JP2010008196A - S-wave seismic reflection survey - Google Patents

S-wave seismic reflection survey Download PDF

Info

Publication number
JP2010008196A
JP2010008196A JP2008167133A JP2008167133A JP2010008196A JP 2010008196 A JP2010008196 A JP 2010008196A JP 2008167133 A JP2008167133 A JP 2008167133A JP 2008167133 A JP2008167133 A JP 2008167133A JP 2010008196 A JP2010008196 A JP 2010008196A
Authority
JP
Japan
Prior art keywords
ground
reflection
reflected
underground
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008167133A
Other languages
Japanese (ja)
Inventor
Toshibumi Matsuoka
俊文 松岡
Takao Aizawa
隆生 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suncoh Consultants Co Ltd
Original Assignee
Suncoh Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suncoh Consultants Co Ltd filed Critical Suncoh Consultants Co Ltd
Priority to JP2008167133A priority Critical patent/JP2010008196A/en
Publication of JP2010008196A publication Critical patent/JP2010008196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To certainly obtain S-wave measurement data using a simple geophone without performing complicated data processing such as synthesis processing of records of maximum amplitude direction components. <P>SOLUTION: In the S-wave seismic reflection survey, from reflected waves generated by reflection of underground noise at underground reflection points which occurs on or in the ground from miscellaneous sources of vibration represented by traffic vibration, construction, etc., and the occurrence time of which is unknown, S-waves are selectively and continuously measured with horizontal geophones that are geophones for detecting one component having a vibration characteristic in a single direction and that are disposed in an array in the direction parallel to the stratum or in a horizontal direction, and then, correlation processing by a predetermined correlation function is applied to the obtained S-wave measurement data. Thus, an underground structure is imaged by synthesizing the reflection records of underground reflected S-waves at the surface receiver points without requiring a seismic source for measurement. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反射法地震探査により地下構造をイメージングする反射法地震探査、特に、S波(進行方向と直交方向に振動する波動)を用いたS波反射法地震探査に関する。   The present invention relates to a reflection seismic exploration in which an underground structure is imaged by a reflection seismic exploration, and more particularly to an S wave reflection seismic exploration using S waves (waves oscillating in a direction orthogonal to the traveling direction).

近頃、地中の波動場を異なる2点において同時に測定し、それらの測定波形について自己相関処理に基づく相互相関処理を行うことにより、前記一方の測定点を震源にもう一方の測定点を受震点とした場合の波形を合成するデータ処理を行い、前記2つの観測点を地表にあると考えて合成された波形を従来周知の反射法地震探査で取得した記録と同等であるとの考えの基に反射法地震探査により地下構造をイメージングする反射法地震探査が知られており、例えば特開2006−275914号公報に提示されている。   Recently, the wave field in the ground is measured at two different points at the same time, and the cross-correlation processing based on the autocorrelation processing is performed on these measured waveforms, and the other measurement point is received by the other measurement point. Data processing is performed to synthesize the waveform when it is a point, and it is considered that the waveform synthesized by considering the two observation points on the ground surface is equivalent to a record obtained by a well-known reflection seismic survey Based on the seismic reflection method, a seismic reflection method that images the underground structure is known, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-275914.

前記公報に提示されている反射法地震探査は、地震波干渉法と称され、例えば地表、地中における鉄道や自動車などの交通振動、工事振動などのような各種の地中雑音や自然地震を震動源として測定が可能であることから、従来の人工的な地震発生手段により地中への振動を発生させる反射法地震探査のように大掛かりな地表震源の設置を要することなく地下構造のイメージング化を容易なものとし、また例えば車両走行ノイズ等により充分なS/N比を持つ記録の測定が困難であったり、地表震源の設置が困難であったりして反射法地震探査の実施が困難であった地域においても、容易に実施できるなどの優れた利点を有している。   The reflection seismic exploration presented in the above publication is called seismic interferometry, which vibrates various ground noises and natural earthquakes such as surface vibrations, traffic vibrations of railways and automobiles in the ground, construction vibrations, etc. Since it can be measured as a source, it is possible to image underground structures without the need to install large-scale surface seismic sources, such as reflection seismic surveys that generate vibrations into the ground using conventional artificial earthquake generating means. It is difficult to carry out reflection seismic surveys because it is difficult to measure records with a sufficient S / N ratio due to vehicle running noise, etc. Even in other areas, it has excellent advantages such as easy implementation.

また、反射法地震探査をS波を用いて行う場合にはP波(進行方向へ振動する波動)を用いた場合には得にくい地表付近の細かい地質構造が得られるばかりか地震工学上でもS波を用いた所謂、S波反射法地震探査が有益である。   When reflection seismic surveys are performed using S waves, fine geological structures near the surface, which are difficult to obtain when using P waves (waves oscillating in the traveling direction), are also obtained. So-called S-wave reflection seismic exploration using waves is useful.

ところで、地中へ向かうS波の振動を発生させるには地盤に剪断変形を与えることが必要であり、人工的に振動を発生させる従来の反射法地震探査では、地表面を上下方向に打撃して主として上下方向に振動するS波を発生させるか、地面にプレートなどを設置して水平方向または地面と45度の角度に打撃して主として水平方向に振動するS波を発生させるとともに、上下方向に振動するS波を発生させた場合には鉛直動型受振器により測定し、水平方向に振動するS波を発生させた場合には水平動型受振器により測定していた。   By the way, it is necessary to apply shear deformation to the ground in order to generate S-wave vibration toward the ground. In conventional seismic reflection survey that artificially generates vibration, the ground surface is hit vertically. And generating an S wave that mainly vibrates in the vertical direction, or by placing a plate or the like on the ground and hitting it horizontally or at an angle of 45 degrees with the ground to generate an S wave that mainly vibrates in the horizontal direction. When an S wave that vibrates in the direction is generated, measurement is performed by a vertical motion type geophone, and when an S wave that vibrates in the horizontal direction is generated, measurement is performed by a horizontal motion type geophone.

しかしながら、前記公報に提示されている反射法地震探査(地震波干渉法)は、従来の反射法地震探査と異なり人工的な振動発生手段が不要であるという利点を有する反面、測定に用いるS波の振動方向が特定できない場合が多い。そのため、前後左右の水平動と鉛直動の3軸について測定可能な受振器を設置して測定した雑振動からS波の最大振幅方向の成分の記録を合成する必要があった。   However, the reflection seismic exploration (seismic wave interferometry) presented in the above publication has the advantage of not requiring artificial vibration generating means unlike the conventional reflection seismic exploration. In many cases, the vibration direction cannot be specified. Therefore, it is necessary to synthesize a record of components in the maximum amplitude direction of the S wave from miscellaneous vibrations measured by installing a geophone capable of measuring three axes of front and rear, left and right horizontal movements and vertical movements.

そのため、複雑な機構を有する高価な受振器が必要であるばかりか、3方向成分の記録を合成する必要があるなど煩雑なデータ処理が必要である。
特開2006−275914号公報
Therefore, not only an expensive geophone having a complicated mechanism is required, but also complicated data processing such as the need to synthesize records of three-way components is necessary.
JP 2006-275914 A

本発明は、上記のような問題点を解決しようとするものであり、地上または地中の少なくとも一方におけるランダムな振動源から生じる発生時刻が不明である地中へ向かうS波の振動が地中の反射点で反射した地中反射波を測定して、測定データに所定の相関関数による相関処理を加えることにより、測定のための震源を必要とすることなく前記地表受振点における地中反射波の反射記録を合成して地下構造をイメージするS波反射法地震探査において、S波測定データを簡易な受振器を用いてしかも最大振幅方向の成分の記録の合成処理という複雑なデータ処理をしなくても確実に得ることができるようにすることを課題とする。   The present invention is intended to solve the above-described problems, and the vibration of the S wave toward the ground whose generation time is unknown from a random vibration source on the ground or in the ground is underground. By measuring the ground reflected wave reflected at the reflection point and adding correlation processing with a predetermined correlation function to the measurement data, the ground reflected wave at the ground receiving point is not required without the need for an epicenter for measurement. In S-wave reflection seismic exploration, which synthesizes reflection records and images the underground structure, the S-wave measurement data is processed using a simple geophone and combined with the processing of compositing records of components in the maximum amplitude direction. It is an object to ensure that it can be obtained without the need.

そこで、本発明は、地上または地中で発生した交通振動や工事などに代表される雑振動源から生じる発生時刻が不明である地中雑音が地中の反射点で反射した反射波を、単一方向に振動特性を有する一成分の受振器である水平動型受振器にて、地層と平行方向にまたは水平方向に群列して設置することよりS波を選択的に且つ連続的に測定し、得られたS波測定データに所定の相関関数による相関処理を加えることにより、測定のための震源を必要とすることなく前記地表受振点におけるS波による地中反射波の反射記録を合成して地下構造をイメージすることとした。   In view of this, the present invention simply applies a reflected wave that is reflected from a ground reflection point by underground noise whose generation time is unknown due to traffic vibration generated on the ground or in the ground or from a vibration source represented by construction. S-waves can be measured selectively and continuously by installing in a horizontal motion type geophone which is a one-component geophone having vibration characteristics in one direction, in parallel with the formation or in groups in the horizontal direction. Then, by adding a correlation process using a predetermined correlation function to the obtained S wave measurement data, a reflection record of the ground reflected wave due to the S wave at the ground receiving point is synthesized without the need for an epicenter for measurement. I decided to imagine the underground structure.

このように、地層と平行方向にまたは水平方向に群列して設置した水平動型受振器により、地上または地中の少なくとも一方におけるランダムな振動源から生じる発生時刻が不明である地中へ向かう振動が地中の反射点で反射したランダムな振動方向を有するS波の振動を含む地中反射波の中で、地層と平行方向に振動するS波を選択的に且つ連続的に且つ多量に受振することにより、簡易な受振器を用いてしかも最大振幅方向の成分の記録の合成処理という複雑なデータ処理をしなくてもS波測定データを確実に得ることができる。殊に、本発明のように、雑音振動を発生する地域は多くの場合に堆積層が存在することから、地層と平行方向に伝播する雑音振動中の水平方向に振動するS波を受振することができる。   In this way, the horizontal motion type geophone installed in parallel with the formation or in the horizontal direction is directed to the ground where the generation time from the random vibration source on the ground or at least one of the ground is unknown. Among underground reflected waves, including vibrations of S waves with random vibration directions reflected by reflection points in the ground, S waves that vibrate in a direction parallel to the formation are selectively, continuously and in large quantities. By receiving vibrations, it is possible to reliably obtain S-wave measurement data using a simple geophone and without performing complicated data processing such as composition processing of recording of components in the maximum amplitude direction. In particular, as in the present invention, a region where noise vibration is generated often includes a sedimentary layer, so that it receives S waves that vibrate in the horizontal direction in noise vibration that propagates in parallel to the formation. Can do.

本発明によれば、人工的に必要な振動を発生させる必要のない地表や地中のランダムに発生する振動を震源として用いるS波反射法地震探査において、S波測定データを簡易な受振器を用いてしかも最大振幅方向の成分の記録の合成処理という複雑なデータ処理をしなくても確実に得ることができる。   According to the present invention, a simple geophone is used for S wave measurement data in an S wave reflection method seismic survey using a vibration that is generated randomly on the ground surface or in the ground that does not require the generation of artificially required vibration. In addition, it can be reliably obtained without performing complicated data processing such as composition processing of recording of components in the maximum amplitude direction.

次に、図面を参照して本発明の実施の形態を以下に説明する。   Next, embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の好ましい実施の形態の測線SLについての配置を示す平面図であり、図示の横方向へ延びる川Rに架設された2本の橋1および橋2を有する鉄道の路線1と路線2とが配置されており、また、前記川Rの橋1および橋2の中間位置における堤防に全長216mの測線SLが形成されている。   FIG. 1 is a plan view showing an arrangement with respect to a survey line SL according to a preferred embodiment of the present invention. A railway line 1 having two bridges 1 and a bridge 2 laid on a river R extending in the lateral direction shown in FIG. A route 2 is arranged, and a survey line SL having a total length of 216 m is formed on the bank at the intermediate position between the bridge 1 and the bridge 2 of the river R.

前記測線SLには図示橋H1側の始点から橋2側の終点までに108個の水平動型受振器(水平成分10Hz型のジオフォン)が2m間隔で所定位置(チャンネル(ch)1〜チャンネル(ch)108)に設置されている(図示せず)。   From the start point on the bridge H1 side to the end point on the bridge 2 side, 108 horizontal motion type geophones (horizontal component 10 Hz type geophones) are located at predetermined positions (channel (ch) 1 to channel (2 m)) on the survey line SL. ch) 108) (not shown).

そして、前記108個(チャンネル(ch)1〜チャンネル(ch)108)の受振器により路線1と路線2を通過中の列車の振動を測定した。   And the vibration of the train passing through the route 1 and the route 2 was measured by the 108 (channel (ch) 1 to channel (ch) 108) geophones.

尚、1ショット当たりの測定時間長は、3時間(h)、サンプリング間隔は1ミリ秒(ms)である。   The measurement time length per shot is 3 hours (h), and the sampling interval is 1 millisecond (ms).

図2は取得した測定データの波形記録例を示すものであり、前記路線1と路線2を通過中の列車の振動によるものと思われる波群が確認できる。   FIG. 2 shows a waveform recording example of the acquired measurement data, and it is possible to confirm a wave group that seems to be due to the vibration of the train passing through the route 1 and the route 2.

尚、ホワイトノイズ(不規則に上下に振動する波)震源による地中反射波の場合に記録長を多くとることにより反射記録のS/N比が向上することが知られており、本実施の形態のようなS波(パルス波)についても成り立つことから長時間の測定が良好なS/N比の反射記録が得られる。   In addition, it is known that the S / N ratio of the reflection record is improved by increasing the recording length in the case of the underground reflected wave due to the source of white noise (waves oscillating up and down irregularly). Since this also holds for S waves (pulse waves) as in the form, reflection recording with a good S / N ratio can be obtained for a long time measurement.

そして、次に、前記取得した各測定データに対して相互相関処理を行い、疑似ショット記録を合成した。図3は仮想震源を受振点をチャンネル(ch)60の箇所とした場合の疑似ショット記録を示すものである。尚、図3(a)は30秒(s)、図3(b)は20分(m)、図3(c)は40分(m)、図3(d)は60分(m)の連続測定データに対して相関処理を施したものである。   Then, a cross-correlation process was performed on each acquired measurement data to synthesize a pseudo shot record. FIG. 3 shows a pseudo shot recording when the hypocenter is a channel (ch) 60 at the receiving point. 3A is 30 seconds (s), FIG. 3B is 20 minutes (m), FIG. 3C is 40 minutes (m), and FIG. 3D is 60 minutes (m). Correlation processing is performed on continuous measurement data.

これらの結果によれば、図3(a)に示した30秒(s)の記録を用いた相関結果に対して、図3(b)に示した20分の記録を用いた相関結果は著しく品質が向上しているのが確認できる。   According to these results, the correlation result using the 20-minute recording shown in FIG. 3B is remarkably different from the correlation result using the 30-second (s) recording shown in FIG. You can see that the quality has improved.

次に、前記相関処理後の疑似ショット記録に対して、従来の反射法と同様に、CMPソート、NMO補正、静補正、CMP重合処理を適用して得られた反射深度断面を図4に示す。   Next, FIG. 4 shows a reflection depth cross section obtained by applying CMP sort, NMO correction, static correction, and CMP polymerization processing to the pseudo shot recording after the correlation processing, as in the conventional reflection method. .

図4には、往復走時0.6秒(s)付近で、ほぼ水平に連続する明瞭な反射面が確認できる。深度を換算すると60メートル(m)となり、深さ100メートル(m)程度の探査が可能であることが推定される。また、往復走時1.0秒(s)以上においても、より深部の構造に対応するいくつか反射波の波群が確認できる。   In FIG. 4, a clear reflecting surface that is substantially horizontally continuous can be confirmed at around 0.6 seconds (s) during reciprocation. When the depth is converted, it becomes 60 meters (m), and it is estimated that exploration of a depth of about 100 meters (m) is possible. In addition, even in the case of 1.0 second (s) or more during the reciprocating travel, several reflected wave groups corresponding to deeper structures can be confirmed.

以上のように、本実施の形態によれば、鮮明な反射面をイメージングすることが確認され、本発明が有効であることが立証された。従って、人工的なS波振動発生手段ならびに複雑な3方向成分の記録による解析を要することなくS波反射法地震探査が可能であることがわかった。   As described above, according to the present embodiment, it has been confirmed that a clear reflecting surface is imaged, and it has been proved that the present invention is effective. Therefore, it has been found that the S-wave reflection seismic exploration is possible without requiring an analysis by recording an artificial S-wave vibration generating means and complicated three-way components.

本発明における実施の形態についての配置を示す平面図。The top view which shows arrangement | positioning about embodiment in this invention. 図1の実施の形態おける取得した測定データの波形記録例。The waveform recording example of the acquired measurement data in embodiment of FIG. 図1の実施の形態における各測定データに対して相互相関処理を行い、疑似ショット記録を合成した記録。A record obtained by performing cross-correlation processing on each measurement data in the embodiment of FIG. 図1の実施の形態における反射法地震探査解析を施して得た反射断面。The reflection cross section obtained by performing the reflection method seismic exploration analysis in embodiment of FIG.

符号の説明Explanation of symbols

1 橋、 2 橋、 SL 測線、 R 川   1 bridge, 2 bridges, SL survey line, R river

Claims (2)

地上または地中で発生した交通振動や工事などに代表される雑振動源から生じる発生時刻が不明である地中雑音が地中の反射点で反射した反射波を、単一方向に振動特性を有する一成分の受振器である水平動型受振器にて、地層と平行方向に群列して設置することよりS波を選択的に且つ連続的に測定し、得られたS波測定データに所定の相関関数による相関処理を加えることにより、測定のための震源を必要とすることなく前記地表受振点におけるS波による地中反射波の反射記録を合成して地下構造をイメージすることを特徴とするS波反射法地震探査。   The reflected characteristics of underground noise reflected from reflection points in the ground with unknown generation time generated from noise sources such as traffic vibration and construction that occurred on the ground or in the ground have vibration characteristics in a single direction. S-waves are selectively and continuously measured by installing them in a group parallel to the formation in a horizontal motion type geophone which is a single-component geophone, and the obtained S-wave measurement data By adding correlation processing with a predetermined correlation function, the underground structure is imaged by synthesizing reflection records of underground reflected waves due to S waves at the ground receiving point without the need for an epicenter for measurement. S-wave reflection seismic survey. 地上または地中で発生した交通振動や工事などに代表される雑振動源から生じる発生時刻が不明である地中雑音が地中の反射点で反射した反射波を、単一方向に振動特性を有する一成分の受振器である水平動型受振器にて、水平方向に群列して設置することよりS波を選択的に且つ連続的に測定し、得られたS波測定データに所定の相関関数による相関処理を加えることにより、測定のための震源を必要とすることなく前記地表受振点におけるS波による地中反射波の反射記録を合成して地下構造をイメージすることを特徴とするS波反射法地震探査。   The reflected characteristics of ground noise reflected from ground reflection points that are generated from ground vibration sources such as traffic vibrations or constructions that are generated in the ground or unknown are reflected in a single direction. A horizontal motion type geophone which is a one-component geophone has a S group selectively and continuously measured by grouping in a horizontal direction, and the obtained S wave measurement data has a predetermined value. By adding a correlation process using a correlation function, an underground structure is imaged by synthesizing reflection records of underground reflected waves due to S waves at the ground receiving point without requiring an epicenter for measurement. S wave reflection seismic survey.
JP2008167133A 2008-06-26 2008-06-26 S-wave seismic reflection survey Pending JP2010008196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167133A JP2010008196A (en) 2008-06-26 2008-06-26 S-wave seismic reflection survey

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167133A JP2010008196A (en) 2008-06-26 2008-06-26 S-wave seismic reflection survey

Publications (1)

Publication Number Publication Date
JP2010008196A true JP2010008196A (en) 2010-01-14

Family

ID=41588893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167133A Pending JP2010008196A (en) 2008-06-26 2008-06-26 S-wave seismic reflection survey

Country Status (1)

Country Link
JP (1) JP2010008196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106075A (en) * 2012-11-27 2014-06-09 Fujita Corp Method for geological survey during tunnel excavation
CN110780344A (en) * 2019-11-04 2020-02-11 北京化工大学 Shallow earth surface structure imaging method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014172A (en) * 2000-06-28 2002-01-18 Kinki Chishitsu Center:Kk Seismic wave generating apparatus, search apparatus and method for recording seismic wave
JP2004279064A (en) * 2003-03-12 2004-10-07 Yuzuru Ashida Three-dimensional reflection survey data acquisition method using s-wave
JP2006017584A (en) * 2004-07-01 2006-01-19 Japan Science & Technology Agency Three-dimensional survey method using s-wave, s-wave earthquake-generating device, and three-dimensional survey device
JP2006275914A (en) * 2005-03-30 2006-10-12 Toshibumi Matsuoka Method of imaging subsurface structure by reflection method seismic exploration
JP2007298369A (en) * 2006-04-28 2007-11-15 Oyo Corp Well-to-well elastic wave tomography method by surface focus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014172A (en) * 2000-06-28 2002-01-18 Kinki Chishitsu Center:Kk Seismic wave generating apparatus, search apparatus and method for recording seismic wave
JP2004279064A (en) * 2003-03-12 2004-10-07 Yuzuru Ashida Three-dimensional reflection survey data acquisition method using s-wave
JP2006017584A (en) * 2004-07-01 2006-01-19 Japan Science & Technology Agency Three-dimensional survey method using s-wave, s-wave earthquake-generating device, and three-dimensional survey device
JP2006275914A (en) * 2005-03-30 2006-10-12 Toshibumi Matsuoka Method of imaging subsurface structure by reflection method seismic exploration
JP2007298369A (en) * 2006-04-28 2007-11-15 Oyo Corp Well-to-well elastic wave tomography method by surface focus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013031629; 木村俊則 他: '交通ノイズを利用した地震波干渉法によるS波探査' 物理探査学会学術講演会講演論文集 Vol.118th, 200805, Page.79-80

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106075A (en) * 2012-11-27 2014-06-09 Fujita Corp Method for geological survey during tunnel excavation
CN110780344A (en) * 2019-11-04 2020-02-11 北京化工大学 Shallow earth surface structure imaging method and device

Similar Documents

Publication Publication Date Title
KR20200014387A (en) Detection of underground structures
MX2011008292A (en) Seismic acquisition system and technique.
US8255164B2 (en) Methods and systems for borehole seismic
CN104678426A (en) Tunnel boring machine active source three-dimensional seismic advanced detection device and method
RU2282877C2 (en) Method of correcting seismic data at sea seismic prospecting
US9519070B2 (en) Earthquake precursor observation device and method
WO2009117336A1 (en) Method for imaging the earth&#39;s subsurface using passive seismic sensing
BRPI0902827A2 (en) method for summing dual sensor towed cable signals using crossover phantom effect analysis
CA2806192A1 (en) Seismic acquisition method for mode separation
Hayashi et al. CMP spatial autocorrelation analysis of multichannel passive surface-wave data
US11709288B2 (en) Seismic imaging with source deconvolution for marine vibrators with random source signatures
Margrave et al. The Hussar low-frequency experiment
JP6531934B2 (en) Hybrid surface wave search method and hybrid surface wave search system
JP4181139B2 (en) Subsurface imaging method by seismic reflection survey
JP2010008196A (en) S-wave seismic reflection survey
CN108121010A (en) Based on the united underground dead face slot wave forward probe method and system in hole lane
Bakulin et al. Seismic imaging of vertical array data acquired using smart DAS uphole acquisition system
Kasahara et al. Simultaneous time-lapse data acquisition of active and passive seismic sources at Al Wasse water pumping field in Saudi Arabia
Park et al. Multichannel analysis of passive surface waves–modeling and processing schemes
RU2650718C1 (en) Method of vibration seismic survey
JP5174526B2 (en) Seismic interferometry
Sugimoto et al. Study of underground imaging using shear waves: the stacking method of the reflected scattered wave
Zong et al. A walkaway VSP survey for fractured-basement imaging using RSS-RTM
JP2006017584A (en) Three-dimensional survey method using s-wave, s-wave earthquake-generating device, and three-dimensional survey device
Baglari et al. Aspects of dispersion imaging scheme of passive MASW survey for subsurface characterization

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130426

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616