JP2014106075A - Method for geological survey during tunnel excavation - Google Patents

Method for geological survey during tunnel excavation Download PDF

Info

Publication number
JP2014106075A
JP2014106075A JP2012258477A JP2012258477A JP2014106075A JP 2014106075 A JP2014106075 A JP 2014106075A JP 2012258477 A JP2012258477 A JP 2012258477A JP 2012258477 A JP2012258477 A JP 2012258477A JP 2014106075 A JP2014106075 A JP 2014106075A
Authority
JP
Japan
Prior art keywords
tunnel
excavation
face
blasting
geological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012258477A
Other languages
Japanese (ja)
Other versions
JP5985371B2 (en
Inventor
Hideyuki Murayama
秀幸 村山
Nobuyuki Shimizu
信之 清水
Susumu Abe
進 阿部
Motonori Higashinaka
基倫 東中
Kazuya Shiraishi
和也 白石
Katsuya Noda
克也 野田
Akira Fujiwara
明 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KAGAKU SOGO KENKYUSHO KK
Fujita Corp
Original Assignee
CHIKYU KAGAKU SOGO KENKYUSHO KK
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KAGAKU SOGO KENKYUSHO KK, Fujita Corp filed Critical CHIKYU KAGAKU SOGO KENKYUSHO KK
Priority to JP2012258477A priority Critical patent/JP5985371B2/en
Publication of JP2014106075A publication Critical patent/JP2014106075A/en
Application granted granted Critical
Publication of JP5985371B2 publication Critical patent/JP5985371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately survey geology in front of the working face 101 during execution in excavation construction of a tunnel 100 without requiring the use of a dedicated artificial seismic source.SOLUTION: A plurality of vibration receiving means 1 are installed at a predetermined interval in the inside of a tunnel 100, noise vibration of the ground generated by works accompanying the execution of tunnel excavation construction is used as a seismic source, a direct wave from this seismic source and a reflection wave reflected by the boundary surface due to geological change in front of the working face is received by the vibration receiving means 1, the vibration reception records are analyzed by seismic interferometry, and the direct wave is subtracted from the reflection wave, thereby predicting a geological situation in front of the working face.

Description

本発明は、道路用、鉄道用、あるいは水路用などのトンネルの掘削工事における施工中の切羽前方の地質を探査する方法に関するものである。   The present invention relates to a method for exploring geology in front of a working face during construction in tunnel excavation work for roads, railways, and waterways.

トンネルの掘削においては、切羽前方の地質を適切に探査することによって、断層・破砕帯や含水層などによる地山不良個所の有無を事前に探査し、探査結果に応じた適切な機器及び工法で切羽の掘削作業を行うことが重要である。   In tunnel excavation, the geology in front of the face is properly explored to investigate in advance whether there are faulty areas due to faults, crushing zones, or hydrous layers, and with appropriate equipment and construction methods according to the exploration results. It is important to work on the face.

従来、トンネルの切羽前方の地質探査方法としては、ボーリングによる方法(例えば特許文献1参照)や、大型の油圧ドリルを用いて切羽前方の地山へ水平に穿孔し、そのときの打撃力やトルクの変化、穿孔時間などを計測することによって、地質の硬軟や地下水の状況などを予測する探りノミと呼ばれる方法や、弾性波探査による方法などがある。弾性波探査による切羽前方地質探査方法としては、VSP(vertical seismic profile;弾性波反射法)処理を応用した手法が知られており、これは、人工震源(発破や機械震源)と受振器及び記録装置等を用い、起振源から地中へ向けて弾性波を発生させ、地質の境界面からの反射波を受振し、その受振データにフィルタリング等の波形処理を施すことによって切羽前方の地山変化を相対的に判定する方法(例えば特許文献2,3参照)である。   Conventionally, as a geological exploration method in front of the face of the tunnel, a boring method (see, for example, Patent Document 1) or a large hydraulic drill is used to horizontally drill a ground in front of the face, and the striking force and torque at that time There are methods called exploration fleas that predict geological firmness and softness, groundwater conditions, etc., and methods using elastic wave exploration. As a geological exploration method in front of the face by elastic wave exploration, a method using VSP (vertical seismic profile) processing is known, which includes artificial seismic sources (blasting and mechanical seismic sources), geophones and records Using a device, etc., generate an elastic wave from the excitation source to the ground, receive the reflected wave from the boundary surface of the geology, and apply waveform processing such as filtering to the received data to the ground in front of the face This is a method for relatively determining changes (see, for example, Patent Documents 2 and 3).

しかしながら、このような弾性波探査では、トンネル施工中にトンネル地質(主に切羽前方地質)を探査するためには、探査機器が坑内を占有するため休日等の坑内作業のない日を選定し、探査機器(受振器、発破や機械震源、記録装置ほか)を坑内に搬入して切羽近傍を占有して探査を実施する必要があるといった問題が指摘される(探査は準備を入れて1.5日程度)。また弾性波探査は、必ず人工震源と受振器(含む記録装置)の組合せによって実行され、このため人工震源として、ダイナマイト等による発破や、バイブレータや油圧インパクタ等による機械震源を用いる必要があった。   However, in such elastic wave exploration, in order to explore the tunnel geology (mainly the geology ahead of the face) during tunnel construction, the exploration equipment occupies the mine, so select a day without mine work such as holidays, It has been pointed out that it is necessary to carry exploration equipment (such as geophones, blast and mechanical seismic sources, recording devices, etc.) into the mine and occupy the vicinity of the face (exploration is 1.5 Days). Elastic wave exploration is always performed by a combination of an artificial seismic source and a geophone (including a recording device). For this reason, blasting with dynamite or a mechanical seismic source with a vibrator or a hydraulic impactor has to be used as an artificial seismic source.

一方、地山の地下構造をイメージングする技術として、地中又は地表へ向かう振動が地中の反射点で反射した地中反射波を、地表に配置した異なる二地点に配置した受振器で同時刻に測定し、それらの測定データの波形について相互相関処理を行うことにより、一方を震源とし、他方を受振点として観測したような振動波形を合成することによって作成した擬似反射波の合成ショット記録に、所定の処理を加えて統合し、測定区域における地下構造の可視化データを得ることのできる地震波干渉法(Seismic Interferometry)が知られている(下記の非特許文献1参照)。   On the other hand, as a technology for imaging underground structures of ground, the underground reflected waves reflected by the ground reflection point at the ground or at the ground surface are reflected at the same time using geophones at two different points on the ground surface. And by performing cross-correlation processing on the waveforms of the measured data, a synthetic shot record of the pseudo reflected wave created by synthesizing the vibration waveform as observed with one as the epicenter and the other as the receiving point In addition, seismic interferometry is known (see Non-Patent Document 1 below) that can be integrated by adding predetermined processing to obtain visualization data of the underground structure in the measurement area.

特開平8−177380号公報JP-A-8-177380 特開2001−141835号公報JP 2001-141835 A 特開2000−170478号公報JP 2000-170478 A

白石和也,松岡俊文,川中卓:地震波干渉法概説,地学雑誌,第117巻,第5号,pp.863−869,2008.Kazuya Shiraishi, Toshifumi Matsuoka, Taku Kawanaka: Overview of Seismic Interferometry, Geographical Journal, Vol. 117, No. 5, pp. 863-869, 2008.

