JP2017049198A - Working face front survey device and working face front survey method - Google Patents
Working face front survey device and working face front survey method Download PDFInfo
- Publication number
- JP2017049198A JP2017049198A JP2015174349A JP2015174349A JP2017049198A JP 2017049198 A JP2017049198 A JP 2017049198A JP 2015174349 A JP2015174349 A JP 2015174349A JP 2015174349 A JP2015174349 A JP 2015174349A JP 2017049198 A JP2017049198 A JP 2017049198A
- Authority
- JP
- Japan
- Prior art keywords
- face
- vibration receiving
- elastic wave
- receiving device
- oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000010355 oscillation Effects 0.000 claims abstract description 41
- 239000000945 filler Substances 0.000 claims abstract description 18
- 238000004458 analytical method Methods 0.000 claims abstract description 10
- 238000005553 drilling Methods 0.000 claims description 12
- 238000005422 blasting Methods 0.000 claims description 3
- 238000003325 tomography Methods 0.000 abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000009412 basement excavation Methods 0.000 description 7
- 238000001028 reflection method Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本発明は、切羽前方探査装置及び切羽前方探査方法に関するものであり、詳しくは、孔間弾性波トモグラフィー技術を用いた切羽前方探査に関する発明である。 The present invention relates to a face forward exploration device and a face forward exploration method, and more particularly, to an invention relating to face forward exploration using inter-hole elastic wave tomography technology.
トンネル掘削を行う際には、安全で適切かつ迅速な工事を行うために、予め地山の状況を把握する必要がある。このため、トンネル掘削に先立ちあるいはトンネル掘削の進行に合わせて地山の状況を把握するための技術が種々提案されている。このような従来技術として、直接的手法ではボーリングによるもの(削孔検層法、先進ボーリング)がある。また、間接的手法では反射法による弾性波探査(HSP法、TSP法、反射トモグラフィー)がある。 When tunnel excavation, it is necessary to grasp the condition of natural ground beforehand in order to perform safe, appropriate and quick construction. For this reason, various techniques for grasping the condition of natural ground prior to tunnel excavation or in accordance with the progress of tunnel excavation have been proposed. As such a prior art, there is a direct method by boring (hole drilling method, advanced boring). Indirect methods include elastic wave exploration (HSP method, TSP method, reflection tomography) by the reflection method.
例えば、地山状況を継続的にモニタリングし、異変が生じる可能性を事前に把握する技術が提案されている(特許文献1参照)。特許文献1に記載された技術は、坑壁から地山に打設される複数のロックボルトの打設孔の削孔状況をモニタリングするとともに、打設した複数のロックボルトを受振用探査子及び発振用探査子として利用する。そして、屈折法弾性波探査法によって坑壁奥の地山状況を把握する第1探査工程と、打設した複数のロックボルトを受振用探査子として、切羽を掘削する掘削機を発振源として利用した反射法弾性波探査法によって切羽前方の地山状況を把握する第2探査工程とを実施することにより、施工を中断することなく地山状況を把握し、その変化の兆候をとらえることができるとしている。 For example, there has been proposed a technique for continuously monitoring the natural ground condition and grasping in advance the possibility that an abnormality will occur (see Patent Document 1). The technique described in Patent Document 1 monitors the drilling status of a plurality of rock bolts to be driven from a pit wall to a natural ground, and receives a plurality of the rock bolts to be subjected to a vibration probe and Use as a probe for oscillation. And the first exploration process which grasps the ground condition in the depths of the pit wall by the refracted elastic wave exploration method, and the excavator that excavates the face is used as the oscillation source by using the plurality of placed rock bolts as receiving probes. By performing the second exploration process to grasp the ground condition in front of the face using the reflected reflection elastic wave exploration method, it is possible to grasp the ground condition without interrupting the construction and catch signs of the change. It is said.
