016173486A JP6761709B2 JP 6761709 B2 JP6761709 B2 JP 6761709B2 JP 2016173486 A JP2016173486 A JP 2016173486A JP 2016173486 A JP2016173486 A JP 2016173486A JP 6761709 B2 JP6761709 B2 JP 6761709B2
Authority
JP
Japan
Prior art keywords
muddy water
ground
ultrasonic
transmitter
cutter head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016173486A
Other languages
Japanese (ja)
Other versions
JP2018040118A (en
Inventor
幸司 粥川
幸司 粥川
司朗 増田
司朗 増田
修吾 中野
修吾 中野
藤本 明生
明生 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2016173486A priority Critical patent/JP6761709B2/en
Publication of JP2018040118A publication Critical patent/JP2018040118A/en
Application granted granted Critical
Publication of JP6761709B2 publication Critical patent/JP6761709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、泥水式シールド工法に用いる切羽地山探査方法及び装置に関し、特に、シールドマシンのカッターヘッド前方の切羽上方の地山、及びカッターヘッド天端周辺の地山の状態(地山の崩壊の有無、コピーカッターによって人為的に行った余掘りの状態など)を探査する切羽地山探査方法及び装置に関する。 The present invention relates to a face ground exploration method and an apparatus used in a muddy water shield tunneling method, and more particularly, a ground above the face in front of the cutter head of a shield machine and a ground around the top of the cutter head (collapse of the ground). It relates to the face tunnel exploration method and equipment for exploring the presence or absence of the tunnel, the state of the surplus digging artificially performed by the copy cutter, etc.

泥水式シールド工法では、シールドマシンで掘削する切羽面にシールドマシン側から泥水を供給し加圧することにより切羽の安定を図りながら掘削を進め、掘削した土砂は泥水とともに地上へ搬送し、地上で土砂と泥水を分離して、掘削した土砂を回収し、泥水を再利用する。
この工法に用いられるシールドマシンは、一般に、マシン本体の先端に回転自在に支持される面板と複数のカッタービットとからなるカッターヘッド及びカッターヘッドを回転させる駆動モータを有するカッター駆動部、カッターヘッドの後方に隔壁により隔成されたカッターチャンバー(以下、チャンバーと称す。)、マシン本体側からチャンバーに挿通される送泥管及び排泥管などを備えて構成される。
このようにしてカッターヘッドをカッター駆動部により回転させるとともに、送泥管からベントナイトや粘土などの粘性材料を加えた泥水をチャンバー内に供給充填し切羽面を泥水で加圧することにより切羽の安定を図りながら掘削を進め、カッターヘッドで掘削した土砂は泥水中に取り込んで排泥水とし、この排泥水を排泥管を通して地上へ搬送するようになっている。
このような泥水式シールド工法においては、掘削土の取り込み過多や土水圧と切羽泥水圧とのアンバランスなどが生じると、地山の崩落やトンネル周りに空洞の発生が懸念される。カッターヘッド前方の切羽やカッターヘッド周囲の地山に、特に均等係数小さい砂層が存在している地盤では、切羽水圧の変動や泥水性状の変化などによって、崩落が起こる危険性が高い。地山に崩落が発生しその状態が残置されると、地下水の流動などにより地盤中の細粒分が移動し、地盤の緩み空洞の拡大が生じ、その結果、地表面で沈下や陥没を引き起こす恐れがある。このため、切羽の掘削には厳格な施工管理が求められる。
ところが、泥水式シールドマシンは密閉型であるため、カッターヘッド前面の切羽の状態をシールドマシン内から直接目視することができない。このため、通常の泥水式シールド工法の切羽の管理では、送配泥水の性状、排土量、排土の性状を常時把握するとともに、切羽泥水圧、カッタートルク、推力などの値や変動を監視し、オペレーターの経験に基づいて判断しているのが現状である。また、シールドマシン内で切羽の状態を探査する場合は、シールドマシン内から切羽に向けてボーリングを実施せざるを得ず、この場合、シールドマシンの掘進を長時間に亘って停止しなければならず、工期の遅延になりかねない。
In the muddy water shield method, excavation is carried out while stabilizing the face by supplying muddy water from the shield machine side to the face surface to be excavated by the shield machine and pressurizing it. And muddy water are separated, excavated earth and sand are collected, and muddy water is reused.
Shield machines used in this method is generally cutter driving unit having a driving motor for rotating the cutter head and the cutter head comprising a face plate and a plurality of cutter Bitto rotatably supported by the front end of the machine body, the cutter head It is configured to include a cutter chamber (hereinafter referred to as a chamber) separated by a partition wall at the rear, a mud feeding pipe and a mud draining pipe inserted into the chamber from the machine body side.
Thus rotates the cutter head by a cutter driving unit in the stable of tunnel face by a mud plus viscous material is supplied filled into the chamber working face surface such as bentonite and clay from Okudoro tube pressurized with mud water The excavation is carried out while trying to carry out the excavation, and the earth and sand excavated by the cutter head is taken into the muddy water to make it muddy water, and this muddy water is transported to the ground through the muddy drain pipe.
In such a muddy water shield method, if excessive excavated soil is taken in or an imbalance between the soil water pressure and the face muddy water pressure occurs, there is a concern that the ground will collapse or a cavity will be generated around the tunnel. There is a high risk of collapse due to fluctuations in face water pressure and changes in muddy water , especially in the ground where a sand layer with a small uniformity coefficient exists on the face in front of the cutter head and the ground around the cutter head . When a collapse occurs in the ground and the state is left behind, fine particles in the ground move due to the flow of groundwater, etc., causing loosening of the ground and expansion of cavities, resulting in subsidence and depression on the ground surface. May cause. Therefore, strict construction management is required for excavation of the face.
However, since the muddy water type shield machine is a closed type, the state of the face on the front surface of the cutter head cannot be directly visually observed from inside the shield machine. Therefore, in the working face management of conventional mud type shield method, properties of transmission and distribution mud, earth removal amount, as well as constantly monitors the properties of the soil discharge, the working face mud pressure, cutters torque value or variation of such thrust The current situation is to monitor and make decisions based on the experience of the operator. In addition, when exploring the condition of the face inside the shield machine, boring must be performed from inside the shield machine toward the face, and in this case, the excavation of the shield machine must be stopped for a long time. However, the construction period may be delayed.

一方、従来より、シールドマシン前方の地盤を探査するための各種の方法や装置が特許文献1−などにより提案されている。
(1)特許文献1
特許文献1は前方探査方法に関するもので、この探査方法では、まず、地中を掘進するシールド掘進機の前部に設けられた送波器から前方へ音波を送り出すとともに、このシールド掘進機の前方の地中に存在する障害物からの反射波をシールド掘進機の前部に設けられた受波器にて受け取り、次に、送波データと受波データとの間の相互相関を求めるとともに、相関関数の大きな受波信号を抽出することで受波のノイズを除去し、そして、送波の送り出しの時刻と受波の受け取りの時刻の差と、音波の地中伝搬速度とから、シールド掘進機から障害物までの距離を算定する。
このようにして受波のノイズを取り除き、障害物までの距離を求める。また、音波の周波数を代えることで、障害物の大きさをも測定する。
(2)特許文献2
特許文献2は進機の地盤探査装置に関するもので、この探査装置では、掘進機のシールド面板に送波器と受波器を設けるとともに、シールド面板の前方地盤中にシャフトを突出させて先方送波器を設置することで、送波器からの音波をこれから掘削する前方の障害物に反射して受波器に受信するとともに、先方送波器から受波器に音波を直接受波する。
このようにして土の音波特性を知るために必要な土中での正確な音波速度や音圧の減衰の度合いを測り、かつ掘進機本体を伝搬する直達波の影響を除去する。
(3)特許文献3
特許文献3は進機の地盤探査装置に関するもので、この探査装置は、掘進機のシールド面板に設けられ、音波を発信する送波器と、シールド面板に設けられ、発信された音波が地盤中の人工構造物や埋設物などの障害物に反射して返ってくる音波と送波器からシールド面板上を伝わってくる音波とを受信する受波器と、受波器に設けられ、シールド面板から伝わってくる音波などの不要な波形を計測する振動計とからなり、送波器とは別に、シールド面板前方の地盤中に突出されるシャフトの先端部に、音波を受波器に直接発信して、受波器までの音波速度と音波の減衰の度合いにより掘進機がこれから掘進する土質を判断するための、先方送波器を設ける。
このようにして送波器とは別に掘進機前方の地盤中に設置した先方送波器から同じ受波器に直接受波することで、両器間の音波速度と音波の減衰を測り、これから掘進する土質を判断して、障害物までの距離を把握する。
(4)特許文献4
特許文献4は地中探査装置に関するもので、この地中探査装置では、音波探査装置が、掘進機の前面カッタ面板に取り付けられ、その内部に音波反射法により前方の地山中の障害物を探査するための地中探査センサであるハイドロフォンが設けられる。
このようにして掘削機前方の地山の障害物を探査する。
(5)特許文献5
特許文献5は地山崩壊検知方法およびその装置に関する。
この検知方法では、シールド掘削機側より地山に向かってワイヤの一端を装着した測定弾を発射し、地山に測定弾を一部貫入させた後、シールド掘削機より延びたワイヤの長さを計測することにより地山崩壊を検知する。
また、この検知装置は、ワイヤ装着溝を設けた測定弾を発射する発射管と、発射管に測定弾を装填する測定弾供給装置と、測定弾に装着するワイヤを供給するワイヤリールと、発射管の開口部と測定弾供給装置と間に開口部から順に配置された、ワイヤのカッタ、およびワイヤにこのワイヤを測定弾に固定するストッパを取り付けるストッパ取付装置と、ワイヤリールの回転に応じた回転信号を出力する回転検出装置と、この回転検出装置から回転信号を入力し、シールド掘削機本体から延びたワイヤ長さを計測し、その長さにより崩壊が発生しているかを判断する飛距離検出装置とを備える。
このようにしてワイヤを装着した測定弾を高速で発射すると、測定弾は泥水などの滞留物を貫通し、未崩壊の固い切羽面に到達することにより、地下水や泥水が溜まっている場合や緩く土砂が溜まっている場合でも、誤差を生じることなく、真の崩壊が有るかどうかを検知する。
On the other hand, conventionally, various methods and devices for exploring the ground in front of the shield machine have been proposed in Patent Documents 1-5 and the like.
(1) Patent Document 1
Patent Document 1 relates to a forward exploration method. In this exploration method, first, sound waves are sent forward from a transmitter provided at the front of a shield excavator that excavates the ground, and in front of the shield excavator. The reflected wave from the obstacle existing in the ground is received by the receiver installed at the front of the shield excavator, and then the cross-correlation between the transmitted data and the received data is obtained, and at the same time, The noise of the received wave is removed by extracting the received signal with a large correlation function, and the shield excavation is performed from the difference between the time of sending the transmitted wave and the time of receiving the received wave and the underground propagation speed of the sound wave. Calculate the distance from the aircraft to the obstacle.
In this way, the noise of the received wave is removed and the distance to the obstacle is obtained. In addition, the size of obstacles is also measured by changing the frequency of sound waves.
(2) Patent Document 2
Patent Document 2 relates to soil survey device excavation proceeds machine, this locator is provided with a wave transmitter and a wave receiver to shield faceplate excavator, it is protruded shaft during forward ground shield faceplate other party By installing a transmitter, the sound wave from the transmitter is reflected by the obstacle in front of the excavation and received by the receiver, and the sound wave is directly received from the other transmitter to the receiver. ..
In this way, the accurate sound wave velocity and the degree of sound pressure attenuation required in the soil to know the sound wave characteristics of the soil are measured, and the influence of the direct wave propagating in the excavator body is removed.
(3) Patent Document 3
Patent Document 3 relates to soil survey device excavation proceeds machine, the locator is provided on the shield surface plate of the excavator, a wave transmitter for transmitting a sound wave is provided on the shield surface plate, originating acoustic waves ground A receiver that receives sound waves that are reflected by obstacles such as artificial structures and buried objects inside and sound waves that are transmitted from the transmitter on the shield face plate, and a shield that is installed in the receiver. It consists of a vibrometer that measures unnecessary waveforms such as sound waves transmitted from the face plate, and apart from the transmitter, the sound waves are sent directly to the receiver at the tip of the shaft that protrudes into the ground in front of the shield face plate. A destination transmitter will be provided to determine the soil quality to be excavated by the excavator based on the sound wave velocity to the receiver and the degree of sound wave attenuation.
In this way, the sound wave velocity and the sound wave attenuation between the two devices are measured by directly receiving the sound waves from the destination transmitter installed in the ground in front of the excavator to the same receiver separately from the transmitter. Determine the soil quality to be dug and grasp the distance to the obstacle.
(4) Patent Document 4
Patent Document 4 relates to a ground penetrating radar, in which a ground penetrating radar is attached to the front cutter face plate of an excavator, and an obstacle in the ground in front is searched inside by a sound wave reflection method. A hydrophone, which is a ground penetrating sensor, will be installed.
In this way, the obstacles in the ground in front of the excavator are explored.
(5) Patent Document 5
Patent Document 5 relates to a method for detecting a ground collapse and a device thereof.
In this detection method, a measuring bullet with one end of the wire attached is fired from the shield excavator side toward the ground, a part of the measuring bullet is penetrated into the ground, and then the length of the wire extended from the shield excavator. Detects the collapse of the ground by measuring.
In addition, this detection device includes a launch tube that launches a measurement bullet provided with a wire mounting groove, a measurement bullet supply device that loads the measurement bullet into the launch tube, and a wire reel that supplies the wire to be mounted on the measurement bullet. A wire cutter, which is arranged in order from the opening between the opening of the tube and the measuring bullet supply device, and a stopper mounting device that attaches a stopper that fixes this wire to the measuring bullet to the wire, according to the rotation of the wire reel. A rotation detection device that outputs a rotation signal, and a flight distance that inputs a rotation signal from this rotation detection device, measures the length of the wire extending from the shield excavator body, and determines whether collapse has occurred based on that length. It is equipped with a detection device.
When the measuring bullet with the wire attached is fired at high speed in this way, the measuring bullet penetrates the accumulated matter such as muddy water and reaches the uncollapsed hard face surface, so that the groundwater or muddy water is accumulated or loosely. Even if sediment is accumulated, it detects whether there is a true collapse without causing an error.

特開平3−85483号公報Japanese Unexamined Patent Publication No. 3-85483 特許第3081712号公報Japanese Patent No. 3081712 特許第3136202号公報Japanese Patent No. 3136202 実開平4−122795号公報Jikkenhei 4-122795 特開平6−58078号公報Japanese Unexamined Patent Publication No. 6-58078

しかしながら、上記特許文献1−5では、次のような問題がある。
(1)特許文献1の前方探査方法では、シールド掘進機の前方の地中に存在する障害物を探査するため、シールド掘進機の前部に設けた送波器から前方へ音波を送り出し、障害物からの反射波をシールド掘進機の前部に設けられた受波器にて受け取り、シールド掘進機から障害物までの距離を算定するものとしたが、音波は波長が長く、指向性が低いために、この探査方法で、カッターヘッド前方の切羽上部の地山又はカッターヘッド天端周辺の地山と泥水との境界面を探査することができない。
(2)特許文献2の進機の地盤探査装置では、土の音波特性を知るために必要な土中での正確な音波速度や音圧の減衰の度合いを測り、かつ掘進機本体を伝搬する直達波の影響を除去するため、掘進機のシールド面板に送波器と受波器を設けるとともに、シールド面板の前方地盤中にシャフトを突出させて先方送波器を設置することで、送波器からの音波をこれから掘削する前方の障害物に反射して受波器に受信するとともに、先方送波器から受波器に音波を直接受波するものとしたが、音波は波長が長く、指向性が低いために、この探査装置で、カッターヘッド前方の切羽上部の地山又はカッターヘッド天端周辺の地山と泥水との境界面を探査することができない。
また、この場合、カッターヘッドから前方を削孔し先方送波器を取り付けたシャフトを突出させて測定するので、その間掘進機を停止せざるを得ず、掘進機による高速施工が要求される現代においては実現性は低いものと考えられる。
(3)特許文献3の進機の地盤探査装置では、これから掘進する土質を判断して、障害物までの距離を把握するため、掘進機のシールド面板に設けられ、音波を発信する送波器、及び発信された音波が地盤中の人工構造物や埋設物などの障害物に反射して返ってくる音波と送波器からシールド面板上を伝わってくる音波とを受信する受波器と、受話器に設けられ、受波器にシールド面板から伝わってくる音波などの不要な波形を計測する振動計と、送波器とは別に、シールド面板前方の地盤中に突出されるシャフトの先端部に設けられ、音波を受波器に直接発信して、受波器までの音波速度と音波の減衰の度合いにより掘進機がこれから掘進する土質を判断するための先方送波器とを備えるものとしたが、音波は波長が長く、指向性が低いために、この探査装置で、カッターヘッド前方の切羽上部の地山又はカッターヘッド天端周辺の地山と泥水との境界面を探査することができない。
(4)特許文献4の地中探査装置では、前方の地山中の障害物を探査するため、音波探査装置が掘進機の前面カッタ面板に取り付けられ、その内部にハイドロフォンが設けられるものとしたが、音波は波長が長く、指向性が低いために、この探査装置で、カッターヘッド前方の切羽上部の地山又はカッターヘッド天端周辺の地山と泥水との境界面を探査することができない。また、音波探査装置はカッターヘッドに切羽に向けて設置されていて、この音波探査装置の前面部に生じる可能性のある気泡や付着する土砂を取り除くために、水を噴射する手段を備えているが、音波探査装置がカッターヘッドに取り付けられ、その前面がカッターヘッド面板と略同一面となっているために、この前面を水で洗浄すると、その水流や水圧で切羽面にも影響を与え、場合によっては、泥水で形成された泥膜が破壊され、切羽を保持できなくなる可能性があり、泥水シールドでは適さないものと考えられる。
)特許文献5の地山崩壊検知方法及び装置では、地山崩壊を検知するため、シールド掘削機側より地山に向かってワイヤの一端を装着した測定弾を発射し、地山に測定弾を一部貫入させた後、シールド掘削機より延びたワイヤの長さを計測するものとしたが、測定後はワイヤを切断し、この切断されたワイヤが地山中に残置されるので、少量ではあるものの、場合によってはこれがカッターに絡み付いてカッターの回転不能やチャンバーの閉塞などを引き起こす恐れがある。
However, Patent Document 1-5 has the following problems.
(1) In the forward exploration method of Patent Document 1, in order to search for an obstacle existing in the ground in front of the shield excavator, sound waves are sent forward from a transmitter provided at the front of the shield excavator to perform an obstacle. The reflected wave from an object is received by a receiver installed at the front of the shield excavator, and the distance from the shield excavator to the obstacle is calculated, but the sound wave has a long wavelength and low directivity. Therefore, this exploration method cannot explore the boundary surface between the ground above the face in front of the cutter head or the ground around the top of the cutter head and muddy water.
(2) in soil survey device excavation proceeds machine of Patent Document 2, measure the degree of attenuation of the exact speed of sound and the sound pressure in soil need to know about acoustic characteristics of the soil, and propagate the shield machine main body In order to eliminate the influence of direct waves, a transmitter and a receiver are installed on the shield face plate of the excavator, and a shaft is projected into the ground in front of the shield face plate to install a forward transmitter. The sound wave from the wave device is reflected by the obstacle in front of the excavation and received by the receiver, and the sound wave is directly received from the destination transmitter to the receiver, but the sound wave has a long wavelength. Due to the low directivity, this exploration device cannot explore the boundary surface between the ground above the face in front of the cutter head or the ground around the top of the cutter head and muddy water.
Also, in this case, since the front is drilled from the cutter head and the shaft to which the destination transmitter is attached is projected for measurement, the excavator must be stopped during that time, and high-speed construction by the excavator is required. It is considered that the feasibility is low.
(3) in soil survey device excavation proceeds machine of Patent Document 3, it is determined the soil to now tunneling, to grasp the distance to the obstacle is provided in the shield faceplate excavator, transmitting that transmits sound waves A receiver and a receiver that receives the sound waves that are transmitted and reflected by obstacles such as artificial structures and buried objects in the ground and returned, and the sound waves that are transmitted from the transmitter on the shield face plate. , A vibration meter provided on the handset that measures unnecessary waveforms such as sound waves transmitted from the shield face plate to the receiver, and the tip of the shaft that protrudes into the ground in front of the shield face plate separately from the transmitter. It is equipped with a forward transmitter for transmitting sound waves directly to the receiver and determining the soil quality to be excavated by the excavator based on the sound wave velocity to the receiver and the degree of sound wave attenuation. However, since sound waves have a long wavelength and low directivity, this exploration device can be used to explore the boundary between the ground above the face in front of the cutter head or the ground around the top of the cutter head and muddy water. Can not.
(4) In the ground penetrating radar of Patent Document 4, in order to search for obstacles in the ground in front, a sound wave exploration device is attached to the front cutter face plate of the excavator, and a hydrophone is provided inside the ground penetrating radar. However, due to the long wavelength and low directivity of sound waves, this exploration device cannot explore the boundary surface between the ground above the face in front of the cutter head or the ground around the top of the cutter head and muddy water. .. In addition, the sound wave exploration device is installed on the cutter head toward the face, and is equipped with a means for injecting water in order to remove air bubbles and adhering earth and sand that may occur on the front surface of the sound wave exploration device. However, since the sound wave probe is attached to the cutter head and the front surface is almost the same surface as the cutter head face plate, if this front surface is washed with water, the water flow and water pressure will affect the face surface as well. In some cases, the mud film formed by the muddy water may be destroyed, making it impossible to hold the face, and it is considered that the muddy water shield is not suitable.
( 5 ) In the ground collapse detection method and device of Patent Document 5, in order to detect the ground collapse, a measuring bullet equipped with one end of a wire is fired from the shield excavator side toward the ground and measured on the ground. After a part of the bullet was penetrated, the length of the wire extending from the shield excavator was measured, but after the measurement, the wire was cut and this cut wire was left in the ground, so a small amount However, in some cases, this may get entangled with the cutter and cause the cutter to be unable to rotate or the chamber to be blocked.

本発明は、このような従来の問題を解決するものであり、地山の崩落やトンネル周りに空洞の発生が懸念される切羽の上方を直接に、簡便で短時間の探査により、掘進工程に影響を与えることなしに、また、切羽の保持に影響することなしに、その状況や空洞の有無などを早期に把握し、早期に対策を行えるようにして、周辺の影響や工程の遅延などを防止する、地山切羽探査方法及び装置を提供すること、を目的とする。 The present invention solves such a conventional problem, and can be used in a simple and short-time exploration process directly above the face where there is a concern about the collapse of the ground or the formation of cavities around the tunnel. Without affecting the holding of the face and without affecting the holding of the face, the situation and the presence or absence of cavities can be grasped at an early stage, and countermeasures can be taken at an early stage to prevent the influence of the surroundings and delays in the process. The purpose is to provide a method and device for exploring the ground face to prevent it.

上記目的を達成するために、本発明の地山切羽探査方法は、
泥水式シールドマシン先端の面板及びカッターからなるカッターヘッドを回転させ、前記カッターヘッド後方のバルクヘッドにより隔成されるチャンバー内に送泥管により泥水を供給充填して、前記カッターヘッド前方の切羽面を泥水で加圧しながら掘削した前記カッターヘッド前方の切羽上部及び前記カッターヘッド天端周辺の地山の状態を把握する切羽地山探査方法であって、
前記シールドマシンの停止中に、制御装置にケーブル又は無線により接続された超音波受発信器を先端に取り付けた探査棒を前記シールドマシンの本体内部から前記バルクヘッドに形成した穴を通して前記チャンバー内の泥水中に挿入するとともに、前記超音波受発信器を前記カッターヘッド前方の切羽上部の地山又は前記カッターヘッド天端周辺の地山に向けて当該地山と前記泥水との境界面を前記泥水の比重に応じて探査可能な地点まで移動し、前記泥水中で前記超音波受発信器から超音波を発信し、当該地山と前記泥水との境界面での反射波を前記超音波受発信器で検知して、前記超音波受発信器から当該地山までの距離を測定することにより、切羽、地山の状態を把握する、
ことを要旨とする。
この場合、超音波受送信器及び制御装置に地中連続壁の側壁測定用の超音波測定装置を含む汎用機を使用する。
この場合、予め、チャンバー内に供給する泥水と同じ比重の模擬泥水と模擬土砂を入れた水槽の中で、使用する超音波受発信器が前記模擬泥水と前記模擬土砂との境界面を探査可能な当該境界面からの距離を測定しておき、当該距離に基づいて、探査棒を前記超音波受発信器から前記バルクヘッドに形成した穴を通して前記チャンバー内の泥水中に挿入するとともに、前記超音波受発信器を前記カッターヘッド前方の切羽上部の地山又は前記カッターヘッド天端周辺の地山に向けて当該地山と前記泥水との境界面を前記泥水の比重に応じて探査可能な地点まで移動する。
この場合、予め、チャンバー内に供給する泥水と同じ比重の模擬泥水と模擬土砂を入れた水槽の中で、使用する超音波受発信器が前記模擬泥水と前記模擬土砂との境界面を探査可能な当該境界面からの距離を測定しておき、当該距離に基づいて、探査棒に必要な長さを算出する。
この場合、超音波受発信器から受発信する超音波をカッターヘッドの面板に土砂の取り込み用に形成されるスリットを通して前記面板を透過させる。
In order to achieve the above object, the ground face exploration method of the present invention
A cutter head composed of a face plate at the tip of a muddy water shield machine and a cutter is rotated, and muddy water is supplied and filled into a chamber separated by a bulkhead behind the cutter head by a mud pipe to fill the face surface in front of the cutter head. This is a face ground exploration method for grasping the state of the ground in front of the cutter head and around the top of the cutter head, which was excavated while pressurizing with muddy water.
While the shield machine is stopped, a search rod having an ultrasonic transmitter / receiver connected to the control device by a cable or radio at the tip is passed through a hole formed in the bulkhead from the inside of the main body of the shield machine into the chamber. While inserting it into the muddy water, the ultrasonic wave receiver and transmitter are directed toward the ground above the face in front of the cutter head or the ground around the top of the cutter head, and the interface between the ground and the muddy water is directed to the muddy water. It moves to a searchable point according to the specific gravity of, emits ultrasonic waves from the ultrasonic receiver / transmitter in the muddy water, and transmits / receives the reflected wave at the interface between the ground and the muddy water. By detecting with a device and measuring the distance from the ultrasonic transmitter / receiver to the ground, the state of the face and the ground can be grasped.
The gist is that.
In this case, a general-purpose machine including an ultrasonic measuring device for measuring the side wall of a continuous underground wall is used for the ultrasonic receiving transmitter and the control device.
In this case, the ultrasonic receiver / transmitter to be used can search the boundary surface between the simulated muddy water and the simulated earth and sand in a water tank containing the simulated muddy water and the simulated earth and sand having the same specific gravity as the muddy water supplied into the chamber in advance. The distance from the boundary surface is measured, and based on the distance, the exploration rod is inserted into the muddy water in the chamber through the hole formed in the bulkhead from the ultrasonic transmitter / receiver, and the ultrasonic wave is inserted into the muddy water. A point where the boundary surface between the ground and the muddy water can be explored according to the specific gravity of the muddy water toward the ground above the face in front of the cutter head or the ground around the top of the cutter head. Move to.
In this case, the ultrasonic receiver / transmitter to be used can search the boundary surface between the simulated muddy water and the simulated earth and sand in advance in a water tank containing the simulated muddy water and the simulated earth and sand having the same specific gravity as the muddy water supplied into the chamber. The distance from the boundary surface is measured, and the length required for the exploration rod is calculated based on the distance.
In this case, the ultrasonic waves transmitted and received from the ultrasonic receiver and transmitter are transmitted through the face plate of the cutter head through a slit formed for taking in earth and sand.

上記目的を達成するために、本発明の地山切羽探査装置は、
泥水式シールドマシン先端の面板及びカッターからなるカッターヘッドを回転させ、前記カッターヘッド後方のバルクヘッドにより隔成されるチャンバー内に送泥管により泥水を供給充填して、前記カッターヘッド前方の切羽面を泥水で加圧しながら掘削した前記カッターヘッド前方の切羽上部及び前記カッターヘッド天端周辺の地山の状態を把握する切羽地山探査装置であって、
超音波を受発信する超音波受発信器と、
前記超音波受発信器を制御する制御装置と、
前記超音波受発信器を先端に取り付けて、前記超音波受発信器を泥水中で移動するための所定の長さを有する探査棒とを備え、
先端に前記超音波受発信器を有する前記探査棒を前記シールドマシンの本体内部から前記バルクヘッドに形成した穴を通して前記チャンバー内の泥水中を前記カッターヘッド前方の切羽上部の地山又は前記カッターヘッド天端周辺の地山に向けて当該地山と泥水との境界面を泥水の比重に応じて探査可能な探査地点まで延ばし、前記探査地点で前記超音波受発信器から超音波を発信し、当該地山と泥水との境界面での反射波を前記超音波受発信器で検知して、前記超音波受発信器から当該地山までの距離を測定する、
ことを要旨とする。
In order to achieve the above object, the ground face exploration device of the present invention
A cutter head composed of a face plate at the tip of a muddy water shield machine and a cutter is rotated, and muddy water is supplied and filled into a chamber separated by a bulkhead behind the cutter head by a mud pipe to fill the face surface in front of the cutter head. It is a face ground exploration device that grasps the state of the ground in front of the cutter head and around the top of the cutter head excavated while pressurizing with muddy water.
An ultrasonic receiver / transmitter that receives and transmits ultrasonic waves,
A control device that controls the ultrasonic transmitter / receiver and
The ultrasonic wave receiver / transmitter is attached to the tip, and is provided with an exploration rod having a predetermined length for moving the ultrasonic wave receiver / transmitter in muddy water.
The probe rod having the ultrasonic wave receiver / transmitter at the tip is passed through a hole formed in the bulkhead from the inside of the main body of the shield machine, and the muddy water in the chamber is passed through the ground above the face in front of the cutter head or the cutter head. The boundary surface between the ground and the muddy water is extended to the exploration point that can be explored according to the specific gravity of the muddy water toward the ground around the crown, and ultrasonic waves are transmitted from the ultrasonic receiver / transmitter at the exploration point. The ultrasonic wave receiver / transmitter detects the reflected wave at the interface between the ground and muddy water, and measures the distance from the ultrasonic receiver / transmitter to the ground.
The gist is that.

本発明の切羽地山探査方法及び装置によれば、シールドマシンの停止中に、制御装置にケーブル又は無線により接続された超音波受発信器を先端に取り付けた探査棒をシールドマシンの本体内部からバルクヘッドに形成した穴を通してチャンバー内の泥水中に挿入するとともに、超音波受発信器をカッターヘッド前方の切羽上部の地山又はカッターヘッド天端周辺の地山に向けて当該地山と泥水との境界面を泥水の比重に応じて探査可能な距離まで移動し、泥水中で超音波受発信器から超音波を発信し、当該地山と泥水との境界面での反射波を超音波受発信器で検知して、超音波受発信器から当該地山までの距離を測定することにより、切羽、地山の状態を把握するようにしたので、地山の崩落やトンネル周りに空洞の発生が懸念される切羽の上方を直接に、簡便で短時間の探査により、掘進工程に影響を与えることなしに、また、切羽の保持に影響することなしに、その状況や空洞の有無などを早期に把握することができ、これにより、地山の崩落や空洞の発生があった場合に、早期の対策を講じることができ、周辺の影響や工程の遅延などを防止することができる、という本発明独自の格別な効果を奏する。 According to the face ground exploration method and device of the present invention, while the shield machine is stopped, an exploration rod having an ultrasonic receiver / transmitter connected to the control device by a cable or radio is attached to the tip from inside the main body of the shield machine. While inserting it into the muddy water in the chamber through the hole formed in the bulkhead, point the ultrasonic transmitter / receiver toward the ground above the face in front of the cutter head or the ground around the top of the cutter head with the ground and muddy water. Moves to a distance that can be explored according to the specific gravity of the muddy water, emits ultrasonic waves from the ultrasonic receiver / transmitter in the muddy water, and receives the reflected waves at the boundary surface between the ground and the muddy water. By detecting with a transmitter and measuring the distance from the ultrasonic receiver / transmitter to the ground, the condition of the face and the ground can be grasped, so that the ground collapses and cavities occur around the tunnel. By exploring directly above the face, which is a concern, in a simple and short time, the situation and the presence or absence of cavities can be detected early without affecting the excavation process and without affecting the retention of the face. This book says that in the event of a collapse of the ground or the occurrence of a cavity, it is possible to take early measures and prevent the influence of the surroundings and delays in the process. It has a special effect unique to the invention.

本発明の一実施の形態による切羽地山探査方法及び装置を示す図((a)はチャンバー近傍の縦断面図(b)はバルクヘッド(隔壁)の横断面図(c)は面板スリットの横断面図)A view showing a face ground exploration method and an apparatus according to an embodiment of the present invention ((a) is a vertical cross-sectional view (b) near a chamber is a cross-sectional view (c) of a bulkhead (bulkhead), and (c) is a cross section of a face plate slit. View) 同方法及び装置における超音波受発信器を先端に取り付けた探査棒をバルクヘッドから探査地点に向けて押し出し、設置した状態と引き戻した状態を示す図The figure which shows the state which pushed out the exploration rod which attached the ultrasonic wave receiver and transmitter to the tip from the bulkhead toward the exploration point in the same method and device, and pulled back in the installed state. 同方法及び装置における超音波受発信器による泥水中(泥水比重1.220の場合)の超音波探査の確認実験を示す図((1)は実験の方法を模式的に示す図(2)は実験結果を示す図)The figure which shows the confirmation experiment of the ultrasonic exploration of the muddy water (in the case of the muddy water specific gravity 1.220) by the ultrasonic transmitter / receiver in the same method and the apparatus ((1) is a figure (2) which shows the experimental method schematically, is FIG. Figure showing experimental results) 同方法及び装置における超音波受発信器による泥水中(泥水比重1.220の場合)の超音波探査の指向性を含む確認実験を示す図((1)は実験の方法を模式的に示す図(2)は実験結果を示す図)The figure which shows the confirmation experiment including the directivity of the ultrasonic exploration of the muddy water (in the case of the muddy water specific gravity 1.220) by the ultrasonic transmitter / receiver in the same method and apparatus ((1) is a figure which shows typically the method of the experiment. (2) is a diagram showing the experimental results) 同方法及び装置における超音波受発信器による泥水中(泥水比重1.220の場合)の超音波探査のスリット透過の確認実験を示す図((1)は実験の方法を模式的に示す図(2)は実験結果を示す図)The figure which shows the confirmation experiment of the slit transmission of the ultrasonic exploration of the muddy water (in the case of the muddy water specific gravity 1.220) by the ultrasonic transmitter / receiver in the same method and device ((1) is a figure which shows typically the method of the experiment ((1) 2) is a diagram showing the experimental results) 同方法及び装置における超音波受発信器による泥水中(泥水比重1.250の場合)の超音波探査の確認実験を示す図((1)は実験の方法を模式的に示す図(2)は実験結果を示す図)The figure which shows the confirmation experiment of the ultrasonic exploration of the muddy water (in the case of the muddy water specific gravity 1.250) by the ultrasonic transmitter / receiver in the same method and the apparatus ((1) is a figure (2) which shows the experimental method schematically, is FIG. Figure showing experimental results) 同方法及び装置における超音波受発信器による泥水中(泥水比重1.250の場合)の超音波探査の指向性を含む確認実験を示す図((1)は実験の方法を模式的に示す図(2)は実験結果を示す図)The figure which shows the confirmation experiment including the directivity of the ultrasonic exploration of the muddy water (in the case of the muddy water specific gravity 1.250) by the ultrasonic transmitter / receiver in the same method and apparatus ((1) is a figure which shows typically the method of the experiment. (2) is a diagram showing the experimental results) 同方法及び装置における超音波受発信器による泥水中(泥水比重1.250の場合)の超音波探査のスリット透過の確認実験を示す図((1)は実験の方法を模式的に示す図(2)は実験結果を示す図)The figure which shows the confirmation experiment of the slit transmission of the ultrasonic exploration of the muddy water (in the case of the muddy water specific gravity 1.250) by the ultrasonic transmitter / receiver in the same method and apparatus ((1) is a figure which shows typically the method of the experiment ((1) 2) is a diagram showing the experimental results)

次に、この発明を実施するための形態について図を用いて説明する。
図1に切羽地山探査方法を示している。
図1に示すように、この切羽地山探査方法は、泥水式シールドマシンS先端の面板10及びカッター11からなるカッターヘッド1を回転させ、カッターヘッド1後方のバルクヘッド2により隔成されるチャンバー3内に送泥管により泥水Mを供給充填して、カッターヘッド1前方の切羽(面)Pを泥水で加圧しながら掘削したカッターヘッド1前方の切羽上部の地山P1(以下、当該地山P1ということがある。)及びカッターヘッド1天端周辺の地山P2(以下、当該地山P2ということがある。)の状態を把握するもので、この方法では、音波よりも周数が高く、指向性の強い超音波を用いた超音波探査を採用する。
この方法では、特に、シールドマシンSの停止中に、超音波測定装置の制御装置(図示省略)にケーブル又は無線により接続された超音波受発信器Uを先端に取り付けた探査棒BをシールドマシンSの本体内部からバルクヘッド2に形成した穴20を通してチャンバー3内の泥水M中に挿入するとともに、超音波受発信器Uをカッターヘッド1前方の切羽上部の地山P1又はカッターヘッド1天端周辺の地山P2に向けて当該地山P1又はP2と泥水Mとの境界面を泥水Mの比重に応じて探査可能な探査地点まで移動し、泥水M中で超音波受発信器Uから超音波を発信し、当該地山P1又はP2と泥水Mとの境界面での反射波を超音波受発信器Uで検知して、超音波受発信器Uから当該地山P1又はP2までの距離を測定することにより、切羽、地山の状態を把握する。
Next, a mode for carrying out the present invention will be described with reference to the drawings.
Fig. 1 shows the face mountain exploration method.
As shown in FIG. 1, in this face ground exploration method, a chamber formed by rotating a cutter head 1 composed of a face plate 10 and a cutter 11 at the tip of a muddy water type shield machine S and separated by a bulkhead 2 behind the cutter head 1. Muddy water M is supplied and filled into 3 by a mud pipe, and the face P1 in front of the cutter head 1 is excavated while pressurizing the face P in front of the cutter head 1 with muddy water. (Sometimes referred to as P1) and the state of the ground P2 around the top of the cutter head 1 (hereinafter, sometimes referred to as the ground P2). In this method, the number of laps is higher than that of sound waves. , Adopt ultrasonic exploration using highly directional ultrasonic waves.
In this method, in particular, while the shield machine S is stopped, a search rod B having an ultrasonic receiver U connected to the control device (not shown) of the ultrasonic measuring device by a cable or radio is attached to the tip of the shield machine. The ultrasonic receiver U is inserted into the muddy water M in the chamber 3 through the hole 20 formed in the bulkhead 2 from the inside of the main body of S, and the ultrasonic receiver U is inserted into the ground P1 above the face in front of the cutter head 1 or the top end of the cutter head 1. Move toward the surrounding ground P2 to the exploration point where the boundary surface between the ground P1 or P2 and the muddy water M can be explored according to the specific gravity of the muddy water M, and super-from the ultrasonic transmitter / receiver U in the muddy water M. A sound wave is transmitted, the reflected wave at the interface between the ground P1 or P2 and the muddy water M is detected by the ultrasonic receiver U, and the distance from the ultrasonic receiver U to the ground P1 or P2. By measuring the condition of the face and the ground, the condition of the face and the ground can be grasped.

図1に切羽地山探査装置を併せて示している。
図1に示すように、この切羽地山探査装置は、泥水式シールドマシンS先端の面板10及びカッター11からなるカッターヘッド1を回転させ、カッターヘッド1後方のバルクヘッド2により隔成されるチャンバー3内に送泥管により泥水Mを供給充填して、カッターヘッド1前方の切羽(面)Pを泥水Mで加圧しながら掘削したカッターヘッド1前方の切羽上部の地山P1(当該地山P1)及びカッターヘッド1天端周辺の地山(当該地山P2)の状態を把握するもので、この装置では、音波よりも周数が高く、指向性の強い超音波を受発信する超音波受発信器Uとこの超音波受発信器Uを制御する制御装置(図示省略)とからなる超音波測定装置を採用する。
この装置では、特に、超音波測定装置、すなわち、超音波を受発信する超音波受発信器U、及びこの超音波受発信器Uを制御する制御装置と、超音波受発信器Uを先端に取り付けて、超音波受発信器Uを泥水中で移動するための所定の長さを有する探査棒Bとを備え、先端に超音波受発信器Uを有する探査棒BをシールドマシンSの本体内部からバルクヘッド2に形成した穴20を通してチャンバー3内の泥水M中をカッターヘッド1前方の切羽上部の地山P1又はカッターヘッド天端周辺の地山P2に向けて当該地山P1又はP2と泥水Mとの境界面を泥水Mの比重に応じて探査可能な探査地点まで延ばし、探査地点で超音波受発信器Uから超音波を発信し、当該地山P1又はP2と泥水との境界面での反射波を超音波受発信器Uで検知して、超音波受発信器Uから当該地山P1又はP2までの距離を測定する。
Fig. 1 also shows the face ground exploration device.
As shown in FIG. 1, this face ground exploration device rotates a cutter head 1 composed of a face plate 10 and a cutter 11 at the tip of a muddy water type shield machine S, and a chamber separated by a bulkhead 2 behind the cutter head 1. Muddy water M is supplied and filled into 3 by a mud pipe, and the face P1 in front of the cutter head 1 is excavated while pressurizing the face P in front of the cutter head 1 with muddy water M. ) And the state of the ground around the top of the cutter head 1 (the ground P2). This device receives ultrasonic waves that have a higher frequency than sound waves and have strong directivity. An ultrasonic measuring device including a transmitter U and a control device (not shown) for controlling the ultrasonic wave receiving / transmitting device U is adopted.
In this device, in particular, an ultrasonic measuring device, that is, an ultrasonic receiving / transmitting device U that transmits / receives ultrasonic waves, a control device that controls the ultrasonic receiving / transmitting device U, and an ultrasonic receiving / transmitting device U are at the tip. The inside of the main body of the shield machine S is provided with a search rod B having a predetermined length for moving the ultrasonic receiver U in muddy water, and the search rod B having the ultrasonic receiver U at the tip. Through the hole 20 formed in the bulkhead 2, the muddy water M in the chamber 3 is directed toward the ground P1 above the face in front of the cutter head 1 or the ground P2 around the top of the cutter head, and the ground P1 or P2 and muddy water. The boundary surface with M is extended to an exploration point that can be explored according to the specific gravity of muddy water M, ultrasonic waves are transmitted from the ultrasonic receiver U at the exploration point, and at the boundary surface between the ground P1 or P2 and muddy water. The reflected wave of the above is detected by the ultrasonic receiver U, and the distance from the ultrasonic receiver U to the ground P1 or P2 is measured.

以下、この探査方法及び装置について詳述する。
この探査方法及び装置では、超音波測定装置に地中連続壁の側壁測定用の超音波測定装置などの汎用機を転用して使用する。この場合、超音波測定装置は、地中連続壁の側壁測定用のもので、送信部、受信部、制御部、記録部などを含むパソコンに接続可能な制御装置と、この制御装置にケーブル又は無線で接続される超音波受発信器Uとを備えて構成される。
また、探査棒Bは剛性を有する所定の長さの金属棒材により形成される。この探査方法では、後述するとおり、実際の切羽地山探査の前に予め、チャンバー3内に供給する泥水Mと同じ比重の模擬泥水と模擬土砂を入れた水槽の中で、使用する超音波受発信器Uが模擬泥水と模擬土砂との境界面を探査可能な当該境界面からの距離、すなわち、当該境界面から当該境界面を探査可能な探査地点までの距離を測定するので、当該距離に基づいて、探査棒Bに必要な長さを算出する。この場合、探査棒Bの全長は、バルクヘッド2から探査地点までの長さにシールドマシンSの本体内部に残し、探査棒Bの支持、操作に必要な長さを加えた長さとなる。また、この場合、探査棒Bがバルクヘッド2の穴20からの突出長さが一目して分かるように、この探査棒Bの周面に先端から目盛りを付けておいてもよい。
このようにして超音波受発信器Uを先端に取り付けた探査棒Bを、図2に示すように、バルクヘッド2に形成した穴20にボールバルブ21などのシール部材を介して、シールドマシンSの本体内部からチャンバー3内を通して所定の探査地点に向けて押し出し可能に、また反対に引き戻し可能に取り付ける。また、この場合、探査棒Bの操作性をよくするために、探査棒Bを支持するための架台や探査棒Bを探査地点の方向に向けて移動案内するためのガイドを併せて設置してもよい。
Hereinafter, this exploration method and device will be described in detail.
In this exploration method and device, a general-purpose machine such as an ultrasonic measuring device for measuring the side wall of a continuous underground wall is diverted to the ultrasonic measuring device. In this case, the ultrasonic measuring device is for measuring the side wall of the continuous underground wall, and is a control device that can be connected to a personal computer including a transmitting unit, a receiving unit, a control unit, a recording unit, and a cable or a cable to this control device. It is configured to include an ultrasonic transmitter / receiver U connected wirelessly.
Further, the exploration rod B is formed of a rigid metal rod material having a predetermined length. In this exploration method, as will be described later, the ultrasonic receiver used in a water tank containing simulated muddy water and simulated earth and sand having the same specific gravity as the muddy water M supplied into the chamber 3 in advance before the actual exploration of the face ground. Since the transmitter U measures the distance from the boundary surface where the boundary surface between the simulated muddy water and the simulated earth and sand can be explored, that is, the distance from the boundary surface to the exploration point where the boundary surface can be explored, the distance is set to the distance. Based on this, the length required for the exploration rod B is calculated. In this case, the total length of the exploration rod B is the length from the bulkhead 2 to the exploration point, which is left inside the main body of the shield machine S, and the length required for supporting and operating the exploration rod B is added. Further, in this case, the peripheral surface of the exploration rod B may be graduated from the tip so that the protrusion length of the exploration rod B from the hole 20 of the bulkhead 2 can be seen at a glance.
As shown in FIG. 2, the exploration rod B to which the ultrasonic wave transmitter / receiver U is attached to the tip is inserted into the hole 20 formed in the bulkhead 2 through a seal member such as a ball valve 21 to form a shield machine S. It is attached so that it can be pushed out from the inside of the main body through the chamber 3 toward a predetermined exploration point, and vice versa. Further, in this case, in order to improve the operability of the exploration rod B, a gantry for supporting the exploration rod B and a guide for moving and guiding the exploration rod B toward the exploration point are also installed. May be good.

また、この探査方法では、実際の切羽地山探査に際して、超音波受発信器Uをカッターヘッド1前方の切羽上部の地山P1又はカッターヘッド1天端周辺の地山P2に向けて当該地山P1又はP2と泥水Mとの境界面を泥水Mの比重に応じて探査可能な探査地点まで移動させるため、実際の切羽地山探査の前に予め、チャンバー3内に供給する泥水Mと同じ比重の模擬泥水と模擬土砂を入れた水槽の中で、使用する超音波受発信器Uが模擬泥水と模擬土砂との境界面を探査可能な当該境界面からの距離を測定しておく。
この測定手法を図3から図8に例示している。
ここで使用する超音波受発信器Uは、本来、地中連続壁工法の施工管理において泥水(安定液)が溜められた縦穴内で上下に移動しながら、超音波を縦穴の側壁に向けて放射し、その反射波を受波して、縦穴の壁面までの距離を測定するもので、この場合の泥水の比重は1.04〜1.10とされており、これに対して泥水式シールド工法で用いる泥水の比重は1.1〜1.25と大きい。
そこで、泥水式シールド工法で用いられる実際の泥水M中でのこの超音波受発信器Uによる地山と泥水との境界面の探査の可否及び探査距離を把握する必要があり、模擬泥水と模擬土砂を使用して模擬泥水中での超音波受発信器Uによる超音波探査の確認実験を行う。この実験では、図3〜図8に示すように、水槽A内にその底部の一端から中央付近まで斜めに所定量の土砂E1(模擬土砂E1)を盛り、所定量の泥水M1(模擬泥水M1)を入れておき、この模擬泥水M1の中に超音波受発信器Uを探査棒Bを介して挿入し、模擬土砂E1(模擬土砂E1と模擬泥水M1との境界面)までの斜め距離を変えながら、超音波により距離を計測した。
図3は模擬泥水M1の比重が1.220、超音波受発信器Uの超音波周波数がf=80kHz、土砂角が60°の場合である。その結果を試験結果一覧表に示す。この一覧表から、比重が1.220の場合、80kHzの超音波は土砂から260mm〜760mmまでの反射を捉えているが、土砂から760mmまでの反射については、実験時の比重が時間の経過により1.220より下がったことが予想され、この場合、土砂の適用距離は700mm程度と推察される。
図4は模擬泥水M1の比重が1.220、超音波受発信器Uの超音波周波数がf=80kHzの場合で、土砂角を種々に変えた場合である。その結果を試験結果一覧表に示す。この一覧表から、比重が1.220の場合、80kHzの超音波は土砂角70°〜90°までは土砂E1の反射を検出することができ、この場合、土砂角の適用限界は68°〜70°以上と推測される。
また(図1を参照すると)、泥水式シールドマシンSは一般に、カッターヘッド1が面板タイプであり、カッター11で切削した土砂を面板10の土砂取り込み用のスリット(開口部)12を通してチャンバー3内に取り込むため、超音波受発信器Uを探査棒Bでチャンバー3内に挿入した際に、超音波の指向性を利用して、超音波をこのスリット12を通して探査できることが必要となる。そこで、水槽A内の土砂E1の上に2枚の鉄板を置いてこの2枚の鉄板の間をスリット(模擬スリット)に見立てて実験を行った。
図5は模擬泥水M1の比重が1.220、超音波受発信器Uの超音波周波数がf=80kHzの場合で、土砂E1の上に2枚の鉄板Cを置き、超音波を2枚の鉄板C間のスリットWに通した場合である。その結果を試験結果一覧表に示す。この一覧表から、比重が1.220の場合、80kHzの超音波はスリットWまでの距離が440mmまではスリットWの影響を受けない。この場合、スリットWの影響を受けない範囲はスリットWまでの距離が440mm〜540以下と推測される。なお、この場合の超音波の指向性は19°〜23°以内と推測される。
図6は模擬泥水M1の比重が1.250、超音波受発信器Uの超音波周波数がf=80kHzの場合で、土砂角が60°の場合である。その結果を試験結果一覧表に示す。この一覧表から、比重が1.250の場合、80kHzの超音波は土砂E1から300mm〜600mmまでの反射を捉えており、この場合、土砂の適用距離は600mm〜700mm以下と推察される。
図7は模擬泥水M1の比重が1.250、超音波受発信器Uの超音波周波数がf=80kHzの場合で、土砂角を種々に変えた場合である。その結果を試験結果一覧表に示す。この一覧表から、比重が1.250の場合、80kHzの超音波は土砂角83°〜90°までは土砂E1の反射を検出することができ、この場合、土砂角の適用限界は80°〜83°以上と推測される。
図8は模擬泥水の比重が1.250、超音波受発信器Uの超音波周波数がf=80kHzの場合で、土砂E1の上に2枚の鉄板Cを置き、超音波を2枚の鉄板C間のスリットWに通した場合である。その結果を試験結果一覧表に示す。この一覧表から、比重が1.250の場合、80kHzの超音波はスリットWまでの距離が380mmまではスリットWの影響を受けない。この場合、スリットWの影響を受けない範囲はスリットWまでの距離が380mm〜490mm以下と推測される。なお、この場合の超音波の指向性は21°〜27°以内と推測される。
以上の実験から、超音波受発信器Uは、泥水の比重が大きくなる程超音波の探査距離が短くなり、泥水の比重が1.25を超えると探査は不可能であるが、泥水の比重が1.25以下であれば、探査距離が300mm〜500mmの範囲内で探査可能であることを確認した。また、この超音波受発信器Uから発信受信される超音波はその指向性により、2枚の鉄板C間の模擬スリットWを通して探査が可能であり、スリットWは影響しないことを確認した。
このようにチャンバー3内に供給する泥水Mと同じ比重の模擬泥水M1と模擬土砂E1を入れた水槽Aの中で、使用する超音波受発信器Uが模擬泥水M1と模擬土砂E1との境界面を探査可能な当該境界面からの距離を測定することで、泥水式シールド工法で用いられる実際の泥水M中での当該地山P1又はP2と泥水Mとの境界面の探査の可否及び探査距離を把握することができる。
Further, in this exploration method, in the actual face ground exploration, the ultrasonic receiver U is directed toward the ground P1 above the face in front of the cutter head 1 or the ground P2 around the top of the cutter head 1. In order to move the interface between P1 or P2 and the muddy water M to a searchable exploration point according to the specific gravity of the muddy water M, the same specific gravity as the muddy water M supplied into the chamber 3 in advance before the actual face ground exploration. In the water tank containing the simulated muddy water and the simulated earth and sand, the ultrasonic transmitter / transmitter U used measures the distance from the boundary surface where the boundary surface between the simulated muddy water and the simulated earth and sand can be explored.
This measurement method is illustrated in FIGS. 3 to 8.
The ultrasonic wave receiver / transmitter U used here originally directs ultrasonic waves toward the side wall of the vertical hole while moving up and down in the vertical hole in which muddy water (stabilizing liquid) is stored in the construction management of the underground continuous wall method. It radiates, receives the reflected wave, and measures the distance to the wall surface of the vertical hole. In this case, the specific gravity of muddy water is 1.04 to 1.10, whereas the muddy water shield The specific gravity of muddy water used in the construction method is as large as 1.1 to 1.25.
Therefore, it is necessary to grasp whether or not the boundary surface between the ground and the muddy water can be explored and the exploration distance by this ultrasonic receiver / transmitter U in the actual muddy water M used in the muddy water type shield method. A confirmation experiment of ultrasonic exploration by the ultrasonic transmitter / receiver U in simulated muddy water will be conducted using earth and sand. In this experiment, as shown in FIGS. 3 to 8, a predetermined amount of earth and sand E1 (simulated earth and sand E1) is placed diagonally from one end of the bottom to the vicinity of the center of the water tank A, and a predetermined amount of muddy water M1 (simulated muddy water M1) is placed. ), And the ultrasonic transmitter / receiver U is inserted into the simulated muddy water M1 via the exploration rod B, and the diagonal distance to the simulated earth and sand E1 (the interface between the simulated earth and sand E1 and the simulated muddy water M1) is determined. While changing, the distance was measured by ultrasonic waves.
FIG. 3 shows a case where the specific gravity of the simulated muddy water M1 is 1.220, the ultrasonic frequency of the ultrasonic transmitter / receiver U is f = 80 kHz, and the earth and sand angle is 60 °. The results are shown in the test result list. From this list, when the specific gravity is 1.220, the ultrasonic wave of 80 kHz captures the reflection from the earth and sand from 260 mm to 760 mm, but for the reflection from the earth and sand to 760 mm, the specific gravity at the time of the experiment depends on the passage of time. It is expected to be lower than 1.220, and in this case, the applicable distance of earth and sand is estimated to be about 700 mm.
FIG. 4 shows a case where the specific gravity of the simulated muddy water M1 is 1.220 and the ultrasonic frequency of the ultrasonic transmitter / receiver U is f = 80 kHz, and the earth and sand angles are variously changed. The results are shown in the test result list. From this list, when the specific gravity is 1.220, the ultrasonic wave of 80 kHz can detect the reflection of the earth and sand E1 up to the earth and sand angle of 70 ° to 90 °. In this case, the applicable limit of the earth and sand angle is 68 ° to. It is estimated to be 70 ° or more.
Further (see FIG. 1), in the muddy water type shield machine S, the cutter head 1 is generally a face plate type, and the earth and sand cut by the cutter 11 is passed through the slit (opening) 12 for taking in the earth and sand of the face plate 10 into the chamber 3. When the ultrasonic wave transmitter / receiver U is inserted into the chamber 3 by the exploration rod B, it is necessary to be able to explore the ultrasonic waves through the slit 12 by utilizing the directivity of the ultrasonic waves. Therefore, an experiment was conducted in which two iron plates were placed on the earth and sand E1 in the water tank A and the space between the two iron plates was regarded as a slit (simulated slit).
FIG. 5 shows a case where the specific gravity of the simulated muddy water M1 is 1.220 and the ultrasonic frequency of the ultrasonic transmitter / receiver U is f = 80 kHz. Two iron plates C are placed on the earth and sand E1 and two ultrasonic waves are applied. This is a case where the slit W between the iron plates C is passed through. The results are shown in the test result list. From this list, when the specific gravity is 1.220, the ultrasonic wave of 80 kHz is not affected by the slit W until the distance to the slit W is 440 mm. In this case, it is estimated that the distance to the slit W is 440 mm to 540 or less in the range not affected by the slit W. The directivity of the ultrasonic wave in this case is estimated to be within 19 ° to 23 °.
FIG. 6 shows a case where the specific gravity of the simulated muddy water M1 is 1.250, the ultrasonic frequency of the ultrasonic transmitter / receiver U is f = 80 kHz, and the earth and sand angle is 60 °. The results are shown in the test result list. From this list, when the specific gravity is 1.250, the ultrasonic wave of 80 kHz captures the reflection from the earth and sand E1 to 300 mm to 600 mm, and in this case, the applicable distance of the earth and sand is estimated to be 600 mm to 700 mm or less.
FIG. 7 shows a case where the specific gravity of the simulated muddy water M1 is 1.250 and the ultrasonic frequency of the ultrasonic transmitter / receiver U is f = 80 kHz, and the earth and sand angles are variously changed. The results are shown in the test result list. From this list, when the specific gravity is 1.250, ultrasonic waves of 80 kHz can detect the reflection of earth and sand E1 up to an earth and sand angle of 83 ° to 90 °, and in this case, the applicable limit of the earth and sand angle is 80 ° to 80 °. It is estimated to be 83 ° or higher.
FIG. 8 shows a case where the specific gravity of the simulated muddy water is 1.250 and the ultrasonic frequency of the ultrasonic transmitter / receiver U is f = 80 kHz. Two iron plates C are placed on the earth and sand E1 and ultrasonic waves are applied to the two iron plates. This is a case where the slit W between C is passed through. The results are shown in the test result list. From this list, when the specific gravity is 1.250, the ultrasonic wave of 80 kHz is not affected by the slit W until the distance to the slit W is 380 mm. In this case, it is estimated that the distance to the slit W is 380 mm to 490 mm or less in the range not affected by the slit W. The directivity of the ultrasonic wave in this case is estimated to be within 21 ° to 27 °.
From the above experiments, the ultrasonic wave transmitter / receiver U has a shorter ultrasonic wave exploration distance as the specific gravity of muddy water increases, and if the specific gravity of muddy water exceeds 1.25, it is impossible to search, but the specific gravity of muddy water. If is 1.25 or less, it was confirmed that the exploration distance can be explored within the range of 300 mm to 500 mm. Further, it was confirmed that the ultrasonic waves transmitted and received from the ultrasonic wave receiver / transmitter U can be searched through the simulated slit W between the two iron plates C due to its directivity, and the slit W has no effect.
In the water tank A containing the simulated muddy water M1 having the same specific gravity as the muddy water M supplied into the chamber 3 and the simulated earth and sand E1, the ultrasonic receiver U used is the boundary between the simulated muddy water M1 and the simulated earth and sand E1. By measuring the distance from the boundary surface where the surface can be explored, the feasibility and exploration of the boundary surface between the ground P1 or P2 and the muddy water M in the actual muddy water M used in the muddy water shield method You can grasp the distance.

そして、この探査方法の、実工事での運用では、セグメントの組立中や昼夜交代時などのシールドマシンSの掘進停止中に、カッターヘッド1を回転し所定の位置(面板10のスリット12がカッターヘッド1前方の切羽上部の地山P1又はカッターヘッド1天端周辺の地山P2に近接する位置)に停止させた後、図2に示すように、超音波受発信器Uを先端に取り付けた探査棒BをシールドマシンSの本体内部からバルクヘッド2に形成した穴20を通してチャンバー3内の泥水M中に挿入するとともに、先端の超音波受発信器Uをカッターヘッド1前方の切羽上部の地山P1又はカッターヘッド1天端周辺の地山P2に向けて当該地山P1又はP2と泥水Mとの境界面を泥水Mの比重に応じて探査可能な探査地点まで、この場合、カッターヘッド1の面板10の土砂取り込み用のスリット12に対して所定の距離離間した位置又はスリット12内まで移動して、超音波探査を実施する。すなわち、泥水M中の探査地点で超音波受発信器Uから超音波を発信し、カッターヘッド1の面板10のスリット12を通して面板10を透過させ、当該地山P1又はP2と泥水Mとの境界面での反射波を超音波受発信器Uで検知して、超音波受発信器Uから当該地山P1又はP2までの距離を測定することにより、切羽、地山の状態を把握する。この探査時間は数分程度である。この探査後、探査棒Bをチャンバー2側からシールドマシンS本体内部へ引き戻す。 Then, in the actual operation of this exploration method, the cutter head 1 is rotated to a predetermined position (the slit 12 of the face plate 10 is a cutter) while the shield machine S is stopped digging during segment assembly or day / night change. After stopping at the ground P1 on the upper part of the face in front of the head 1 or the ground P2 around the top of the cutter head 1, the ultrasonic transmitter / receiver U was attached to the tip as shown in FIG. The exploration rod B is inserted into the muddy water M in the chamber 3 from the inside of the main body of the shield machine S through the hole 20 formed in the bulkhead 2, and the ultrasonic transmitter / receiver U at the tip is inserted into the ground above the face in front of the cutter head 1. Mountain P1 or cutter head 1 To the exploration point where the boundary surface between the ground P1 or P2 and muddy water M can be explored according to the specific gravity of muddy water M toward the ground P2 around the top, in this case, the cutter head 1 The ultrasonic exploration is carried out by moving the face plate 10 to a position separated from the slit 12 for taking in earth and sand by a predetermined distance or into the slit 12. That is, ultrasonic waves are transmitted from the ultrasonic receiver U at the exploration point in the muddy water M, the face plate 10 is transmitted through the slit 12 of the face plate 10 of the cutter head 1, and the boundary between the ground P1 or P2 and the muddy water M. The state of the face and the ground is grasped by detecting the reflected wave on the surface with the ultrasonic receiver U and measuring the distance from the ultrasonic receiver U to the ground P1 or P2. This exploration time is about a few minutes. After this exploration, the exploration rod B is pulled back from the chamber 2 side into the shield machine S main body.

以上説明したように、この探査方法及び装置によれば、シールドマシンSの停止中に、超音波測定装置の制御装置にケーブル又は無線により接続された超音波受発信器Uを先端に取り付けた探査棒BをシールドマシンSの本体内部からバルクヘッド2に形成した穴20を通してチャンバー3内の泥水M中に挿入するとともに、先端の超音波受発信器Uをカッターヘッド1前方の切羽上部の地山P1又はカッターヘッド天端周辺の地山P2に向けて当該地山P1又はP2と泥水Mとの境界面を泥水Mの比重に応じて探査可能な距離まで移動し、泥水中で超音波受発信器Uから超音波を発信し、当該地山P1又はP2と泥水との境界面での反射波を超音波受発信器Uで検知して、超音波受発信器Uから当該地山P1又はP2までの距離を測定することにより、切羽、地山の状態を把握するようにしたので、地山の崩落やトンネル周りに空洞の発生が懸念される切羽の上方を直接、簡便に短時間で探査することができ、その状況や空洞の有無などを早期に把握することができる。そして、地山の崩落や空洞の発生があった場合には、早期の対策を講じることができ、周辺の影響や工程の遅延などを防止することができる。
また、この場合、泥水式シールド工法の特徴となる切羽地山に形成される泥膜は超音波によって破壊されることはないので、切羽の保持に何ら影響することがない。
さらに、この場合、探査作業が短時間なので、泥水式シールド工法による掘進工程に影響を与えることもない。
また、この探査方法及び装置によれば、同様にして、コピーカッターによって人為的に掘削した余掘りの状態を探査することもできる。
As described above, according to this exploration method and device, the exploration in which the ultrasonic wave receiver U connected to the control device of the ultrasonic wave measuring device by a cable or wirelessly is attached to the tip while the shield machine S is stopped. The rod B is inserted into the muddy water M in the chamber 3 from the inside of the main body of the shield machine S through the hole 20 formed in the bulkhead 2, and the ultrasonic receiver U at the tip is inserted into the ground above the face in front of the cutter head 1. Move the boundary surface between the ground P1 or P2 and the muddy water M toward the ground P1 or the ground P2 around the top of the cutter head to a distance that can be explored according to the specific gravity of the muddy water M, and receive and transmit ultrasonic waves in the muddy water. Ultrasonic waves are transmitted from the device U, the reflected wave at the interface between the ground P1 or P2 and muddy water is detected by the ultrasonic receiver U, and the ultrasonic receiver U detects the ground P1 or P2. By measuring the distance to the face, the condition of the face and the ground is grasped, so it is possible to directly and easily search above the face where there is a concern that the ground may collapse or a cavity may occur around the tunnel. It is possible to grasp the situation and the presence or absence of cavities at an early stage. Then, when the ground collapses or a cavity occurs, early measures can be taken, and the influence of the surroundings and the delay of the process can be prevented.
Further, in this case, since the mud film formed on the face ground, which is a feature of the muddy water shield method, is not destroyed by ultrasonic waves, it does not affect the holding of the face.
Further, in this case, since the exploration work is short, the excavation process by the muddy water shield method is not affected.
Further, according to this exploration method and apparatus, it is also possible to explore the state of over-digging artificially excavated by a copy cutter in the same manner.

なお、この発明は、超音波受発信器を先端に取り付けた探査棒を使って、特に、カッターヘッド前方の切羽上部及びカッターヘッド天端周辺の地山の状態を把握するものとしているが、この超音波受発信器を先端に取り付けた探査棒を同様に使用して、カッターヘッド周方向のどの位置(例えば、下部、左右各側部、上部と左右各側部との間、下部と左右各側部との間)でも、また、カッターヘッド周囲の地山のどの位置(例えば、下部周辺、左右各側部周辺、上部と左右各側部との間、下部と左右各側部との間)でもその状態を同様に把握できることは、勿論である。 It should be noted that the present invention uses an exploration rod with an ultrasonic transmitter / receiver attached to the tip to grasp the state of the ground above the face in front of the cutter head and around the top of the cutter head. Using an exploration rod with an ultrasonic transmitter / receiver attached to the tip in the same way, which position in the circumferential direction of the cutter head (for example, lower part, left and right side parts, between upper part and left and right side parts, lower part and left and right side parts) At any position in the ground around the cutter head (for example, around the bottom, around the left and right sides, between the top and the left and right sides, between the bottom and the left and right sides) ) But of course, the state can be grasped in the same way.

S 泥水式シールドマシン
M 泥水
P 切羽(面)
P1 カッターヘッド前方の切羽上部の地山
P2 カッターヘッド天端周辺の地山
U 超音波受発信器
B 探査棒
1 カッターヘッド
10 面板
11 カッター
12 スリット
2 バルクヘッド(隔壁)
20 穴
21 ボールバルブ
3 チャンバー
A 水槽
E1 土砂(模擬土砂)
M1 泥水(模擬泥水)
C 鉄板
W スリット(模擬スリット)
S Muddy water type shield machine M Muddy water P Face (face)
P1 Ground above the face in front of the cutter head P2 Ground around the top of the cutter head U Ultrasonic receiver B Exploration rod 1 Cutter head 10 Face plate 11 Cutter 12 Slit 2 Bulkhead (bulkhead)
20 holes 21 ball valve 3 chamber A water tank E1 earth and sand (simulated earth and sand)
M1 muddy water (simulated muddy water)
C iron plate W slit (simulated slit)

Claims (6)

泥水式シールドマシン先端の面板及びカッターからなるカッターヘッドを回転させ、前記カッターヘッド後方のバルクヘッドにより隔成されるチャンバー内に送泥管により泥水を供給充填して、前記カッターヘッド前方の切羽面を泥水で加圧しながら掘削した前記カッターヘッド前方の切羽上部及び前記カッターヘッド天端周辺の地山の状態を把握する切羽地山探査方法であって、
前記シールドマシンの停止中に、制御装置にケーブル又は無線により接続された超音波受発信器を先端に取り付けた探査棒を前記シールドマシンの本体内部から前記バルクヘッドに形成した穴を通して前記チャンバー内の泥水中に挿入するとともに、前記超音波受発信器を前記カッターヘッド前方の切羽上部の地山又は前記カッターヘッド天端周辺の地山に向けて当該地山と前記泥水との境界面を前記泥水の比重に応じて探査可能な地点まで移動し、前記泥水中で前記超音波受発信器から超音波を発信し、当該地山と前記泥水との境界面での反射波を前記超音波受発信器で検知して、前記超音波受発信器から当該地山までの距離を測定することにより、切羽、地山の状態を把握する、
ことを特徴とする切羽地山探査方法。
A cutter head composed of a face plate at the tip of a muddy water shield machine and a cutter is rotated, and muddy water is supplied and filled into a chamber separated by a bulkhead behind the cutter head by a mud pipe to fill the face surface in front of the cutter head. This is a face ground exploration method for grasping the state of the ground in front of the cutter head and around the top of the cutter head, which was excavated while pressurizing with muddy water.
While the shield machine is stopped, a search rod having an ultrasonic transmitter / receiver connected to the control device by a cable or radio at the tip is passed through a hole formed in the bulkhead from the inside of the main body of the shield machine into the chamber. While inserting it into the muddy water, the ultrasonic wave receiver and transmitter are directed toward the ground above the face in front of the cutter head or the ground around the top of the cutter head, and the interface between the ground and the muddy water is directed to the muddy water. It moves to a searchable point according to the specific gravity of, emits ultrasonic waves from the ultrasonic receiver / transmitter in the muddy water, and transmits / receives the reflected wave at the interface between the ground and the muddy water. By detecting with a device and measuring the distance from the ultrasonic transmitter / receiver to the ground, the state of the face and the ground can be grasped.
This is a method for exploring the face mountain.
超音波受送信器及び制御装置に地中連続壁の側壁測定用の超音波測定装置を含む汎用機を使用する請求項1に記載の切羽地山探査方法。 The face ground exploration method according to claim 1, wherein a general-purpose machine including an ultrasonic measuring device for measuring the side wall of a continuous underground wall is used as an ultrasonic transmitting transmitter and a control device. 予め、チャンバー内に供給する泥水と同じ比重の模擬泥水と模擬土砂を入れた水槽の中で、使用する超音波受発信器が前記模擬泥水と前記模擬土砂との境界面を探査可能な当該境界面からの距離を測定しておき、当該距離に基づいて、探査棒を前記超音波受発信器から前記バルクヘッドに形成した穴を通して前記チャンバー内の泥水中に挿入するとともに、前記超音波受発信器を前記カッターヘッド前方の切羽上部の地山又は前記カッターヘッド天端周辺の地山に向けて当該地山と前記泥水との境界面を前記泥水の比重に応じて探査可能な地点まで移動する請求項1又は2に記載の切羽地山探査方法。 In a water tank containing simulated muddy water and simulated earth and sand having the same specific gravity as the muddy water supplied into the chamber in advance, the boundary surface on which the ultrasonic receiver / transmitter to be used can explore the boundary surface between the simulated muddy water and the simulated earth and sand. The distance from the surface is measured, and based on the distance, the exploration rod is inserted into the muddy water in the chamber through the hole formed in the bulkhead from the ultrasonic receiver and transmitter, and the ultrasonic receiver and transmitter are inserted. Move the vessel toward the ground above the face in front of the cutter head or the ground around the top of the cutter head to a point where the interface between the ground and the muddy water can be explored according to the specific gravity of the muddy water. The face ground exploration method according to claim 1 or 2. 予め、チャンバー内に供給する泥水と同じ比重の模擬泥水と模擬土砂を入れた水槽の中で、使用する超音波受発信器が前記模擬泥水と前記模擬土砂との境界面を探査可能な当該境界面からの距離を測定しておき、当該距離に基づいて、探査棒に必要な長さを算出する請求項1乃至3のいずれかに記載の切羽地山探査方法。 In a water tank containing simulated muddy water and simulated earth and sand having the same specific gravity as the muddy water supplied into the chamber in advance, the boundary surface to which the ultrasonic receiver / transmitter to be used can explore the boundary surface between the simulated muddy water and the simulated earth and sand. The face ground exploration method according to any one of claims 1 to 3, wherein the distance from the surface is measured, and the length required for the exploration rod is calculated based on the distance. 超音波受発信器から受発信する超音波をカッターヘッドの面板に土砂の取り込み用に形成されるスリットを通して前記面板を透過させる請求項1乃至4のいずれかに記載の切羽地山探査方法。 The face ground exploration method according to any one of claims 1 to 4, wherein the ultrasonic waves transmitted and received from the ultrasonic receiver and transmitter are transmitted through the face plate through a slit formed in the face plate of the cutter head for taking in earth and sand. 泥水式シールドマシン先端の面板及びカッターからなるカッターヘッドを回転させ、前記カッターヘッド後方のバルクヘッドにより隔成されるチャンバー内に送泥管により泥水を供給充填して、前記カッターヘッド前方の切羽面を泥水で加圧しながら掘削した前記カッターヘッド前方の切羽上部及び前記カッターヘッド天端周辺の地山の状態を把握する切羽地山探査装置であって、
超音波を受発信する超音波受発信器と、
前記超音波受発信器を制御する制御装置と、
前記超音波受発信器を先端に取り付けて、前記超音波受発信器を泥水中で移動するための所定の長さを有する探査棒とを備え、
先端に前記超音波受発信器を有する前記探査棒を前記シールドマシンの本体内部から前記バルクヘッドに形成した穴を通して前記チャンバー内の泥水中を前記カッターヘッド前方の切羽上部の地山又は前記カッターヘッド天端周辺の地山に向けて当該地山と泥水との境界面を泥水の比重に応じて探査可能な探査地点まで延ばし、前記探査地点で前記超音波受発信器から超音波を発信し、当該地山と泥水との境界面での反射波を前記超音波受発信器で検知して、前記超音波受発信器から当該地山までの距離を測定する、
ことを特徴とする切羽地山探査装置。
A cutter head composed of a face plate at the tip of a muddy water shield machine and a cutter is rotated, and muddy water is supplied and filled into a chamber separated by a bulkhead behind the cutter head by a mud pipe to fill the face surface in front of the cutter head. It is a face ground exploration device that grasps the state of the ground in front of the cutter head and around the top of the cutter head excavated while pressurizing with muddy water.
An ultrasonic receiver / transmitter that receives and transmits ultrasonic waves,
A control device that controls the ultrasonic transmitter / receiver and
The ultrasonic wave receiver / transmitter is attached to the tip, and is provided with an exploration rod having a predetermined length for moving the ultrasonic wave receiver / transmitter in muddy water.
The probe rod having the ultrasonic wave receiver / transmitter at the tip is passed through a hole formed in the bulkhead from the inside of the main body of the shield machine, and the muddy water in the chamber is passed through the ground above the face in front of the cutter head or the cutter head. The boundary surface between the ground and the muddy water is extended to the exploration point that can be explored according to the specific gravity of the muddy water toward the ground around the crown, and ultrasonic waves are transmitted from the ultrasonic receiver / transmitter at the exploration point. The ultrasonic wave receiver / transmitter detects the reflected wave at the interface between the ground and muddy water, and measures the distance from the ultrasonic receiver / transmitter to the ground.
A faceted mountain exploration device that is characterized by this.
JP2016173486A 2016-09-06 2016-09-06 Face ground exploration method and equipment Active JP6761709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173486A JP6761709B2 (en) 2016-09-06 2016-09-06 Face ground exploration method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173486A JP6761709B2 (en) 2016-09-06 2016-09-06 Face ground exploration method and equipment

Publications (2)

Publication Number Publication Date
JP2018040118A JP2018040118A (en) 2018-03-15
JP6761709B2 true JP6761709B2 (en) 2020-09-30

Family

ID=61625113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173486A Active JP6761709B2 (en) 2016-09-06 2016-09-06 Face ground exploration method and equipment

Country Status (1)

Country Link
JP (1) JP6761709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340420B2 (en) * 2019-11-06 2023-09-07 大成建設株式会社 Tunnel construction method and void exploration system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148998A (en) * 1984-01-17 1985-08-06 日立建機株式会社 Apparatus for detecting distance between hole pit drilling machine and ground in hole pit
JP2620032B2 (en) * 1993-04-26 1997-06-11 鹿島建設株式会社 Ground collapse detection device in shield method
JP2638734B2 (en) * 1993-06-21 1997-08-06 鹿島建設株式会社 Method and apparatus for detecting air gap around shield excavator
US9500077B2 (en) * 2014-01-07 2016-11-22 Shandong University Comprehensive advanced geological detection system carried on tunnel boring machine

Also Published As

Publication number Publication date
JP2018040118A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
CN108798690B (en) Combined TBM for realizing geological detection and geological detection tunneling method
JP2934896B2 (en) Apparatus and method for calculating backfill injection amount in shield method
JP5715819B2 (en) Method and system for optimizing straw
AU2013396723A1 (en) Arrangement for controlling percussive drilling process
CN109026037A (en) Shield tunnel meets basement rock earth layer of solitary stone and pre-processes construction method
JP2013087590A (en) Tunnel face front investigation method
JP2017049198A (en) Working face front survey device and working face front survey method
JP6761709B2 (en) Face ground exploration method and equipment
KR102036305B1 (en) Backfill grouting condition evaluation method of shield tbm tunnel segment and backfill grouting condition evaluation device
JP5997521B2 (en) Face investigation method using shield machine
JP6887842B2 (en) Ground exploration method and penetration tester
JP6827742B2 (en) Face ground exploration method and equipment
JP4260329B2 (en) Geological exploration method in front of tunnel face
JP6608272B2 (en) Tunnel excavation method and shield excavator
JP7256093B2 (en) Exploration system, shield excavator and exploration method
JP7496452B2 (en) Exploration system, shield drilling machine and exploration method
JPH07280946A (en) Device for searching front of cutting edge in tunnel diggingmachine
JP7340420B2 (en) Tunnel construction method and void exploration system
JP6396824B2 (en) Shield tunnel forward exploration device and method
JP2023079670A (en) Search system, shield excavator and search method
JP2003020891A (en) Detecting device of geological state
JP6748918B2 (en) Tunnel face exploration method
JPH02252813A (en) Measurement of crushing range and its device in blast injection work process
JPH11109046A (en) Excavation soil amount measurement system and method in shield tunneling method and excavation control system and method using the same
JP2863940B2 (en) Apparatus and method for calculating void volume in shield method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6761709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250