しかしながら、地震波干渉法による地下構造イメージングを利用して、施工中のトンネル切羽前方の地質を探査する技術は確立されていなかった。   However, a technique for exploring the geology ahead of the tunnel face under construction using seismic interferometry has not been established.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題とするところは、専用の人工震源を用いることなく、トンネルの掘削工事における施工中の切羽前方の地質を高精度で探査可能とすることにある。   The present invention has been made in view of the above points, and the technical problem is that the geology in front of the working face during tunnel excavation work can be obtained without using a dedicated artificial seismic source. The purpose is to enable exploration with high accuracy.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係るトンネル掘削中の地質探査方法は、トンネルの坑内に受振手段を設置し、トンネル掘削工事の施工に付随する作業によって発生する地盤のノイズ振動を震源として、この震源からの直接波と、切羽前方の地質変化による境界面で反射した反射波を前記受振手段で受振し、その受振記録を、自己相関(auto-correlation)を用いた地震波干渉法により解析して前記反射波から前記直接波走時を除去することにより得られる、震源を仮想受振点とする複数の反射波の重ね合わせにより、前記切羽前方の地質状況を予測することを特徴とするものである。   As a means for effectively solving the technical problem described above, the geological exploration method during tunnel excavation according to the invention of claim 1 is the work accompanying the construction of the tunnel excavation work by installing the vibration receiving means in the tunnel pit. The ground vibration generated by the ground is used as the epicenter, and the direct wave from this epicenter and the reflected wave reflected by the boundary surface due to the geological change ahead of the face are received by the receiving means, and the received records are autocorrelation (auto- The geology ahead of the face is obtained by superimposing a plurality of reflected waves with the hypocenter as a virtual receiving point, which is obtained by removing the direct wave travel time from the reflected waves by analyzing by seismic wave interferometry using correlation) It is characterized by predicting the situation.

上述の方法において、地震波干渉法とは、異なる受振点で観測された振動記録の相互相関により、あたかも一つの受振点位置を仮想的な震源として、他の受振点で観測を行ったような振動波形を合成することができる信号処理手法である。そしてこの手法によれば、震源を仮想受振点とする複数の反射波の重ね合わせにより、切羽前方の地質変化による境界面の存在をイメージングすることができる。したがって従来ノイズとされてきた振動記録を地盤探査に有効に活用することによって、地質探査のための特別な専用の震源を不要とすることができる。   In the method described above, seismic wave interferometry is a vibration that is observed at another receiving point using one receiving point position as a virtual source, based on the cross-correlation of vibration records observed at different receiving points. This is a signal processing technique capable of synthesizing waveforms. According to this method, the presence of a boundary surface due to a geological change ahead of the face can be imaged by superimposing a plurality of reflected waves with the hypocenter as a virtual receiving point. Therefore, by effectively utilizing the vibration record, which has been regarded as noise in the past, for ground exploration, a special dedicated epicenter for geological exploration can be eliminated.

請求項2の発明に係るトンネル掘削中の地質探査方法は、請求項1に記載の方法において、地盤のノイズ振動が、発破掘削トンネルの施工における発破、ダンプによるずり輸送、こそく、ロックボルト用削孔のいずれかにより発生するもの、又は機械掘削トンネルの施工における機械掘削、ダンプによるずり輸送、ロックボルト用削孔のいずれかにより発生するものであることを特徴とするものである。   The geological exploration method during tunnel excavation according to the invention of claim 2 is the method according to claim 1, wherein the noise vibration of the ground is blasting in the construction of the blasting excavation tunnel, shear transport by dump, It is generated by any one of the drilling holes, or generated by any one of machine excavation in the construction of the machine excavation tunnel, shear transport by dump, and drilling holes for rock bolts.

トンネルの施工においては、発破、機械掘削、ダンプ走行など地盤振動の発生を伴う作業が多く、本発明では、このような振動によるノイズを切羽前方探査に有効に利用するものである。なお、ここで「ずり」とはトンネル掘削により発生する岩石や土砂を言い、「こそく」とは掘削によって切羽に現れた浮き石を落としたり切羽を整形したりする作業を言う。   In the construction of tunnels, there are many operations involving the occurrence of ground vibration such as blasting, machine excavation, and dumping. In the present invention, noise caused by such vibration is effectively used for exploration ahead of the face. Here, “shear” refers to rocks and earth and sand generated by tunnel excavation, and “sakuku” refers to the work of dropping float stones that appear on the face and shaping the face.

請求項3の発明に係るトンネル掘削中の地質探査方法は、請求項1又は2に記載の方法において、自己相関を用いた地震波干渉法による解析の前処理として、波形振幅の平準化を行うものである。   A geological exploration method during tunnel excavation according to a third aspect of the invention is the method according to the first or second aspect, wherein the waveform amplitude is leveled as a pre-processing for analysis by seismic interferometry using autocorrelation. It is.

ここで、波形振幅の平準化とは、観測記録の全ての時刻について、観測記録の長さに対しては短く設定される単位時間内の二乗平均平方根振幅により、元の振幅値を除算する処理のことである。段発発破の観測記録や各種振動ノイズ記録を用いる場合、平準化処理を適用しないと波形振幅の大きなもの同士の相関係数が高く、一方で本来の対象である切羽前方からの反射波の抽出効果が低下するおそれがある。平準化処理により観測記録の振幅エネルギーを揃えることで、相関処理による切羽前方からの反射波抽出の効率を向上させることができる。   Here, the leveling of the waveform amplitude is a process of dividing the original amplitude value by the root mean square amplitude within a unit time that is set shorter than the length of the observation record for all times of the observation record. That is. When using observation recordings of stage blasting and various vibration noise recordings, if leveling processing is not applied, the correlation coefficient between those with large waveform amplitudes is high, while extraction of reflected waves from the front of the face that is the original target The effect may be reduced. By equalizing the amplitude energy of observation records by leveling processing, the efficiency of extracting reflected waves from the front of the face by correlation processing can be improved.

本発明に係るトンネル掘削中の地質探査方法によれば、作業によるノイズ振動を地質探査に有効に活用することによって、地質探査のための特別な専用の震源を不要としながら、トンネル掘削中における切羽前方の地質探査を高精度で行うことができる。   According to the geological exploration method during tunnel excavation according to the present invention, it is possible to effectively utilize noise vibration due to work for geological exploration, thereby eliminating the need for a special dedicated epicenter for geological exploration, and the face during tunnel excavation. The geological exploration ahead can be performed with high accuracy.

発破工法によるトンネル掘削工事の施工手順及び本発明に利用可能な地盤振動の発生を伴う作業を示す説明図である。It is explanatory drawing which shows the construction procedure of the tunnel excavation work by a blasting method, and the operation | work accompanied by generation | occurrence | production of the ground vibration which can be utilized for this invention. 機械掘削工法によるトンネル掘削工事の施工手順及び本発明に利用可能な地盤振動の発生を伴う作業を示す説明図である。It is explanatory drawing which shows the construction procedure of the tunnel excavation work by a mechanical excavation method, and the operation | work accompanying generation | occurrence | production of the ground vibration which can be utilized for this invention. 本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態を概略的に示す説明図である。It is explanatory drawing which shows roughly preferable embodiment of the geological exploration method in the tunnel excavation based on this invention. 本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態において、段発発破を震源とした場合の解析手法を示す説明図である。In preferred embodiment of the geological exploration method during tunnel excavation concerning this invention, it is explanatory drawing which shows the analysis method at the time of setting a step blast as an epicenter. 本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態において、切羽位置での掘削発破を受振点と仮定した場合(自己相関処理)の反射波の概念を示す説明図である。It is explanatory drawing which shows the concept of the reflected wave at the time of assuming excavation blasting in a face position as a receiving point (autocorrelation process) in preferable embodiment of the geological exploration method in the tunnel excavation which concerns on this invention. 図5に示す概念を、弾性波の走時(波が到達する時間)で表わした説明図である。It is explanatory drawing which represented the concept shown in FIG. 5 with the travel time (time for a wave to reach) of an elastic wave. 本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態において、1回の発破で複数の受振点で得られる自己相関処理波形の重ね合わせの概念を示す説明図である。It is explanatory drawing which shows the concept of the superimposition of the autocorrelation processing waveform obtained in several receiving points by one blasting in preferable embodiment of the geological exploration method in the tunnel excavation which concerns on this invention. 地質変化部分による反斜面が傾斜している場合を示す説明図である。It is explanatory drawing which shows the case where the anti-slope by a geological change part inclines. 本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態において、地質変化部分による反斜面が傾斜している場合、1回の発破で複数の受振点で得られる自己相関処理波形の重ね合わせの概念を示す説明図である。In a preferred embodiment of the geological exploration method during tunnel excavation according to the present invention, when an anti-slope due to a geological change portion is inclined, superposition of autocorrelation processing waveforms obtained at a plurality of receiving points by one blasting It is explanatory drawing which shows the concept of. 実施例として、段発発破による受振波形と平準化処理後の波形を示す説明図である。As an Example, it is explanatory drawing which shows the received waveform by stage blasting, and the waveform after a leveling process. 従来の技術(VSP処理)による反射波の処理波形と本発明に係る地震波干渉法(自己相関)による処理波形を対比して示す説明図である。It is explanatory drawing which compares and shows the processing waveform of the reflected wave by a prior art (VSP process), and the processing waveform by the seismic wave interferometry (autocorrelation) based on this invention.

以下、本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態について、図面を参照しながら説明する。   Hereinafter, preferred embodiments of a geological exploration method during tunnel excavation according to the present invention will be described with reference to the drawings.

トンネルの掘削には、ダイナマイトなどの爆薬を用いて発破することにより掘削する発破工法や、自由断面掘削機、大型ブレーカあるいはトンネルボーリングマシン(TBM)などを用いて掘削する機械掘削工法がある。   Tunnel excavation includes a blasting method in which excavation is performed using an explosive such as dynamite, and a mechanical excavation method in which excavation is performed using a free-section excavator, a large breaker, a tunnel boring machine (TBM), or the like.

このうち発破工法による発破掘削トンネルの施工においては、図1に示すように、まず発破孔を穿孔し(S01)、装薬し(S02)、発破(爆破)させる(S03)。一方、この発破掘削によって発生した土砂や岩石などの「ずり」を重ダンプなどで坑外へ運搬したり(S04)、掘削によって切羽に現れた浮き石を落としたり切羽を整形したりする「こそく」作業(S05)が行われる。そして切羽後方では、坑内壁の崩壊を防止するために、鋼材の建て込み(S06)や、コンクリートの吹き付けによる覆工(S07)や、この覆工壁面から地山へ多数のボアホールを穿孔してこれにロックボルトを挿入して定着させ、ナットで締め付けることにより坑内壁の周辺地山を支保して補強する(S08)といった作業が行われる。そして、S01〜S05の作業を含む掘削工と、S06〜S08の作業を含む支保工が交互に繰り返される。   Among them, in the construction of a blast excavation tunnel by the blasting method, as shown in FIG. 1, first, a blast hole is drilled (S01), charged (S02), and blasted (blasted) (S03). On the other hand, “sludge” such as sediment and rocks generated by this blast excavation is transported to the outside of the mine with a heavy dumper (S04), or floats that appear on the face by excavation are dropped or the face is shaped. (S05) is performed. At the rear of the face, in order to prevent the collapse of the inner wall of the mine, the construction of steel (S06), the lining by spraying concrete (S07), and many bore holes from the lining wall to the ground are drilled. A lock bolt is inserted and fixed therein, and tightened with a nut to support and reinforce the surrounding ground around the mine wall (S08). And the excavator including the work of S01-S05 and the support work including the work of S06-S08 are repeated alternately.

また、機械掘削工法による機械掘削トンネルの施工においては、図2に示すように、自由断面掘削機、大型ブレーカあるいはTBMなどによって機械掘削を行い(S11)、これによって発生した土砂や岩石などの「ずり」をホイルローダや重ダンプなどで坑外へ運搬(S12)することによる掘削工と、切羽後方で、坑内壁の崩壊を防止するために、鋼材の建て込み(S13)や、コンクリートの吹き付けによる覆工(S14)や、この覆工壁面から地山へ多数のボアホールを穿孔してこれにロックボルトを挿入して定着させ、ナットで締め付けることにより坑内壁の周辺地山を支保して補強する(S15)といった作業を含む支保工が交互に繰り返される。   Further, in the construction of the machine excavation tunnel by the machine excavation method, as shown in FIG. 2, machine excavation is performed by a free section excavator, a large breaker, TBM, or the like (S11). Excavation by transporting "sludge" to the outside of the mine with a wheel loader or heavy dumper (S12), and in order to prevent the collapse of the inner wall of the mine behind the face, the construction of steel (S13) or the spraying of concrete A large number of bore holes are drilled from the lining wall surface to the natural ground, and lock bolts are inserted and fixed in the lining (S14), and the surrounding natural ground on the inner wall is supported and reinforced by tightening with nuts. The support work including the work (S15) is repeated alternately.

そして発破掘削トンネルの施工では、発破孔の穿孔(S01)、発破(S03)、重ダンプなどによるずり運搬(S04)、こそく(S05)、及びロックボルトのボアホール穿孔(S08)などは地盤のノイズ振動発生を伴うものであり、機械掘削トンネルの施工でも、機械掘削(S11)、ホイルローダや重ダンプなどによるずり運搬(S12)、及びロックボルトのボアホール穿孔(S15)などは地盤のノイズ振動発生を伴うものである。   And in the construction of blasting excavation tunnels, drilling of blasting holes (S01), blasting (S03), shear transport by heavy dumping (S04), scraping (S05), drilling of rock bolt bore holes (S08), etc. Noise vibration is generated, and even in the construction of a mechanical excavation tunnel, mechanical excavation (S11), shear transport by a wheel loader or heavy dumper (S12), and drilling of a rock bolt borehole (S15), etc. generate noise vibration of the ground. It is accompanied by.

図3において、参照符号100は地山に施工されたトンネル、101は切羽(トンネル切削面)である。発破掘削トンネルの施工では、図3(A)に示すように油圧削岩機(ジャンボ)201などによって切羽101からその前方の地山へ向けて所要数の発破孔102を水平に掘削して爆薬を入れ、この爆薬を図3(B)に示すように発破装置4によって炸裂させる。そして図3(C)に示すように、油圧ブレーカ202などを用いて、切羽101における浮き石を除去したり整形したりする「こそく」を行い、発破により発生した「ずり」を、図3(D)に示すように、ホイルローダ203や重ダンプ204などで坑外へ運搬する。なお、図3(A)における103は、坑内壁を支保するロックボルトを打ち込むためのボアホールである。   In FIG. 3, reference numeral 100 is a tunnel constructed in a natural ground, and 101 is a face (tunnel cutting surface). In the construction of the blast excavation tunnel, as shown in FIG. 3 (A), a hydraulic rock drill (jumbo) 201 or the like excavates the required number of blast holes 102 from the face 101 to the ground in front of the explosive. And explode the explosive by the blasting device 4 as shown in FIG. Then, as shown in FIG. 3 (C), using the hydraulic breaker 202 or the like, “crush” is performed to remove or shape the float on the face 101, and the “shear” generated by blasting is shown in FIG. As shown to (D), it conveys outside a mine with the wheel loader 203, the heavy dumping 204, etc. FIG. Note that reference numeral 103 in FIG. 3A denotes a bore hole for driving a lock bolt that supports the inner wall of the mine.

また、機械掘削トンネルの施工では、図3(E)に示すような自由断面掘削機205や、図3(F)に示すようなTBM206などを用いて切羽101の掘削を行い、掘削により発生した「ずり」を、図3(D)と同様、ホイルローダ203や重ダンプ204などで坑外へ運搬する。   Further, in the construction of the mechanical excavation tunnel, the face 101 was excavated by using a free section excavator 205 as shown in FIG. 3E or a TBM 206 as shown in FIG. As in FIG. 3D, the “shear” is transported to the outside of the mine by the wheel loader 203 and the heavy dump 204.

これらの工程で発生する地盤のノイズ振動のデータは、所要数の受振器1で受振して記録装置2に取り込み、そのデータを、坑外の現場事務所等に設置されたパーソナルコンピュータ3で、地震波干渉法(自己相関)を用いた波形処理により解析して、切羽101の前方の地質の予測を行う。   The ground noise vibration data generated in these processes is received by the required number of geophones 1 and loaded into the recording device 2, and the data is stored in the personal computer 3 installed in the field office outside the mine, Analysis is performed by waveform processing using seismic wave interferometry (autocorrelation), and the geology ahead of the face 101 is predicted.

ここで、地震波干渉法とは、1968年にClaerbout によって一次元モデルにおける反射記録が自己相関(auto-correlation)から導かれることが示され、2006年頃から物理探査分野で急速に注目されはじめたもので、前掲の非特許文献1「地震波干渉法概説」に記載されているように、異なる受振点で観測された振動記録の相互干渉により、あたかも一つの受振点位置を仮想的な震源として、他の受振点で観測を行ったような振動波形を合成することができる信号処理手法である。すなわち地震波干渉法によれば、受振点を仮想的な発震点あるいは発震点を仮想的な受振点として振動波形を合成できるので、特別な震源を用いなくても、従来ノイズとされてきた上述のような振動記録を地盤探査に有効に活用することができる。   Here, seismic interferometry is the one in which the reflection record in a one-dimensional model was derived from auto-correlation by Claerbout in 1968, and began to attract attention in the field of geophysical exploration from around 2006 As described in Non-Patent Document 1 “Outline of Seismic Interferometry” mentioned above, it is possible to use the position of one receiving point as a hypothetical hypocenter due to mutual interference of vibration records observed at different receiving points. This is a signal processing method capable of synthesizing a vibration waveform as observed at the receiving point. In other words, according to the seismic wave interferometry, since the vibration waveform can be synthesized using the hypocenter as a virtual seismic point or the seismic point as a hypothetical seismic point, the above-mentioned noise, which has been conventionally considered as noise, without using a special seismic source Such vibration records can be effectively used for ground exploration.

自己相関は、信号処理において時間領域信号又は空間領域信号等の関数または数列を解析するためにしばしば用いられる数学的手法であって、信号がそれ自身を時間シフトした信号とどれだけ良く整合するかを測る尺度であり、時間シフトの大きさの関数として表されるもので、シフト量ゼロのときに最大となる。言い換えれば、自己相関とは、ある信号のそれ自身との相互相関であって、信号に含まれる繰り返しパターンを探すのに有用であり、周期性を有する場合はその周期毎に値が大きくなるので、例えば、ノイズに埋もれた周期的信号の存在を判定したり、信号中の失われた基本周波数を倍音周波数による示唆に基づいて同定したりするために用いられる。   Autocorrelation is a mathematical technique often used in signal processing to analyze functions or sequences, such as time-domain signals or spatial-domain signals, and how well the signal matches itself with a time-shifted signal Is a measure of the time shift, and is a maximum when the shift amount is zero. In other words, autocorrelation is a cross-correlation with a signal itself and is useful for searching for a repetitive pattern included in the signal. If it has periodicity, the value increases for each period. For example, it is used to determine the presence of a periodic signal buried in noise or to identify a lost fundamental frequency in the signal based on suggestions by harmonic frequencies.

本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態では、掘削発破における1発震点のデータ(現在のデータは2.5秒,段発10発前後)を入力として自己相関解析を行う。掘削発破によって生じた振動パターンは、反射した波形にも基本的にパターンとして含まれるため、掘削発破時の観測波形に対し、自己相関を計算することにより、同一パターンが反射されることとなる、反射波に相当するパターンの値は大きくなり、また切羽101から受振点までの到達時間は相殺されるので、切羽101からの到達時間を示す波形に変換することができる。   In a preferred embodiment of the geological exploration method during tunnel excavation according to the present invention, autocorrelation analysis is performed with data of one focal point in excavation blasting (current data is 2.5 seconds, around 10 rounds) as input. . The vibration pattern generated by excavation blasting is basically included in the reflected waveform as a pattern, so by calculating the autocorrelation for the observed waveform at the time of excavation blasting, the same pattern will be reflected. The value of the pattern corresponding to the reflected wave becomes large, and the arrival time from the face 101 to the receiving point is canceled out, so that it can be converted into a waveform indicating the arrival time from the face 101.

本発明に係るトンネル掘削中の地質探査方法の好ましい実施の形態では、図4に示すように、本願の発明者らが先に開発したトンネル浅層反射法探査(SSRT:Shallow Seismic Reflection Survey for Tunnels)のうち、切羽101での段発発破を震源として坑内で連続的に振動を観測する連続SSRTにおいて自己相関を用いる地震波干渉法により解析を行う。   In a preferred embodiment of the geological exploration method during tunnel excavation according to the present invention, as shown in FIG. 4, the shallow seismic reflection survey for tunnels (SSRT) previously developed by the inventors of the present application. ), The analysis is performed by seismic interferometry using autocorrelation in a continuous SSRT in which vibration is continuously observed in the mine using a step blast at the face 101 as an epicenter.

すなわち、図4に示すトンネル100は山岳地帯で施工され、切羽101を、数メートル間隔で発破することによって掘り進められるものである。発破によって発生する地山のノイズ振動のデータを取り込む受振器1は、たとえばジオフォンなどの小型地震計からなるものであって、坑内に複数設置され、例えばトンネル100の坑内地盤の長手方向に沿って、長手方向に沿って1.5m〜3m程度の間隔で設置され、それぞれ記録装置2に接続されている。   That is, the tunnel 100 shown in FIG. 4 is constructed in a mountainous area and can be dug by blasting the face 101 at intervals of several meters. The geophone 1 that captures data of noise vibration of the natural ground generated by the blasting is composed of a small seismometer such as a geophone, for example, and is installed in the mine, for example, along the longitudinal direction of the underground ground of the tunnel 100. Are installed at intervals of about 1.5 m to 3 m along the longitudinal direction, and are connected to the recording apparatus 2 respectively.

また、切羽101を発破掘削するための発破装置4は、爆薬を起爆させる段発雷管への起爆電流を検出した検出信号が記録装置2に出力されるようになっており、すなわち段発発破における最初の発破時刻が、記録装置2に発震時刻として記録されるようになっている。   Further, the blasting device 4 for blasting and excavating the face 101 is configured such that a detection signal for detecting the initiation current to the stage detonator for detonating the explosive is output to the recording device 2, that is, in stage blasting. The first blast time is recorded in the recording device 2 as the earthquake time.

したがって、上記構成において、トンネル100の切羽101を発破掘削するために、図3(A)に示す切羽101の前方の地山へ穿孔された発破孔102内に装填された爆薬が、発破装置4から雷管への起爆電流によって炸裂すると、その発破点Pが起震源となり、それによる弾性波が複数の受振器1により受振され、各受振データが記録装置2に記録されると共に最初の発震時刻(発破時刻)が記録装置2に記録される。   Therefore, in the above configuration, in order to blast and excavate the face 101 of the tunnel 100, the explosive loaded in the blast hole 102 drilled in the ground in front of the face 101 shown in FIG. When the explosion occurs from the detonator to the detonator, the blasting point P becomes the source of the earthquake, and the resulting elastic waves are received by the plurality of geophones 1, and each received data is recorded in the recording device 2 and the first occurrence time ( Blast time) is recorded in the recording device 2.

受振器1で受振された受振データは記録装置2に記録されると共に、坑外の現場事務所等に設置されたパーソナルコンピュータ3へ送られる。パーソナルコンピュータ3では、受振データと、記録装置2に記録された発破時刻から、弾性波の伝搬時間を算出する。   The vibration reception data received by the vibration receiver 1 is recorded in the recording device 2 and sent to a personal computer 3 installed in a field office outside the mine. In the personal computer 3, the propagation time of the elastic wave is calculated from the vibration receiving data and the blast time recorded in the recording device 2.

このとき、図4に示すように、地山中に破砕帯や断層などによる地質変化部分Qが存在する場合は、発破点Pを起震源とする弾性波の一部は、地質変化部分Qの境界面で反射するので、受振器1は、発破点Pからの直接波のほか、地質変化部分Qからの反射波を受振することができる。そしてこの場合の受振器1の受振データは、図5に示すように、発破点Pから各反射面までの距離情報が含まれたものとなる。   At this time, as shown in FIG. 4, when a geological change portion Q due to a crush zone or a fault exists in the natural ground, a part of the elastic wave having the blasting point P as a source is the boundary of the geological change portion Q. Since the surface is reflected, the geophone 1 can receive the reflected wave from the geological change portion Q in addition to the direct wave from the blasting point P. And the vibration receiving data of the geophone 1 in this case includes distance information from the blasting point P to each reflecting surface as shown in FIG.

詳しくは図5において、Tは、切羽101上の発破点Pで発生した弾性波が直接、坑内側受振器1Bに到達するまでの直接波の走時であり、Tは、発破点Pで発生した弾性波が切羽101の前方地山内の地質変化部分Qによる反射面で反射して坑内側受振器1Bに到達するまでの反射波の走時である。 Specifically, in FIG. 5, T 1 is the traveling time of the direct wave until the elastic wave generated at the blasting point P on the face 101 reaches the downhole geophone 1 B, and T 2 is the blasting point P. It is the travel time of the reflected wave until the elastic wave generated in step b is reflected by the reflection surface by the geological change portion Q in the ground in front of the face 101 and reaches the downhole geophone 1B.

図5から、反射波の走時Tは、切羽101上の発破点Pで発生した弾性波が地質変化部分Qによる反射面で反射して切羽101へ戻るまでの走時Tと、直接波の走時Tの和、すなわち
=T+T
であることがわかる。
From Figure 5, travel time T 2 of the reflected wave, the travel time T 3 to acoustic waves generated by the blast point P on the working face 101 is returned to the working face 101 is reflected by the reflecting surface by geological change portion Q, directly Sum of wave travel times T 1 , ie T 2 = T 1 + T 3
It can be seen that it is.

したがって図6に示すように、時刻0(発破時刻)における自己相関関数を次式;
により算出でき、最大の値(矢印A)となる。また、発破時刻から走時tのT経過時点(坑内側受振器1Bによる反射波の受振時点)における自己相関関数を次式;
により算出していくと、走時Tの時に再び大きな値(矢印A)となる。反射波の走時Tから直接波の走時Tを除去すれば、この時刻が、切羽101上の発破点Pを受振点と仮定した場合の反射波の走時に対応していることから、Tが反射波の往復走時として得られることになる。したがって、弾性波の伝播速度をVとすれば、図5に示す発破点Pから反射面までの距離Lは、
L=V×T/2
として求めることができるのである。
Therefore, as shown in FIG. 6, the autocorrelation function at time 0 (blast time) is expressed by the following equation:
The maximum value (arrow A 0 ) can be calculated. In addition, the autocorrelation function at the time T 3 has elapsed from the blasting time to the running time t (the time when the reflected wave is received by the downhole geophone 1B) is expressed by the following equation:
When the calculation is performed, the value again becomes a large value (arrow A t ) at the travel time T 3 . By removing the travel times T 1 of the direct wave from the traveltime T 2 of the reflected wave, since the time corresponds to the time run of the reflected wave on the assumption blasting point P on the working face 101 and geophone point , so that T 3 is obtained reciprocating run times of the reflected waves. Therefore, if the propagation velocity of the elastic wave is V, the distance L from the blasting point P shown in FIG.
L = V × T 3/2
It can be obtained as

図7は、1発の発破によって複数の受振点で得られる自己相関処理波形の重ね合わせの概念を示すものである。すなわち図7に示すように、トンネル100の坑内地盤の長手方向に沿って多数の受振器1(1,1,・・・1n−1,1)を、所定間隔で設置した場合、切羽101を発破することによる各受振器1,1,・・・1n−1,1への直接波及び反射波の到達時刻は、図7の(I)の受振波形の重ね合わせに示すように、震源位置からの距離が遠い受振器ほど遅く(走時が長く)なる。 FIG. 7 shows the concept of superposition of autocorrelation processing waveforms obtained at a plurality of receiving points by one blast. That is, as shown in FIG. 7, when many geophones 1 (1 1 , 1 2 ,... 1 n−1 , 1 n ) are installed at predetermined intervals along the longitudinal direction of the underground ground of the tunnel 100. , The arrival time of the direct wave and the reflected wave to each of the geophones 1 1 , 1 2 ,... 1 n−1 , 1 n by blasting the face 101 is the superposition of the received waveforms of FIG. As shown in the figure, the geophone that is farther away from the epicenter is slower (running time is longer).

そこで、上述のような自己相関処理を行うことによって、図7の(I)に示す各受振器1,1,・・・1n−1,1の受振波形から直接波の走時を減算すれば、図7の(II)の受振波形の重ね合わせに示すように、切羽101(発破点)を仮想受振点とする振動記録が得られ、これは切羽前方に存在する断層や破砕帯等の地質変化部分Qの反射構造を反映するものとなる。 Therefore, by performing the autocorrelation process as described above, the traveling time of the direct wave from the received waveforms of the receivers 1 1 , 1 2 ,... 1 n−1 , 1 n shown in FIG. As shown in FIG. 7 (II), the vibration record with the face 101 (blasting point) as a virtual receiving point is obtained, as shown in FIG. This reflects the reflection structure of the geologically changing portion Q such as a belt.

したがって、この手法によれば、発破時刻の記録が不要であり、1発の発破でも複数の受振点によって切羽前方からの複数の反射記録を得て重ね合わせることができ、段発発破を震源として用いることによって、受振点が1カ所でも解析可能であるといったメリットがある。   Therefore, according to this method, it is not necessary to record the blasting time, and even with one blasting, it is possible to obtain a plurality of reflection records from the front of the face by a plurality of receiving points and to superimpose them. By using it, there is an advantage that it is possible to analyze even at one receiving point.

なお、図7に示す基本モデルでは、地質変化部分Qによる反斜面がトンネル100の掘進方向に対してほぼ直交する面をなしているものと仮定しているが、断層や破砕帯による地質変化部分Qは、図8に示すように傾斜しているのがふつうである。   In the basic model shown in FIG. 7, it is assumed that the anti-slope due to the geological change portion Q forms a plane substantially orthogonal to the tunnel 100 excavation direction. Q is usually inclined as shown in FIG.

すなわち図8のように、地質変化部分Qがトンネル100の掘進方向と直交する面に対して傾斜角度θをなす場合、発破点をO、発破点Oからトンネル100の掘進方向へ延びる直線と地質変化部分Qによる反斜面との交点をF、トンネル100の坑内に設置した受振器1,1,・・・1n−1,1のうち最も切羽101側の受振器1の位置をA、最も坑口側の受振器1の位置をBとすると、発破点Oから地質変化部分Qによる反斜面で反射してA又はBへ到達する弾性波は、反斜面を対称軸として発破点Oと対称な点O’からの直接波と仮定することができる。したがって、線分AB、CB、O'A、O'B、O'Cは、
O'A+AB>O'B
=O'C+CB
=O'A+CB
∴AB>CB
である。
That is, as shown in FIG. 8, when the geological change portion Q forms an inclination angle θ with respect to a plane orthogonal to the tunnel 100 excavation direction, the blasting point is O, a straight line extending from the blasting point O to the tunnel 100 excavation direction and the geology F is the intersection with the opposite slope due to the change portion Q, and the position of the geophone 1 1 closest to the face 101 out of the geophones 1 1 , 1 2 ,... 1 n−1 , 1 n installed in the tunnel 100 Is A, and the position of the geophone 1 n on the most wellhead side is B, the elastic wave reflected from the blasting point O by the anti-slope of the geological change portion Q and reaching A or B blasts with the anti-slope as the symmetry axis. It can be assumed that the wave is a direct wave from a point O ′ symmetrical to the point O. Therefore, the line segments AB, CB, O′A, O′B, O′C are
O'A + AB>O'B
= O'C + CB
= O'A + CB
∴AB> CB
It is.

そして図9に示すように、切羽101を発破することによる各受振器1,1,・・・1n−1,1への直接波及び反射波の到達時刻は、図9の(I)の受振波形に示すように、震源位置からの距離が遠い受振器ほど遅く(走時が長く)なるが、上述のような自己相関処理を行うことによって、図9の(I)に示す各受振器1,1,・・・1n−1,1の受振波形から直接波の走時を減算すれば、図9の(II)の受振波形に示すように、切羽101(発破点)を仮想受振点とする振動記録が得られ、これは切羽前方に存在する断層や破砕帯等の地質変化部分Qの傾斜のみに起因する反射波の走時の差を抽出したものとなるので、この受振波形から、地質変化部分Qの傾斜構造を推定することができる。 And as shown in FIG. 9, the arrival time of the direct wave and the reflected wave to each geophone 1 1 , 1 2 ,... 1 n−1 , 1 n by blasting the face 101 is shown in FIG. As shown in the received waveform of I), the farther away from the epicenter position, the slower the receiver (running time becomes longer), but by performing the autocorrelation process as described above, it is shown in (I) of FIG. If the traveling time of the direct wave is subtracted from the received waveform of each of the geophones 1 1 , 1 2 ,... 1 n−1 , 1 n , as shown in the received waveform of (II) in FIG. The vibration record with the virtual receiving point at the blasting point) was obtained, which is the difference between the travel time of the reflected wave due to only the slope of the geological change part Q such as the fault or crush zone existing in front of the face Therefore, the inclined structure of the geological change portion Q can be estimated from this received waveform.

トンネル掘削において切羽での段発発破を震源として切羽前方の地質変化部分からの反射波を連続的に観測する連続SSRTの手法について、本発明の自己相関を用いた地震波干渉法による解析を試行した。適用したトンネルの地質は、花崗閃緑岩からなり、地山新鮮部の弾性波速度は4,000〜4,500m/sと想定され、主に空中写真判読によるリニアメント観察から数カ所で断層が発達している可能性が指摘されていた場所である。   In the case of tunnel excavation, we tried to analyze the reflected wave from the geological change part in front of the face with the step blast at the face as the epicenter, and analyzed the seismic interferometry using the autocorrelation of the present invention. . The geology of the applied tunnel is made of granodiorite, and the elastic wave velocity of the fresh ground is assumed to be 4,000-4,500 m / s. Faults develop at several places mainly from lineament observation by aerial photo interpretation. It is a place that has been pointed out.

図10の(A)は、各12chの受振点で得られた発破管理番号SP1,SP12,SP25の受振記録波形(元波形)を、走時を揃えて、ほぼ全発破時間に相当する2.5秒分を示すものである。SP1とSP12、SP12とSP25は、共に切羽位置が約18m離隔しており、SP12がSP1とSP25の中間点に位置する。段発発破は、共にDS雷管を用いた10段であり、SP1,SP12,SP25の装薬量はそれぞれ106.6kg、72.4kg、128.5kgであり、加背割りは補助ベンチ付き全断面工法である。DS雷管の公称段間時間は1〜9段目までが250ms、10段目以降が300msである。   FIG. 10A shows the vibration recording waveforms (original waveforms) of the blast management numbers SP1, SP12, SP25 obtained at the 12ch receiving points, corresponding to almost the entire blasting time with the traveling time aligned. 5 seconds are shown. SP1 and SP12, and SP12 and SP25 are both separated by a face position of about 18 m, and SP12 is located at an intermediate point between SP1 and SP25. The stage blasting is 10 stages using DS detonator, and the loadings of SP1, SP12 and SP25 are 106.6kg, 72.4kg and 128.5kg, respectively, and the back split is the whole section construction method with auxiliary bench It is. The nominal interstage time of the DS detonator is 250 ms for the 1st to 9th stages and 300 ms for the 10th and subsequent stages.

図10の(A)を参照すると、受振記録波形は、発破点からの直接波が顕著に記録されていることがわかる。よって、自己相関処理において発破点からの直接波を類似の波形として検出する可能性が考えられることから、AGC処理による波形振幅の平準化処理を実施した。図10の(B)は平準化処理後の波形を示すものである。この図から、直接波の影響がかなり小さくなり、反射波の分布が想定される時間領域の波形が相対的に持ち上がっていることがわかる。   Referring to (A) of FIG. 10, it can be seen that the vibration recording waveform has a remarkable recording of the direct wave from the blasting point. Therefore, since there is a possibility of detecting a direct wave from the blasting point as a similar waveform in the autocorrelation processing, waveform amplitude leveling processing by AGC processing was performed. FIG. 10B shows the waveform after the leveling process. From this figure, it can be seen that the influence of the direct wave is considerably reduced, and the waveform in the time domain where the distribution of the reflected wave is assumed is relatively raised.

図11は、AGCによる平準化処理後のSP1,SP12,SP25の掘削発破による受振記録波形を自己相関処理し、距離断面(Vp=4,000m/sを採用)に変換した波形を、従来の技術による連続SSRTのVSP処理による反射波形及び坑内SSRTのVSP処理による反射波形と対比して示すものである。自己相関波形において抽出された記録は、先に説明した図7の重ね合わせの手法によって、12chの受振記録を重ね合わせて濃淡バーでも表示している。また、図11に表示された矢印は、強い反射が抽出された箇所をマーキングして示すものである。   FIG. 11 shows a waveform obtained by performing autocorrelation processing on a vibration recording waveform by excavation blasting of SP1, SP12, and SP25 after leveling processing by AGC, and converting it into a distance cross section (Vp = 4,000 m / s is adopted). It shows in contrast with the reflection waveform by the VSP processing of the continuous SSRT by the technology and the reflection waveform by the VSP processing of the underground SSRT. The record extracted from the autocorrelation waveform is displayed as a shading bar by superimposing the 12ch received records by the superposition method shown in FIG. Moreover, the arrow displayed in FIG. 11 marks and shows the location where strong reflection was extracted.

連続SSRTでは、解析に用いる掘削発破区間の反射記録が得られないが、自己相関処理波形SP1,SP12,SP25では発破による切羽位置を原点とする反射記録が得られる。よって、各発破における自己相関波形の原点位置はそれぞれ18mの離隔がある。   In continuous SSRT, the reflection record of the excavation blast section used for the analysis cannot be obtained, but in the autocorrelation processing waveforms SP1, SP12, SP25, the reflection record with the face position due to the blast as the origin is obtained. Therefore, the origin position of the autocorrelation waveform in each blasting is 18 m apart.

自己相関処理波形SP1,SP12,SP25は、従来の連続SSRT及び坑内SSRTのVSP処理による反射波形と比較すると、切羽前方の地山の地質変化部分による反射面の構造をほぼ反映した処理波形であることがわかる。   The autocorrelation processing waveforms SP1, SP12, and SP25 are processing waveforms that substantially reflect the structure of the reflection surface due to the geological change portion of the natural ground in front of the face when compared with the reflection waveforms by the VSP processing of the conventional continuous SSRT and underground SSRT. I understand that.

1 受振器
2 記録装置
3 パーソナルコンピュータ(解析手段)
100 トンネル
101 切羽
201 油圧削岩機
202 油圧ブレーカ
203 ホイルローダ
204 重ダンプ
P 発破点
Q 地質変化部分
1 geophone 2 recording device 3 personal computer (analysis means)
DESCRIPTION OF SYMBOLS 100 Tunnel 101 Face 201 Hydraulic rock drill 202 Hydraulic breaker 203 Wheel loader 204 Heavy dump P Explosion point Q Geological change part

Claims (3)

トンネルの坑内に受振手段を設置し、トンネル掘削工事の施工に付随する作業によって発生する地盤のノイズ振動を震源として、この震源からの直接波と、切羽前方の地質変化による境界面で反射した反射波を前記受振手段で受振し、その受振記録を、自己相関を用いた地震波干渉法により解析して前記反射波から前記直接波走時を除去することにより得られる、震源を仮想受振点とする複数の反射波の重ね合わせにより、前記切羽前方の地質状況を予測することを特徴とするトンネル掘削中の地質探査方法。   A vibration receiving means is installed in the tunnel tunnel, and the ground noise generated by the work accompanying the tunnel excavation work is used as the epicenter, and the direct wave from this epicenter and the reflection reflected at the boundary due to the geological change in front of the face. A hypocenter is obtained by receiving a wave by the receiving means, analyzing the received record by seismic interferometry using autocorrelation, and removing the direct wave travel time from the reflected wave. A geological exploration method during tunnel excavation, wherein a geological situation in front of the face is predicted by superimposing a plurality of reflected waves. 地盤のノイズ振動が、発破掘削トンネルの施工における発破、ダンプによるずり輸送、こそく、ロックボルト用削孔のいずれかにより発生するもの、又は機械掘削トンネルの施工における機械掘削、ダンプによるずり輸送、ロックボルト用削孔のいずれかにより発生するものであることを特徴とする請求項1に記載のトンネル掘削中の地質探査方法。   Noise generated by ground noise is generated by either blasting in excavation tunnel construction, shear transfer by dumping, drilling for rock bolts, or excavation by mechanical excavation tunnel, shearing transport by dump, 2. The geological exploration method during tunnel excavation according to claim 1, wherein the geological exploration method is generated by any one of rock bolt drilling holes. 自己相関を用いた地震波干渉法による解析の前処理として、波形振幅の平準化を行うことを特徴とする請求項1又は2に記載のトンネル掘削中の地質探査方法。   The geological exploration method during tunnel excavation according to claim 1 or 2, characterized in that the waveform amplitude is leveled as preprocessing of analysis by seismic interferometry using autocorrelation.
JP2012258477A 2012-11-27 2012-11-27 Geological exploration method during tunnel excavation Active JP5985371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258477A JP5985371B2 (en) 2012-11-27 2012-11-27 Geological exploration method during tunnel excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258477A JP5985371B2 (en) 2012-11-27 2012-11-27 Geological exploration method during tunnel excavation

Publications (2)

Publication Number Publication Date
JP2014106075A true JP2014106075A (en) 2014-06-09
JP5985371B2 JP5985371B2 (en) 2016-09-06

Family

ID=51027698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258477A Active JP5985371B2 (en) 2012-11-27 2012-11-27 Geological exploration method during tunnel excavation

Country Status (1)

Country Link
JP (1) JP5985371B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547508B1 (en) 2014-09-04 2015-08-26 (주)희송지오텍 Apparatus for predicting front geological features and the method thereof
JP2016017900A (en) * 2014-07-10 2016-02-01 大成建設株式会社 Method of exploring ahead of tunnel face
JP2016075606A (en) * 2014-10-08 2016-05-12 株式会社安藤・間 Elastic wave velocity measuring method
CN107462935A (en) * 2017-08-11 2017-12-12 北京市政建设集团有限责任公司 A kind of Tunnel Passing rich water is rotten to insult the prominent mud hazard prediction method of rock zone gushing water
JP2019078549A (en) * 2017-10-20 2019-05-23 株式会社安藤・間 Face front probing method
CN110988992A (en) * 2019-12-23 2020-04-10 中铁十二局集团第二工程有限公司 Advanced geological forecasting method for mining method construction
CN113311478A (en) * 2021-05-28 2021-08-27 山东大学 Geological detection method and system based on air gun seismic source
CN113721290A (en) * 2021-09-09 2021-11-30 山东大学 Rock drilling trolley seismic wave advanced detection observation system and method with synchronous construction
CN114152974A (en) * 2021-11-24 2022-03-08 中铁西南科学研究院有限公司 Geological forecasting method for multi-arm rock drilling jumbo construction tunnel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376654A (en) * 2019-08-15 2019-10-25 中国铁建重工集团股份有限公司 A kind of tunnel forward probe system and method for TBM

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185287A (en) * 1992-12-18 1994-07-05 Oyo Corp Front predication method for tunnel cutting face
JPH10311880A (en) * 1997-05-12 1998-11-24 Nishimatsu Constr Co Ltd Working face forward survey system, method thereof, and tunnel excavating method
JPH11326529A (en) * 1998-05-21 1999-11-26 Okumura Corp Geology exploring method, elastic wave generating method and elastic wave generator
JP2002122673A (en) * 2000-10-17 2002-04-26 Okumura Corp Geological survey method
JP2002139574A (en) * 2000-10-30 2002-05-17 Sanko Consultant Kk Geological probing method in front of tunnel working face
US20030076740A1 (en) * 2001-09-07 2003-04-24 Calvert Rodney William Seismic imaging a subsurface formation
JP2006275914A (en) * 2005-03-30 2006-10-12 Toshibumi Matsuoka Method of imaging subsurface structure by reflection method seismic exploration
JP2010008196A (en) * 2008-06-26 2010-01-14 Sanko Consultant Kk S-wave seismic reflection survey

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185287A (en) * 1992-12-18 1994-07-05 Oyo Corp Front predication method for tunnel cutting face
JPH10311880A (en) * 1997-05-12 1998-11-24 Nishimatsu Constr Co Ltd Working face forward survey system, method thereof, and tunnel excavating method
JPH11326529A (en) * 1998-05-21 1999-11-26 Okumura Corp Geology exploring method, elastic wave generating method and elastic wave generator
JP2002122673A (en) * 2000-10-17 2002-04-26 Okumura Corp Geological survey method
JP2002139574A (en) * 2000-10-30 2002-05-17 Sanko Consultant Kk Geological probing method in front of tunnel working face
US20030076740A1 (en) * 2001-09-07 2003-04-24 Calvert Rodney William Seismic imaging a subsurface formation
JP2006275914A (en) * 2005-03-30 2006-10-12 Toshibumi Matsuoka Method of imaging subsurface structure by reflection method seismic exploration
JP2010008196A (en) * 2008-06-26 2010-01-14 Sanko Consultant Kk S-wave seismic reflection survey

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017900A (en) * 2014-07-10 2016-02-01 大成建設株式会社 Method of exploring ahead of tunnel face
KR101547508B1 (en) 2014-09-04 2015-08-26 (주)희송지오텍 Apparatus for predicting front geological features and the method thereof
JP2016075606A (en) * 2014-10-08 2016-05-12 株式会社安藤・間 Elastic wave velocity measuring method
CN107462935A (en) * 2017-08-11 2017-12-12 北京市政建设集团有限责任公司 A kind of Tunnel Passing rich water is rotten to insult the prominent mud hazard prediction method of rock zone gushing water
JP2019078549A (en) * 2017-10-20 2019-05-23 株式会社安藤・間 Face front probing method
JP2022000666A (en) * 2017-10-20 2022-01-04 株式会社安藤・間 Pit face front investigation method
JP7005272B2 (en) 2017-10-20 2022-01-21 株式会社安藤・間 Face forward exploration method
JP7190015B2 (en) 2017-10-20 2022-12-14 株式会社安藤・間 Face forward exploration method
CN110988992A (en) * 2019-12-23 2020-04-10 中铁十二局集团第二工程有限公司 Advanced geological forecasting method for mining method construction
CN113311478A (en) * 2021-05-28 2021-08-27 山东大学 Geological detection method and system based on air gun seismic source
CN113721290A (en) * 2021-09-09 2021-11-30 山东大学 Rock drilling trolley seismic wave advanced detection observation system and method with synchronous construction
CN114152974A (en) * 2021-11-24 2022-03-08 中铁西南科学研究院有限公司 Geological forecasting method for multi-arm rock drilling jumbo construction tunnel

Also Published As

Publication number Publication date
JP5985371B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5985371B2 (en) Geological exploration method during tunnel excavation
Li et al. An overview of ahead geological prospecting in tunneling
JP6584010B2 (en) Tunnel face forward exploration method
JP2017201074A (en) Evaluation method of tunnel surrounding ground and tunnel construction method
JP2011043409A (en) Method for geological exploration during tunnel excavation and tunnel geological exploration apparatus
Hanson et al. Advanced techniques in site characterization and mining hazard detection for the underground coal industry
JP4157635B2 (en) Tunnel face forward exploration method
JP6522918B2 (en) Elastic wave velocity measurement method
Xu et al. A case study of seismic forward prospecting based on the tunnel seismic while drilling and active seismic methods
Li et al. Geologic forward prospecting using improved tunnel-seismic-while-drilling method: A case study of the water supply project at Songhua River, Jilin, China
JP4181139B2 (en) Subsurface imaging method by seismic reflection survey
JP5940303B2 (en) Tunnel face forward exploration method
Li et al. The detection of the boulders in metro tunneling in granite strata using a shield tunneling method and a new method of coping with boulders
JP4260329B2 (en) Geological exploration method in front of tunnel face
JP3856392B2 (en) Evaluation method of natural ground in front of ground excavation part
JP6289206B2 (en) Geological exploration method in tunnel excavation
Choi et al. Case study of establishing a safe blasting criterion for the pit slopes of an open-pit coal mine
Mutke et al. Seismic monitoring and rock burst hazard assessment in Deep Polish Coal Mines–Case study of rock burst on April 16, 2008 in Wujek-Slask Coal Mine
Yan et al. A method for detecting and pretreating boulders during shield tunneling in granite strata
Choudhary et al. 3D-Tunnel Seismic Prediction during tunnelling while underpassing an abandoned tunnel
CN112946753B (en) Near-surface stratum structure analysis system and method
Tsusaka et al. Influence of fracture orientation on excavatability of soft sedimentary rock using a hydraulic impact hammer: A case study in the Horonobe Underground Research Laboratory
Farmani et al. Detection of geological structures using impact‐driven piling as a seismic source
Choudary et al. 3D-TSP–Advanced geological prediction during construction of hydro tunnels in the Himalayas
Inazaki et al. Combined geophysical survey for characterizing bedrocks of a road tunnel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250