JP2019078549A - Face front probing method - Google Patents

Face front probing method Download PDF

Info

Publication number
JP2019078549A
JP2019078549A JP2017203426A JP2017203426A JP2019078549A JP 2019078549 A JP2019078549 A JP 2019078549A JP 2017203426 A JP2017203426 A JP 2017203426A JP 2017203426 A JP2017203426 A JP 2017203426A JP 2019078549 A JP2019078549 A JP 2019078549A
Authority
JP
Japan
Prior art keywords
waveform
tunnel
vibration receiving
face
lock bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017203426A
Other languages
Japanese (ja)
Other versions
JP7005272B2 (en
Inventor
匡志 中谷
Tadashi Nakatani
匡志 中谷
和弘 大沼
Kazuhiro Onuma
和弘 大沼
山本 浩之
Hiroyuki Yamamoto
浩之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2017203426A priority Critical patent/JP7005272B2/en
Publication of JP2019078549A publication Critical patent/JP2019078549A/en
Priority to JP2021166601A priority patent/JP7190015B2/en
Application granted granted Critical
Publication of JP7005272B2 publication Critical patent/JP7005272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

To easily install a receiver in a tunnel hole without major preparation work and to accurately estimate a direction in which a three-dimensional distribution state or a reflection surface position of a face front reflection surface.SOLUTION: A vibration reception unit having vibration sensors in the x direction, the y direction and the z direction is in pressure contact with a pit wall surface via a lock bolt. The reception unit captures seismic waves propagating through the pit wall. The waveform data of each of the acquired seismic waves are processed to extract a measurement waveform of a specific low frequency range. A waveform of a reflected wave having characteristics similar to those of the initial waveform is extracted from respective measurement waveforms. The reflection surface position is measured based on the waveform data of the reflection waves.SELECTED DRAWING: Figure 2

Description

本発明は、トンネル等の掘削施工に際し、切羽前方の地質構造の予測に使用する切羽前方探査方法に関する。   BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a method for searching a face in advance, which is used to predict a geological structure in front of a face when drilling and constructing a tunnel or the like.

山岳トンネルを掘削するにあたり、切羽前方に拡がる地山の性状を適切かつ高い精度で把握することは、支保工を含めた掘削工事全体を効率よくかつ安全に進めていく上で重要である。   When drilling a mountain tunnel, it is important to grasp the nature of the ground that extends to the front of the face with high accuracy and with high precision, in order to proceed efficiently and safely the entire excavation work including support work.

近時のトンネルの掘削施工では、1点の発振点から地山に弾性波を発生させ、反射面での反射波を坑口近傍に位置する複数の受振点で受振するHSP(Horizontal Seismic Profiling)法や、探査用の発破を行い、この発破による弾性波を地震計により計測し、この計測した弾性波により切羽前方の地質変化を推定するTSP(Tunnel Seismic Prediction)法など、弾性波(弾性波反射法)を用いた切羽前方探査の技術が広く利用されている。   In recent tunnel excavation construction, an HSP (Horizontal Seismic Profiling) method that generates elastic waves from one oscillation point to the ground and receives reflected waves on the reflection surface at multiple receiving points located near the wellhead. Or, blast for exploration, measure the elastic wave by this blasting with a seismometer, and estimate the geological change in front of the face by this measured elastic wave, such as TSP (Tunnel Seismic Prediction) method, elastic wave (elastic wave reflection) The technique of face forward exploration using the method is widely used.

この種の弾性波反射法を用いた切羽前方探査方法が特許文献1により提案されている。
この切羽前方探査方法を図10に示している。この切羽前方探査方法では、複数の受振器がトンネル壁面付近に設けられ、切羽掘削のための発破や掘削ドリル等により生じ、切羽前方の不連続面に反射して戻ってくる波形を測定する。
Patent Document 1 proposes a method for searching in front of a face using this type of elastic wave reflection method.
This face forward search method is shown in FIG. In this face forward exploration method, a plurality of geophones are provided in the vicinity of the tunnel wall surface, and generated by blasting for excavating the face, drilling drill or the like, and the waveform reflected back to the discontinuous face in front of the face is measured.

この手法では、まず、切羽T1から離れたトンネルTの壁面の左右に、ドリル等で穴Hを空け、それぞれに複数の受振器S(受振点)を設置する。この場合、例えば、左右に4個ずつ受振器Sを設置する。さらにその後方のトンネルTの壁面上に複数の受振器Sを設置する。この場合、複数の受振器SをトンネルTの壁面の円周上に設置する。例えば、円周上の5個の受振器Sは、水平ラインの両端に2個、垂直ラインの上端に1個、その間に2個配置する。また、この場合、受振器Sはかぎ型プレートを用いてトンネル壁面に取り付ける。かぎ型プレートは受振器取付部と台部からなり、台部には中央にアンカ用に穴が設けられ、受振器取付部には中央に受振器用の穴が設けられる。トンネルTの壁面にアンカ用にドリルで穴を空け、かぎ型プレートの台部を穴に合わせて設置し、アンカを穴に設置して、岩盤に連結する。アンカは、アンカの周りの壁面をグラウトで固め、ねじで締め付け、トンネルTの壁面に固定する。そして、受振器取付部の穴に受振器Sを取り付ける。   In this method, first, holes H are opened with a drill or the like on the left and right of the wall surface of the tunnel T separated from the face T1, and a plurality of geophones S (receiver points) are installed on each. In this case, for example, four geophones S are installed on the left and right. Further, a plurality of geophones S are installed on the wall surface of the tunnel T at the rear thereof. In this case, a plurality of geophones S are installed on the circumference of the wall of the tunnel T. For example, five geophones S on the circumference are disposed at two ends of the horizontal line, one at the upper end of the vertical line, and two in between. Also in this case, the geophone S is attached to the tunnel wall using a hook-shaped plate. The hook-shaped plate comprises a receiver mounting portion and a base portion, and the base portion is provided with a hole at the center for the anchor, and the receiver mounting portion is provided with a hole for the geophone at the center. Drill holes for anchors on the wall of the tunnel T, set the base of the hook plate to the holes, install the anchors in the holes, and connect to the rock. The anchor grouts the wall around the anchor, tightens it with a screw, and fixes it to the wall of the tunnel T. Then, the receiver S is attached to the hole of the receiver mounting portion.

次に、切羽掘削のため発破、ブレーカー、掘削ドリル等で振動を与え、振動波を発生させる。この際の発破、ブレーカー、掘削ドリル等の振動が発生するポイントが発振点である。
このようにして切羽掘削により発生する発振点から振動を発生し、切羽前方の断層に反射してトンネルT内へ戻ってくる振動波を、トンネルTの壁面の複数の受振器Sで測定する。複数の発振点と複数の受振器Sの組み合わせから数多くの測定波を得る。
Next, for face drilling, vibration is generated by blasting, a breaker, a drilling drill or the like to generate a vibrating wave. The point at which vibration such as blasting, breaker, drilling drill, etc. occurs at this time is the oscillation point.
Thus, vibration is generated from an oscillation point generated by face drilling, and vibration waves reflected back to the fault in front of the face and returned into the tunnel T are measured by a plurality of geophones S on the wall surface of the tunnel T. A large number of measurement waves are obtained from a combination of a plurality of oscillation points and a plurality of geophones S.

そして、次の処理手順により、切羽前方の地質構造を推定する。
まず、発振点から受振点に伝播した直接波を利用してトモグラフィ解析を行う。受振点で測定された直接波のデータを格納したデータ収集装置は取り外され、パーソナルコンピュータに接続される。パーソナルコンピュータ上でデータ収集装置から読み出された直接波のデータに基づいてトモグラフィ解析を行う。トモグラフィ解析を行うことにより、発振点と受振点間の地盤の速度分布を算出する。トンネルTの地質状況と、発振点、受振点間の地盤の速度分布から切羽前方地盤の速度分布を仮定する。
次に、発振点と受振点を含む切羽前方に格子点を設定する。
続いて、仮定された速度分布を用いて、発振点から格子点で反射され受振点までの理論的伝播時間を算出する。
次いで、格子点毎に、該格子点を介する複数の前記受振点で測定された波形に対して、前記理論的伝送時間だけシフトさせ、この波形の振幅をすべて足し合わせる。
そして、足し合わせた波形の振幅に基づいて、振幅が正の値でその絶対値が大きい格子点を堅岩部として前記振幅が負の値でその絶対値が大きい格子点を弱層部として、地質を推定する手段と地質を推定する。
Then, the geological structure in front of the face is estimated by the following processing procedure.
First, tomographic analysis is performed using the direct wave propagated from the oscillation point to the receiving point. The data acquisition device storing direct wave data measured at the receiving point is removed and connected to a personal computer. Tomographic analysis is performed based on the direct wave data read from the data acquisition device on a personal computer. By performing tomography analysis, the velocity distribution of the ground between the oscillation point and the receiving point is calculated. The velocity distribution of the ground in front of the face is assumed from the geological condition of the tunnel T and the velocity distribution of the ground between the oscillation point and the receiving point.
Next, a grid point is set in front of the face including the oscillation point and the receiving point.
Subsequently, using the assumed velocity distribution, the theoretical propagation time from the oscillation point to the lattice point and reflected to the receiving point is calculated.
Then, for each grid point, the waveforms measured at a plurality of the receiving points via the grid point are shifted by the theoretical transmission time, and all the amplitudes of the waveforms are added.
Then, based on the amplitude of the added waveform, a grid point having a positive value and a large absolute value is regarded as a hard rock portion, and a soil point having a negative value and a large absolute value as a weak layer portion. Estimate the geology and the means to estimate the

このようにこの切羽前方探査方法では、トンネル坑内で人工的に発生させた地震波の切羽前方の反射面で鏡面反射した反射波を検出し、この反射波データを用いて切羽前方の地質変化を推定する。坑壁埋設型の多成分受振器を用いたことで、地震波の入射方向が正確となり、切羽前方の反射面の推定精度を向上させることができる。   As described above, in this face forward exploration method, a reflection wave specularly reflected by the reflecting face in front of the face of the seismic wave artificially generated in the tunnel pit is detected, and the geological change in front of the face is estimated using this reflected wave data Do. By using a multi-wall geodetic device embedded in a pit wall, the incident direction of the seismic wave becomes accurate, and the estimation accuracy of the reflecting surface in front of the face can be improved.

特開2001−99945公報JP, 2001-99945, A

しかしながら、上記従来の切羽前方探査方法(以下の説明で、手法3という。)では、切羽から離れたトンネルの壁面の左右にドリル等で穴を空け、左右の岩盤内部に複数の受振器を設置し、また、実際の施工においては、トンネル壁面から深度4m程度の削孔を行い、穴に受振器を設置した後、グラウト等により岩盤と受振器を一体化する必要があり、このため、受振器の設置に際して、大掛かりな準備作業を必要とし、また、切羽周辺が占有されるために、通常のトンネルの施工作業を中断しなければならない、という問題がある。   However, in the conventional face forward exploration method (hereinafter referred to as method 3), holes are drilled on the left and right sides of the tunnel wall away from the face and a plurality of geophones are installed inside the left and right rock. Also, in actual construction, it is necessary to drill a hole at a depth of about 4 m from the tunnel wall, install the geophone in the hole, and then unify the rock with the geophone by grout etc. There is a problem that the installation work of the tunnel requires a large amount of preparatory work and that the construction work of a normal tunnel must be interrupted because the face area is occupied.

本発明は、このような従来の問題を解決するものであり、この種の切羽前方探査方法において、トンネル坑内に地震計を大掛かりな準備作業を不要として簡易に設置できるようにすること、しかも、地震計の簡単な設置でありながら、切羽前方の反射面の3次元的な分布状況や反射面位置の出現する方向を精度よく推定できるようにすること、を目的としている。   The present invention solves such conventional problems, and in this type of face forward exploration method, it is possible to easily install a seismograph in a tunnel pit without requiring a large preparatory work, and The purpose is to be able to accurately estimate the three-dimensional distribution of the reflecting surface in front of the face and the direction in which the reflecting surface position appears, although it is a simple installation of the seismograph.

上記課題を解決するため、本発明(1)の切羽前方探査方法は、
トンネル内に地震計を設置し、トンネル内で地震波を発生させてトンネル切羽前方の地質境界面で反射した反射波を前記地震計により受振し、前記反射波の波形データを既知の解析処理により解析を行って前記反射波の反射面位置を計測することにより、切羽前方の地質境界面を推定する切羽前方探査方法において、
地震計として、中心にロックボルト挿通部を有するケース内に少なくともx方向、y方向及びz方向の3次元的方向の受振センサーを有する多成分受振センサーを配置してなる受振ユニットを用い、
前記受振ユニットの設置位置とするトンネルの坑壁面所定の位置にロックボルトを一端から打ち込み前記ロックボルトの他端を前記坑壁面上に受振ユニット取付部として残し、
前記受振ユニットを前記ロックボルト挿通部に前記坑壁面に打ち込んだ前記ロックボルトの前記受振ユニット取付部を通し、前記x方向の受振センサーをトンネルの軸方向に、前記y方向の受振センサーをトンネルの鉛直方向に、前記z方向の受振センサーを前記ロックボルトの軸方向となるようにして前記坑壁面上に設置した後、前記ロックボルトの前記受振ユニット取付部にナットを締め込むことにより、前記受振ユニットを前記坑壁面上に圧接して前記坑壁に一体的に設置し、
前記受振ユニットの各受振センサーにより前記坑壁を伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して前記各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の波形データに基づいて、当該各反射波の反射面位置を計測する、
ことを要旨とする。
この場合、複数のロックボルトを少なくともトンネルの坑壁の天端、左右側壁にそれぞれ坑壁面に対して直交させて打ち込み、複数の受振ユニットを少なくとも前記各ロックボルトを介してトンネルの坑壁の天端、左右側壁に圧接して設置することが好ましい。
また、この場合、受振ユニットの多成分受振センサーで捉え、取得した地震波の波形データからフィルタ処理により特定の低周波領域の計測波形を取り出すことが好ましい。
In order to solve the above-mentioned subject, the face forward search method of the present invention (1) is
A seismograph is installed in the tunnel, a seismic wave is generated in the tunnel, a reflected wave reflected on the geological boundary surface in front of the tunnel face is received by the seismograph, and waveform data of the reflected wave is analyzed by known analysis processing In the face-to-face exploration method for estimating the geological boundary surface in front of the face by measuring the reflection surface position of the reflected wave by performing
As a seismometer, using a vibration receiving unit in which a multi-component vibration receiving sensor having a three-dimensional vibration receiving sensor in at least the x direction, y direction and z direction is disposed in a case having a lock bolt insertion portion in the center,
A lock bolt is driven from one end to a predetermined position on the tunnel wall surface where the vibration receiving unit is to be installed, and the other end of the lock bolt is left on the shaft surface as a vibration receiving unit attachment portion.
The vibration receiving unit mounting portion of the lock bolt is inserted through the lock bolt insertion portion through the lock bolt insertion portion, the vibration receiving sensor of the x direction in the axial direction of the tunnel, the vibration receiving sensor of the y direction in the tunnel The vibration receiving sensor for the z direction is installed on the wall surface so as to be in the axial direction of the lock bolt in the vertical direction, and then the nut is tightened on the vibration receiving unit attachment portion of the lock bolt to receive the vibration receiving The unit is pressed onto the well surface and integrally installed on the well surface,
Each seismic sensor of the seismic receiving unit captures seismic waves propagating through the wellhead, processes the acquired waveform data of each seismic wave, and extracts a measured waveform of a specific low frequency region from the respective waveform data, and the individual measurement The waveform of the reflected wave having the same feature as the initial movement waveform is extracted from the waveform, and the reflection surface position of each reflected wave is measured based on the waveform data of each reflected wave.
Make it a gist.
In this case, a plurality of lock bolts are driven at least at the top end and the right and left side walls of the tunnel wall at right angles to the wall surface, and the plurality of vibration receiving units are at least via the lock bolts. It is preferable that the end and the left and right side walls be in pressure contact.
Further, in this case, it is preferable to extract a measurement waveform of a specific low frequency region from the acquired waveform data of seismic waves by capturing with the multi-component vibration receiving sensor of the vibration receiving unit by filter processing.

また、本発明(2)の切羽前方探査方法は、
トンネル内に地震計を設置し、トンネル内で地震波を発生させてトンネル切羽前方の地質境界面で反射した反射波を前記地震計により受振し、前記反射波の波形データを既知の解析処理により解析を行って前記反射波の反射面位置を計測することにより、切羽前方の地質境界面を推定する切羽前方探査方法において、
地震計として、複数の受振センサーを用い、
前記各受振センサーの設置位置とするトンネルの坑壁面所定の位置にそれぞれ複数のロックボルトを一端から相互に異なる方向に打ち込み前記ロックボルトの他端を前記坑壁面上に残して前記ロックボルトの他端の他端面を受振センサー取付部とし、
前記各受振センサーを前記坑壁面に打ち込んだ前記各ロックボルトの受振センサー取付部に前記ロックボルトの長軸方向の指向性を有する単成分センサーとして取り付けて、
前記各受振センサーにより前記各ロックボルトを伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して前記各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の走時差に基づいて、当該各反射波の反射面位置を計測する、
ことを要旨とする。
この場合、複数のロックボルトを少なくともトンネルの坑壁面の天端、左右側壁にそれぞれ坑壁面に対して直交又は斜交させて打ち込み、複数の受振ユニットを前記各ロックボルトを介して少なくともトンネルの坑壁の天端、左右側壁に設置することが好ましい。
また、この場合、複数のロックボルトをトンネルの坑壁面の同一地点に前記各ロックボルトを相互に直交させて打ち込み、複数の受振ユニットを前記各ロックボルトを介してトンネルの坑壁面の同一箇所に設置するようにしてもよい。
さらに、この場合、複数の受振センサーで捉え、取得した地震波の波形データからフィルタ処理により20Hz以上250Hz以下の特定の低周波領域の計測波形を取り出すことが好ましい。
Moreover, the face forward search method of the present invention (2) is
A seismograph is installed in the tunnel, a seismic wave is generated in the tunnel, a reflected wave reflected on the geological boundary surface in front of the tunnel face is received by the seismograph, and waveform data of the reflected wave is analyzed by known analysis processing In the face-to-face exploration method for estimating the geological boundary surface in front of the face by measuring the reflection surface position of the reflected wave by performing
As a seismometer, using multiple receiving sensors,
A plurality of lock bolts are driven in different directions from one end in a predetermined position of the tunnel wall surface where the vibration receiving sensor is installed, and the other end of the lock bolt is left on the tunnel wall and the other is the lock bolt Let the other end face of the end be the vibration sensor mounting part,
The vibration receiving sensor is attached as a single component sensor having directivity in the major axis direction of the lock bolt to the vibration receiving sensor mounting portion of the lock bolt which is driven into the wall surface of the borehole,
Each seismic sensor captures seismic waves propagating through each rock bolt, processes the acquired waveform data of each seismic wave, and extracts a measured waveform of a specific low frequency area from each waveform data, and from the respective measured waveforms The waveform of the reflected wave having the same feature as the initial movement waveform is extracted, and the reflection surface position of each reflected wave is measured based on the travel time difference of each reflected wave.
Make it a gist.
In this case, a plurality of lock bolts are driven at least at the top end and the right and left side walls of the tunnel wall at right angles or diagonally to the tunnel wall respectively, and a plurality of vibration receiving units are drilled via the respective lock bolts. It is preferable to install at the ceiling end of the wall, left and right side walls.
Further, in this case, the lock bolts are driven at the same position on the tunnel wall surface at the same position with the lock bolts orthogonal to each other, and the plurality of vibration receiving units are arranged at the same location on the tunnel wall surface via the lock bolts. You may install it.
Further, in this case, it is preferable to extract a measurement waveform of a specific low frequency region of 20 Hz or more and 250 Hz or less by filter processing from the acquired waveform data of seismic waves captured by a plurality of vibration receiving sensors.

本発明(1)の切羽前方探査方法によれば、地震計として、中心にロックボルト挿通部を有するケース内に少なくともx方向、y方向及びz方向の受振センサーを有する多成分受振センサーを配置してなる受振ユニットを用い、トンネルの坑壁面所定の位置にロックボルトを打ち込み、受振ユニットをロックボルト挿通部に坑壁面に残したロックボルト他端の受振ユニット取付部を通し、x方向の受振センサーをトンネルの軸方向に、y方向の受振センサーをトンネルの鉛直方向に、z方向の受振センサーをロックボルトの軸方向となるようにして坑壁面上に設置し、ロックボルトの受振ユニット取付部にナットを締め込むことにより、受振ユニットを坑壁面上に圧接して坑壁に一体的に設置し、受振ユニットの各受振センサーにより坑壁を伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の波形データに基づいて、当該各反射波の反射面位置を計測するようにしたので、トンネル坑内に地震計を大掛かりな準備作業を不要として簡易に設置することができ、しかも、この手法によっても、複数の受振器を坑壁内部に埋設して反射波を計測する例えば手法3などのような従来の手法と3成分の反射波において概ね同様の計測特性が得ることができ、このような地震計のトンネル坑壁面上への簡易な設置でありながら、従来の手法と同様に、切羽前方の反射面の3次元的な分布状況を精度よく推定することができる、という本発明独自の各別な効果を奏する。   According to the method of the present invention (1), as the seismometer, a multi-component vibration receiving sensor having at least the x direction, y direction and z direction vibration receiving sensor is disposed in the case having the lock bolt insertion portion at the center. The lock bolt is driven at a predetermined position on the tunnel wall surface using the vibration receiving unit, and the vibration receiving unit is attached to the other end of the lock bolt through the lock bolt insertion part. In the axial direction of the tunnel, install the vibration sensor in the y direction in the vertical direction of the tunnel, and install the vibration sensor in the z direction in the axial direction of the lock bolt on the pit wall surface, By tightening the nut, the vibration receiving unit is pressed against the wall surface and integrally installed on the wall, and each vibration receiving sensor of the vibration receiving unit Capture seismic waves to be planted, process the waveform data of each acquired seismic wave data, extract the measurement waveform of a specific low frequency area from each waveform data, and obtain the same characteristics as the initial movement waveform from the individual measurement waveforms Since the waveform is extracted and the reflection surface position of each reflected wave is measured based on the waveform data of each reflected wave, the seismograph is easily installed in the tunnel pit without requiring a large preparatory work. In addition, according to this method as well, a plurality of geophones are embedded inside the well wall and the reflected wave is measured In the same way as with the conventional method, it is possible to accurately estimate the three-dimensional distribution of the reflecting surface in front of the face, while simply installing such a seismometer on the tunnel pit wall surface. Can exhibits the individually effect of its own invention that.

本発明(2)の切羽前方探査方法によれば、地震計として、複数の受振センサーを用い、各受振センサーの設置位置とするトンネル内の坑壁面所定の位置にそれぞれ複数のロックボルトを相互に異なる方向に打ち込み、各受振センサーを坑壁面上に残したロックボルト他端の他端面の受振センサー取付部にロックボルトの長軸方向の指向性を有する単成分センサーとして取り付けて、各受振センサーにより各ロックボルトを伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の走時差に基づいて、当該各反射波の反射面位置を計測するようにしたので、トンネル坑内に地震計を大掛かりな準備作業を不要として簡易に設置することができ、しかも、この手法によっても、複数の受振器を岩盤内部に埋設して反射波を計測する例えば手法3などのような従来の手法とロックボルトの長軸方向の成分の反射波において概ね同様の挙動が得ることができ、このような地震計のトンネル坑壁面上への簡易な設置でありながら、従来の手法と同様に、切羽前方の反射面の3次元的な分布状況を精度よく推定することができる、という本発明独自の各別な効果を奏する。   According to the face forward search method of the present invention (2), a plurality of vibration receiving sensors are used as seismometers, and a plurality of lock bolts are mutually set at predetermined positions in the tunnel wall where the respective vibration receiving sensors are installed. Each vibration sensor is attached as a single component sensor with directivity of the long axis direction of the lock bolt to the vibration sensor mounting part of the other end of the lock bolt at the other end by driving in different directions and leaving each vibration sensor on the wall surface Seize seismic waves propagating through each rock bolt, process the acquired waveform data of each seismic wave, extract measurement waveform of specific low frequency area from each waveform data, and obtain the same characteristics as the initial movement waveform from the individual measurement waveforms. Since the waveform of the reflected wave is extracted and the reflection surface position of each reflected wave is measured based on the travel time difference of each reflected wave, the tunnel The seismograph can be easily installed without the need for extensive preparatory work. Furthermore, even with this method, a plurality of geophones are embedded in the bedrock and the reflected wave is measured, for example, according to the conventional method 3 or the like The similar behavior can be obtained in the method of and the reflected wave of the component in the direction of the major axis of the lock bolt, and such a simple installation of the seismograph on the tunnel pit wall surface, similar to the conventional method The effects unique to the present invention are that the three-dimensional distribution of the reflecting surface in front of the face can be accurately estimated.

本発明の第1の実施の形態による切羽前方探査方法(手法1)を示す図The figure which shows the face front exploration method (method 1) by the 1st Embodiment of this invention. 手法1における受振センサーの設置形式を示す図Diagram showing installation type of vibration sensor in method 1 手法1の概念を示す図Diagram showing the concept of method 1 本発明の第2の実施の形態による切羽前方探査方法(手法2)を示す図The figure which shows the face forward exploration method (method 2) by a 2nd embodiment of the present invention 手法2における受振センサーの設置形式を示す図Diagram showing installation type of vibration sensor in method 2 手法2の概念を示す図Diagram showing the concept of method 2 手法1、手法2及び従来の手法(手法3)による計測データの周波数特性を示す図Diagram showing the frequency characteristics of measurement data by method 1, method 2 and conventional method (method 3) 手法1及び手法3によるx方向、y方向及びz方向の3成分の地震波の計測データからフィルタ処理により20−250Hzの周波数帯の計測波形を取り出して表示した図The figure which extracted and displayed the measurement waveform of the frequency band of 20-250Hz by filter processing from the measurement data of the seismic wave of three components of x direction, y direction, and z direction by method 1 and method 3. 手法1、手法2及び手法3のx方向、y方向及びz方向の計測波形から抽出した初動波形(最初の波長(1波長目)の波形)の軌跡を描いた図(リサージュ図形)The figure which drew the locus of the initial movement waveform (waveform of the first wavelength (1st wavelength)) extracted from the measurement waveform of the x direction of the method 1, the method 2 and the method 3 and the z direction (Lissajous figure) 従来の切羽前方探査方法(手法3)を示す図Diagram showing the conventional method (3)

次に、この発明を実施するための形態について図を用いて説明する。
図1、図2及び図3に第1の実施の形態を示している。
図1に示すように、この切羽前方探査方法(以下、手法1という。)は、弾性波反射法を利用したもので、トンネルT内に地震計1を設置し、トンネルT内で地震波を発生させてトンネル切羽前方の地質境界面で反射した反射波を地震計1により受振し、反射波の波形データを既知の解析処理により解析を行って反射波の反射面位置を計測することにより、切羽前方の地質境界面を推定する。
Next, an embodiment of the present invention will be described with reference to the drawings.
The first embodiment is shown in FIG. 1, FIG. 2 and FIG.
As shown in FIG. 1, this face forward exploration method (hereinafter referred to as “method 1”) utilizes elastic wave reflection method, installs seismometer 1 in tunnel T, generates seismic waves in tunnel T The reflection wave reflected at the geological boundary in front of the tunnel face is received by the seismograph 1, and the waveform data of the reflection wave is analyzed by known analysis processing to measure the position of the reflection face of the reflection wave. Estimate the geological boundary ahead.

この手法1では、図2に示すように、地震計1として、中心にロックボルト挿通部10を有するケース11内に少なくともx方向、y方向及びz方向の3次元的方向の受振センサー12を有する多成分受振センサー12を配置してなる受振ユニット12Uと、この受振ユニット12Uで取得した波形データを記録するデータロガーなどの記録装置(図示省略)とを用いる。また、この受振ユニット12UをトンネルT内に設置するために、NATM工法の支保工において岩盤に打ち込まれるロックボルトに着目し、ロックボルト2を受振ユニット12Uの設置アンカーとして使用する。
ロックボルト2は、受振ユニット12Uの設置位置とするトンネルTの坑壁面所定の位置にロックボルト2の一端から打ち込み、ロックボルト2の他端の一部(この場合、3cm程度)を坑壁面上に受振ユニット取付部21として残しておく。受振ユニット12Uは中心のロックボルト挿通部10に坑壁Wに打ち込んだロックボルト2の受振ユニット取付部21を通し、x方向の受振センサー12をトンネルTの軸方向に、y方向の受振センサー12をトンネルTの鉛直方向に、z方向の受振センサー12をロックボルト2の軸方向となるようにしてトンネルTの坑壁Wの坑壁面上に設置した後、ロックボルト2の受振ユニット取付部21にナット3を締め込むことにより、坑壁Wに反力を取って、受振ユニット12Uを坑壁面上に圧接して坑壁Wに一体的に設置する。そして、この受振ユニット12Uの各受振センサー12に通信ケーブルを介して又は無線により記録装置を接続し、この記録装置を受振ユニット12Uの近傍に設置する(図示省略)。
In this method 1, as shown in FIG. 2, the seismometer 1 has the vibration receiving sensor 12 in at least the x direction, y direction and z direction in the three-dimensional direction in the case 11 having the lock bolt insertion portion 10 at the center. A receiving unit 12U in which the multi-component receiving sensor 12 is disposed, and a recording device (not shown) such as a data logger for recording waveform data acquired by the receiving unit 12U are used. Also, in order to install the vibration receiving unit 12U in the tunnel T, attention is paid to the lock bolt driven into the rock in the support work of the NATM method, and the lock bolt 2 is used as an installation anchor of the vibration receiving unit 12U.
The lock bolt 2 is driven from one end of the lock bolt 2 at a predetermined position on the tunnel wall surface where the vibration receiving unit 12U is installed, and a part of the other end of the lock bolt 2 (about 3 cm in this case) It is left as a receiving unit attachment part 21 in FIG. The vibration receiving unit 12U passes the vibration receiving unit attachment portion 21 of the lock bolt 2 drilled into the pit W in the center lock bolt insertion portion 10, and the vibration receiving sensor 12 in the x direction receives the vibration receiving sensor 12 in the y direction in the axial direction of the tunnel T. After installing the vibration sensor 12 in the z direction in the vertical direction of the tunnel T and the axial direction of the lock bolt 2 on the pit wall surface of the pit wall W of the tunnel T, The reaction force is applied to the pit wall W by tightening the nut 3 and the vibration receiving unit 12U is pressed against the pit wall surface and integrally installed on the pit wall W. Then, a recording device is connected to each of the vibration receiving sensors 12 of the vibration receiving unit 12U via a communication cable or wirelessly, and the recording device is installed near the vibration receiving unit 12U (not shown).

また、この場合、図1(a)に示すように、トンネルT内の坑壁面の一点に受振ユニット12Uを設置してこの一点での計測でも坑壁W(岩盤)の挙動(多成分(3成分)の反射波)を計測して、切羽前方の反射面の分布を推定することが可能であるが、複数のロックボルト2を少なくともトンネルTの坑壁Wの天端、左右側壁にそれぞれ坑壁面に対して直交させて打ち込み、複数の受振ユニット12Uを各ロックボルト2を介して少なくともトンネルTの坑壁Wの天端、左右側壁に圧接して設置することが好ましく、この場合、図3(b)に示すように、3本のロックボルト2を使用し、その1本をトンネルTの坑壁Wの天端壁面に鉛直方向に向けて打ち込み、残りの2本をそれぞれトンネルTの左右の両側壁面に水平方向に向けて打ち込み、3つの受振ユニット12U(以下、多成分受振センサー12という場合がある。)を各ロックボルト2を介してトンネルTの天端、左右両側壁の壁面に圧接して設置する。このようにすることにより、合計9チャンネル分の地震波を取ることができ、切羽前方の反射面の推定精度を向上させることができる。   Also, in this case, as shown in FIG. 1A, the vibration receiving unit 12U is installed at one point of the pit wall surface in the tunnel T, and the behavior of the pit wall W (rock mass) (multicomponent (3 Component) reflected wave) to estimate the distribution of the reflecting surface in front of the face, but at least the rock bolts 2 should be drilled at the top end of the tunnel wall W and the left and right side walls respectively. Preferably, a plurality of vibration receiving units 12U are installed in pressure contact with at least the top end and the left and right side walls of the tunnel wall W via the respective lock bolts 2 by driving them perpendicularly to the wall surface. As shown in (b), three lock bolts 2 are used, one of which is vertically driven in the top end wall surface of the pit wall W of the tunnel T, and the remaining two are respectively left and right of the tunnel T Drive horizontally on both sides of the wall Three geophone units 12U (hereinafter sometimes referred to as multicomponent geophone sensor 12.) The through each lock bolt 2 crest of the tunnel T, placed in pressure contact with the walls of the left and right side walls. By doing this, seismic waves for a total of nine channels can be obtained, and the estimation accuracy of the reflecting surface in front of the face can be improved.

このようにして、図1に示すように、従来と同様に、トンネルT内の切羽において切羽掘削のための発破、ブレーカー、掘削ドリル等で振動を与え、地震波を発生させ、受振ユニット12Uの各受振センサー12により坑壁W(岩盤)を伝播する地震波を捉え、取得した各地震波の波形データに既知のデータ処理、解析処理を施して、各波形データから反射波の反射面位置を計測する。
各波形データのデータ処理、解析では、図3に示すように、受振ユニット12Uの各受振センサー12で捉え、記録装置に記録した各地震波の各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動の波形(最初の波長(1波長目))と同様の特徴を有する反射波の波形を抽出して、当該各反射波の波形データに基づいて、当該各反射波の反射面位置を計測する。そして、この計測結果より、切羽前方の地質境界面を推定する。
In this manner, as shown in FIG. 1, in the face of the tunnel T, as in the prior art, vibrations are generated by blasting for cutting the face, breaker, drilling drill, etc. to generate seismic waves, and each of the receiving units 12U Seismic waves propagating through the well wall W (rock mass) are captured by the vibration receiving sensor 12, and the acquired waveform data of each seismic wave is subjected to known data processing and analysis processing, and the reflection surface position of the reflected wave is measured from each waveform data.
In data processing and analysis of each waveform data, as shown in FIG. 3, the measurement waveform of a specific low frequency region is extracted from each waveform data of each seismic wave captured by each vibration receiving sensor 12 of the vibration receiving unit 12U and recorded in the recording device The waveforms of the reflected waves having the same characteristics as the waveform of the initial movement (the first wavelength (first wavelength)) are extracted from the respective measurement waveforms, and the respective reflected waves are extracted based on the waveform data of the respective reflected waves. Measure the reflective surface position of. And the geological boundary front of the face is estimated from this measurement result.

さて、この手法1のように、手法3など従来の手法において岩盤内部に設置していた多成分受振センサーをトンネルTの坑壁面にのみ設置して、従来の手法と同様に、反射波データを取得し記録装置に記録する手法では、岩盤内部の多成分受振センサーで取得される波形データと同程度の波形データは取れないというのが一般的な見方であるところ、本願発明者等は、この手法1のような多成分受振センサー12の設置形式であっても、取得した波形データをバンドパスフィルタに掛けることによって得られるある周波数領域に限っては、岩盤内部の多成分受振センサーで取得される波形データに近似する、そのくらいの信号対ノイズ比(S/N比)で波形データを取ることができることを見出した。手法1及び手法3の両手法による計測特性は基礎実験により確認済みであり、その結果を図7、図8、及び図9に示している。   Now, as in this method 1, the multi-component vibration sensor installed inside the bedrock in the conventional method such as method 3 is installed only on the tunnel wall surface of the tunnel T, and as in the conventional method, the reflected wave data is Although the general view is that, in the method of acquiring and recording in the recording device, waveform data similar to the waveform data acquired by the multi-component vibration receiving sensor inside the rock can not be obtained, the inventors of the present invention Even in the installation format of the multi-component vibration receiving sensor 12 as in method 1, in a certain frequency range obtained by applying the acquired waveform data to the band pass filter, the multi-component vibration receiving sensor inside the rock is used It has been found that waveform data can be obtained with a signal-to-noise ratio (S / N ratio) that is close to that of waveform data. The measurement characteristics by both methods 1 and 3 have been confirmed by basic experiments, and the results are shown in FIG. 7, FIG. 8 and FIG.

図7に図1(b)に示す手法1、後述する手法2、手法3による計測データの周波数特性を示している。この周波数分析により、地震波の原波形に含まれる周波数成分を調べる。なお、手法2による計測データの周波数特性については第2の実施の形態で参照する。
図7に示すように、手法1、3の3成分(x方向、y方向、z方向)の波形データには図示のような特徴が見られ、100Hz付近に中心周波数があることが分かる。手法1では、この100Hzを中心周波数として20−250Hzくらい(好ましくは50−200Hzくらい)をターゲットとする。
FIG. 7 shows frequency characteristics of measurement data according to method 1 shown in FIG. 1 (b), method 2 described later, and method 3. By this frequency analysis, the frequency component contained in the original waveform of the seismic wave is examined. The frequency characteristics of the measurement data according to method 2 will be referred to in the second embodiment.
As shown in FIG. 7, the waveform data of the three components (x direction, y direction, z direction) of the methods 1 and 3 have characteristics as shown in the figure, and it can be seen that there is a center frequency around 100 Hz. In the method 1, about 20-250 Hz (preferably about 50-200 Hz) is targeted with this 100 Hz as a center frequency.

図8は手法1、手法3によるx方向、y方向及びz方向の3成分の反射波の計測データからバンドパスフィルタで20−250Hzの周波数帯の計測波形を取り出して表示したグラフであり、上段のグラフに手法1によるx方向の計測波形を実線で、手法3によるx方向の計測波形を破線でそれぞれ示し、中段のグラフに手法1によるy方向の計測波形を実線で、手法3によるy方向の計測波形を破線でそれぞれ示し、下段のグラフに手法1によるz方向の計測波形を実線で、手法3によるz方向の計測波形を破線でそれぞれ示している。
図8に示すように、x方向、y方向及びz方向の各計測波形から、手法1により取得したトンネルT内の坑壁面の挙動と手法3により取得した坑壁W(岩盤内部(深部))の挙動が低周波(20−250Hz)の領域で同じような動きが見られ、とりわけ、手法1の計測波形の初動波形(最初の波長(1波長目)の波形)と手法3の計測波形の初動波形(最初の波長(1波長目)の波形)に同じような波形が取れていることが分かる。この最初の1波長はP波であり、手法1の波形でも手法3の波形でも同じ揺れ方をし、この後に続く後続波の波形にはS波や表面波が混在されているが、後続のP波も同じ動きを取り、反射波のP波成分、つまり、一次反射波もまた同じ動きをするものと考えられる。そこで、この手法1では、特に地震波の1波長目にくるP波を前方探査のソースとする。
FIG. 8 is a graph in which the measurement waveform of the frequency band of 20-250 Hz is extracted and displayed by a band pass filter from measurement data of reflected waves of three components in the x direction, y direction and z direction according to method 1 and method 3. In the graph, the measurement waveform in the x direction by method 1 is shown by the solid line, and the measurement waveform in the x direction by method 3 is shown by the broken line. The measurement waveform in the y direction by method 1 is shown by the solid line in the middle graph, the y direction by method 3 The measurement waveform of each is shown by a broken line, the measurement waveform in the z direction by the method 1 is shown by a solid line in the lower graph, and the measurement waveform in the z direction by a method 3 is shown by a broken line.
As shown in FIG. 8, the behavior of the pit wall surface in the tunnel T acquired by method 1 from each measurement waveform in the x direction, y direction and z direction and the pit wall W acquired by method 3 (inside the rock (deep portion)) The same behavior is seen in the low frequency (20-250 Hz) region of the behavior of the first wave of the measurement waveform of the method 1 (first wave (first wavelength)) and the measurement waveform of the method 3 It can be seen that a similar waveform is obtained in the initial movement waveform (the waveform of the first wavelength (the first wavelength)). The first one wavelength is a P wave, and the same method of swinging is applied to both the waveform of method 1 and the waveform of method 3, and S waves and surface waves are mixed in the waveform of the subsequent wave that follows this It is considered that the P wave also moves in the same manner, and the P wave component of the reflected wave, that is, the primary reflected wave also moves in the same manner. So, in this method 1, the P wave which comes especially to the 1st wavelength of a seismic wave is made into the source of a forward search.

図9(手法1)は図8の手法1及び手法3のx方向、y方向及びz方向の計測波形から抽出した初動波形(最初の波長(1波長目)の波形)の軌跡を描いたリサージュ図形であり、これらの波形が手法1及び手法3の計測特性を表している。図9(手法1)において、実線で表した波形が手法1の波形、破線で表した波形が手法3の波形であり、どちらも同じような波形になっており、手法1が手法3と3成分において同様の計測特性が得られていることが分かる。
このように手法1による計測波形は手法3による計測波形に比べて遜色がなく、手法1によっても、手法3と概ね同様の、3次元的な指向性を持った計測が可能であることを確認した。
FIG. 9 (method 1) is a Lissajous drawing of the locus of the initial movement waveform (the waveform of the first wavelength (the first wavelength)) extracted from the measurement waveforms in the x direction, y direction and z direction of method 1 and method 3 of FIG. It is a figure, and these waveforms represent the measurement characteristics of method 1 and method 3. In FIG. 9 (Method 1), the waveform represented by the solid line is the waveform of Method 1, the waveform represented by the broken line is the waveform of Method 3, and both have similar waveforms. It can be seen that similar measurement characteristics are obtained for the components.
As described above, it is confirmed that the measurement waveform according to the method 1 is not inferior to the measurement waveform according to the method 3 and that the method 1 can also perform measurement with substantially the same three-dimensional directivity as the method 3 did.

かくして既述の低周波領域の個々の計測波形から初動波形(最初の波長(1波長目))を取り出し、同個々の計測波形から初動波形と同様の特徴を有する後続波、つまり一次反射波の波形を抽出すれば、これら反射波の波形データについて既知の解析処理(スタッキング処理、マイグレーション処理など)を施すことにより、各反射波の反射面のイメージングを行なうことができる。   Thus, an initial movement waveform (first wavelength (first wavelength)) is extracted from the individual measurement waveforms in the low frequency region described above, and a subsequent wave having characteristics similar to the initial movement waveform from the individual measurement waveforms, that is, primary reflected waves If the waveform is extracted, imaging of the reflection surface of each reflected wave can be performed by performing known analysis processing (stacking processing, migration processing, etc.) on the waveform data of these reflected waves.

そこで、この手法1では、図3に示すように、多成分受振センサー12によりトンネルの坑壁Wを伝播する3成分の地震波を捉え、取得した各地震波の波形データ(原波形)に、まず、バンドパスフィルタによりフィルタ処理を施して3成分の各波形データから20−250Hzの低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形(最初の波長(1波長目))と同様の特徴を有する反射波の波形を抽出する。次いで、複数の測定データを重ね合わせる所謂スタッキング処理を行ない、同一成分の波形データを重ね合わせて、波形データの分解能を向上させ、このようにして3成分の個々の計測波形から初動波形(最初の波長(1波長目))と同様の特徴を有する一次反射波の波形を抽出する。そして、以上の処理により求めた時間断面を、マイグレーション処理(例えば、ディフラクション・スタック法)により、距離断面に変換して、3成分の各反射波の到来方向及び反射位置を算出し、各反射波の反射点を抽出して反射面を3次元的に予測する。かくして、トンネル掘削時にトンネルT内に上下左右に出現する地質境界面を推定する。   Therefore, in this method 1, as shown in FIG. 3, three component seismic waves propagating through the tunnel wall W are captured by the multi-component seismic sensor 12 and waveform data (original waveform) of each acquired seismic wave is firstly Filter processing with a band pass filter to extract a measured waveform in the low frequency region of 20-250 Hz from each waveform data of three components, and the same as the initial movement waveform (first wavelength (first wavelength)) from the respective measured waveforms Extract the waveform of the reflected wave having features. Next, so-called stacking processing is performed to superimpose a plurality of measurement data, and waveform data of the same component is superimposed to improve resolution of the waveform data, and thus an initial movement waveform (first The waveform of the primary reflected wave having the same characteristics as the wavelength (first wavelength) is extracted. Then, the time cross section obtained by the above processing is converted to a distance cross section by migration processing (for example, the difraction stack method), the arrival direction and reflection position of each reflected wave of the three components are calculated, and each reflection The reflection point of the wave is extracted to predict the reflection surface three-dimensionally. Thus, the geological boundary that appears vertically and horizontally in the tunnel T at the time of tunneling is estimated.

以上説明したように、この手法1によれば、地震計1として多成分受振センサー12をトンネルTの坑壁面に設置したものであっても、多成分受振センサー12をトンネルTの坑壁面にロックボルト2及びナット3により圧接して一体的に設置し、この多成分受振センサー12により坑壁Wを伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して各波形データから低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の波形データに基づいて、取得した各反射波の到来方向及び反射面位置を計測するようにしたので、トンネルT内に地震計1を大掛かりな準備作業を不要として簡易に設置することができ、しかも、この手法1によっても、複数の受振器を坑壁内部に埋設して反射波を計測する例えば手法3などのような従来の手法と3成分の反射波において概ね同様の計測特性を得ることができ、このような地震計1のトンネル坑壁面上への簡易な設置でありながら、従来の手法と同様に、切羽前方の反射面の3次元的な分布状況、すなわち、切羽前方の地質境界面を精度よく推定することができる。
そして、この手法1では、特に、受振センサー12の設置アンカーに支保工に使用するロックボルト2を利用するので、手法3など従来の手法に比べて準備作業を簡易に短時間で行うことができ、また、施工設備を利用して計測するため、測定しやすく安価である。
また、トンネル切羽前方の地質境界面を3次元的に把握できるため、トンネルの掘削時に地質の変化が始まる部位(天端か踏前か、右側か左側か)を予測することができ、トンネルの掘削時の施工管理、安全管理に活用することができる。
As described above, according to this method 1, even if the multi-component vibration receiving sensor 12 is installed on the wall surface of the tunnel T as the seismometer 1, the multi-component vibration receiving sensor 12 is locked to the wall surface of the tunnel T The pressure wave is installed integrally by bolt 2 and nut 3 and the seismic wave which propagates the pit wall W by this multi-component vibration receiving sensor 12 is captured, the waveform data of each acquired seismic wave is data processed, and the low frequency wave from each waveform data The measurement waveform of the region is taken out, the waveform of the reflected wave having the same feature as the initial movement waveform is extracted from the individual measurement waveform, and the arrival direction of each reflected wave acquired based on the waveform data of the respective reflected waves Since the reflection surface position is measured, the seismograph 1 can be easily installed in the tunnel T without any large preparatory work, and moreover, according to the method 1, a plurality of seismometers can be provided. For example, it is possible to obtain substantially the same measurement characteristics in the three-component reflected wave as in the conventional method such as the method 3 in which a geophone is embedded in a tunnel wall and the reflected wave is measured. The three-dimensional distribution of the reflecting surface in front of the face, that is, the geological boundary surface in front of the face can be accurately estimated, as in the conventional method, though it is a simple installation on the tunnel pit wall surface.
And, in this method 1, particularly, since the lock bolt 2 used for supporting is used for the installation anchor of the vibration receiving sensor 12, the preparation work can be easily performed in a short time as compared with the conventional method such as the method 3. Also, because it measures using construction equipment, it is easy to measure and inexpensive.
In addition, since the geological boundary surface ahead of the tunnel face can be grasped three-dimensionally, it is possible to predict the location where the change of geology starts (descent side or step before, right side or left side) when the tunnel is excavated. It can be used for construction management and safety management at the time of excavation.

図4、図5及び図6に第2の実施の形態を示している。
図4に示すように、この切羽前方探査方法(以下、手法2という。)は、手法1と同様に、弾性波反射法を利用したもので、トンネルT内に地震計1を設置し、トンネルT内で地震波を発生させてトンネルTの切羽前方の地質境界面で反射した反射波を地震計1により受振し、反射波の波形データを既知の解析処理により解析を行って反射波の反射面位置を計測することにより、切羽前方の地質境界面を推定する。
The second embodiment is shown in FIG. 4, FIG. 5 and FIG.
As shown in FIG. 4, this face forward exploration method (hereinafter referred to as method 2) uses the elastic wave reflection method as in method 1, and the seismometer 1 is installed in the tunnel T, and the tunnel The seismic wave is generated in T and the reflected wave reflected on the geological boundary surface in front of the face of the tunnel T is received by the seismograph 1, the waveform data of the reflected wave is analyzed by known analysis processing and the reflecting surface of the reflected wave Geological boundaries in front of the face are estimated by measuring the position.

この手法2では、図5に示すように、地震計1として、複数の受振センサー13と、これらの受振センサー13で取得した波形データを記録する記録装置(図示省略)とを用いる。また、これらの受振センサー13をトンネルT内に設置するために、NATM工法の支保工において岩盤に打ち込むロックボルト2に着目し、ロックボルト2を受振センサー13の設置アンカーとして使用する。
複数のロックボルト2は、各受振センサー13の設置位置とするトンネルTの坑壁Wの坑壁面所定の位置にそれぞれロックボルト2の一端から相互に異なる方向に打ち込み、ロックボルト2の他端側の一部を坑壁面上に残してロックボルト2の他端面を受振センサー取付部22とする。
各受振センサー13は、坑壁面に打ち込んだ各ロックボルト2の受振センサー取付部22にロックボルト2の長軸方向の指向性を有する単成分センサーとして取り付ける。ロックボルト2は後述するとおり長軸方向に振動しやすい性質を有することから、受振センサー13をロックボルト2の挿入方向の単成分センサーとして取り扱い、複数の受振センサー13を組み合わせることで、多成分受振センサーとして機能させることが可能である。そして、各受振センサー13に通信ケーブルを介して又は無線により記録装置を接続し、この記録装置をトンネルT内に設置する(図示省略)。
この手法2では、トンネル断面が探査範囲に対して十分小さく無視できる場合、反射波を3次元的に計測するには、図4(a)に示すように、複数のロックボルト2を少なくともトンネルTの坑壁Wの天端、左右側壁にそれぞれ坑壁面に対して直交又は斜交(好ましくは側壁に対して±45°方向に斜交)させて打ち込み、複数の受振センサー13を各ロックボルト2を介して少なくともトンネルTの坑壁Wの天端、左右側壁に設置することが好ましい。なお、ロックボルト2を坑壁面に斜交させて打ち込む場合は、ロックボルト2の一端(先端)を切羽方向に向けて打ち込むことが望ましい。また、図4(b)に示すように、3本以上の複数のロックボルト2をトンネルTの坑壁面の同一地点に各ロックボルト2を相互に直交させて打ち込み、複数の受振センサー13を各ロックボルト2を介してトンネルTの坑壁面の同一箇所に設置するようにしてもよい。このようにすることにより全体として多成分受振センサーとして取り扱うことが可能である。なお、この場合も、ロックボルト2を坑壁面にロックボルト2の一端(先端)を切羽方向に向けて打ち込むことが望ましい。
In this method 2, as shown in FIG. 5, a plurality of vibration receiving sensors 13 and a recording device (not shown) for recording waveform data acquired by these vibration receiving sensors 13 are used as the seismograph 1. Also, in order to install these vibration receiving sensors 13 in the tunnel T, attention is paid to the lock bolt 2 driven into the rock in the support of the NATM method, and the lock bolt 2 is used as an installation anchor of the vibration receiving sensor 13.
The plurality of lock bolts 2 are respectively driven in different directions from one end of the lock bolt 2 at predetermined positions on the pit wall surface of the pit wall W of the tunnel T at which the vibration receiving sensor 13 is installed. The other end face of the lock bolt 2 is used as a vibration sensor attachment portion 22 while leaving a part of the above on the pit wall surface.
Each vibration receiving sensor 13 is attached as a single component sensor having directivity in the long axis direction of the lock bolt 2 to the vibration receiving sensor attachment portion 22 of each lock bolt 2 punched into the borehole wall surface. Since the lock bolt 2 has the property of being easily vibrated in the long axis direction as described later, the vibration receiving sensor 13 is treated as a single component sensor in the insertion direction of the lock bolt 2 and a multicomponent vibration receiving sensor 13 is combined. It is possible to function as a sensor. Then, a recording device is connected to each vibration receiving sensor 13 via a communication cable or wirelessly, and this recording device is installed in the tunnel T (not shown).
In this method 2, when the cross section of the tunnel is sufficiently small relative to the search range and can be ignored, in order to measure the reflected wave in a three-dimensional manner, as shown in FIG. To the top end and left and right side walls of the pit wall W, respectively, orthogonally or diagonally with respect to the pit wall (preferably in a ± 45 ° direction with respect to the side wall) and driving the plurality of vibration sensors 13 into each lock bolt 2 It is preferable to install at least at the top end and the left and right side walls of the well wall W of the tunnel T via In the case where the lock bolt 2 is driven obliquely to the wall surface of the pit, it is desirable to drive the end of the lock bolt 2 (tip end) in the direction of the cutting face. Further, as shown in FIG. 4 (b), a plurality of three or more lock bolts 2 are driven at the same position on the wall surface of the tunnel T with the respective lock bolts 2 orthogonal to each other, and a plurality of vibration sensors 13 are provided. The lock bolt 2 may be installed at the same position on the tunnel wall surface of the tunnel T. By doing this, it is possible to handle it as a multi-component vibration sensor as a whole. Also in this case, it is desirable to drive the lock bolt 2 into the wall of the well with one end (tip) of the lock bolt 2 in the face direction.

このようにして、図4に示すように、手法3と同様に、トンネルT内の切羽において切羽掘削のための発破、ブレーカー、掘削ドリル等で振動を与え、地震波を発生させる。
そして、各受振センサー13によりトンネルTの坑壁Wに打ち込まれた各ロックボルト2を伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の走時(到来時間)から当該各反射波の走時差(到来時間の時間差)を算出し、当該各反射波の走時差に基づいて、当該各反射波の反射面位置を計測する。
In this way, as shown in FIG. 4, in the same way as in method 3, vibrations are generated by blasting for cutting the face, breakers, drilling drills and the like at the face in the tunnel T to generate seismic waves.
Then, each seismic sensor 13 captures the seismic wave propagating through each rock bolt 2 driven into the tunnel wall W of the tunnel T, processes the acquired waveform data of each seismic wave, and generates waveform data from each waveform data in a specific low frequency region. The measurement waveform is taken out, and the waveform of the reflected wave having the same characteristics as the initial movement waveform is extracted from the individual measurement waveforms, and the travel time difference (arrival time) of the respective reflected waves from the travel time (arrival time) of each reflected wave The time difference between the two) is calculated, and the reflection surface position of each of the reflected waves is measured based on the travel time difference of each of the reflected waves.

さて、本願発明者等は、手法2のように、ロックボルト2をトンネルTの坑壁面に打ち込んでロックボルト2の頭部(ロックボルト2の他端部の端面)にz方向の単成分受振センサー13を取り付ける受振センサーの設置形式でも、受振センサー13でロックボルト2の振動を取り、得られるロックボルト2の長軸方向の一成分の波形データについて、波形データをバンドパスフィルタに掛けることによって得られるある周波数領域に限っては、岩盤内部の多成分受振センサーで取得されるz方向の一成分の波形データに近似する波形データを取ることができることを見出した。手法2及び手法3の両手法による計測特性は基礎実験により確認済みであり、その結果を図7、図9に示している。なお、この場合、ロックボルト2の頭部周囲に、第1の実施の形態と同様に、x方向、y方向の受振センサー13を併せて取り付けてある。   Now, the inventors of the present invention drive the lock bolt 2 into the wall surface of the tunnel T as in the method 2 and apply a single component vibration in the z direction to the head of the lock bolt 2 (end face of the other end of the lock bolt 2). Also in the installation type of the vibration receiving sensor to which the sensor 13 is attached, the vibration of the lock bolt 2 is taken by the vibration receiving sensor 13 and the waveform data of one component in the long axis direction of the obtained lock bolt 2 is subjected to a band pass filter. It has been found that waveform data that approximates one-component waveform data in the z-direction acquired by a multi-component vibration sensor inside a rock can be obtained only in a certain frequency region obtained. The measurement characteristics by both methods 2 and 3 have been confirmed by basic experiments, and the results are shown in FIG. 7 and FIG. In this case, similarly to the first embodiment, the vibration receiving sensors 13 in the x direction and the y direction are attached together around the head of the lock bolt 2.

図7(手法2)に図4(a)に示す手法2による計測データの周波数特性を示している。この周波数分析により、地震波の原波形に含まれる周波数成分を調べる。図7(手法2)に示すように、手法2による計測データの周波数特性は、x方向、y方向、z方向のどの波形データも他の手法1、3のものより大きく表れ、ピークの形も特徴的で、100Hz付近に中心周波数があり、特にz方向の波形データに最も大きな反応が見られる。そこで、この手法2でもまた、この100Hzを中心周波数として20−250Hzくらい(好ましくは、50−200Hzくらい)をターゲットとする。なお、手法2の周波数特性には500Hz当たりに手法3の周波数特性には見られないピークがある。これはロックボルト2の共振(300Hz−500Hz)によるものとみられる。この手法2では、ターゲットとしている周波数帯域と異なるため、ロックボルト2の共振は大きく影響しない。
そして、第1の実施の形態と同様に、手法2、手法3によるx方向、y方向及びz方向の3成分の反射波の実際の計測データからバンドパスフィルタで20−250Hzの周波数帯の計測波形を取り出したところ、手法2では、x方向の成分、y方向の成分は適正に取れない結果となったが、z方向の波形データは手法3のz方向の波形データと概ね同様の動きが見られ、とりわけ、両手法2、3の計測波形の初動波形の最初の2分の1波長内の範囲に同じような波形が取れており、z方向の反応は適正に取れることが分かった。この初動波形はP波であり、手法2の波形でも手法3の波形でも同じ揺れ方をし、この後に続く後続波の波形にはS波や表面波が混在されているが、後続のP波も同じ動きを取り、反射波のP波成分、すなわち、一次反射波もまた同じ動きをするものと考えられる。そこで、この手法2では、特に地震波の2分の1波長目にくるP波を前方探査のソースとする。
FIG. 7 (Method 2) shows frequency characteristics of measurement data according to Method 2 shown in FIG. 4 (a). By this frequency analysis, the frequency component contained in the original waveform of the seismic wave is examined. As shown in FIG. 7 (Method 2), in the frequency characteristics of the measurement data according to Method 2, any waveform data in the x direction, y direction, and z direction appears larger than those of the other methods 1 and 3, and the peak shape is also Characteristically, there is a center frequency around 100 Hz, and the largest response is seen especially in the waveform data in the z direction. Therefore, this method 2 also targets about 20-250 Hz (preferably, about 50-200 Hz) with the 100 Hz as the center frequency. In the frequency characteristic of method 2, there is a peak not found in the frequency characteristic of method 3 per 500 Hz. This is considered to be due to the resonance (300 Hz-500 Hz) of the lock bolt 2. In this method 2, since it differs from the target frequency band, the resonance of the lock bolt 2 does not greatly affect.
Then, as in the first embodiment, measurement of the frequency band of 20-250 Hz by the band pass filter from the actual measurement data of the reflected wave of three components in the x direction, y direction and z direction by method 2 and method 3 When the waveform was taken out, in the method 2, the component in the x direction and the component in the y direction were not properly obtained. However, the waveform data in the z direction has almost the same movement as the waveform data in the z direction in method 3. It can be seen that, among other things, a similar waveform is obtained in the range within the first half wavelength of the initial movement waveform of the measurement waveforms of both methods 2 and 3, and the response in the z direction can be properly obtained. This initial movement waveform is a P wave, and the same method of swinging is applied to both the waveform of method 2 and the waveform of method 3. The S wave and the surface wave are mixed in the waveform of the subsequent wave that follows this, but the subsequent P wave It is considered that the P wave component of the reflected wave, that is, the primary reflected wave also performs the same movement. So, in this method 2, especially the P wave which comes in the half wavelength of a seismic wave is made into the source of a forward search.

図9(手法2)は手法2及び手法3のx方向、y方向及びz方向の計測波形から抽出した初動波形(1波長目の波形)の軌跡を描いたリサージュ図形で、これらの波形が手法2及び手法3の計測特性を表している。図9において、実線で表した波形が手法2の波形、破線で表した波形が手法3の波形であり、手法2と手法3とではx成分、y成分ともに異なる波形になっているものの、どちらもz成分については同じような波形が見られ、手法2がz成分(ロックボルトの長軸方向の成分)で手法3と同様の挙動が得られていることが分かる。
このように手法2による計測波形はz成分については手法3による計測波形に比べて遜色がなく、ロックボルト2頭部の受振センサー13で、ロックボルト2の振動の伝播特性を使って、z方向(ロックボルトの長軸方向)の波形データを計測できることを確認した。
Fig. 9 (Method 2) is a Lissajous figure depicting the locus of the initial movement waveform (waveform of the first wavelength) extracted from the measurement waveforms in the x direction, y direction and z direction of Method 2 and Method 3, and these waveforms are methods The measurement characteristics of 2 and method 3 are shown. In FIG. 9, the waveform represented by the solid line is the waveform of the method 2 and the waveform represented by the broken line is the waveform of the method 3. In the method 2 and the method 3, both the x component and the y component are different waveforms. The same waveform is seen for the z component as well, and it can be seen that the behavior similar to that of the method 3 is obtained with the z component (the component in the major axis direction of the lock bolt) of the method 2.
As described above, the measurement waveform according to method 2 is not inferior to the measurement waveform according to method 3 for the z component, and the vibration sensor 13 of the head of the lock bolt 2 uses the propagation characteristic of the vibration of the lock bolt 2 to use the z direction It was confirmed that waveform data (in the direction of the major axis of the lock bolt) could be measured.

したがって、既述の低周波領域の個々の計測波形から初動波形を取り出し、同個々の計測波形から初動波形と同様の特徴を有する後続波を抽出することで、反射波を推定することができる。つまり、初動波形と同様の特徴を有する後続波が一次反射波となる。これらの一次反射波は、図4(a)に示すように、異なる計測位置の受振センサ13で計測されるので、反射面から戻ってくる時間が異なり、各反射波間で到来時間の差が生じる。この時間差、つまり走時差を利用して、各一次反射波の到来方向及び位置を求めることができる。
また、図4(b)に示すように、複数のロックボルト2を同一地点において異なる方向に打ち込む場合でも同様で、各反射波の各受振センサー13に到達する時間が違うので、この時間差から、各反射波の到来方向及び位置を求めることができる。この場合、例えば、切羽前方の右側に地質境界面があると見込まれるときは、複数のロックボルト2を右側の坑壁Wに集中してそれぞれ異なる方向に向けて打ち込み、各ロックボルト2の頭部に受振センサー13を取り付けておけば、各反射波の到来方向及び位置をより適切に求めることができる。また、この場合、各ロックボルト2をトンネルTの坑壁Wに切羽方向に向けて差し込むことで、より強い反応を取ることができる。
Therefore, the reflected wave can be estimated by extracting the initial movement waveform from the individual measurement waveforms in the low frequency region described above and extracting the subsequent wave having the same feature as the initial movement waveform from the individual measurement waveforms. That is, the subsequent wave having the same characteristics as the initial movement waveform becomes the primary reflected wave. Since these primary reflected waves are measured by the vibration receiving sensor 13 at different measurement positions as shown in FIG. 4A, the time for returning from the reflecting surface is different, and a difference in arrival time occurs between the reflected waves. . The arrival direction and position of each primary reflected wave can be determined using this time difference, that is, the travel time difference.
In addition, as shown in FIG. 4B, the same applies even in the case where a plurality of lock bolts 2 are driven in different directions at the same point, and the time for each reflected wave to reach each receiving sensor 13 is different. The arrival direction and position of each reflected wave can be determined. In this case, for example, when it is expected that there is a geological boundary on the right side in front of the face, a plurality of lock bolts 2 are concentrated on the right pit W and driven in different directions. If the vibration sensor 13 is attached to the part, the arrival direction and position of each reflected wave can be determined more appropriately. Further, in this case, a stronger reaction can be taken by inserting each lock bolt 2 into the borehole wall W of the tunnel T in the face direction.

かくして既述の低周波領域の個々の計測波形から初動波形を取り出して、同個々の計測波形から初動波形と同様の特徴を有する後続波、つまり一次反射波の波形を抽出し、これら一次反射波の異なる走時からこれら一次反射波の走時差を算出すれば、各一次反射波の走時差に基づいて、各一次反射波の反射面位置を計測することができる。   Thus, the initial movement waveform is extracted from the individual measurement waveforms in the low frequency region described above, and the waveforms of subsequent waves having characteristics similar to the initial movement waveform, that is, the primary reflection waves are extracted from the individual measurement waveforms, and these primary reflection waves are extracted. If the travel time differences of these primary reflected waves are calculated from the travel times different from each other, the reflection surface position of each primary reflected wave can be measured based on the travel time difference of each primary reflected wave.

そこで、この手法2では、図6に示すように、複数の受振センサー13により坑壁Wに打ち込まれた各ロックボルト2を伝播する地震波を捉え、取得した各地震波の波形データをフィルタ処理して各波形データから20−250Hzの特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する一次反射波の波形を抽出して、これら一次反射波の走時から各一次反射波の走時差を算出し、各一時反射波の走時差に基づいて、各一次反射波の反射位置を計測し、各反射波の反射点を抽出して反射面を予測する。かくして、トンネルTの掘削時にトンネルT内に上下左右に出現する地質境界面を推定する。   Therefore, in this method 2, as shown in FIG. 6, seismic waves propagating through each rock bolt 2 driven into the pit W by a plurality of vibration receiving sensors 13 are captured, and the acquired waveform data of each seismic wave is filtered The measurement waveform of a specific low frequency region of 20-250 Hz is taken out from each waveform data, the waveform of the primary reflection wave having the same feature as the initial movement waveform is extracted from the individual measurement waveform, and the travel time of these primary reflection waves The travel time difference of each primary reflection wave is calculated from the above, the reflection position of each primary reflection wave is measured based on the travel time difference of each temporary reflection wave, the reflection point of each reflection wave is extracted, and the reflection surface is predicted. Thus, when excavating the tunnel T, the geological boundary that appears vertically and horizontally in the tunnel T is estimated.

以上説明したように、手法2によれば、地震計1として複数の受振センサー13をロックボルト2を介してトンネルTの坑壁面に設置したものであっても、トンネルTの坑壁面所定の位置に複数のロックボルト2を相互に異なる方向に打ち込み、複数の受振センサー13を坑壁面上に残したロックボルト2他端の他端面の受振センサー取付部22にロックボルト2の長軸方向の指向性を有する単成分センサーとして取り付けて、各受振センサー13により各ロックボルト2を伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の走時差に基づいて、当該各反射波の反射面位置を計測するようにしたので、トンネルT坑内に地震計1を大掛かりな準備作業を不要として簡易に設置することができ、しかも、この手法2によっても、複数の受振器13を岩盤内部に埋設して反射波を計測する例えば手法3などのような従来の手法とロックボルトの長軸方向の成分の反射波において概ね同様の挙動が得ることができ、このような地震計1のトンネルTの坑壁面上への簡易な設置でありながら、従来の手法と同様に、切羽前方の反射面の3次元的な分布状況、すなわち、切羽前方の地質境界面を精度よく推定することができる。
そして、この手法2においても、特に、受振センサー13の設置アンカーに支保工に使用するロックボルト2を利用するので、手法3など従来の手法に比べて準備作業を簡易に短時間で行うことができ、また、施工設備を利用して計測するため、測定しやすく安価である。
また、トンネル切羽前方の地質境界面を3次元的に把握できるため、トンネルの掘削時に地質の変化が始まる部位(天端か踏前か、右側か左側か)を予測することができ、トンネルの掘削時の施工管理、安全管理に活用することができる。
As described above, according to method 2, even if a plurality of vibration receiving sensors 13 are installed on the wall surface of the tunnel T via the lock bolt 2 as the seismometer 1, the predetermined position of the wall surface of the tunnel T A plurality of lock bolts 2 are driven in mutually different directions, and a plurality of vibration receiving sensors 13 are left on the wall surface of the lock bolt 2 Attached as a single-component sensor with flexibility, each seismic sensor 13 captures seismic waves propagating through each lock bolt 2, processes the acquired waveform data of each seismic wave, and measures waveform of a specific low frequency area from each waveform data And extract the waveform of the reflected wave having the same characteristics as the initial movement waveform from the individual measurement waveforms, and, based on the travel time difference of the respective reflected waves, Since the position of the incident surface is measured, the seismograph 1 can be easily installed in the tunnel T with no need for a large preparatory work, and also according to this method 2, the plurality of geophones 13 are inside the rock. For example, a similar method can be obtained in the reflection wave of the component in the direction of the major axis of the lock bolt as in the conventional method such as the method 3 in which the reflection wave is embedded and measured. It is possible to accurately estimate the three-dimensional distribution of the reflecting surface in front of the face, that is, the geological boundary surface in front of the face, as in the conventional method, though it is a simple installation on the well wall of T .
And also in this method 2, since the lock bolt 2 used for support is used especially for the installation anchor of the vibration receiving sensor 13, compared with the conventional method such as the method 3, it is possible to carry out the preparation operation easily in a short time. In addition, because it measures using construction equipment, it is easy to measure and it is cheap.
In addition, since the geological boundary surface ahead of the tunnel face can be grasped three-dimensionally, it is possible to predict the location where the change of geology starts (descent side or step before, right side or left side) when the tunnel is excavated. It can be used for construction management and safety management at the time of excavation.

T トンネル
W 坑壁
1 地震計
10 ロックボルト挿通部
11 ケース
12 受振センサー(多成分受振センサー)
12U 受振ユニット
13 受振センサー(Z方向の単成分受振センサー)
2 ロックボルト
21 受振ユニット取付部
22 受振センサー取付部
3 ナット
T tunnel W mine wall 1 seismograph 10 lock bolt insertion part 11 case 12 seismic sensor (multi component seismic sensor)
12U Receiver Unit 13 Receiver Sensor (Single-component Receiver Sensor in Z direction)
2 Lock bolt 21 Vibration receiving unit mounting part 22 Vibration receiving sensor mounting part 3 Nut

Claims (7)

トンネル内に地震計を設置し、トンネル内で地震波を発生させてトンネル切羽前方の地質境界面で反射した反射波を前記地震計により受振し、前記反射波の波形データを既知の解析処理により解析を行って前記反射波の反射面位置を計測することにより、切羽前方の地質境界面を推定する切羽前方探査方法において、
地震計として、中心にロックボルト挿通部を有するケース内に少なくともx方向、y方向及びz方向の3次元的方向の受振センサーを有する多成分受振センサーを配置してなる受振ユニットを用い、
前記受振ユニットの設置位置とするトンネルの坑壁面所定の位置にロックボルトを一端から打ち込み前記ロックボルトの他端を前記坑壁面上に受振ユニット取付部として残し、
前記受振ユニットを前記ロックボルト挿通部に前記坑壁面に打ち込んだ前記ロックボルトの前記受振ユニット取付部を通し、前記x方向の受振センサーをトンネルの軸方向に、前記y方向の受振センサーをトンネルの鉛直方向に、前記z方向の受振センサーを前記ロックボルトの軸方向となるようにして前記坑壁面上に設置した後、前記ロックボルトの前記受振ユニット取付部にナットを締め込むことにより、前記受振ユニットを前記坑壁面上に圧接して前記坑壁に一体的に設置し、
前記受振ユニットの各受振センサーにより前記坑壁を伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して前記各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の波形データに基づいて、当該各反射波の反射面位置を計測する、
ことを特徴とする切羽前方探査方法。
A seismograph is installed in the tunnel, a seismic wave is generated in the tunnel, a reflected wave reflected on the geological boundary surface in front of the tunnel face is received by the seismograph, and waveform data of the reflected wave is analyzed by known analysis processing In the face-to-face exploration method for estimating the geological boundary surface in front of the face by measuring the reflection surface position of the reflected wave by performing
As a seismometer, using a vibration receiving unit in which a multi-component vibration receiving sensor having a three-dimensional vibration receiving sensor in at least the x direction, y direction and z direction is disposed in a case having a lock bolt insertion portion in the center,
A lock bolt is driven from one end to a predetermined position on the tunnel wall surface where the vibration receiving unit is to be installed, and the other end of the lock bolt is left on the shaft surface as a vibration receiving unit attachment portion.
The vibration receiving unit mounting portion of the lock bolt is inserted through the lock bolt insertion portion through the lock bolt insertion portion, the vibration receiving sensor of the x direction in the axial direction of the tunnel, the vibration receiving sensor of the y direction in the tunnel The vibration receiving sensor for the z direction is installed on the wall surface so as to be in the axial direction of the lock bolt in the vertical direction, and then the nut is tightened on the vibration receiving unit attachment portion of the lock bolt to receive the vibration receiving The unit is pressed onto the well surface and integrally installed on the well surface,
Each seismic sensor of the seismic receiving unit captures seismic waves propagating through the wellhead, processes the acquired waveform data of each seismic wave, and extracts a measured waveform of a specific low frequency region from the respective waveform data, and the individual measurement The waveform of the reflected wave having the same feature as the initial movement waveform is extracted from the waveform, and the reflection surface position of each reflected wave is measured based on the waveform data of each reflected wave.
Face face forward exploration method characterized by
複数のロックボルトを少なくともトンネルの坑壁の天端、左右側壁にそれぞれ坑壁面に対して直交させて打ち込み、複数の受振ユニットを少なくとも前記各ロックボルトを介してトンネルの坑壁の天端、左右側壁に圧接して設置する請求項1に記載の切羽前方探査方法。   A plurality of lock bolts are driven at least at the top end and the right and left side walls of the tunnel wall at right angles to the wall respectively, and a plurality of vibration receiving units at least through the respective lock bolts. The method according to claim 1, wherein the method is installed in pressure contact with the side wall. 受振ユニットの多成分受振センサーで捉え、取得した地震波の波形データからフィルタ処理により特定の低周波領域の計測波形を取り出す請求項1又は2に記載の切羽前方探査方法。   The method according to claim 1 or 2, wherein a measurement waveform of a specific low frequency region is extracted by filtering from the acquired waveform data of seismic waves captured by a multi-component vibration receiving sensor of the vibration receiving unit. トンネル内に地震計を設置し、トンネル内で地震波を発生させてトンネル切羽前方の地質境界面で反射した反射波を前記地震計により受振し、前記反射波の波形データを既知の解析処理により解析を行って前記反射波の反射面位置を計測することにより、切羽前方の地質境界面を推定する切羽前方探査方法において、
地震計として、複数の受振センサーを用い、
前記各受振センサーの設置位置とするトンネルの坑壁面所定の位置にそれぞれ複数のロックボルトを一端から相互に異なる方向に打ち込み前記ロックボルトの他端を前記坑壁面上に残して前記ロックボルトの他端の他端面を受振センサー取付部とし、
前記各受振センサーを前記坑壁面に打ち込んだ前記各ロックボルトの受振センサー取付部に前記ロックボルトの長軸方向の指向性を有する単成分センサーとして取り付けて、
前記各受振センサーにより前記各ロックボルトを伝播する地震波を捉え、取得した各地震波の波形データをデータ処理して前記各波形データから特定の低周波領域の計測波形を取り出し、当該個々の計測波形から初動波形と同様の特徴を有する反射波の波形を抽出して、当該各反射波の走時差に基づいて、当該各反射波の反射面位置を計測する、
ことを特徴とする切羽前方探査方法。
A seismograph is installed in the tunnel, a seismic wave is generated in the tunnel, a reflected wave reflected on the geological boundary surface in front of the tunnel face is received by the seismograph, and waveform data of the reflected wave is analyzed by known analysis processing In the face-to-face exploration method for estimating the geological boundary surface in front of the face by measuring the reflection surface position of the reflected wave by performing
As a seismometer, using multiple receiving sensors,
A plurality of lock bolts are driven in different directions from one end in a predetermined position of the tunnel wall surface where the vibration receiving sensor is installed, and the other end of the lock bolt is left on the tunnel wall and the other is the lock bolt Let the other end face of the end be the vibration sensor mounting part,
The vibration receiving sensor is attached as a single component sensor having directivity in the major axis direction of the lock bolt to the vibration receiving sensor mounting portion of the lock bolt which is driven into the wall surface of the borehole,
Each seismic sensor captures seismic waves propagating through each rock bolt, processes the acquired waveform data of each seismic wave, and extracts a measured waveform of a specific low frequency area from each waveform data, and from the respective measured waveforms The waveform of the reflected wave having the same feature as the initial movement waveform is extracted, and the reflection surface position of each reflected wave is measured based on the travel time difference of each reflected wave.
Face face forward exploration method characterized by
複数のロックボルトを少なくともトンネルの坑壁面の天端、左右側壁にそれぞれ坑壁面に対して直交又は斜交させて打ち込み、複数の受振ユニットを前記各ロックボルトを介して少なくともトンネルの坑壁の天端、左右側壁に設置する請求項4に記載の切羽前方探査方法。   A plurality of lock bolts are inserted at least at the top end and the right and left side walls of the tunnel wall at right angles or diagonally to the tunnel wall respectively, and a plurality of vibration receiving units are mounted via the respective lock bolts to at least the ceiling of the tunnel wall The face front searching method according to claim 4 installed in an end, right and left side wall. 複数のロックボルトをトンネルの坑壁面の同一地点に前記各ロックボルトを相互に直交させて打ち込み、複数の受振ユニットを前記各ロックボルトを介してトンネルの坑壁面の同一箇所に設置する請求項4又は5に記載の切羽前方探査方法。   A plurality of lock bolts are driven at the same position of the tunnel wall surface in such a manner that the lock bolts cross each other at right angles, and a plurality of vibration receiving units are installed at the same position on the tunnel wall surface via the lock bolts. Or the face front exploration method according to 5. 複数の受振センサーで捉え、取得した地震波の波形データからフィルタ処理により特定の低周波領域の計測波形を取り出す請求項4乃至6のいずれかに記載の切羽前方探査方法。   The method according to any one of claims 4 to 6, wherein a measured waveform in a specific low frequency region is extracted by filtering processing from acquired waveform data of seismic waves captured by a plurality of vibration receiving sensors.
JP2017203426A 2017-10-20 2017-10-20 Face forward exploration method Active JP7005272B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017203426A JP7005272B2 (en) 2017-10-20 2017-10-20 Face forward exploration method
JP2021166601A JP7190015B2 (en) 2017-10-20 2021-10-11 Face forward exploration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203426A JP7005272B2 (en) 2017-10-20 2017-10-20 Face forward exploration method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021166601A Division JP7190015B2 (en) 2017-10-20 2021-10-11 Face forward exploration method

Publications (2)

Publication Number Publication Date
JP2019078549A true JP2019078549A (en) 2019-05-23
JP7005272B2 JP7005272B2 (en) 2022-01-21

Family

ID=66626454

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017203426A Active JP7005272B2 (en) 2017-10-20 2017-10-20 Face forward exploration method
JP2021166601A Active JP7190015B2 (en) 2017-10-20 2021-10-11 Face forward exploration method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021166601A Active JP7190015B2 (en) 2017-10-20 2021-10-11 Face forward exploration method

Country Status (1)

Country Link
JP (2) JP7005272B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596750A (en) * 2019-09-19 2019-12-20 东北大学 Assembler for pre-tightening and mounting micro-seismic sensor on underground coal mine anchor rod
CN110930556A (en) * 2019-12-04 2020-03-27 浙江凯迪仕实业有限公司 3D face identification intelligence lock
CN112987093A (en) * 2021-02-07 2021-06-18 陕西省水利电力勘测设计研究院勘察分院 Single-hole shear wave testing method
CN114114388A (en) * 2021-11-28 2022-03-01 中交第四公路工程局有限公司 Micro-seismic monitoring sensor for tunnel drilling and blasting construction and cable protection device
CN114966818A (en) * 2022-04-11 2022-08-30 同济大学 Tunnel wall post-grouting detection method and device, electronic equipment and storage medium
US20230120870A1 (en) * 2021-10-18 2023-04-20 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual Channel Nondestructive Testing Method for Rock Bolt and Related Devices

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311880A (en) * 1997-05-12 1998-11-24 Nishimatsu Constr Co Ltd Working face forward survey system, method thereof, and tunnel excavating method
JPH11142528A (en) * 1997-09-04 1999-05-28 Sekisui Chem Co Ltd Ground vibration detector
JP2001099945A (en) * 1999-09-30 2001-04-13 Kajima Corp Survey instrument for surveying front side of working face, and recording medium
US6307808B1 (en) * 2000-02-01 2001-10-23 Lesley J. Schmidt Methods and apparatuses for seismic prospecting
JP2013142556A (en) * 2012-01-06 2013-07-22 Taisei Corp Layout of receiving/vibrating points and method for elastic wave exploration
JP2013174580A (en) * 2012-01-25 2013-09-05 Hazama Ando Corp Tunnel elastic wave exploration method and tunnel elastic wave exploration system used for the same
JP2014013222A (en) * 2012-07-05 2014-01-23 Kajima Corp Tunnel face survey method using shield machine
JP2014106075A (en) * 2012-11-27 2014-06-09 Fujita Corp Method for geological survey during tunnel excavation
JP2014181948A (en) * 2013-03-18 2014-09-29 Shimizu Corp Reception sensor mounting fixture
JP2015090032A (en) * 2013-11-06 2015-05-11 清水建設株式会社 Tunnel natural ground search system
JP2015158437A (en) * 2014-02-25 2015-09-03 株式会社安藤・間 Tunnel elastic wave survey method and tunnel elastic wave survey system used therefor
JP2017156106A (en) * 2016-02-29 2017-09-07 株式会社奥村組 Tunnel face front survey method
JP2017166881A (en) * 2016-03-15 2017-09-21 株式会社安藤・間 Seismometer, and pit face front probing apparatus using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATA271479A (en) * 1978-04-13 1985-07-15 Thurner Heinz F METHOD FOR THE EXAMINATION OF A ROD-SHAPED BODY ONLY AT ONE END, AND DEVICE FOR CARRYING OUT THE METHOD
JP6418387B2 (en) 2014-11-12 2018-11-07 株式会社大林組 Forward exploration method of tunnel face

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311880A (en) * 1997-05-12 1998-11-24 Nishimatsu Constr Co Ltd Working face forward survey system, method thereof, and tunnel excavating method
JPH11142528A (en) * 1997-09-04 1999-05-28 Sekisui Chem Co Ltd Ground vibration detector
JP2001099945A (en) * 1999-09-30 2001-04-13 Kajima Corp Survey instrument for surveying front side of working face, and recording medium
US6307808B1 (en) * 2000-02-01 2001-10-23 Lesley J. Schmidt Methods and apparatuses for seismic prospecting
JP2013142556A (en) * 2012-01-06 2013-07-22 Taisei Corp Layout of receiving/vibrating points and method for elastic wave exploration
JP2013174580A (en) * 2012-01-25 2013-09-05 Hazama Ando Corp Tunnel elastic wave exploration method and tunnel elastic wave exploration system used for the same
JP2014013222A (en) * 2012-07-05 2014-01-23 Kajima Corp Tunnel face survey method using shield machine
JP2014106075A (en) * 2012-11-27 2014-06-09 Fujita Corp Method for geological survey during tunnel excavation
JP2014181948A (en) * 2013-03-18 2014-09-29 Shimizu Corp Reception sensor mounting fixture
JP2015090032A (en) * 2013-11-06 2015-05-11 清水建設株式会社 Tunnel natural ground search system
JP2015158437A (en) * 2014-02-25 2015-09-03 株式会社安藤・間 Tunnel elastic wave survey method and tunnel elastic wave survey system used therefor
JP2017156106A (en) * 2016-02-29 2017-09-07 株式会社奥村組 Tunnel face front survey method
JP2017166881A (en) * 2016-03-15 2017-09-21 株式会社安藤・間 Seismometer, and pit face front probing apparatus using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596750A (en) * 2019-09-19 2019-12-20 东北大学 Assembler for pre-tightening and mounting micro-seismic sensor on underground coal mine anchor rod
CN110930556A (en) * 2019-12-04 2020-03-27 浙江凯迪仕实业有限公司 3D face identification intelligence lock
CN112987093A (en) * 2021-02-07 2021-06-18 陕西省水利电力勘测设计研究院勘察分院 Single-hole shear wave testing method
US20230120870A1 (en) * 2021-10-18 2023-04-20 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual Channel Nondestructive Testing Method for Rock Bolt and Related Devices
US11796513B2 (en) * 2021-10-18 2023-10-24 Institute Of Rock And Soil Mechanics, Chinese Academy Of Sciences Dual channel nondestructive testing method for rock bolt and related devices
CN114114388A (en) * 2021-11-28 2022-03-01 中交第四公路工程局有限公司 Micro-seismic monitoring sensor for tunnel drilling and blasting construction and cable protection device
CN114114388B (en) * 2021-11-28 2024-01-23 中交第四公路工程局有限公司 Microseism monitoring sensor and cable protection device for tunnel drilling and blasting method construction
CN114966818A (en) * 2022-04-11 2022-08-30 同济大学 Tunnel wall post-grouting detection method and device, electronic equipment and storage medium
CN114966818B (en) * 2022-04-11 2023-09-01 同济大学 Tunnel wall post grouting detection method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP2022000666A (en) 2022-01-04
JP7190015B2 (en) 2022-12-14
JP7005272B2 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP7190015B2 (en) Face forward exploration method
JP5985371B2 (en) Geological exploration method during tunnel excavation
JP6393100B2 (en) Tunnel face forward exploration method
US6488116B2 (en) Acoustic receiver
JP6131027B2 (en) Measurement method of natural ground elastic wave velocity
EP2542917A1 (en) Tunnel seismic while drilling signal processing and acquisition method
JP2007231729A (en) Method and device for prior survey in tunnel construction
JP5839271B2 (en) Tunnel face forward exploration method
CN106324683A (en) Acoustic wave device and method for metro shield tunnel front boulder detection
US20200116881A1 (en) Heterogeneous subsurface imaging systems and methods
JP6522918B2 (en) Elastic wave velocity measurement method
CN105735971A (en) Drilling hole depth detection system based on elastic waves and detection method thereof
JP4157635B2 (en) Tunnel face forward exploration method
JP5940303B2 (en) Tunnel face forward exploration method
CN108919340B (en) Single-hole wave velocity testing method and device and terminal equipment
JP3583961B2 (en) Face front exploration device and recording medium
KR101479967B1 (en) Measuring evaluation method and system of tunnel backbreak
JP2006275914A (en) Method of imaging subsurface structure by reflection method seismic exploration
JP4260329B2 (en) Geological exploration method in front of tunnel face
Lidén Ground vibrations due to vibratory sheet pile driving
JP2018025487A (en) Elastic wave probe method for tunnel, and elastic wave probe system for tunnel using the same
JP2005105651A (en) Method of evaluating natural ground in front of ground excavation part
JP2010038790A (en) Elastic wave probe system
JP2010230689A (en) Method for surveying natural ground
JP2005291903A (en) Hydrophone for underwater geophone, and multipoint observation underwater geophone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350