また、トンネル前方の地質状況を予測する技術が提案されている(特許文献2参照)。特許文献2に記載された技術は、掘削するトンネルの事前調査により、路線沿いに地山の弾性波速度を測定し破砕帯の概略位置や規模を推定する。そして、得られた情報から切羽の前方探査の必要区間を判断し、先ず弾性波探査反射法により切羽前方所定距離までの不連続面の存在を予測し、次いで、不連続面に切羽が近づいた時点で、ドリルジャンボによる孔を用いて削孔検層を行なって破壊エネルギー係数を求める。次いで、削孔検層を行なった孔で速度検層を行なって、弾性波速度により地質状況の予測を行なうとともに、弾性波速度と破壊エネルギー係数との相関関係が確認できれば、以後削孔検層だけで地質状況を予測するようになっている。 In addition, a technique for predicting the geological situation in front of the tunnel has been proposed (see Patent Document 2). The technique described in Patent Document 2 estimates the approximate position and scale of the crushing zone by measuring the elastic wave velocity of the natural ground along the route by preliminary investigation of the tunnel to be excavated. Then, the necessary section for the front exploration of the face is judged from the obtained information, first the existence of a discontinuous surface up to a predetermined distance in front of the face is predicted by the elastic wave exploration reflection method, and then the face approaches the discontinuous surface At that time, drilling logging is performed using a hole by a drill jumbo to obtain a fracture energy coefficient. Next, velocity logging is performed on the hole that has been drilled, and the geological condition is predicted from the elastic wave velocity, and if the correlation between the elastic wave velocity and the fracture energy coefficient can be confirmed, drilling logging is performed thereafter. Just to predict the geological situation.
しかし、従来の切羽前方探査技術には、種々の問題点があった。特許文献1に記載された技術は、ロックボルトを必須の構成要件とするため、すべてのトンネル工法に対して適用できるわけではない。また、特許文献2に記載された技術は、弾性波探査反射法により切羽前方所定距離までの不連続面の存在を予測した後に、ドリルジャンボによる孔を用いて削孔検層を行なう必要があり、地山状況を把握するために手間がかかる。 However, there are various problems with the conventional technique for exploring the front of the face. Since the technique described in Patent Document 1 uses a lock bolt as an essential component, it cannot be applied to all tunnel methods. In addition, the technique described in Patent Document 2 needs to perform drilling logging using a drill jumbo hole after predicting the presence of a discontinuous surface up to a predetermined distance in front of the face by an elastic wave exploration reflection method. , It takes time to grasp the natural conditions.
また、反射法による弾性波探査技術では、トンネル横断方向に分布した不連続面を捉えることができるが、トンネル縦断方向に分布する不連続面を捉えることができない場合がある。すなわち、切羽前方に向かって発振した弾性波は、そのまま切羽前方へ向かって進むため反射波が返ってこない場合があり、このような状況下ではトンネル縦断方向における不連続面を探査することはできない。 In addition, the elastic wave exploration technique based on the reflection method can catch discontinuous surfaces distributed in the tunnel transverse direction, but cannot catch discontinuous surfaces distributed in the tunnel longitudinal direction. In other words, the elastic wave oscillated toward the front face of the face may go straight forward to the face of the face, and the reflected wave may not return. Under such circumstances, the discontinuous surface in the tunnel longitudinal direction cannot be explored. .
また、反射法による弾性波探査技術では、切羽前方の掘削範囲に限定した反射波だけではなく、既設トンネル周辺の反射波も感知してしまうため、切羽前方に存在する不連続面と見誤ることがあり、地山状況の探査精度が劣ってしまう。 Also, the elastic wave exploration technique using the reflection method detects not only the reflected wave limited to the excavation area in front of the face but also the reflected wave around the existing tunnel, so it is mistaken for a discontinuous surface existing in front of the face. And the accuracy of exploration of ground conditions is inferior.
また、鉛直方向の孔間弾性波トモグラフィーの場合には、ボーリング孔内に水を溜めることにより、発振装置からの弾性波を地盤に伝え、地盤中を伝播されてきた弾性波を受振装置に伝えるようになっている。すなわち、鉛直方向の孔間弾性波トモグラフィーの場合では、ボーリング孔内に充填した水が、弾性波(振動)を伝達する役割を果たしている。しかし、水平ボーリング孔の場合には、ボーリング孔内に水を溜めることが困難である。さらに、鉛直ボーリングの孔壁に比べて、水平ボーリングの孔壁は崩れやすく、受振装置や発振装置の挿入が困難である。このため、鉛直方向の孔間弾性波トモグラフィーを、そのまま、水平方向の孔間弾性波トモグラフィーに適用することはできない。 In the case of vertical inter-hole elastic wave tomography, by accumulating water in the borehole, the elastic wave from the oscillation device is transmitted to the ground, and the elastic wave propagated in the ground is transmitted to the receiving device. It is like that. That is, in the case of the inter-hole elastic wave tomography in the vertical direction, the water filled in the boring hole plays a role of transmitting the elastic wave (vibration). However, in the case of a horizontal boring hole, it is difficult to collect water in the boring hole. Furthermore, compared with the hole wall of a vertical boring, the hole wall of a horizontal boring is easy to collapse, and it is difficult to insert a vibration receiving device or an oscillation device. For this reason, the vertical inter-hole elastic wave tomography cannot be directly applied to the horizontal inter-hole elastic wave tomography.
本発明は、上述した事情に鑑み提案されたもので、孔間弾性波トモグラフィー技術を用いて、切羽前方の地山状況(弾性波速度分布)を容易かつ正確に探査することが可能な切羽前方探査装置及び切羽前方探査方法を提供することを目的とする。 The present invention has been proposed in view of the above-described circumstances, and can use the inter-hole elastic wave tomography technique to easily and accurately search the ground condition (elastic wave velocity distribution) in front of the face. An object of the present invention is to provide an exploration device and a method for exploring the front of a face.
本発明の切羽前方探査装置及び切羽前方探査方法は、上述した目的を達成するため、以下の特徴点を有している。すなわち、本発明の切羽前方探査装置は、トンネル切羽前方の地山状況を探査するための装置であって、切羽前方へ向かって略水平方向に削孔した複数のボーリング孔と、ボーリング孔の少なくとも一つに設置する受振装置と、受振装置を設置したボーリング孔以外のボーリング孔に設置する発振装置と、少なくとも受振装置を設置したボーリング孔内に充填する充填材と、発振装置で起振した弾性波を受振装置で受振して、発振装置と受振装置との距離及び弾性波の伝播時間に基づいて、発振装置と受振装置との間における地山の弾性波速度分布を分析する地質分析装置とを備えたことを特徴とするものである。 The face forward exploration device and the face forward exploration method of the present invention have the following features in order to achieve the above-described object. That is, the face front exploration device according to the present invention is a device for exploring the ground condition in front of the tunnel face, and includes a plurality of bore holes drilled in a substantially horizontal direction toward the front face of the face, and at least of the bore holes. A vibration receiving device installed in one, an oscillation device installed in a boring hole other than the boring hole where the vibration receiving device is installed, a filler filled in at least the boring hole where the vibration receiving device is installed, and an elasticity generated by the oscillation device A geological analyzer that receives a wave by a receiving device and analyzes the elastic wave velocity distribution of a natural ground between the oscillating device and the receiving device based on the distance between the oscillating device and the receiving device and the propagation time of the elastic wave; It is characterized by comprising.
また、上述した構成に加えて、受振装置及び発振装置は、ボーリング孔の長さ方向に沿って複数設置することが好ましい。 In addition to the above-described configuration, it is preferable to install a plurality of vibration receiving devices and oscillation devices along the length direction of the boring hole.
また、上述した構成に加えて、発振装置は、発破、機械的打撃、削孔時に起振する振動のいずれか1つ、またはこれらの組み合わせにより弾性波を起振することが可能である。 In addition to the above-described configuration, the oscillation device can generate an elastic wave by any one of blasting, mechanical hitting, vibration generated at the time of drilling, or a combination thereof.
また、上述した構成に加えて、地質分析装置は、発振装置から発振され、地山内で反射された反射波の受振状況を加味して、切羽前方の地質を分析することが可能である。 In addition to the above-described configuration, the geological analysis device can analyze the geology ahead of the face in consideration of the receiving situation of the reflected wave oscillated from the oscillation device and reflected in the natural ground.
本発明の切羽前方探査方法は、トンネル切羽前方の地山状況を探査するための方法であって、切羽前方へ向かって略水平方向に複数のボーリング孔を削孔し、ボーリング孔の少なくとも一つに受振装置を設置し、受振装置を設置したボーリング孔以外のボーリング孔に発振装置を設置し、少なくとも受振装置を設置したボーリング孔内に充填材を充填し、発振装置で起振した弾性波を受振装置で受振して、発振装置と受振装置との距離及び弾性波の伝播時間に基づいて、発振装置と受振装置との間における地山の弾性波速度分布を分析することを特徴とするものである。 A face front exploration method of the present invention is a method for exploring a ground condition in front of a tunnel face, wherein a plurality of bore holes are drilled in a substantially horizontal direction toward the front face of the face, and at least one of the bore holes is obtained. A vibration receiving device is installed in the borehole other than the borehole where the vibration receiving device is installed, and at least the filling material is filled in the borehole where the vibration receiving device is installed, and the elastic wave generated by the vibration device is generated. It is received by a vibration receiving device, and based on the distance between the oscillation device and the vibration receiving device and the propagation time of the elastic wave, the elastic wave velocity distribution of the natural ground between the vibration device and the vibration receiving device is analyzed. It is.
本発明に係る切羽前方探査装置及び切羽前方探査方法では、発振装置及び受振装置を設置する水平ボーリング孔内に充填材(例えば、ゲル状の物質)を充填することにより、鉛直ボーリング孔と同様に、発振装置から発振され、受振装置で受振する弾性波を確実に伝播させることができる。すなわち、水平ボーリング孔では、鉛直ボーリング孔と異なり、水を充填しようとしても孔口から水が漏れ出してしまい、弾性波を確実に伝搬させることができなかった。この点、充填材(例えば、ゲル状の物質)は、適切な漏れ止めを行うことにより水平ボーリング孔の孔口から漏れ出すことがない。 In the face forward exploration device and the face forward exploration method according to the present invention, a filling material (for example, a gel-like substance) is filled in a horizontal boring hole in which the oscillation device and the vibration receiving device are installed, so that it is similar to the vertical boring hole. The elastic wave oscillated from the oscillation device and received by the vibration receiving device can be reliably propagated. That is, in the horizontal boring hole, unlike the vertical boring hole, water leaks out from the hole opening even when trying to fill with water, and the elastic wave cannot be reliably propagated. In this regard, the filler (for example, a gel-like substance) does not leak out from the hole of the horizontal boring hole by performing appropriate leakage prevention.
したがって、本発明に係る切羽前方探査装置及び切羽前方探査方法によれば、現在まで実現されていなかった水平ボーリング孔における孔間弾性波トモグラフィーの技術を用いて、切羽前方の地山状況(弾性波速度分布)を容易かつ適切に探査することができる。 Therefore, according to the face forward exploration device and the face forward exploration method according to the present invention, using the technique of inter-hole elastic wave tomography in the horizontal boring hole that has not been realized so far, the ground condition (elastic wave in front of the face) (Velocity distribution) can be explored easily and appropriately.
以下、図面を参照して、本発明に係る切羽前方探査装置及び切羽前方探査方法の実施形態を説明する。図1〜図3は本発明の実施形態に係る切羽前方探査装置及び切羽前方探査方法を説明するもので、図1は切羽前方探査装置の構成を示すブロック図、図2は切羽前方探査装置の設置状態を示す模式図、図3は切羽前方探査方法の手順を示す説明図である。 Hereinafter, with reference to the drawings, an embodiment of a face forward exploration device and a face forward exploration method according to the present invention will be described. FIG. 1 to FIG. 3 are for explaining a face front exploration device and a face front exploration method according to an embodiment of the present invention. FIG. 1 is a block diagram showing the configuration of the face front exploration device, and FIG. FIG. 3 is an explanatory view showing the procedure of the face front search method.
<切羽前方探査装置及び切羽前方探査方法の概要>
本発明の実施形態に係る切羽前方探査装置及び切羽前方探査方法は、孔間弾性波トモグラフィー技術を用いて、切羽前方の地山状況を探査するための技術であり、特に、切羽前方の地山内に水平ボーリング孔を削孔して、当該ボーリング孔を用いて孔間弾性波トモグラフィーにより地山の弾性波速度分布を探査する。本発明の切羽前方探査装置は、図1及び図2に示すように、ボーリング孔10及びこれに充填する充填材20と、弾性波を発振する発振装置30と、弾性波を受振する受振装置40と、発振装置30と受振装置40との距離及び弾性波の伝播時間に基づいて、発振装置30と受振装置40との間における地山の弾性波速度分布を分析する地質分析装置50とを備えている。
<Overview of the face front exploration device and face front exploration method>
The face forward exploration device and the face forward exploration method according to the embodiment of the present invention are techniques for exploring the ground condition in front of the face using the inter-hole elastic wave tomography technique, and in particular, in the ground in front of the face. A horizontal boring hole is drilled, and the elastic wave velocity distribution of the natural ground is searched by inter-hole elastic wave tomography using the boring hole. As shown in FIG. 1 and FIG. 2, the face front exploration device of the present invention includes a
<ボーリング孔>
ボーリング孔10は、切羽前方に向かって略水平に削孔する。なお、略水平とは、完全な水平状態だけではなく、若干の傾斜を許容する状態である。ボーリング孔10の削孔本数は特に限定されないが、トンネル断面の大きさ、トンネルの屈曲状態、予め分かっている地山の状況等に応じて、適宜の本数を削孔する。ボーリング孔10を形成するには、例えば、図3(a)〜(c)に示すように、中空ロッド60の先端部から水を供給しながら、当該中空ロッド60を地山内に挿入すればよい。なお、ボーリング孔10を削孔する地山の状況に応じて、保孔管を用いる等の削孔方法を採用してもよい。
<Boring hole>
The
<充填材>
充填材20は、ボーリング孔10内に充填することにより、発振装置30から発振し受振装置40で受振する弾性波を、確実に地山に伝播するがことできる。なお、充填材20は、少なくとも受振装置40を設置したボーリング孔10内に充填するが、発振装置30の構成によっては、発振装置30を設置したボーリング孔10内にも充填する。また、充填材20は、孔壁保護、受振装置40や発振装置30の挿入時における推進力及び摩擦低減にも寄与する。また、孔壁の自立が困難であり、保孔管を建て込んだ際にも、保孔管外周に併せて充填材20を注入することで、弾性波の伝播が可能となる。また、充填材20は、ゲル状の物質を用いることが好ましい。
<Filler>
By filling the filling
<発振装置>
発振装置30は弾性波を起振するための装置であり、振動源としては、どのようなものを用いてもよい。例えば、発破、機械的打撃、削孔時に起振する振動等により弾性波を起振させる。発振装置30を設置するボーリング孔10の数は、1つでもよいし、2つ以上であってもよい。
<Oscillator>
The
<受振装置>
受振装置40は、発振装置30で起振した弾性波を受振するための装置であり、例えば、圧電型加速度計等を用いることができる。特に、受振装置40に到達した弾性波の状態を正確に把握するために、直交3方向成分を受振可能な受振装置40を用いることが好ましい。この受振装置40は、例えば、図2及び図3(f)〜(i)に示すように、塩ビ管からなる支持ロッド42等に所定間隔で配設された複数の受振機41からなり、ボーリング孔10内に支持ロッド42を設置することにより、ボーリング孔10の長さ方向に沿って複数の受振機41を設置することができる。受振装置40を設置するボーリング孔10の位置や数は特に限定されないが、トンネル断面の大きさ、トンネルの屈曲状態、予め分かっている地山の状況等に応じて、適宜のボーリング孔10に受振装置40を設置する。受振装置40(受振機41)を複数設置することにより、発振装置30からの弾性波の伝播経路を複数設定することができ、より一層正確に、切羽前方の地山の弾性波速度分布を探査することができる。
<Vibration device>
The
<地質分析装置>
地質分析装置50は、発振装置30で起振した弾性波を受振装置40で受振して、発振装置30と受振装置40との距離及び弾性波の伝播時間に基づいて、発振装置30と受振装置40との間における地山の弾性波速度分布を分析するための装置であり、例えば、パーソナルコンピュータ及びこれにインストールされたアプリケーションプログラムと、パーソナルコンピュータの付属機器とにより構成することができる。パーソナルコンピュータの付属機器とは、キーボートやマウス等の入力装置、ディスプレイ装置やプリンタ等の出力装置、HDD等の記憶装置等、パーソナルコンピュータとともに稼働する周辺機器のことである。なお、孔間弾性波トモグラフィー技術は、既に確立された技術であり、本実施形態の地質分析装置50は、この孔間弾性波トモグラフィー技術における解析手法を用いて切羽前方の地山の地質を分析する。
<Geological analyzer>
The
<他の探査方法との併用>
本実施形態の切羽前方探査装置及び切羽前方探査方法では、発振装置30から発振された弾性波を直接、受振装置40で受振する孔間弾性波トモグラフィー技術を地質解析の主な要素とするが、これに加えて、発振装置30から発振され、地山内で反射された反射波の受振状況を加味して、切羽前方の地質を分析してもよい。この場合、直接波を利用した高精度の探査結果を固定することにより、反射法による探査精度を高めることができる。
<Combination with other exploration methods>
In the face front exploration device and face front exploration method of the present embodiment, the inter-hole elastic wave tomography technique in which the elastic wave oscillated from the
さらに、水平ボーリング削孔時に得られる削孔検層データと、本実施形態の探査によって得られた弾性波速度分布とを用いることにより、同地点で2種類の情報を総合的に評価することができ、より一層、精度の高い切羽前方の地質予測が可能となる。 Furthermore, it is possible to comprehensively evaluate two types of information at the same point by using the drilling logging data obtained at the time of horizontal boring and the elastic wave velocity distribution obtained by the exploration of this embodiment. This makes it possible to predict geology ahead of the face with higher accuracy.
<探査方法の手順>
次に、図3を参照して、本発明の切羽前方探査方法の一例について説明する。本発明の切羽前方探査方法では、トンネル掘削に際して、上述した構成からなる切羽前方探査装置を用いて、切羽前方の地山状況(地質)を探査する。
<Procedure of exploration method>
Next, with reference to FIG. 3, an example of the method for exploring the front face of the face according to the present invention will be described. In the face front exploration method of the present invention, the tunnel front exploration device having the above-described configuration is used for exploring the ground condition (geology) in front of the face when excavating a tunnel.
本発明の切羽前方探査方法では、まず、切羽前方の地山内に略水平方向のボーリング孔10を削孔する。ボーリング孔10は、例えば、中空ロッド60を地山に設置するとともに、中空ロッド60の先端部から水を供給することにより形成する(a)。所定長までボーリング孔10を削孔したら、水の供給を停止する。この状態で、ボーリング孔10内に存在する水が岩盤亀裂や中空ロッド60の口元から逸水する(b)。
In the face front exploration method of the present invention, first, a substantially horizontal
続いて、中空ロッド60の先端部から、ボーリング孔10内に充填材20を供給し(c)、充填材20の供給を継続しながら中空ロッド60を引き抜く(d)。中空ロッド60の引き抜きが完了すると、ボーリング孔10内が充填材20で充填された状態となる(e)。なお、ボーリング孔10内に受信装置40設置した後に、充填材20を充填してもよい。
Subsequently, the
また、中空状の塩ビ管等からなる支持ロッド42の長さ方向に、所定間隔で受振機41を取り付けて受振装置40を形成しておく。そして、受振機41を取り付けた支持ロッド42の先端部をボーリング孔10内に挿入し(f)、支持ロッド42の中空部を介して、ボーリング孔10内から充填材20を吸引しつつ、支持ロッド42をボーリング孔10内に挿入して設置する(g)。この際、充填材20を吸引することによりボーリング孔10内に負圧が生じるとともに、充填材20による摩擦低減効果により、受振機41を取り付けた支持ロッド42をボーリング孔10内に推進させることができる(h)。ボーリング孔10の奥側の所定位置まで支持ロッド42を挿入すると、受振装置40の設置が完了する(i)。
In addition, the
この状態で、発振装置30から弾性波を発振し、地山内を伝播してきた弾性波を受振装置40により受振する。そして、地質分析装置50により、発振装置30と受振装置40との距離及び弾性波の伝播時間に基づいて、発振装置30と受振装置40との間における地山の弾性波速度分布(地山状況)を分析する(j)。
In this state, an elastic wave is oscillated from the
<従来技術との比較>
本発明の切羽前方探査装置及び切羽前方探査方法によれば、トンネル施工に最も重要な情報である、トンネル掘削地山およびトンネル周辺の弾性波速度分布を集中的に探査できることから、より具体的な掘削工法や掘削方式の検討、トンネル支保工及び補助工法の設計が可能となる。
<Comparison with conventional technology>
According to the face front exploration device and the face front exploration method of the present invention, since the elastic wave velocity distribution around the tunnel excavation ground and the tunnel, which is the most important information for tunnel construction, can be intensively explored, it is more specific. Study of excavation method and excavation method, tunnel support and auxiliary method can be designed.
従来の切羽前方探査では、先受け工や鏡ボルト工、止水注入計画時には、切羽前方の地質が不確定であることから、標準的な配置に基づいて施工範囲や仕様を決定していた。これに対して、本実施形態の切羽前方探査装置及び切羽前方探査方法では、不良地山部に最適な仕様を集中的に施工できることから、効果的な対策工を経済的に計画することが可能となる。また、孔位置や孔角度を正確に記録可能としてコンピュータ制御やナビゲーション機能を保有したドリルジャンボを併用することにより、探査精度が向上する。さらに、孔曲り計測を併用することにより、より一層、探査精度が向上する。 In conventional exploration of the front of the face, the geological structure in front of the face is uncertain at the time of receiving work, mirror bolt work, and water stoppage planning, so the construction range and specifications were determined based on the standard layout. On the other hand, the face front exploration device and the face front exploration method of the present embodiment can intensively construct the specifications that are optimal for the defective ground, so that effective countermeasures can be planned economically. It becomes. In addition, the drilling accuracy can be improved by using a drill jumbo with computer control and navigation functions that can accurately record the hole position and hole angle. Furthermore, the exploration accuracy is further improved by using the hole bending measurement together.
10 ボーリング孔
20 充填材
30 発振装置
40 受振装置
41 受振機
42 支持ロッド
50 地質分析装置
60 中空ロッド
DESCRIPTION OF
Claims (5)
切羽前方へ向かって略水平方向に削孔した複数のボーリング孔と、
前記ボーリング孔の少なくとも一つに設置する受振装置と、
前記受振装置を設置したボーリング孔以外のボーリング孔に設置する発振装置と、
少なくとも前記受振装置を設置したボーリング孔内に充填する充填材と、
前記発振装置で起振した弾性波を前記受振装置で受振して、前記発振装置と前記受振装置との距離及び弾性波の伝播時間に基づいて、前記発振装置と前記受振装置との間における地山の弾性波速度分布を分析する地質分析装置と、
を備えたことを特徴とする切羽前方探査装置。 A device for exploring ground conditions in front of a tunnel face,
A plurality of boring holes drilled in a substantially horizontal direction toward the front of the face;
A vibration receiving device installed in at least one of the boring holes;
An oscillation device installed in a borehole other than the borehole in which the vibration receiving device is installed;
A filler for filling at least the borehole in which the vibration receiving device is installed;
The elastic wave generated by the oscillation device is received by the vibration receiving device, and the ground between the oscillation device and the vibration receiving device is determined based on the distance between the oscillation device and the vibration receiving device and the propagation time of the elastic wave. A geological analyzer that analyzes the elastic wave velocity distribution in the mountains;
A device for exploring the front of the working face.
ことを特徴とする請求項1または2に記載の切羽前方探査装置。 The oscillation device oscillates an elastic wave by any one of blasting, mechanical hitting, vibration generated at the time of drilling, or a combination thereof,
The face forward exploration device according to claim 1 or 2, characterized by the above.
ことを特徴とする請求項1〜3のいずれか1項に記載の切羽前方探査装置。 The geological analysis device analyzes the geology in front of the face in consideration of the receiving situation of the reflected wave that is oscillated from the oscillation device and reflected in the ground.
The face forward exploration device according to any one of claims 1 to 3.
切羽前方へ向かって略水平方向に複数のボーリング孔を削孔し、
前記ボーリング孔の少なくとも一つに受振装置を設置し、
前記受振装置を設置したボーリング孔以外のボーリング孔に発振装置を設置し、
少なくとも前記受振装置を設置したボーリング孔内に充填材を充填し、
前記発振装置で起振した弾性波を前記受振装置で受振して、前記発振装置と前記受振装置との距離及び弾性波の伝播時間に基づいて、前記発振装置と前記受振装置との間における地山の弾性波速度分布を分析する、
ことを特徴とする切羽前方探査方法。 A method for exploring ground conditions in front of a tunnel face,
Drill a plurality of boring holes in a substantially horizontal direction toward the front of the face,
A vibration receiving device is installed in at least one of the boring holes,
An oscillation device is installed in a borehole other than the borehole in which the vibration receiving device is installed,
Filling at least a boring hole in which the vibration receiving device is installed,
The elastic wave generated by the oscillation device is received by the vibration receiving device, and the ground between the oscillation device and the vibration receiving device is determined based on the distance between the oscillation device and the vibration receiving device and the propagation time of the elastic wave. Analyzing the elastic wave velocity distribution of the mountain,
A method for exploring the front of the face.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015174349A JP6646983B2 (en) | 2015-09-04 | 2015-09-04 | Method for exploring the front of the face |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015174349A JP6646983B2 (en) | 2015-09-04 | 2015-09-04 | Method for exploring the front of the face |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017049198A true JP2017049198A (en) | 2017-03-09 |
JP6646983B2 JP6646983B2 (en) | 2020-02-14 |
Family
ID=58280223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015174349A Active JP6646983B2 (en) | 2015-09-04 | 2015-09-04 | Method for exploring the front of the face |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6646983B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018168679A1 (en) | 2017-03-14 | 2018-09-20 | 学校法人慶應義塾 | Method for improving activity of pet-degrading enzyme using additive |
CN109683193A (en) * | 2018-10-25 | 2019-04-26 | 中国科学院武汉岩土力学研究所 | A kind of active probe method of double-hole tunnel construction front unfavorable geologic body |
JP2020008368A (en) * | 2018-07-05 | 2020-01-16 | 株式会社安藤・間 | Natural ground elastic wave measurement method |
JP2020134483A (en) * | 2019-02-26 | 2020-08-31 | 公益財団法人鉄道総合技術研究所 | Ground survey device |
CN114034266A (en) * | 2021-09-30 | 2022-02-11 | 湖南天功测控科技有限公司 | Acoustic method foundation pile rock-socketed depth detection method for optimizing damping transducer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6283685A (en) * | 1985-10-09 | 1987-04-17 | Tokyu Constr Co Ltd | Method for measuring ae in ground |
US5187332A (en) * | 1992-02-10 | 1993-02-16 | Mobil Oil Corporation | Coupling and recovering seismic detection sensors |
JPH062323A (en) * | 1992-06-22 | 1994-01-11 | Sato Kogyo Co Ltd | Prediction of gelogical property ahead of facing during tunnel excavation |
JPH08226975A (en) * | 1995-02-21 | 1996-09-03 | Fujita Corp | Method for surveying geology in front of face of tunnel |
JPH11326529A (en) * | 1998-05-21 | 1999-11-26 | Okumura Corp | Geology exploring method, elastic wave generating method and elastic wave generator |
WO2012027105A1 (en) * | 2010-08-26 | 2012-03-01 | Smith International, Inc. | Method of acoustic ranging |
JP2015001109A (en) * | 2013-06-17 | 2015-01-05 | 大成建設株式会社 | Method for forming survey hole, and protective pipe |
-
2015
- 2015-09-04 JP JP2015174349A patent/JP6646983B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6283685A (en) * | 1985-10-09 | 1987-04-17 | Tokyu Constr Co Ltd | Method for measuring ae in ground |
US5187332A (en) * | 1992-02-10 | 1993-02-16 | Mobil Oil Corporation | Coupling and recovering seismic detection sensors |
JPH062323A (en) * | 1992-06-22 | 1994-01-11 | Sato Kogyo Co Ltd | Prediction of gelogical property ahead of facing during tunnel excavation |
JPH08226975A (en) * | 1995-02-21 | 1996-09-03 | Fujita Corp | Method for surveying geology in front of face of tunnel |
JPH11326529A (en) * | 1998-05-21 | 1999-11-26 | Okumura Corp | Geology exploring method, elastic wave generating method and elastic wave generator |
WO2012027105A1 (en) * | 2010-08-26 | 2012-03-01 | Smith International, Inc. | Method of acoustic ranging |
JP2015001109A (en) * | 2013-06-17 | 2015-01-05 | 大成建設株式会社 | Method for forming survey hole, and protective pipe |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018168679A1 (en) | 2017-03-14 | 2018-09-20 | 学校法人慶應義塾 | Method for improving activity of pet-degrading enzyme using additive |
JP2020008368A (en) * | 2018-07-05 | 2020-01-16 | 株式会社安藤・間 | Natural ground elastic wave measurement method |
JP7030634B2 (en) | 2018-07-05 | 2022-03-07 | 株式会社安藤・間 | Ground elastic wave measurement method |
CN109683193A (en) * | 2018-10-25 | 2019-04-26 | 中国科学院武汉岩土力学研究所 | A kind of active probe method of double-hole tunnel construction front unfavorable geologic body |
JP2020134483A (en) * | 2019-02-26 | 2020-08-31 | 公益財団法人鉄道総合技術研究所 | Ground survey device |
JP6990668B2 (en) | 2019-02-26 | 2022-01-12 | 公益財団法人鉄道総合技術研究所 | Ground exploration equipment |
CN114034266A (en) * | 2021-09-30 | 2022-02-11 | 湖南天功测控科技有限公司 | Acoustic method foundation pile rock-socketed depth detection method for optimizing damping transducer |
CN114034266B (en) * | 2021-09-30 | 2024-04-26 | 湖南天功测控科技有限公司 | Acoustic method foundation pile rock-socketed depth detection method for optimizing damping transducer |
Also Published As
Publication number | Publication date |
---|---|
JP6646983B2 (en) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6646983B2 (en) | Method for exploring the front of the face | |
AU2013396723B2 (en) | Arrangement for controlling percussive drilling process | |
JP6584010B2 (en) | Tunnel face forward exploration method | |
JP5839271B2 (en) | Tunnel face forward exploration method | |
CN103792582A (en) | Method for detecting roadway broken rock zone | |
JP2014106075A (en) | Method for geological survey during tunnel excavation | |
JP2017057708A (en) | Natural ground evaluation method and system in front of tunnel working face | |
JP6304527B2 (en) | Tunnel rock exploration method | |
JP6522918B2 (en) | Elastic wave velocity measurement method | |
JP5940303B2 (en) | Tunnel face forward exploration method | |
JP5997521B2 (en) | Face investigation method using shield machine | |
JP2000170478A (en) | Method for probing front of tunnel facing | |
JP6602675B2 (en) | Geological exploration method in front of the face | |
JP4260329B2 (en) | Geological exploration method in front of tunnel face | |
CN106032750B (en) | Geological logging instrument based on drilling energy spectrum | |
CN103775073A (en) | Mining working face ground stress distribution characteristic detection method | |
JP5258734B2 (en) | Tunnel front face exploration method and exploration system | |
JP7200013B2 (en) | Tunnel Face Forward Exploration System and Tunnel Face Forward Exploration Method | |
JP3856392B2 (en) | Evaluation method of natural ground in front of ground excavation part | |
JP3308478B2 (en) | Exploration method in front of tunnel face | |
JP2010038790A (en) | Elastic wave probe system | |
JP2018185150A (en) | Geological exploration device for pit face front | |
JP6688605B2 (en) | Front face exploration method | |
KR101596313B1 (en) | geophysical logging probe with propulsion for inserting in the incline borehole | |
JP6396824B2 (en) | Shield tunnel forward exploration device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6646983 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |