JP3308478B2 - Exploration method in front of tunnel face - Google Patents
Exploration method in front of tunnel faceInfo
- Publication number
- JP3308478B2 JP3308478B2 JP34478597A JP34478597A JP3308478B2 JP 3308478 B2 JP3308478 B2 JP 3308478B2 JP 34478597 A JP34478597 A JP 34478597A JP 34478597 A JP34478597 A JP 34478597A JP 3308478 B2 JP3308478 B2 JP 3308478B2
- Authority
- JP
- Japan
- Prior art keywords
- face
- tunnel
- drilling
- elastic wave
- logging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Geophysics And Detection Of Objects (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、トンネル等を掘削
する際に、切羽前方の地質状況を可能な限り的確に予測
する予測方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prediction method for predicting a geological situation in front of a face as accurately as possible when excavating a tunnel or the like.
【0002】[0002]
【従来の技術】従来から、計画・設計段階の調査として
は、地表地質踏査と地表弾性波探査および抗口付近のボ
ーリング調査が実施されているに過ぎず、主として弾性
波速度から、トンネル路線沿いに地山分類が行われ、地
山分類から支保パターン設定がされてきた。しかしなが
ら、特に土被りが大である場合は、断層破砕帯の位置や
規模についての精度は悪いのが現状であり、施工中の調
査で補う方法が採用されている。2. Description of the Related Art Conventionally, only surveys at the planning and design stages include surface geological surveys, surface acoustic wave exploration, and boring surveys near an entrance, and mainly from the elastic wave velocity and along the tunnel route. Ground classification was performed, and support patterns were set based on the ground classification. However, especially when the earth cover is large, the accuracy of the position and scale of the fault crush zone is poor at present, and a method of compensating for the survey during construction is adopted.
【0003】また、施工中の切羽前方調査としては、確
実な方法としては、先進ボーリングがある。この方法
は、地質状況が確実に把握できるがトンネル掘削と並行
して実施できないため、施工の支障となる。[0003] An advanced boring method is a reliable method for investigating the front face of a face during construction. Although this method can grasp the geological condition without fail, it cannot be carried out in parallel with the tunnel excavation, which hinders the construction.
【0004】これに対し、施工に用いるドリルジャンボ
で切羽からノンコアのボーリングを行なうさぐりボーリ
ングがあるが、削孔速度とスライムだけで地質状況を把
握するものであり、それだけでは的確な予測は困難であ
る。[0004] On the other hand, there is drill boring in which non-core boring is performed from a face with a drill jumbo used for construction. However, it is difficult to accurately predict the geological condition only by drilling speed and slime. is there.
【0005】そこで、このドリルジャンボによるノンコ
アボーリングを用い、岩石の破壊エネルギの多少によ
り、岩盤評価および切羽前方地質の予測を行なう方法
(削孔検層という)が本出願人により、開示されている
(特公平7−49756号公報参照)。Accordingly, the present applicant has disclosed a method (referred to as a borehole logging) of performing rock mass evaluation and predicting geology in front of a face by using non-core boring using a drill jumbo, depending on the fracture energy of rock. (See Japanese Patent Publication No. 7-49756).
【0006】さらに、ドリルジャンボによる孔に受振器
を挿入し、切羽位置からの振動を測定することにより弾
性波速度を求める方法も提案されており、岩盤評価の指
標として有効な弾性波速度により、地質状況を予測する
ものである(速度検層という)。[0006] Furthermore, a method has been proposed in which a geophone is inserted into a hole formed by a drill jumbo, and an elastic wave velocity is obtained by measuring vibration from a face position. It predicts geological conditions (referred to as velocity logging).
【0007】また、弾性波探査反射法の原理を用いたT
SP(Tunnel Seismic Predict
ion)という方法があり、トンネル壁面に複数の発破
孔と受振孔とを設置し、切羽前方の不連続面の位置・傾
きを算出・表示する。[0007] In addition, T using the principle of the elastic wave exploration reflection method.
SP (Tunnel Seismic Predict)
There is a method called “ion”, in which a plurality of blast holes and vibration receiving holes are provided on the tunnel wall surface, and the position and inclination of the discontinuous surface in front of the face are calculated and displayed.
【0008】一方、トンネル掘削では通常切羽観察が実
施される。そこで、デジタルカメラにより切羽を撮影
し、地質判定を行なう切羽画像処理システムが開発され
ているが、切羽を撮影し、地質判定する作業を継続すれ
ば、切羽前方5メートル程度は地質状況を予測できる。[0008] On the other hand, face observation is usually performed in tunnel excavation. Therefore, a face image processing system has been developed in which the face is photographed by a digital camera and the geological determination is performed. However, if the work of photographing the face and performing the geological determination is continued, the geological situation can be predicted about 5 meters in front of the face. .
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上述し
た技術においては、例えば、先進ボーリングはトンネル
掘削を中断しなければならず、探りボーリングは工程に
影響はないもののスライムと削孔速度だけでは地質状況
を的確に判断できない。However, in the above-mentioned technology, for example, advanced boring requires the interruption of tunnel excavation, and exploratory boring does not affect the process, but the geological condition is determined only by slime and drilling speed. Cannot be determined accurately.
【0010】また、探りボーリングを改良した前記削孔
検層では工程に影響を及ぼさないものの、破壊エネルギ
を用いて岩盤評価を行なうので、この方法だけでは既存
の岩盤物性と対応付けがなく、信頼性に疑問が残る。[0010] In addition, in the above-mentioned borehole logging with improved drilling, although the process is not affected, the rock mass is evaluated by using the fracture energy. Therefore, this method alone does not correspond to the existing rock mass properties, and is not reliable. Sex remains a question.
【0011】さらに、速度検層はよい指標となる弾性波
速度が得られるが、全区間の実施は手間が係り実用的で
なく、TSPも不良の程度の判断が難しく、不連続面の
存在位置には誤差がある等、いずれも単独で予測する事
は困難である。Further, the velocity logging can provide an elastic wave velocity which is a good index. However, the implementation of all sections is time-consuming and impractical, and the TSP is difficult to judge the degree of failure. It is difficult to predict any of them independently because there is an error.
【0012】したがって、本発明は掘削するトンネル等
の前方の地質状況を適確に予測し、事前に不良地質部の
対策がとれ、安全に且つ経済的に施工出来るトンネル切
羽前方探査方法を提供することを目的としている。Accordingly, the present invention provides a method for exploring the front face of a tunnel face, which can accurately predict the geological condition ahead of a tunnel to be excavated, take measures against a defective geological portion in advance, and can safely and economically construct the tunnel face. It is intended to be.
【0013】[0013]
【課題を解決するための手段】本発明によれば、掘削す
るトンネルの事前調査により、路線沿いに地山の弾性波
速度を測定し破砕帯の概略位置・規模を推定し、この情
報から切羽の前方探査の必要区間を判断し、先ず弾性波
探査反射法により切羽前方所定距離までの不連続面の存
在を予測し、ついで、不連続面に切羽が近ずいた時点
で、ドリルジャンボによる孔を用いて削孔検層を行なっ
て破壊エネルギー係数を求め、削孔検層を行なった孔で
速度検層を行なって、弾性波速度により地質状況の予測
を行なうと共に、弾性波速度と破壊エネルギー係数との
相関関係が確認できれば、以後削孔検層だけで地質状況
を予測する事を特徴としている。According to the present invention, the preliminary survey of a tunnel to be excavated measures the elastic wave velocity of the ground along the route to estimate the approximate position and scale of the shatter zone, and from this information First, the required section of the frontal exploration is determined, and the existence of a discontinuous surface up to a predetermined distance in front of the face is predicted by the elastic wave exploration reflection method. Then, when the face approaches the discontinuous surface, the hole by the drill jumbo Drilling logs are used to determine the fracture energy coefficient, velocity logging is performed at the drilled holes, geological conditions are predicted by elastic wave velocities, and elastic wave velocities and fracture energies are calculated. If the correlation with the coefficient can be confirmed, the feature is that the geological situation is predicted only from the borehole logging.
【0014】また本発明によれば、掘削時に切羽画像処
理システムにより切羽近傍の地質状況を把握して掘削を
行う事を特徴としている。Further, according to the present invention, at the time of excavation, the excavation is performed by grasping the geological condition near the face by the face image processing system.
【0015】[0015]
【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0016】図1は、本発明に係るトンネル切羽前方探
査方法の全体構成を示しており、TSPシステム1、削
孔検層システム2、速度検層システム3、切羽画像処理
システム4の4つのサブシステムを有しており、それぞ
れのシステムはいずれも汎用パソコンソフト(例えば、
Windows)を用い、同じ出力形式で統合したシス
テムとしている。そして、各システムは探査結果評価シ
ステムに探査結果が入力されるよう構成されており、各
システムからの結果を総合的に評価して、地質状況との
対応も分析する。FIG. 1 shows the entire configuration of a method for exploring the front of a tunnel face according to the present invention, and includes four sub-systems: a TSP system 1, a borehole logging system 2, a speed logging system 3, and a face image processing system 4. System, and each system has general-purpose personal computer software (for example,
Windows), and the system is integrated in the same output format. Each system is configured to input a search result to a search result evaluation system, and comprehensively evaluates a result from each system and analyzes a correspondence with a geological situation.
【0017】また、これらの探査結果はデータベース化
しておき、次の探査にフィードバックさせることがで
き、さらに精度の向上を図ることが出来るようになって
いる。図2は、図1に示すシステムの出力イメージを示
すもので、それぞれのサブシステムの探査結果を合わせ
て表示し、予測された地質状況が記入できるよう組み立
てられている。ここで、符号5はトンネル、6、7は破
砕帯、8は切羽をそれぞれ示している。Further, these search results are stored in a database and can be fed back to the next search, so that the accuracy can be further improved. FIG. 2 shows an output image of the system shown in FIG. 1, which is constructed so that the search results of the respective subsystems are displayed together and the predicted geological situation can be entered. Here, reference numeral 5 denotes a tunnel, 6 and 7 denote crush zones, and 8 denotes a face.
【0018】以下、トンネル前方の切羽探査手順を、図
3を参照して、説明する。The procedure for exploring the face in front of the tunnel will now be described with reference to FIG.
【0019】先ず、事前調査により、トンネル路線沿い
の弾性波速度や破砕帯の概略の位置・規模が推定されて
いるので、この情報をもとに前方地質の予測を行ない
(ステップS1)、トンネル内からの前方探査が必要で
あるか否か判断する(ステップS2)。必要が無い場合
は、掘削を続行し(ステップS8)、前方探査が必要で
ある場合は、TSPで切羽前方所定距離例えば100〜
150m先までの破砕帯の存在や概略位置を予測する
(ステップS3)。次に、以上の結果をみて、さらに詳
細な調査が必要か否か判断する(ステップS4)。不用
であれば、掘削作業を続行し(ステップS8)、調査が
必要であれば、ドリルジャンボによるノンコアボーリン
グ孔を用いて削孔検層を行ない(ステップS5)、削孔
検層のキャリブレーションのために速度検層を数回実施
する(ステップS9)。掘削初期の段階で削孔検層の破
壊エネルギー係数と速度検層の弾性波速度の相関関係が
把握出来れば、以後は削孔検層だけ実施すればよい。こ
れらの調査結果をもとに、破砕帯の大小、湧水量の大
小、止水対策の必要性等を判断する(ステップS6)。
掘削に支障がない場合は掘削を続行し(ステップS
8)、支障がある場合は地山改良や水抜きボーリング等
の対策を実施し(ステップS7)、掘削を行なう(ステ
ップS8)。そして、切羽近傍の地質状況を把握しつつ
掘削作業を行なうため、デジタルカメラによる地質観察
システムにより観察を実施し(ステップS10)、支保
パターンに反映させることが出来る。First, the preliminary geological survey estimates the elastic wave velocity along the tunnel route and the approximate position and scale of the shatter zone. Based on this information, the forward geology is predicted (step S1). It is determined whether or not a forward search from inside is necessary (step S2). If there is no need, the excavation is continued (step S8), and if forward exploration is necessary, a predetermined distance in front of the face by TSP, for example, 100 to
The existence and approximate position of the crush zone up to 150 m ahead are predicted (step S3). Next, based on the above results, it is determined whether further detailed investigation is necessary (step S4). If unnecessary, the drilling operation is continued (step S8), and if investigation is necessary, drilling is performed using non-core boring holes using a drill jumbo (step S5), and calibration of the drilling log is performed. For this purpose, velocity logging is performed several times (step S9). If the correlation between the fracture energy coefficient of the borehole logging and the elastic wave velocity of the velocity logging can be grasped at the early stage of excavation, only the drilling logging needs to be performed thereafter. Based on the results of these investigations, the size of the crush zone, the size of the spring water, the necessity of water stoppage measures, and the like are determined (step S6).
If there is no obstacle to the excavation, the excavation is continued (step S
8) If there is a problem, measures such as ground improvement and drainage boring are performed (step S7), and excavation is performed (step S8). Then, in order to perform the excavation work while grasping the geological condition in the vicinity of the face, observation can be performed by a geological observation system using a digital camera (step S10), and the observation can be reflected on the support pattern.
【0020】図4〜図10は、軟岩の岩盤中に掘削され
たトンネルに本願の切羽前方探査方法を実施した例を示
し、図4は縦軸に破壊エネルギー係数、横軸に深度を表
しており、ドリルジャンボによる孔を用いて削孔検層を
実施した例であり、削孔検層により求められた深度ごと
の破壊エネルギー係数を、図5は縦軸に平均破壊エネル
ギー係数を表し、深度1mごとに平均した破壊エネルギ
ー係数を、図6は、横軸に深度を表してスライム観察結
果を、図7は、縦軸に速度検層により求められた1mご
との区間速度を、図8は、縦軸に伝搬時間、横軸に深度
を表した走時曲線で傾きが一定となる区間の速度を、そ
れぞれ示している。FIGS. 4 to 10 show examples in which the method for exploring the front face of a face of the present invention is applied to a tunnel excavated in soft rock, and FIG. 4 shows the fracture energy coefficient on the vertical axis and the depth on the horizontal axis. This is an example in which drilling is performed using a hole formed by a drill jumbo. The fracture energy coefficient at each depth obtained by the drilling log is shown in FIG. 5, and the vertical axis represents the average fracture energy coefficient. FIG. 6 shows the slime observation results by expressing the depth on the horizontal axis, FIG. 7 shows the section speed for each 1 m obtained by velocity logging on the vertical axis, and FIG. The vertical axis represents the propagation time, and the horizontal axis represents the velocity in a section where the slope is constant in a travel time curve representing depth.
【0021】また、図9は、縦軸に平均破壊エネルギー
係数、横軸に泥岩、互層、凝灰岩を表し、図4〜8の孔
を含む同一トンネルの複数の孔での削孔検層結果を合わ
せたものであり、地質と平均エネルギー係数の関係を示
すが、平均エネルギー係数により、概略の地質判定が可
能である事を示している。FIG. 9 shows the average fracture energy coefficient on the vertical axis and mudstone, alternation and tuff on the horizontal axis, and shows the results of drilling logs at a plurality of holes in the same tunnel including the holes shown in FIGS. It shows the relationship between the geology and the average energy coefficient, and indicates that the approximate geology can be determined by the average energy coefficient.
【0022】図10は、縦軸に区間速度、横軸に平均破
壊エネルギー係数を表し、図9と同様の孔での削孔検層
による平均破壊エネルギー係数と、速度検層による区間
速度と(走時曲線で傾きが一定となる区間の速度)との
相関関係を示したものであるが、かなり良い相関(相関
係数0.71)となっている。これは掘削の初期の段階
で、削孔検層と速度検層とを同一孔で実施し、平均破壊
エネルギー係数と区間速度との相関関係を把握しておけ
ば、以後簡便な削孔検層だけ実施すればよい事を示して
いる。FIG. 10 shows the section speed on the vertical axis and the average fracture energy coefficient on the horizontal axis, and shows the average fracture energy coefficient obtained by drilling a hole in the same hole as in FIG. This shows the correlation with the travel time curve (the speed in the section where the slope is constant), but has a fairly good correlation (correlation coefficient 0.71). This is because, in the early stage of drilling, drilling and velocity logging are performed in the same hole, and if the correlation between the average fracture energy coefficient and the section speed is grasped, a simple drilling It indicates that only the implementation is required.
【0023】[0023]
【発明の効果】本発明は上記のように構成されており、
TSP、削孔検層、速度検層、切羽画像処理の4つの組
み合わせにより、切羽前方の地質状況の予測が可能とな
り、事前に地質不良部にたいし、支保パターンの変更や
注入、フォアパイリング等の補助工法を用いることが出
来、したがって、施工の安全性および経済性を向上する
ことが出来る。The present invention is configured as described above,
The combination of TSP, drilling logging, velocity logging, and face image processing makes it possible to predict the geological condition ahead of the face, change the support pattern, inject, fore piling, etc., in advance for poor geological features Therefore, it is possible to improve the safety and economy of construction.
【図1】本発明の一実施の形態を示す切羽前方探査方法
の全体構成図。FIG. 1 is an overall configuration diagram of a method for exploring a front face of a face showing an embodiment of the present invention.
【図2】図1による切羽前方探査方法による出力のイメ
ージを示す図。FIG. 2 is a view showing an image of an output by the method for searching for a front face of a face according to FIG. 1;
【図3】図1の方法の探査手順を示す手順のフローチャ
ト図。FIG. 3 is a flowchart illustrating a search procedure of the method of FIG. 1;
【図4】削孔検層結果の一例である破壊エネルギー係数
を示す図。FIG. 4 is a diagram showing a fracture energy coefficient as an example of a drilling log result.
【図5】削孔検層結果の一例である平均破壊エネルギー
係数を示す図。FIG. 5 is a diagram showing an average fracture energy coefficient as an example of a borehole logging result.
【図6】スライム観察結果の一例を示す図。FIG. 6 is a view showing an example of a slime observation result.
【図7】速度検層結果の一例である1mごとの区間速度
を示す図。FIG. 7 is a diagram showing a section speed every 1 m, which is an example of a speed logging result.
【図8】速度検層結果の一例である区間速度を示す図。FIG. 8 is a diagram showing a section speed as an example of a speed logging result.
【図9】地質と平均破壊エネルギー係数の関係の例を示
す図。FIG. 9 is a diagram showing an example of a relationship between geology and an average fracture energy coefficient.
【図10】平均破壊エネルギー係数と区間速度との相関
関係を例示する図。FIG. 10 is a diagram illustrating a correlation between an average breaking energy coefficient and a section speed.
1・・・TSPシステム 2・・・削孔検層システム 3・・・速度検層システム 4・・・切羽画像処理システム DESCRIPTION OF SYMBOLS 1 ... TSP system 2 ... Drilling logging system 3 ... Velocity logging system 4 ... Face image processing system
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山 本 拓 治 東京都調布市飛田給二丁目19番1号 鹿 島建設株式会社技術研究所内 (72)発明者 宮 嶋 保 幸 東京都調布市飛田給二丁目19番1号 鹿 島建設株式会社技術研究所内 (56)参考文献 特開 平4−161588(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 33/24 E21D 9/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuji Yamamoto 2-9-1-1, Tobita-Ki, Chofu-shi, Tokyo Inside Kashima Engineering Co., Ltd. No. 19-1, Kashima Construction Co., Ltd. Technical Research Institute (56) References JP-A-4-161588 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 33/24 E21D 9/00
Claims (2)
線沿いに地山の弾性波速度を測定し破砕帯の概略位置・
規模を推定し、この情報から切羽の前方探査の必要区間
を判断し、先ず弾性波探査反射法により切羽前方所定距
離までの不連続面の存在を予測し、ついで、不連続面に
切羽が近ずいた時点で、ドリルジャンボによる孔を用い
て削孔検層を行なって破壊エネルギー係数を求め、削孔
検層を行なった孔で速度検層を行なって、弾性波速度に
より地質状況の予測を行なうと共に、弾性波速度と破壊
エネルギー係数との相関関係が確認できれば、以後削孔
検層だけで地質状況を予測する事を特徴とするトンネル
切羽前方探査方法。1. Preliminary survey of a tunnel to be excavated, measurement of the elastic wave velocity of the ground along the route,
The scale is estimated, the necessary section for exploration of the face in front is determined from this information, and the existence of a discontinuous surface up to a predetermined distance in front of the face is first predicted by the elastic wave exploration reflection method. At the time of the drilling, the drilling logging was performed using the hole by the drill jumbo to determine the fracture energy coefficient, and the velocity logging was performed on the drilled hole, and the geological condition was predicted by the elastic wave velocity. A method for exploring a tunnel face in front of a tunnel face, in which a geological situation is predicted only by drilling logs if a correlation between elastic wave velocity and fracture energy coefficient can be confirmed.
羽近傍の地質状況を把握して掘削を行う請求項1記載の
トンネル切羽前方探査方法。2. The method for exploring the front of a tunnel face according to claim 1, wherein the excavation is performed by grasping the geological condition near the face by the face image processing system during the excavation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34478597A JP3308478B2 (en) | 1997-12-15 | 1997-12-15 | Exploration method in front of tunnel face |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34478597A JP3308478B2 (en) | 1997-12-15 | 1997-12-15 | Exploration method in front of tunnel face |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11174046A JPH11174046A (en) | 1999-07-02 |
JP3308478B2 true JP3308478B2 (en) | 2002-07-29 |
Family
ID=18371972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34478597A Expired - Lifetime JP3308478B2 (en) | 1997-12-15 | 1997-12-15 | Exploration method in front of tunnel face |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3308478B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5223333B2 (en) * | 2007-12-28 | 2013-06-26 | 株式会社大林組 | Method for calculating correlation between drilling speed ratio and natural ground parameter, and method for predicting face front using it |
JP5258734B2 (en) * | 2009-11-10 | 2013-08-07 | 鹿島建設株式会社 | Tunnel front face exploration method and exploration system |
CN102830426A (en) * | 2012-08-10 | 2012-12-19 | 中国建筑第四工程局有限公司 | Method and device for monitoring tunnel geology |
JP6465659B2 (en) * | 2015-01-15 | 2019-02-06 | 戸田建設株式会社 | Geological exploration method and industrial endoscope device in front of tunnel face |
JP6802641B2 (en) * | 2016-05-02 | 2020-12-16 | 大成建設株式会社 | Evaluation method of the ground around the tunnel and tunnel construction method |
JP6612196B2 (en) * | 2016-07-27 | 2019-11-27 | 日本システムウエア株式会社 | Rock Strength Judging Device, Rock Strength Judging Method, and Rock Strength Judging Program |
CN106772565B (en) * | 2016-12-23 | 2017-09-05 | 山东大学 | The loading device and method of a kind of TBM seismic waves advanced prediction instrument |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0749756B2 (en) * | 1990-10-22 | 1995-05-31 | 鹿島建設株式会社 | Evaluation method of rock mass and prediction of geology ahead of cutting face using drilling data with hydraulic drill |
-
1997
- 1997-12-15 JP JP34478597A patent/JP3308478B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11174046A (en) | 1999-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ashida | Seismic imaging ahead of a tunnel face with three-component geophones | |
US11112513B2 (en) | Method and device for estimating sonic slowness in a subterranean formation | |
KR101547508B1 (en) | Apparatus for predicting front geological features and the method thereof | |
JP5985371B2 (en) | Geological exploration method during tunnel excavation | |
CN112485823B (en) | High-efficiency comprehensive advanced geological prediction method | |
CN104880729B (en) | A kind of Advance Detection of Coal Roadway anomalous structure method based on continuously tracking slot wave signal | |
CN112415589B (en) | Tunnel TBM rock breaking seismic source advanced geological detection imaging method and system | |
CN110988992A (en) | Advanced geological forecasting method for mining method construction | |
JP2011043409A (en) | Method for geological exploration during tunnel excavation and tunnel geological exploration apparatus | |
EA006571B1 (en) | Method of monitoring a drilling path | |
US8995224B2 (en) | Real-time velocity and pore-pressure prediction ahead of drill bit | |
JP4157635B2 (en) | Tunnel face forward exploration method | |
CN113359185A (en) | Tunnel comprehensive advanced geological forecast intelligent early warning system and implementation method thereof | |
JP3308478B2 (en) | Exploration method in front of tunnel face | |
JP6522918B2 (en) | Elastic wave velocity measurement method | |
JP3022805B2 (en) | Face front exploration system and method, and tunnel excavation method | |
JP2017049198A (en) | Working face front survey device and working face front survey method | |
JP5940303B2 (en) | Tunnel face forward exploration method | |
JP3119753B2 (en) | Forecasting method of tunnel face | |
JPH06273533A (en) | Forward probing system at stall | |
JPH08226975A (en) | Method for surveying geology in front of face of tunnel | |
JPH07259472A (en) | Geological survey in tunnel digging | |
JP5258734B2 (en) | Tunnel front face exploration method and exploration system | |
JP2005105651A (en) | Method of evaluating natural ground in front of ground excavation part | |
JP3439334B2 (en) | Speed logging method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140517 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |