JP2002139574A - Geological probing method in front of tunnel working face - Google Patents

Geological probing method in front of tunnel working face

Info

Publication number
JP2002139574A
JP2002139574A JP2000331555A JP2000331555A JP2002139574A JP 2002139574 A JP2002139574 A JP 2002139574A JP 2000331555 A JP2000331555 A JP 2000331555A JP 2000331555 A JP2000331555 A JP 2000331555A JP 2002139574 A JP2002139574 A JP 2002139574A
Authority
JP
Japan
Prior art keywords
reflection
reflection surface
analysis
tunnel
seismic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000331555A
Other languages
Japanese (ja)
Other versions
JP3404015B2 (en
Inventor
Hisao Hayashi
久夫 林
Tsutomu Hashimoto
励 橋本
Akiyoshi Tsuchiya
彰義 土屋
Koji Morimoto
耕司 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suncoh Consultants Co Ltd
Original Assignee
Suncoh Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suncoh Consultants Co Ltd filed Critical Suncoh Consultants Co Ltd
Priority to JP2000331555A priority Critical patent/JP3404015B2/en
Publication of JP2002139574A publication Critical patent/JP2002139574A/en
Application granted granted Critical
Publication of JP3404015B2 publication Critical patent/JP3404015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a peculiar tunnel HSP method different from a reflection earthquake probing method on measurement and reflecting surface extraction. SOLUTION: One of an oscillation point and a reception point is allocated at fewer positions of three or more, and the other is allocated at more positions. Received seismic wave observed raw data are edited into sets corresponding to the oscillation points or reception points at less positions of three or more, and analytic figures for the edited sets are individually generated from the seismic wave data after a filter-process and the estimated propagation speed of the seismic wave, and the similarity of reflection events is compared and collated between the analytic figures. The reflection events having high similarity and judged to be in common with each other are extracted as a reflecting surface, and the geological structure in front of the tunnel working face is estimated based on the extracted reflecting surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トンネル切羽前方の地
質を探査するトンネル切羽前方地質探査方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a geological exploration method in front of a tunnel face for exploring the geology in front of the tunnel face.

【0002】[0002]

【従来の技術】トンネル切羽前方における、断層や破砕
帯あるいは含水層の存在の予知は、トンネル掘削の工程
管理上極めて重要である。
2. Description of the Related Art Prediction of the existence of a fault, a crush zone, or a hydrous layer in front of a tunnel face is extremely important in controlling the tunnel excavation process.

【0003】一般に、地表又は海底の地質調査の方法と
して、物理現象を利用した物理探査の一種である反射法
地震探査の手法が採られている。この反射法地震探査法
は、石油、石炭の分布、埋蔵量の推定、あるいは、地質
構成の把握を目的として、水平多層構造の堆積岩を対象
として、探査範囲を深度方向2次元として行われてい
る。
[0003] Generally, as a method of geological survey of the surface or the seabed, a reflection seismic survey method, which is a kind of physical survey utilizing physical phenomena, is employed. This seismic reflection method is used to estimate the distribution and reserves of petroleum and coal, or to grasp the geological composition of sedimentary rocks with a multilayered horizontal structure. .

【0004】そして近年、トンネル切羽前方探査の手法
として、反射法地震探査の機材やデータ処理技術を応用
して、トンネルHSP法(トンネルHorizontal Seismi
c Profiling法)と呼ばれる弾性波探査が試みられてい
る。このトンネルHSP法は、トンネル坑内にて、地質
境界や断層破砕帯の検出を目的として、水平多層構造と
して想定することができない、地質がきわめて複雑な山
岳トンネルを対象として、探査範囲をトンネル地山内3
次元として行う必要があり、単純に反射法地震探査の手
法を転用するだけでは、必要とする探査結果を得られな
い。
[0004] In recent years, as a technique for exploring the front of a tunnel face, the equipment of the reflection method seismic exploration and data processing technology have been applied to the tunnel HSP method (tunnel horizontal seismic method).
c Profiling method) has been attempted. This tunnel HSP method aims to detect geological boundaries and fault fracturing zones in tunnel tunnels, and targets mountain tunnels with extremely complex geology that cannot be assumed as horizontal multilayered structures. 3
It must be performed as a dimension, and simply reusing the technique of seismic reflection survey cannot provide the required search results.

【0005】そこで、トンネル切羽前方の地質を探査す
るための独自の手法を開発すべく努力が続けられている
ところであるが、現状におけるトンネルHSP法は、ト
ンネル切羽前方の地質不連続面についての予測が外れる
こと(以下「不適合」という。)があり、未だ充分に完
成したものとは言えない段階にある。
[0005] Therefore, efforts have been made to develop a unique technique for exploring the geology ahead of the tunnel face, but the current tunnel HSP method predicts the geological discontinuity in front of the tunnel face. (Hereinafter referred to as "non-conformity"), and it is still at a stage where it cannot be said that it has been fully completed.

【0006】前述した不適合の種類について分析してみ
ると、実際には地質の不連続面が存在するにも拘わら
ず、その存在を予測できない場合(以下「無抽出」とい
う。)と、その逆に、実際には地質の不連続面が存在し
ないにも拘わらず、その存在を予測してしまう場合(以
下「誤抽出」という。)の2種類があり、いずれもその
要因としては、a、地質的要因、b、測定・機器、c、
データ処理及びd、反射面抽出が、存在しているものと
考えられる。特に、b、測定・機器及びd、反射面抽出
は、ノイズ及び人為的な影響を受けやすいため、不適合
の要因となることが多い。
An analysis of the types of nonconformities described above reveals that in spite of the fact that a geological discontinuity surface actually exists, its existence cannot be predicted (hereinafter referred to as “no extraction”), and vice versa. In addition, there are two types of cases where the existence of a geological discontinuity surface is predicted even though it does not actually exist (hereinafter referred to as “erroneous extraction”). Geological factors, b, measurement / equipment, c,
Data processing and d, reflective surface extraction are considered to be present. In particular, b, the measurement / instrument and d, and the extraction of the reflection surface are susceptible to noise and artificial influence, and thus often cause a mismatch.

【0007】従来、後述する解析図を作成する段階にお
いて、S/N比を向上するために、例えば複数の地震波
データを重合する手法が取られていたが、必要十分なほ
どS/N比が向上されず、ノイズによる反射イベントの
出現、ノイズによる本来の反射イベントの消滅が発生す
るためか、その解析結果は必ずしも十分とは言えない状
況にある。さらに、現状における反射イベントの反射面
としての抽出は、上記重合法に加え、発振点と受振点の
相対位置からの反射面としての妥当性及び地質情報から
の反射面としての存在の妥当性等を考慮して行われるて
いるものの、必ずしも反射面としての抽出のルールが確
立しているとは言えず、解析者の経験やノウハウに依存
するところが大きい。このような解析では客観的な根拠
が明確でなく、誰もが納得できる解析結果とは言い難
い。
Conventionally, at the stage of preparing an analysis chart to be described later, for example, a method of superimposing a plurality of pieces of seismic wave data has been adopted in order to improve the S / N ratio. The analysis result is not necessarily sufficient because the reflection event appears due to noise and the original reflection event disappears due to noise. Furthermore, in the current situation, the extraction of the reflection event as a reflection surface is based on the validity of the reflection surface from the relative position of the oscillation point and the receiving point, and the validity of the existence as the reflection surface from the geological information, in addition to the above-mentioned polymerization method. However, the rule of extraction as a reflective surface is not necessarily established, and it largely depends on the experience and know-how of the analyst. In such an analysis, the objective basis is not clear, and it is hard to say that the analysis result is satisfactory to everyone.

【0008】[0008]

【発明が解決しようとする課題】トンネル切羽前方探査
は、速度構造の複雑な山岳地山が探査対象であること、
トンネル坑内という限られた空間で計測を行うこと、ト
ンネル掘削工事に影響がないように中断して短時間内に
実施しなければならないこと、あるいはトンネル軸上の
地質出現位置を予測することなど、特殊な探査である。
このため、トンネルHSP法にあっては、計測、反射面
抽出に関して、反射法地震探査法とは異なる独自の技術
の確立が、求められている。
The exploration in front of the tunnel face involves exploration of a mountainous region having a complicated velocity structure.
To measure in a limited space inside the tunnel mine, to interrupt it so as not to affect the tunnel excavation work and to perform it in a short time, or to predict the geological appearance position on the tunnel axis, It is a special exploration.
For this reason, in the tunnel HSP method, it is required to establish a unique technique different from the reflection seismic method in terms of measurement and reflection surface extraction.

【0009】したがって本発明は、前記の問題点を解決
し、誤抽出、無抽出の要因を可能な限り排除し、誰が反
射面の抽出を行っても同じ結果が得られ、反射面抽出の
根拠が明確である反射イベントの抽出を行い得る、探査
精度に優れたトンネル切羽前方地質探査方法を提供する
ことを課題とするものである。
Therefore, the present invention solves the above-mentioned problems, eliminates the factors of erroneous extraction and non-extraction as much as possible, and can obtain the same result regardless of who extracts the reflection surface. It is an object of the present invention to provide a geological exploration method in front of a tunnel face, which is capable of extracting a reflection event having a clear pattern, and which is excellent in exploration accuracy.

【0010】[0010]

【問題点を解決するための手段】前記課題を解決するた
め、本発明は、トンネル坑内に、互いに離間する複数の
発振点と互いに離間する複数の受振点とからなる測線を
配置し、前記発振点より発振される地震波を受振点にて
受振し、受振した地震波を解析することによりトンネル
切羽前方の地質を探査する方法において、前記発振点及
び前記受振点のいずれか一方を3以上の少数とするとと
もに、他方を多数とし、多数又は少数の発振点より順次
発振される各地震波を、少数又は多数の受振点にて同時
に受振し、前記フィルター処理後の地震波データを、前
記3以上の少数とした発振点又は受振点に対応させた組
に編集し、切羽前方地質の地震波の推定伝播速度を求
め、各受振点にて受振した全ての地震波観測データを、
バンドパス、F−K、デコンボリューション等の各種フ
ィルターにてフィルター処理し、フィルター処理後の地
震波データ及び前記地震波の推定伝播速度から、前記編
集した組毎の解析図を個別に作成し、前記組毎に個別に
作成された解析図の間で、そこに表されたそれぞれの反
射イベント同士の類似性を比較・照合し、類似度が高く
共通すると判定された反射イベントを反射面として抽出
し、前記抽出した反射面に基づいてトンネル切羽前方の
地質構造を推定することとした。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, according to the present invention, a measuring line comprising a plurality of oscillating points separated from each other and a plurality of receiving points separated from each other is arranged in a tunnel pit. In the method of receiving a seismic wave oscillated from a point at a receiving point, and exploring the geology in front of the tunnel face by analyzing the received seismic wave, one of the oscillating point and the receiving point is reduced to a minority of 3 or more. While the other is a large number, each seismic wave sequentially oscillated from a large or small number of oscillation points is simultaneously received at a small number or a large number of receiving points, and the seismic wave data after the filtering is compared with the small number of 3 or more. Edited into a set corresponding to the oscillation point or receiving point that was obtained, calculate the estimated propagation velocity of the seismic wave in front of the face, and all the seismic observation data received at each receiving point,
Filter processing is performed with various filters such as bandpass, FK, deconvolution, etc., and the edited analysis chart for each group is individually created from the seismic wave data after the filtering and the estimated propagation velocity of the seismic wave. Between the analysis diagrams created individually for each, the similarity between the respective reflection events represented there is compared and collated, and the reflection event determined to have a high similarity and common is extracted as a reflection surface, The geological structure ahead of the tunnel face was estimated based on the extracted reflection surface.

【0011】[0011]

【実施例】本発明を、亀裂が発達した安山岩よりなり、
破砕帯や粘土化層が存在する地山にトンネルを掘削す
る、トンネル切羽前方及び後方の地質を探査する実施例
について、図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on a cracked andesite,
An example of excavating a tunnel in a ground where a crushed zone or a clay layer exists and exploring the geology in front of and behind the tunnel face will be described in detail with reference to the drawings.

【0012】(測線配置)測線は、トンネル坑左右両側
壁に配置し、発振点と受振点を設けた(図1)。発振点
は、2 m間隔にS1〜S24の24点(延46 m)設置し、受
振点は、切羽側に2 m間隔に3点(R0、R1、R
2)、測線中央部に1点(R3)及び抗口側に2 m間隔
に3点(R4、R5、R6)の計7点を設置した。受振
点のうちR0〜R2はトンネル切羽後方解析に、R4〜
R6はトンネル切羽前方解析に用い、R3はこれらの受
振器とともに屈折法の解析(地山速度の算定)に用い
た。
(Measurement Line Arrangement) The measurement lines were arranged on the left and right side walls of the tunnel pit, and an oscillation point and a receiving point were provided (FIG. 1). Oscillation points are set at 24 points (total 46 m) of S1 to S24 at 2 m intervals, and three receiving points (R0, R1, R
2) A total of seven points, one point (R3) at the center of the survey line and three points (R4, R5, R6) at 2 m intervals on the entrance side. Of the receiving points, R0 to R2 are used for the analysis of the tunnel face behind,
R6 was used for analysis in front of the tunnel face, and R3 was used for refraction analysis (calculation of ground velocity) together with these geophones.

【0013】(発振)地震波の発振は、ダイナマイトの
発破により行い、発振点は、左右側壁に踏前から高さ約
20cm、φ約45mm、深さ約2.0mの孔を下向き
傾斜約30°〜45°で削孔した(図2)。
(Oscillation) The oscillation of the seismic wave is performed by blasting of dynamite, and the oscillation point is formed by a hole having a height of about 20 cm, a diameter of about 45 mm, and a depth of about 2.0 m on the left and right side walls, and a downward inclination of about 30 °. Drilled at ~ 45 ° (Figure 2).

【0014】受振器は、側壁から深さ約2.0m、φ約
45mmで水平に削孔した受振点(図2)に設置した。
受振器は、挿入棒で方向を定めて送り込み、パッカーを
膨らませて孔内に圧着させた。受振器のタイプは、本出
願人作製の2成分孔内埋設型受振器を使用した。測定成
分は、水平面内のトンネル軸方向とトンネル軸直角方向
とした。このタイプの受振器の利点は、坑壁型の受振器
に比べゆるみ域の影響が小さいことから、高周波数領域
を観測でき、なおかつ地震波の入射方向が正確となる。
また設置、撤収作業が容易であることが挙げられる。し
たがって、受振器のタイプは2成分孔内埋設型が好まし
い。
The vibration receiver was set at a vibration receiving point (FIG. 2) having a depth of about 2.0 m and a diameter of about 45 mm from the side wall.
The geophone was sent in a predetermined direction with an insertion rod, and the packer was inflated and pressed into the hole. As the type of the geophone, a two-component in-hole buried geophone manufactured by the present applicant was used. The measurement components were the tunnel axis direction in the horizontal plane and the direction perpendicular to the tunnel axis. The advantage of this type of geophone is that the influence of the slack area is smaller than that of the pit wall type geophone, so that a high frequency region can be observed and the incident direction of the seismic wave becomes accurate.
It is also easy to install and withdraw. Therefore, the type of the geophone is preferably a type buried in the two-component hole.

【0015】ダイナマイトの発振後、各受振器で受振し
た信号は、テイクアウトケーブル、中継線を介して観測
本部の探鉱機にデジタル記録した。探鉱機はダイナミッ
クレンジが広いものを使用し、微小な反射波をS/N比
よく観測できるようにした。記録の収録は発火器からの
トリガーにより開始した。
After the dynamite was oscillated, the signals received by the respective geophones were digitally recorded in a prospecting machine at the observation headquarters via take-out cables and relay lines. An exploration machine with a wide dynamic range was used so that minute reflected waves could be observed with a high S / N ratio. Recording was started by a trigger from a firearm.

【0016】(データ処理・解析)図3に、データ処理
・解析フローを示す。以下、このデータ処理・解析フロ
ーに従って、データ処理・解析の項目毎にその内容を説
明する。なお、本実施例では、トンネル切羽の前方と後
方を探査したが、データ処理・解析の説明では前方探査
の内容についてのみ説明することとする。
(Data Processing / Analysis) FIG. 3 shows a data processing / analysis flow. Hereinafter, the contents of each data processing / analysis item will be described according to the data processing / analysis flow. In the present embodiment, the front and rear of the tunnel face are searched, but in the description of the data processing and analysis, only the contents of the front search will be described.

【0017】(編集)受振器にて受振した地震波を、受
振点と発振点のうち少数である、受振器毎に地震波生デ
ータを編集して配列した。図4は、左測線R4、R5、
R6の受振器毎に編集した結果を示すものである。図4
の上段、中段、下段の図は、それぞれ左測線の受振器R
4、R5、R6の2成分の地震波生データである。
(Edit) Seismic waves received by the geophone are arranged by editing the raw seismic data for each geophone, which is a small number of the receiving point and the oscillation point. FIG. 4 shows left survey lines R4, R5,
It shows the result of editing for each R6 geophone. FIG.
The upper, middle, and lower figures show the geophone R
4, raw seismic wave data of two components of R5 and R6.

【0018】(屈折法による解析)トンネルHSP法
は、探鉱機よりコンピュータに地震波動のデジタル記録
を転送して処理を行うが、地山速度とゆるみによる静補
正量を求める必要がある。このためハギトリ法を用いて
屈折法の解析を行った。屈折法の解析は、測定記録より
各受振点の初動到達時間を0.1msec単位で読み取
り、縦軸を時間、横軸を距離としたグラフにプロットし
て走時曲線を作成した。 なお、前述の走時曲線につい
ては、地震探査法において一般的に使用されているもの
なので、図示を省略した。走時曲線より得られた切羽前
方の地山速度は5.0km/sで用い、解析時の静補正量は、
走時曲線とハギトリ線との時間差であるディレイタイム
を用いることとした。
(Analysis by Refraction Method) In the tunnel HSP method, digital records of seismic waves are transferred from a prospecting machine to a computer for processing, but it is necessary to obtain a static correction amount due to ground velocity and loosening. Therefore, the refraction method was analyzed using the Hagitori method. In the analysis of the refraction method, a travel time curve was created by reading the initial movement arrival time at each receiving point from the measurement record in units of 0.1 msec, and plotting the time on the vertical axis and the distance on the horizontal axis. The above-mentioned travel time curve is not shown in the figure because it is generally used in the seismic survey method. The ground speed ahead of the face obtained from the travel time curve was used at 5.0 km / s, and the static correction amount at the time of analysis was
The delay time, which is the time difference between the travel time curve and the Hagitori line, was used.

【0019】(データ処理)測定デジタル記録から反射
波を検出するために、図3に示す、データ処理・解析の
流れに従ってフィルターテストを実施した。データ処理
の概要は以下のとおりである。データ処理の結果をまと
めて図5に示す。
(Data processing) In order to detect a reflected wave from the measured digital record, a filter test was performed according to the flow of data processing and analysis shown in FIG. The outline of the data processing is as follows. FIG. 5 shows the results of the data processing.

【0020】(1)周波数分析 この周波数分析は、オリジナル波形(図4)に含まれて
いる地震波の周波数成分を調べるために行うものであ
り、また、バンドパス・フィルターの定数を決めるため
の参考データとするために行うものである。
(1) Frequency Analysis This frequency analysis is performed to examine the frequency component of the seismic wave contained in the original waveform (FIG. 4), and is used as a reference for determining the constant of the band-pass filter. This is done in order to make it data.

【0021】(2)バンドパス・フィルター このバンドパス・フィルターは、オリジナル波形から無
用な周波数成分の地震波を除去し、S/N比を向上させ
るために用いる。
(2) Bandpass Filter This bandpass filter is used to remove unnecessary frequency component seismic waves from the original waveform and improve the S / N ratio.

【0022】(3)デコンボリューション・フィルター この処理は、地震波は、多くの地層を経由して受振器に
到達したものであり、多重反射あるいは亀裂等による散
乱等の影響を受け分解能が低下しているので、多重反射
の除去と波形のパルス化をして分解能を高めるために実
施した。
(3) Deconvolution filter In this processing, the seismic wave arrives at the geophone through many geological layers, and the resolution is reduced due to the influence of multiple reflection or scattering due to cracks and the like. Therefore, it was carried out in order to remove multiple reflections and to make the waveform into a pulse to increase the resolution.

【0023】(4)F−Kフィルター 観測した地震波には起震からの直接波や目的とする反射
波などが混在している。このF−Kフィルターにより反
射波を取り出すことができる。
(4) FK Filter The observed seismic wave contains a mixture of a direct wave from the earthquake and a target reflected wave. A reflected wave can be extracted by the FK filter.

【0024】(5)マイグレーション 地震波は一定の時間間隔でサンプリングしたものであ
り、この波形を用いる限り時間断面である。マイグレー
ション処理は、屈折法の解析で得られた地山岩盤の地震
波伝播速度を用いて深度(距離)断面に、換言すると、
反射面の位置を図化するものである。マイグレーション
の方法は、ディフラクション・スタック法を用いた(図
6)。このディフラクション・スタック法は、平面に格
子状に設定した仮想の反射点が、発振点と受振点を焦点
とする楕円とある範囲で一致した時に、その時の波形の
振幅を平均し、この振幅分布から反射面(点)を見い出
し地質構造を推定する方法である。時間→距離の変換
は、時刻(tn)の時、発破点→反射点→受振点の距離
(Dn)はP波速度(Vp)を用いて、 Dn=Vp×tn で表され、この楕円が格子の点に一致するときその振幅
を加算する。ディフラクション・スタック(マッピン
グ)法の表示は、振幅の極性が判るように正(硬→軟)
を○、負(軟→硬)を●とした。また、振幅の大きさは
円の直径に比例するようにした。
(5) Migration Seismic waves are sampled at fixed time intervals, and as long as this waveform is used, it is a time section. The migration process uses the seismic wave velocity of the ground rock obtained by the refraction analysis to convert it to a depth (distance) section, in other words,
9 illustrates the position of the reflection surface. As a migration method, a diffraction stack method was used (FIG. 6). In the diffraction stack method, when a virtual reflection point set in a grid on a plane coincides with an ellipse having a focal point at an oscillation point and a reception point within a certain range, the amplitude of the waveform at that time is averaged, and this amplitude is calculated. This is a method of finding the reflection surface (point) from the distribution and estimating the geological structure. The time-to-distance conversion is as follows. At time (tn), the distance (Dn) from the blasting point to the reflecting point to the receiving point is represented by Dn = Vp × tn using the P-wave velocity (Vp). When it matches a point on the grid, its amplitude is added. The indication of the diffraction stack (mapping) method is positive (hard to soft) so that the polarity of the amplitude can be understood.
○ and negative (soft → hard) ●. Also, the magnitude of the amplitude was made to be proportional to the diameter of the circle.

【0025】(反射面の抽出)トンネルHSP探査で
は、反射面の抽出が重要である。以下に反射面の抽出手
順を示し、図7に反射面の抽出例を示す。 (1)受振器R4、R5、R6(左測線)の解析結果図
(以下「解析図」という。)を出力する。 (2)各受振器の解析図から、それぞれ反射イベントを
反射面としてを特定する。 (3)この特定した反射イベントが、他の受振器の解析
図にも共通して表示され、同一の反射イベントの類似性
が高いとき、反射面として抽出する。 (4)最も反射面が共通する解析図を選定し、選定した
解析図上に当該反射イベントの反射面としての性格を読
み取って、出現予測位置を作図する。 (5)反射面を接線とする直線を、トンネル軸と交差す
るまで延長する。トンネル軸と直線が交叉する地点が、
地層のトンネル出現の予測位置である。
(Extraction of Reflection Surface) In tunnel HSP exploration, it is important to extract a reflection surface. The procedure for extracting the reflecting surface is shown below, and FIG. 7 shows an example of extracting the reflecting surface. (1) An analysis result diagram (hereinafter referred to as an “analysis diagram”) of the geophones R4, R5, and R6 (left survey line) is output. (2) Specify the reflection event as a reflection surface from the analysis diagram of each geophone. (3) The specified reflection event is commonly displayed in the analysis diagram of another geophone, and when the similarity of the same reflection event is high, it is extracted as a reflection surface. (4) An analysis diagram having the most common reflection surface is selected, the character of the reflection event as a reflection surface is read on the selected analysis diagram, and an appearance prediction position is drawn. (5) Extend a straight line tangent to the reflecting surface until it intersects the tunnel axis. The point where the straight line intersects with the tunnel axis is
This is the predicted location of the stratum tunnel appearance.

【0026】(抽出するに際しての留意点)各受振器に
現れた各反射イベントを反射面として抽出するに際して
は、以下の点に留意して行った。 (1)反射の強さは、仮想の反射点における振幅の強さ
を、●または○の大きさで示している。 前記記号において、●は反射振幅の引き(マイナス)、
○は反射振幅の押し(プラス)を示す。 (2)反射面は、反射点の●、○の直線的あるいは円弧
上に連続した部分である。 (3)反射面が他の解析図の同じ位置にない場合は、反
射面と特定しない。少なくとも2枚の解析図に共通した
場合に、反射面として特定する。 (評価基礎資料の取得) (1)各反射イベントについての評価指標 各解析図の各反射イベントには、各解析図の各反射点の
連続性・大きさから、3段階の評価指標、例えば大、
中、小の指標を与える。解析者は、この指標を基礎資料
として、反射面抽出の適合性及び反射面の性質を評価す
ることができる。 (2)予測の確実度 各解析図において与えられた評価指標を点数化、例えば
評価指標の大、中、小に対し、それぞれ3点、2点、1
点等し、反射面として抽出した各解析図の各反射イベン
トについて、3枚の解析図の点数を合計し、合計点数の
大きさに基づく地質構造予測の確実度、例えばAA、
A、B、C等に応じて区分する。解析者は、この区分さ
れた地質構造予測の確実度を基礎資料として、反射面抽
出の適合性及び反射面の性質を評価することができる。
(Notes on Extraction) When extracting each reflection event appearing on each of the geophones as a reflection surface, attention was paid to the following points. (1) The reflection intensity indicates the amplitude intensity at a virtual reflection point by the size of ● or ○. In the above symbols, ● represents the subtraction (minus) of the reflection amplitude,
○ indicates the push (plus) of the reflection amplitude. (2) The reflection surface is a portion which is continuous on a straight line or a circular arc of a reflection point. (3) If the reflection surface is not at the same position in another analysis diagram, it is not specified as a reflection surface. If at least two of the analysis diagrams are common, they are specified as reflection surfaces. (Acquisition of basic evaluation data) (1) Evaluation index for each reflection event Each reflection event in each analysis chart has three levels of evaluation indexes, for example, large, based on the continuity and size of each reflection point in each analysis chart. ,
Give medium and small indicators. The analyst can evaluate the suitability of the reflection surface extraction and the properties of the reflection surface using this index as basic data. (2) Predictability of prediction The evaluation index given in each analysis diagram is converted into a score, for example, three points, two points, and one point for large, medium, and small evaluation indices, respectively.
Points, etc., for each reflection event of each analysis chart extracted as a reflection surface, the points of the three analysis charts are summed, and the reliability of geological structure prediction based on the magnitude of the total points, for example, AA,
Classify according to A, B, C, etc. The analyst can evaluate the suitability of the reflection surface extraction and the properties of the reflection surface using the certainty of the predicted geological structure prediction as basic data.

【0027】( トンネルHSP探査結果)トンネルH
SP法の解析結果を、図8に示す。この図において、抽
出した反射面からトンネル坑と交わった、数字に丸印を
付与して表した位置に、地質構造が存在すると予測し
た。これらの予測結果と、トンネルを掘削した後に顕出
した地質構造とを比較してみたところを、次表にまとめ
た。 この表にまとめられたように、地質構造の存在を予測し
た12箇所のうち、実際に地質構造が存在した、反射面
抽出適合のものが9箇所あった。また、実際には地質構
造が存在したにも拘わらず、その存在を予測できなかっ
た無抽出が1箇所、これとは逆に、実際には地質構造が
存在しないにも拘わらず、その存在を予測してしまった
誤抽出が2箇所あった。しかし、412m地点での無抽
出は、後にトンネル坑切羽に顕れた断層粘土は、部分的
に分布し連続するものではないため、反射面として検出
できなかったと考えられる。また、367m地点での誤
抽出は、地質構造が連続していないものと推定され、さ
らに、436m地点での誤抽出は、反射面の角度設定を
誤り、実際の地質構造出現位置より3m近い位置を予測
したと考えられる。
(Tunnel HSP search result) Tunnel H
FIG. 8 shows the analysis results of the SP method. In this figure, it is predicted that the geological structure exists at the position where a circle is attached to the number and which intersects with the tunnel pit from the extracted reflection surface. The following table summarizes the results of comparing these predictions with the geological structures revealed after excavating the tunnel. As summarized in this table, out of the twelve places where the existence of the geological structure was predicted, there were nine places where the geological structure actually existed and which was suitable for the reflection surface extraction. In addition, although there was actually a geological structure, there was one unextracted point where the existence could not be predicted. Contrary to this, despite the fact that the geological structure did not actually exist, There were two mis-extractions that had been predicted. However, it is probable that no extraction at the 412m point could not be detected as a reflection surface because the fault clay that later appeared on the tunnel face was not distributed and continuous. In addition, the erroneous extraction at the 367m point is presumed that the geological structure is not continuous, and the erroneous extraction at the 436m point incorrectly sets the angle of the reflecting surface and is 3m closer to the actual geological structure appearance position. It is thought that was predicted.

【0028】以上の結果よりみて、本トンネル切羽前方
地質探査方法による地質構造出現の予測は、従来のトン
ネルHSP法に比し、格段にその適合性があるというこ
とができる。
From the above results, it can be said that the prediction of the appearance of the geological structure by the geological survey method in front of the tunnel face is much more suitable than the conventional tunnel HSP method.

【0029】(実施例の変形)測線配置について本実施
例では、測線をトンネル坑左右両側壁に配置している
が、トンネル坑の天地等に測線を配置してもよい。ま
た、地質の走行傾斜が事前に調査して判明している場合
や、地質がさほど複雑でない場合には、測線を1本にし
てもよい。
(Modification of Embodiment) Regarding the measurement line arrangement In this embodiment, the measurement lines are arranged on the left and right side walls of the tunnel pit. However, the measurement lines may be arranged on the top and bottom of the tunnel mine. In addition, when the running inclination of the geology is known in advance by investigation, or when the geology is not so complicated, one survey line may be used.

【0030】起振源について本実施例では、発振をダイ
ナマイトにより行っているが、爆薬以外の起振源、例え
ば、ハンマー打撃等であっても、探査結果に何ら影響を
及ぼすものではない。また、発振の順序は、必ずしもS
1からS24の順番に行う必要はなく、無秩序に行って
もよいが、データ採取現場で観測データの品質をチェッ
クするためには、ある程度の規則性ある発振順序をもた
せるのがよい。
In this embodiment, the oscillating source is dynamite. However, an oscillating source other than an explosive, such as a hammer strike, does not affect the exploration result. The order of oscillation is not necessarily S
It is not necessary to perform the steps from 1 to S24, and the steps may be performed in a random manner. However, in order to check the quality of observation data at the data collection site, it is preferable to have a certain order of oscillation.

【0031】また、受振器の設置個所については、本実
施例では、切羽側に2m間隔に3点(R0〜R2)、測
線中央部に1点(R3)及び抗口側に2m間隔に3点
(R4〜R6)の計7点を設置しているが、切羽側の3
点を削減して、トンネル切羽前方のみを探査することと
してもよい。この場合受振点は、発振点の探査方向反対
側としているため、指向性のある受振器を反射面から遠
方に置くことができ、反射波の入射方向の影響をより少
なくすることができて都合がよい。さらに、受振点を発
振点よりも探査方向側のみに設置することとしてもよ
い。要は、複数の受振点にて地震波を受振するよう配置
すればよい。
In the present embodiment, three points (R0 to R2) are provided at 2 m intervals on the face side, one point (R3) is provided at the center of the survey line, and three points are provided at 2 m intervals on the entrance side. A total of 7 points (R4 to R6) are installed, but 3 points on the face side
The number of points may be reduced and only the front of the tunnel face may be searched. In this case, the receiving point is located on the opposite side of the search direction of the oscillation point, so that a directional receiver can be placed far away from the reflecting surface, and the influence of the incident direction of the reflected wave can be further reduced. Is good. Further, the receiving point may be provided only on the search direction side of the oscillation point. In short, it may be arranged so that seismic waves are received at a plurality of receiving points.

【0032】さらに本実施例では、受振器のタイプを坑
内埋設型としているが、坑壁に設置する坑壁型とするこ
ともできる。但しこの場合、一般にトンネル坑内におい
ては、掘削後、応力解放などによって坑壁周辺にゆるみ
域が発生するため、解析の精度や処理の迅速化を考慮す
れば、坑内埋設型とするのが好ましいことは、前述のと
おりである。また、測定成分に関し受振器には、単成
分、2成分、3成分の3種類のものがあるが、地震波の
入射方向を正確に把握できるように、2成分以上測定す
ることが望ましい。しかし、実際のトンネル切羽前方探
査の解析には、トンネル軸方向と水平面内トンネル軸直
角方向の2成分の波動を把握すれば充分である。このた
め、受振器の測定成分について、本実施例では2成分と
したが、単成分あるいは3成分としてもよい。
Further, in this embodiment, the type of the geophone is a buried type in a pit, but it may be a pit type installed on a pit wall. However, in this case, generally, in the tunnel tunnel, after excavation, a loose area is generated around the tunnel wall due to stress release etc. Therefore, considering the accuracy of analysis and speeding up processing, it is preferable to use the underground type. Is as described above. In addition, there are three types of geophones with respect to the measurement components, namely, a single component, a two component, and a three component. However, it is desirable to measure two or more components so that the incident direction of the seismic wave can be accurately grasped. However, it is sufficient to grasp the two component wave motions in the direction of the tunnel axis and in the direction perpendicular to the tunnel axis in the horizontal plane for the analysis of the actual exploration ahead of the tunnel face. For this reason, the measurement components of the geophone are two components in this embodiment, but may be a single component or three components.

【0033】さらにまた、受振点と発振点の数について
は、本実施例では、受振点を少数、発振点を多数として
いるが、これとは逆に、受振点を多数、発振点を少数と
してもよい。なお、この場合には、前述した地震波生デ
ータの編集は、発振点毎に行う必要がある。
Further, in the present embodiment, the number of the receiving points and the number of the oscillation points are small in the present embodiment, but the number of the receiving points is large and the number of the oscillation points is small. Is also good. In this case, it is necessary to edit the raw seismic data described above for each oscillation point.

【0034】[0034]

【発明の効果】請求項1に係る発明によれば、地震波デ
ータを、3以上の少数とした発振点又は受振点に対応さ
せた組に編集し、フィルター処理後の地震波データ及び
前記地震波の推定伝播速度から、前記編集した組毎の解
析図を個別に作成するものである。したがって、本発明
の例えば少受振点・多発振点方式の場合は、受振点毎に
解析図が作成されることとなる。そして、受振点毎に個
別に作成された複数枚の解析図の間で、そこに表された
それぞれの反射イベント同士の類似性を比較・照合し、
類似度が高く共通すると判定された反射イベントを反射
面として抽出するものであるから、抽出の基準を明確化
でき、解析者の違いによる結果のバラツキを最小限に
し、誰が反射面の抽出を行っても同じ結果が得られると
いう再現性の向上を図ることができ、探査精度に優れた
トンネル切羽前方地質探査方法とすることができるもの
である。
According to the first aspect of the present invention, the seismic wave data is edited into a set corresponding to the number of oscillation points or reception points having a small number of three or more, and the seismic wave data after filtering and the estimation of the seismic waves are estimated. From the propagation speed, an analysis diagram for each of the edited sets is individually created. Therefore, for example, in the case of the small receiving point / multiple oscillating point system of the present invention, an analysis chart is created for each receiving point. Then, between a plurality of analysis diagrams individually created for each vibration receiving point, the similarity of each reflection event represented there is compared and collated,
Since the reflection events that are determined to have high similarity and are common are extracted as reflection surfaces, the criteria for extraction can be clarified, the variation in results due to differences in analysts is minimized, and who extracts the reflection surfaces Therefore, the reproducibility of obtaining the same result can be improved, and a geological exploration method in front of the tunnel face having excellent exploration accuracy can be achieved.

【0035】請求項2に係る発明によれば、例えば受振
点が隣接する関係にある2枚の解析図は、類似し、解析
結果も相似するから、両者の反射イベント同士の類似性
を比較・照合することにより、反射面としての抽出の精
度を、請求項1に係る発明に比し、より向上し得る。
According to the second aspect of the present invention, for example, two analysis diagrams in which the receiving points are adjacent to each other are similar and the analysis results are similar, so that the similarity between the two reflection events is compared. By performing the collation, the accuracy of extraction as a reflection surface can be further improved as compared with the invention according to claim 1.

【0036】請求項3に係る発明によれば、反射面とし
て抽出した各解析図の各反射イベントに対し、その連続
性・大きさに基づいて評価指標が与えられるから、当該
反射イベントを反射面として抽出した根拠の大きさを客
観的、明確に把握することができる。
According to the third aspect of the present invention, an evaluation index is given to each reflection event of each analysis diagram extracted as a reflection surface based on its continuity and size. The size of the basis extracted as can be objectively and clearly grasped.

【0037】請求項4に係る発明によれば、各解析図に
おいて与えられた前記評価指標を点数化し、反射面とし
て抽出した各解析図の各反射イベントについて、全ての
解析図の点数を合計し、合計点数の大きさに基づく予測
の確実度に応じて区分するから、当該反射イベントを反
射面として抽出した根拠の大きさ及び地質構造の予測の
確実度を、請求項3に係る発明に比し、より客観的、明
確に把握することができる。
According to the fourth aspect of the present invention, the evaluation index given in each analysis diagram is converted into a score, and for each reflection event of each analysis diagram extracted as a reflection surface, the scores of all the analysis diagrams are summed. Since the classification is performed according to the certainty of the prediction based on the magnitude of the total score, the magnitude of the basis for extracting the reflection event as a reflection surface and the certainty of the prediction of the geological structure are compared with those of the invention according to claim 3. And can be more objectively and clearly understood.

【0038】発振点を設置する作業は、受振点を設置す
る作業に比し軽い。また、少受振点・多発振点方式と多
受振点・少発振点方式とで解析結果に差異はない。それ
故、請求項5に係る発明によれば、受振点を少なく設け
るようにしているから、作業性に優れたものである。
The work of setting the oscillation point is lighter than the work of setting the vibration receiving point. Further, there is no difference in the analysis result between the small receiving point / multiple oscillation point method and the multiple receiving point / multiple oscillation point method. Therefore, according to the fifth aspect of the invention, the number of vibration receiving points is reduced, so that the workability is excellent.

【0039】請求項6に係る発明によれば、測線を複数
列配置したので、トンネル切羽前方の広い領域に亘って
探査することができることから、探査精度を向上し得る
ものである。
According to the sixth aspect of the present invention, since the survey lines are arranged in a plurality of rows, it is possible to perform a search over a wide area in front of the tunnel face, so that the search accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るトンネル前方探査の測線配置図で
ある。
FIG. 1 is a survey line layout diagram of a tunnel forward exploration according to the present invention.

【図2】測線配置の受振器及び発振点の削孔の状況を表
すトンネル軸直交断面図である。
FIG. 2 is a cross-sectional view orthogonal to a tunnel axis, showing a geophone arranged in a survey line and a state of drilling of an oscillation point.

【図3】地震波データ処理・解析フロー図である。FIG. 3 is a flowchart of seismic wave data processing / analysis.

【図4】左測線の受振器R4〜R6の地震波2成分観測
生データである。
FIG. 4 is raw seismic wave component observation data of the geophones R4 to R6 on the left survey line.

【図5】地震波観測生データ(左測線受振器R4)のデ
ータ処理結果を表す。
FIG. 5 shows a data processing result of raw seismic wave observation data (left surveying geophone R4).

【図6】マイグレーションの方法の一種である、ディフ
ラクション・スタック法の概念図である。
FIG. 6 is a conceptual diagram of a diffraction stack method, which is a kind of migration method.

【図7】上から順番にそれぞれ、左測線の受振器R4、
R5、R6の解析図である。
FIG. 7 shows a geophone R4 on the left survey line in order from the top,
It is an analysis figure of R5 and R6.

【図8】トンネル切羽前方地質探査法の解析結果を示す
図である。
FIG. 8 is a diagram showing an analysis result of a geological survey method in front of a tunnel face.

【図9】各反射イベントについて反射面として抽出する
とともに、抽出した反射面を評価するフロー図である。
FIG. 9 is a flowchart illustrating a process of extracting each reflection event as a reflection surface and evaluating the extracted reflection surface.

【図10】抽出した反射面を評価した結果を示す図であ
る。
FIG. 10 is a diagram showing a result of evaluating an extracted reflection surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 彰義 東京都江東区亀戸1丁目8番9号 サンコ ーコンサルタント株式会社内 (72)発明者 森本 耕司 東京都江東区亀戸1丁目8番9号 サンコ ーコンサルタント株式会社内 Fターム(参考) 2D054 GA15 GA17 GA74 GA97  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akiyoshi Tsuchiya 1-8-9 Kameido, Koto-ku, Tokyo Sanko Consultant Co., Ltd. (72) Koji Morimoto 1-8-9 Kameido, Koto-ku, Tokyo Sanko -Consultant Co., Ltd. F-term (reference) 2D054 GA15 GA17 GA74 GA97

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】トンネル坑内に、互いに離間する複数の発
振点と互いに離間する複数の受振点とからなる測線を配
置し、前記発振点より発振される地震波を受振点にて受
振し、受振した地震波を解析することによりトンネル切
羽前方の地質を探査する方法において、 前記発振点及び前記受振点のいずれか一方を3以上の少
数とするとともに、他方を多数とし、 前記多数又は少数の発振点より順次発振される各地震波
を、少数又は多数の受振点にて同時に受振し、 前記受振した地震波観測生データを、前記3以上の少数
とした発振点又は受振点に対応させた組に編集し、 切羽前方地質の地震波の推定伝播速度を求め、 前記編集した地震波データを、バンドパス、F−K、デ
コンボリューション等の各種フィルターにてフィルター
処理し、 フィルター処理後の地震波データ及び前記地震波の推定
伝播速度から、前記編集した組毎の解析図を個別に作成
し、 前記組毎に個別に作成された解析図の間で、そこに表さ
れたそれぞれの反射イベント同士の類似性を比較・照合
し、類似度が高く共通すると判定された反射イベントを
反射面として抽出し、 前記抽出した反射面に基づいてトンネル切羽前方の地質
構造を推定することを特徴とするトンネル切羽前方地質
探査方法。
1. A measuring line composed of a plurality of oscillation points separated from each other and a plurality of vibration receiving points separated from each other is arranged in a tunnel pit, and a seismic wave oscillated from the oscillation point is received at the vibration receiving point and received. In the method of exploring the geology in front of the tunnel face by analyzing a seismic wave, one of the oscillation point and the reception point is set to a small number of 3 or more, and the other is set to a large number, and Sequentially oscillated seismic waves are received simultaneously at a small number or a large number of receiving points, and the received seismic wave observation raw data is edited into a set corresponding to the oscillating points or the receiving points with the minority of 3 or more, The estimated propagation velocity of the seismic wave ahead of the face is obtained, and the edited seismic wave data is filtered by various filters such as bandpass, FK, deconvolution, etc. From the seismic wave data after the data processing and the estimated propagation velocity of the seismic wave, individually create an analysis chart for each of the edited sets, and, among the analysis charts individually created for each of the sets, each represented in the analysis chart. Comparing and comparing the similarities between the reflection events of the above, extracting the reflection events determined to have a high degree of similarity as common as the reflection surface, and estimating the geological structure in front of the tunnel face based on the extracted reflection surface. Characteristic geological exploration method in front of tunnel face.
【請求項2】前記編集した組毎の解析図のうち、3以上
の少数とした発振点又は受振点が隣接する関係にある2
枚の解析図に表されたそれぞれの反射イベント同士の類
似性を比較・照合し、類似度が高く共通すると判定され
た反射イベントを反射面として抽出することを特徴とす
る請求項1のトンネル切羽前方地質探査方法。
2. The method according to claim 2, wherein the oscillating point or the receiving point having a small number of 3 or more is adjacent to each other in the edited analysis diagram for each group.
2. The tunnel face according to claim 1, wherein similarities between the respective reflection events shown in the analysis diagrams are compared and collated, and a reflection event determined to have a high degree of similarity and to be common is extracted as a reflection surface. Forward geological exploration method.
【請求項3】前記反射面として抽出した各解析図の各反
射イベントに対し、その連続性・大きさに基づいて評価
指標を与えることにより、反射面抽出の適合性及び反射
面の性質を評価するための基礎資料を得ることを特徴と
する請求項1乃至請求項2いずれかのトンネル切羽前方
地質探査方法。
3. The suitability of the reflection surface extraction and the properties of the reflection surface are evaluated by giving an evaluation index to each reflection event of each analysis diagram extracted as the reflection surface based on its continuity and size. 3. The geological exploration method in front of a tunnel face according to claim 1, wherein basic data for performing the operation is obtained.
【請求項4】各解析図において与えられた前記評価指標
を点数化し、前記反射面として抽出した各解析図の各反
射イベントについて、全ての解析図の点数を合計し、合
計点数の大きさに基づく確実度に応じて区分することに
より、反射面抽出の適合性及び反射面の性質を評価する
ための基礎資料を得ることを特徴とする請求項3のトン
ネル切羽前方地質探査方法。
4. The evaluation index given in each analysis chart is converted into a score, and for each reflection event of each analysis chart extracted as the reflection surface, the scores of all the analysis charts are summed, and the total score is calculated. 4. The geological exploration method in front of a tunnel face according to claim 3, wherein basic data for evaluating the suitability of the reflection surface extraction and the properties of the reflection surface are obtained by classifying the reflection surface based on the certainty.
【請求項5】受振点が、前記3以上の少数とされている
ことを特徴とする請求項1乃至請求項4いずれかのトン
ネル切羽前方地質探査方法。
5. A geological exploration method in front of a tunnel face according to claim 1, wherein the number of receiving points is a small number equal to or greater than three.
【請求項6】前記測線を複数列配置したことを特徴とす
る請求項1乃至請求項5いずれかのトンネル切羽前方地
質探査方法。
6. The geological exploration method in front of a tunnel face according to claim 1, wherein said survey lines are arranged in a plurality of rows.
JP2000331555A 2000-10-30 2000-10-30 Geological exploration method in front of tunnel face Expired - Fee Related JP3404015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331555A JP3404015B2 (en) 2000-10-30 2000-10-30 Geological exploration method in front of tunnel face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331555A JP3404015B2 (en) 2000-10-30 2000-10-30 Geological exploration method in front of tunnel face

Publications (2)

Publication Number Publication Date
JP2002139574A true JP2002139574A (en) 2002-05-17
JP3404015B2 JP3404015B2 (en) 2003-05-06

Family

ID=18807882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331555A Expired - Fee Related JP3404015B2 (en) 2000-10-30 2000-10-30 Geological exploration method in front of tunnel face

Country Status (1)

Country Link
JP (1) JP3404015B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218766A (en) * 2006-02-17 2007-08-30 Tokyo Electric Power Co Inc:The Geological boundary discrimination method for vicinity of existing tunnel
JP2007231729A (en) * 2006-02-28 2007-09-13 Geoforschungszentrum Potsdam Stiftung Des Oeffentlichen Rechts Method and device for prior survey in tunnel construction
JP2013142659A (en) * 2012-01-12 2013-07-22 Taisei Corp Tunnel face front investigation method
JP2014106075A (en) * 2012-11-27 2014-06-09 Fujita Corp Method for geological survey during tunnel excavation
JP2016095140A (en) * 2014-11-12 2016-05-26 株式会社大林組 Method of exploring ahead of tunnel face
CN107132571A (en) * 2017-05-24 2017-09-05 中铁西南科学研究院有限公司 A kind of multi-source seismic interference method for tunnel geological forecast
CN107271128A (en) * 2017-06-29 2017-10-20 西南交通大学 It is a kind of to simulate the experimental rig that the changing of the relative positions of reversed fault stick-slip triggers Chi-chi earthquake
JP2021521447A (en) * 2018-04-13 2021-08-26 サウジ アラビアン オイル カンパニー Improvement of seismic image
CN115542379A (en) * 2022-03-08 2022-12-30 湖南科技大学 Tunnel advanced geological prediction method, system, medium, equipment and terminal
JP7561100B2 (en) 2021-08-06 2024-10-03 大成建設株式会社 System for detecting ahead of tunnel face, receiver and method for detecting ahead of tunnel face

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513758B2 (en) 2001-04-16 2004-03-31 株式会社地域環境研究所 Visualization method of arbitrary section of ground
CN103399357B (en) * 2013-08-01 2016-11-23 中国建筑第四工程局有限公司 The forecasting procedure of tunnel geology and system
WO2015103721A1 (en) * 2014-01-07 2015-07-16 山东大学 Comprehensive advance geological detection system mounted on tunnel boring machine
CN105785468B (en) * 2016-01-05 2018-01-23 西南交通大学 A kind of simulation tunnel passes through the failure test device and method of oblique changing of the relative positions active fault
CN106198191B (en) * 2016-07-21 2018-11-20 中国科学院武汉岩土力学研究所 A kind of model test apparatus it is contemplated that the tunnel error resilience of Strike-slip fault is broken

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218766A (en) * 2006-02-17 2007-08-30 Tokyo Electric Power Co Inc:The Geological boundary discrimination method for vicinity of existing tunnel
JP2007231729A (en) * 2006-02-28 2007-09-13 Geoforschungszentrum Potsdam Stiftung Des Oeffentlichen Rechts Method and device for prior survey in tunnel construction
JP2013142659A (en) * 2012-01-12 2013-07-22 Taisei Corp Tunnel face front investigation method
JP2014106075A (en) * 2012-11-27 2014-06-09 Fujita Corp Method for geological survey during tunnel excavation
JP2016095140A (en) * 2014-11-12 2016-05-26 株式会社大林組 Method of exploring ahead of tunnel face
CN107132571A (en) * 2017-05-24 2017-09-05 中铁西南科学研究院有限公司 A kind of multi-source seismic interference method for tunnel geological forecast
CN107271128A (en) * 2017-06-29 2017-10-20 西南交通大学 It is a kind of to simulate the experimental rig that the changing of the relative positions of reversed fault stick-slip triggers Chi-chi earthquake
JP2021521447A (en) * 2018-04-13 2021-08-26 サウジ アラビアン オイル カンパニー Improvement of seismic image
JP7358385B2 (en) 2018-04-13 2023-10-10 サウジ アラビアン オイル カンパニー Improving seismic imagery
JP7561100B2 (en) 2021-08-06 2024-10-03 大成建設株式会社 System for detecting ahead of tunnel face, receiver and method for detecting ahead of tunnel face
CN115542379A (en) * 2022-03-08 2022-12-30 湖南科技大学 Tunnel advanced geological prediction method, system, medium, equipment and terminal

Also Published As

Publication number Publication date
JP3404015B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
CA2557526C (en) Prediction of shallow drilling hazards using seismic refraction data
Sjogren Shallow refraction seismics
JP3404015B2 (en) Geological exploration method in front of tunnel face
CN102495434A (en) Advanced geological prediction method for underground engineering
Juhojuntti et al. 3D seismic survey at the Millennium uranium deposit, Saskatchewan, Canada: Mapping depth to basement and imaging post-Athabasca structure near the orebody
CN102426384A (en) Method for detecting underground goaf and karst distribution
US20060262645A1 (en) Seismic surveying arrangement
CN110687607B (en) Stoneley wave detection method and system
Brodic et al. Three-component seismic land streamer study of an esker architecture through S-and surface-wave imaging
Bang et al. Evaluation of shear wave velocity profile using SPT based uphole method
Treadway et al. Shallow seismic study of a fault scarp near Borah Peak, Idaho
JP4157635B2 (en) Tunnel face forward exploration method
Ahmadi et al. Revealing the deeper structure of the end-glacial Pärvie fault system in northern Sweden by seismic reflection profiling
US6330513B1 (en) Prospecting technique
CN117607964A (en) Resource exploration method and management system
JPH07259472A (en) Geological survey in tunnel digging
Lüschen et al. Nature of seismic reflections and velocities from VSP-experiments and borehole measurements at the KTB deep drilling site in southeast Germany
Bailey et al. Shallow geology of the CO2CRC Otway Site: Evidence for previously undetected neotectonic features?
Gendzwill et al. High-resolution seismic reflection surveys to detect fracture zones at the AECL underground research laboratory: J
Goossens et al. The role of seismic surveying in coal mining exploration
Dobecki High Resolution in Saturated Sediments-a case for shear wave reflection
JP2000509153A (en) How to map a drillable area in an oilfield without encountering anomalous areas
Shaibu et al. Uses of seismic refraction tomography in investigation of groundwater potential in Kaduna millennium city, Kaduna Nigeria
CA1114937A (en) Seismic delineation of oil and gas reservoirs using borehole geophones
King An investigation into the characterisation of seismic traces: optimising shear wave signals with source type, orientation and survey geometry

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3404015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees