JPH02252813A - Measurement of crushing range and its device in blast injection work process - Google Patents

Measurement of crushing range and its device in blast injection work process

Info

Publication number
JPH02252813A
JPH02252813A JP7376989A JP7376989A JPH02252813A JP H02252813 A JPH02252813 A JP H02252813A JP 7376989 A JP7376989 A JP 7376989A JP 7376989 A JP7376989 A JP 7376989A JP H02252813 A JPH02252813 A JP H02252813A
Authority
JP
Japan
Prior art keywords
construction
injection
waves
ultrasonic
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7376989A
Other languages
Japanese (ja)
Other versions
JP2675129B2 (en
Inventor
Teruo Yahiro
八尋 暉夫
Masahiro Tsuruta
政博 鶴田
Mitsuru Yokoyama
満 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP1073769A priority Critical patent/JP2675129B2/en
Publication of JPH02252813A publication Critical patent/JPH02252813A/en
Application granted granted Critical
Publication of JP2675129B2 publication Critical patent/JP2675129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To improve measuring accuracy and simplify a device by rotatably blasting water or a bentonite liquid at the time of construction or after construction of blast injection construction, and determining an inner diameter of an excavation hole from an oscillation wave and a receiving wave generated. CONSTITUTION:When measuring is made at the time of construction of blast injection construction, a blast device 13 is attached to a lower end part of an underwater monitor 2, and installed at given depth of a guide hole 1. When measuring is conducted after the construction, the device 13 is attached to a lower end part of a rod, and installed in the bottom of a crushing hole 21. And concurrently with the rotation of the device 13, a pump 9 is actuated, and water or a bentonite liquid is blasted from high pressure and low pressure nozzles. Moreover an ultrasonic wave is oscillated from an ultrasonic transceiver 8, and a reflection wave from its crushing hole 21 wall is received. The inner diameter of the crushing hole 21 can be measured with a ground instrument based on these oscillation and receiving waves.

Description

【発明の詳細な説明】 [産業上の利用分¥f] 本発明は、噴射注入工法における破砕範囲の測定方法及
びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application ¥f] The present invention relates to a method and apparatus for measuring a fracture range in an injection injection method.

[従来の技術] 噴射注入工法の施工における地盤や岩盤の破砕範囲の計
測は、出来上り柱状固結体の品質管理や工法能率の向上
を図るための基礎技術のひとつである。
[Conventional technology] Measuring the fracture range of the ground and rock during construction using the injection injection method is one of the basic technologies for controlling the quality of the finished columnar solids and improving the efficiency of the construction method.

そのために、地中連続壁や場所打ち杭の掘削時には、通
常、ベントナイト液中で超音波の反射により破砕範囲を
計測し、施工管理に反映させている。
For this reason, when excavating underground continuous walls or cast-in-place piles, the fracture range is usually measured by reflecting ultrasonic waves in the bentonite liquid, and this is reflected in construction management.

[発明が解決しようとする課題] しかし、噴射注入工法の場合のように、セメント粒子や
土粒子の懸濁液中で、しかも、その濃度が著しく高い場
合は、超音波を送信しても減衰が大きく正確な結果を得
ることはできない、そのために、超音波の出力を大きく
したり、反射波を効率よくキャッチするためのパラボラ
アンテナの利用や、スクッキング手法の利用、あるいは
得られたデータの処理方法などについての技術開発が進
められている。しかしながら、その実用化には更に研究
を要し、しかも、その装置が複雑になるという欠点があ
る。
[Problem to be solved by the invention] However, when the concentration of cement particles or soil particles is extremely high, as in the case of injection injection method, even if the ultrasonic waves are transmitted, they are attenuated. Therefore, it is necessary to increase the output of the ultrasonic waves, use a parabolic antenna to efficiently catch reflected waves, use the scooking method, or improve the accuracy of the obtained data. Technological development regarding processing methods, etc. is progressing. However, further research is required to put it into practical use, and the device is complicated.

本発明は、測定精度が良く、構造簡単な噴射注入工法に
おける破砕範囲の測定方法及びその装置を提供すること
を目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for measuring a fracture range in an injection injection method with good measurement accuracy and a simple structure.

[知見] ベントナイト液又は水の複層噴流中に超音波を乗せて送
り、更に壁面からの反射波の同じ噴流中を伝播したもの
を受信すると、超音波の減衰が極めて少なく、明確なデ
ータを得ることができ、測定装置も比較的簡単なものと
なる0本発明は、かかる知見に基づいてなされたもので
ある。
[Findings] When ultrasonic waves are sent into a multi-layered jet of bentonite liquid or water, and the waves reflected from the wall are received as they propagate through the same jet, the attenuation of the ultrasonic waves is extremely small and clear data can be obtained. The present invention was made based on this knowledge, and the measuring device is relatively simple.

[課題を解決するための手段] 本発明によれば、噴射注入工法の施工時又は施工後に、
水又はベントナイト液を回転噴射し、該噴流中に超音波
を発振し、その発振波の掘削孔壁からの反射波を受信し
、これら発振波と受信波とから掘削孔の内径を求めるこ
とを特徴とする噴射注入工法における破砕範囲の測定方
法が提供される。
[Means for Solving the Problems] According to the present invention, during or after the injection injection method,
Water or bentonite liquid is rotated injected, ultrasonic waves are oscillated in the jet, the reflected waves of the oscillated waves from the borehole wall are received, and the inner diameter of the borehole is determined from these oscillated waves and received waves. A method for measuring the fracture range in the injection injection method is provided.

更に本発明によれば、高圧の水又はベントナイト液を噴
射するノズルと、該ノズルの中央奥部に防護筒に囲まれ
て設けられた超音波送受波器と、該送受波器を地上に接
続する送受信用ケーブルと、前記ノズルに水又はベント
ナイト液を圧送するポンプと、データ送受信器と、超音
波発振器と、データレコーダとを設けたことを特徴とす
る噴射注入工法における破砕範囲の測定装置が提供され
る。
Further, according to the present invention, there is provided a nozzle that injects high-pressure water or bentonite liquid, an ultrasonic transducer surrounded by a protective cylinder at the center back of the nozzle, and a transducer connected to the ground. A device for measuring a crushing range in an injection injection method, characterized in that it is provided with a transmission/reception cable, a pump for pumping water or bentonite liquid to the nozzle, a data transmitter/receiver, an ultrasonic oscillator, and a data recorder. provided.

上記ノズルは、中央の高圧ノズルと、その高圧ノズル回
りに設けた環状の低圧ノズルとで構成し、これら両ノズ
ルと超音波送受波器とで噴射装置を構成するのが好まし
い。
It is preferable that the nozzle is composed of a central high-pressure nozzle and an annular low-pressure nozzle provided around the high-pressure nozzle, and that both of these nozzles and an ultrasonic transducer constitute an injection device.

また、噴射装置は、測定を噴射注入工法の施工時に行う
場合は、公知技術による水中モニタの下端部に取付けて
ガイド孔の所定深度に設置し、該工法の施工後に行う場
合は、ロッドの下端部に取付けて破砕孔の孔底に設置す
るのが好ましい。
In addition, when the measurement is performed during the construction of the injection injection method, the injection device is attached to the lower end of an underwater monitor using known technology and installed at a predetermined depth of the guide hole, and when the measurement is performed after the construction of the injection method, the injection device is installed at the lower end of the rod. It is preferable to attach it to the hole and install it at the bottom of the crushing hole.

[作用] 上記のように構成された噴射注入工法における破砕範囲
の測定方法及びその装置において、噴射装置を回転する
と共に、ポンプを作動して両ノズルから水又はベントナ
イト液を噴射し、超音波送受波器から超音波を発振して
その破砕孔壁つ)らの反射波を受信し、これら発振波と
受信波とに基づき地上に設置した機器により破砕孔の内
径を測定する。
[Function] In the method and device for measuring the crushing range in the injection injection method configured as described above, the injection device is rotated, the pump is activated to inject water or bentonite liquid from both nozzles, and ultrasonic wave transmission and reception is performed. An ultrasonic wave device emits ultrasonic waves and the reflected waves from the walls of the fracture hole are received, and based on these oscillated waves and received waves, the inner diameter of the fracture hole is measured by equipment installed on the ground.

この際、超音波は防護筒によりノズル噴流の影響から保
護され、かつ、ノズル噴流中を伝播し反射するので、減
衰が極めて少なく、正確な測定値が得られる。
At this time, the ultrasonic waves are protected from the influence of the nozzle jet by the protective cylinder, and are propagated through the nozzle jet and reflected, so attenuation is extremely small and accurate measurement values can be obtained.

したがって、また、高周波の超音波を送受信して明確な
記録が得られるので、読み取り誤差が小さい。
Therefore, since clear records can be obtained by transmitting and receiving high-frequency ultrasound waves, reading errors are small.

また、スラリーと地山のように音響インピーダンスの差
が極めて小さい地盤においても、正確なデータが得られ
る。
In addition, accurate data can be obtained even in ground where the difference in acoustic impedance is extremely small, such as between slurry and earth.

[実施例] 以下図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図には、本発明を実施する装置が示されている。FIG. 1 shows an apparatus for implementing the invention.

図において、ガイド孔1の所定深度に挿入された水中モ
ニタ2の上方には三重管3および三重管スイベル4が順
次連結されている。この三重管3は支持装置5に回転自
在に支持され、三重管スイベル4はクレーン6により吊
り下げられており、クレーン6によって三重管スイベル
4を上下動することにより、水中モニタ2が上下動され
るようになっている。そして、三重管スイベル4は、図
示しないグラウトポンプ、コンプレッサ及び高圧水ポン
プに接続されている。
In the figure, a triple tube 3 and a triple tube swivel 4 are sequentially connected above an underwater monitor 2 inserted into a guide hole 1 at a predetermined depth. The triple tube 3 is rotatably supported by a support device 5, and the triple tube swivel 4 is suspended by a crane 6. By moving the triple tube swivel 4 up and down by the crane 6, the underwater monitor 2 is moved up and down. It has become so. The triple pipe swivel 4 is connected to a grout pump, a compressor, and a high-pressure water pump (not shown).

測定装置は、水中モニタ2の下端部に設けられ後記の超
音波送受波器18を備えた噴射装置13と、超音波送受
波器18に接続された送受信用ケーブル7と、支持装置
5の下部に設けられ送受信用ケーブル7が接続されたデ
ータ送受信器8と、地上に設置された噴射装置13に水
又はベントナイト液を送るポンプ9、無線送受信器10
、超音波発振器11及びデータレコーダ12とからなつ
ている。
The measuring device includes an injection device 13 provided at the lower end of the underwater monitor 2 and equipped with an ultrasonic transducer 18 (described later), a transmitting/receiving cable 7 connected to the ultrasonic transducer 18, and a lower part of the support device 5. a data transmitter/receiver 8 installed on the ground and connected to a transmitting/receiving cable 7, a pump 9 that sends water or bentonite liquid to an injection device 13 installed on the ground, and a wireless transmitter/receiver 10.
, an ultrasonic oscillator 11 and a data recorder 12.

第2図及び第3図において、噴射装置13には、高圧の
水又はベントナイト液を噴射する高圧ノズル14の回り
に、低圧の水又はベントナイト液を噴射する低圧ノズル
14が環状に設けられ、それぞれホース16.17によ
り地上のポン19に接続されている。
In FIGS. 2 and 3, the injection device 13 is provided with a low-pressure nozzle 14 that injects low-pressure water or bentonite liquid in an annular shape around a high-pressure nozzle 14 that injects high-pressure water or bentonite liquid, respectively. It is connected by hoses 16,17 to a pump 19 on the ground.

その高圧ノズル14の中央奥部には、超音波送受波器1
8が設けられ、その回りは防護筒19で覆われ、水又は
ベントナイト液の高圧噴流の影響を防ぐようになってい
る。そして、この超音波送受波器18は、送受信用ケー
ブル7によりデータ送受信器8に接続されている。
An ultrasonic transducer 1 is located deep in the center of the high-pressure nozzle 14.
8 is provided, and its surroundings are covered with a protective tube 19 to prevent the influence of high-pressure jets of water or bentonite liquid. This ultrasonic transducer 18 is connected to a data transceiver 8 via a transmitting/receiving cable 7.

測定は、コラムジェット工法などの噴射注入工法の施工
時のリアルタイムで行う方法と、前記工法の施工後に行
う方法との2種類あるが、本発明はいずれの場合にも実
施できる。
There are two types of measurement: a method in which measurement is performed in real time during the construction of an injection method such as a column jet method, and a method in which measurement is performed after the construction of the method, and the present invention can be carried out in either case.

第4図(a)ないしくb)には、リアルタイムで実施す
る態様が示されている。
FIGS. 4(a) and 4(b) show embodiments of real-time implementation.

先ず、施工の対象となる施工深度まで、例えば直径15
(1m程度のガイド孔1を穿孔する(第4図(a))。
First, to the construction depth that is the target of construction, for example, a diameter of 15 mm.
(Drill a guide hole 1 of about 1 m (Fig. 4(a)).

次いで、噴射装置13を下端部に設けた水中モニタ2を
所定深度に設置する(第4図(b))。
Next, the underwater monitor 2 with the injection device 13 installed at its lower end is installed at a predetermined depth (FIG. 4(b)).

次いで、水中モニタ2からコラムジェット20を噴射し
て地盤を破砕すると共に、噴射装置13のノズル14.
15から水スはベントナイト液を噴射しながら超音波送
受波器18から超音波を発振し、発振波と、その破砕孔
21の孔壁からの反射波とを地上の機器10〜12で処
理し、破砕孔21の内径を測定する(第3図(C))、
この際、コラムジェット工法の例えばセメントミルクの
ような注入材の懸濁粒子が大きく、粘度が高いスラリー
中でも、水又はベントナイト液の噴流に乗せられた超音
波は、減衰が非常に少なく、極めて正確なデータが得ら
れる。
Next, the column jet 20 is injected from the underwater monitor 2 to crush the ground, and the nozzle 14 of the injection device 13 is injected.
From step 15 onwards, the water source oscillates ultrasonic waves from the ultrasonic transducer 18 while injecting bentonite liquid, and processes the oscillated waves and the reflected waves from the hole wall of the crushing hole 21 with equipment 10 to 12 on the ground. , measure the inner diameter of the crushing hole 21 (Fig. 3(C)),
At this time, even in a slurry with large suspended particles and high viscosity of the injection material such as cement milk in the column jet method, the ultrasonic waves carried on the jet of water or bentonite liquid have very little attenuation and are extremely accurate. data can be obtained.

第5(!I(a)ないしくc)には、施工と計測をタイ
ムラグを設けて実施する態様が示されている。
The fifth (!I(a) to c) shows a mode in which construction and measurement are performed with a time lag.

先ず、コラムジェット工法などの噴射注入工法終了後、
施工機械22等を撤去する(第5図(a)次いで、ロッ
ド23の下端部に噴射装置13を取付け、セメントミル
ク等スラリー24が充填されている破砕孔21の孔底に
設置する(第5図(b))。
First, after completing the injection injection method such as the column jet method,
The construction machine 22, etc. is removed (Fig. 5(a)) Next, the injection device 13 is attached to the lower end of the rod 23, and installed at the bottom of the crushing hole 21 filled with slurry 24 such as cement milk. Figure (b)).

次いで、ロッド23を回転し、地上のポンプ9を作動す
ると共に、超音波送受波器18から超音波を発振して前
述と同様に掘削孔21の内径を測定する(第5図(c)
)。
Next, the rod 23 is rotated to operate the pump 9 on the ground, and the ultrasonic transducer 18 emits ultrasonic waves to measure the inner diameter of the borehole 21 in the same manner as described above (FIG. 5(c)).
).

[発明の効果] 本発明は、以上説明したように・構成されているので、
以下に記載されるような効果を奏する。
[Effect of the invention] Since the present invention is configured as explained above,
This produces the effects described below.

コラムジェット工法などのような噴射注入工法の施工時
、注入材としてセメントミルクのような懸濁粒子が大き
く、粘度の高いスラリー中でも超音波の減衰が非常に少
なく、極めて正確なデータ。
When performing injection injection methods such as the column jet method, ultrasonic wave attenuation is extremely low even in slurry with large suspended particles such as cement milk as the injection material and high viscosity, resulting in extremely accurate data.

を得ることができる。can be obtained.

また、超音波の発振波、反射波の伝播路である水又はベ
ントナイト液の噴流は、地盤の種類に応じて例えば非崩
壊性の粘性土又は崩壊性の砂地盤に対し、水噴流又はベ
ントナイト液噴流と使い分けることができる。
In addition, depending on the type of ground, for example, water jets or bentonite liquid jets, which are the propagation paths of ultrasonic oscillation waves and reflected waves, can be applied to non-collapsible cohesive soil or collapsible sandy soil. It can be used with a jet stream.

また、スラリーと地山のように音響インピーダンスの差
異が極めて小さい地盤の施工でも、正確なデータを得る
ことができる。
In addition, accurate data can be obtained even during construction on ground where the difference in acoustic impedance is extremely small, such as between slurry and earth.

また、施工中でも、施工後でも同様に正確なデータを得
ることができる。
Additionally, accurate data can be obtained both during and after construction.

また、地盤の破砕範囲をみなから施工できるので、セメ
ントミルクなどの注入材を経済的に使用し、計画した範
囲だけ正確に地盤改良を行い、施工能率を向上すること
ができる。
In addition, since the work can be carried out in the entire area of the ground, it is possible to economically use injection materials such as cement milk, improve the ground accurately in the planned area, and improve construction efficiency.

また、ノズルを中央の高速ノズルと環状の低速ノズルと
の二重ノズル(必要に応じて三重以上の複重ノズルとす
る)に構成し、中央の噴流の有効飛走距離を長くし、1
000センチポアズを越える高粘度のスラリー中でも2
m程度の範囲までの計測を行うことができる。
In addition, the nozzle is configured as a double nozzle consisting of a high-speed nozzle in the center and a low-speed annular nozzle (if necessary, a multiple nozzle with three or more layers) to increase the effective flying distance of the central jet.
Even in high viscosity slurries exceeding 000 centipoise,
It is possible to perform measurements up to a range of about m.

また、噴射注入工法だけでなく、懸濁粒子が大きく、見
掛は比重の大きい例えば場所打ち杭の孔底部などに対し
ても実施することができる。
In addition to the injection injection method, it can also be applied to the bottom of a hole in a cast-in-place pile, where the suspended particles are large and the apparent specific gravity is large.

また、超音波発振器をノズル内部に設ける構造なので、
構造が比教的簡単である。
In addition, since the ultrasonic oscillator is installed inside the nozzle,
The structure is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の一例を示す全体構成図
、第2図は噴射装置を示す側断面図、第3図は第2図の
A矢視図、第4図(a)ないしくC)はリアルタイムに
実施する態様を示す工順図、第5図(a)〜(C)は施
工と計測をタイムラグを設けて実施する態様を示す工順
図である。 7・・・送受信用ケーブル  8・・・超音波送受信器
  9・・・ポンプ  10・・・無線送受信器  1
1・・・超音波発振器  12・・・データレコーダ 
 13・・・噴射装置14・・・高圧ノズル  15・
・・低圧ノズル18・・・超音波送受波器  19・・
・防護f!J   21・・・破砕孔 第2 図 Iア 第3 図 第1
Fig. 1 is an overall configuration diagram showing an example of an apparatus for implementing the present invention, Fig. 2 is a side sectional view showing an injection device, Fig. 3 is a view taken in the direction of arrow A in Fig. 2, and Fig. 4 (a) is not shown. Figure 5 (a) to (C) are route diagrams showing a mode in which construction and measurement are carried out with a time lag. 7... Transmission/reception cable 8... Ultrasonic transceiver 9... Pump 10... Wireless transceiver 1
1... Ultrasonic oscillator 12... Data recorder
13... Injection device 14... High pressure nozzle 15.
...Low pressure nozzle 18...Ultrasonic transducer 19...
・Protection f! J 21... Fracture hole 2 Figure IA Figure 3 Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)噴射注入工法の施工時又は施工後に、水又はベン
トナイト液を回転噴射し、該噴流中に超音波を発振し、
その発振波の掘削孔壁からの反射波を受信し、これら発
振波と受信波とから掘削孔の内径を求めることを特徴と
する噴射注入工法における破砕範囲の測定方法。
(1) During or after construction of the injection injection method, water or bentonite liquid is rotated and ultrasonic waves are oscillated in the jet,
A method for measuring a fracture range in an injection injection method, characterized by receiving reflected waves of the oscillation waves from the borehole wall, and determining the inner diameter of the borehole from these oscillation waves and the received waves.
(2)高圧の水又はベントナイト液を噴射するノズルと
、該ノズルの中央奥部に防護筒に囲まれて設けられた超
音波送受波器と、該送受波器を地上に接続する送受信用
ケーブルと、前記ノズルに水又はベントナイト液を圧送
するポンプと、データ送受信器と、超音波発振器と、デ
ータレコーダとを設けたことを特徴とする噴射注入工法
における破砕範囲の測定装置。
(2) A nozzle that injects high-pressure water or bentonite liquid, an ultrasonic transducer surrounded by a protective tube at the center of the nozzle, and a transmission/reception cable that connects the transducer to the ground. An apparatus for measuring a fracture range in an injection injection method, comprising: a pump for pumping water or bentonite liquid to the nozzle; a data transmitter/receiver; an ultrasonic oscillator; and a data recorder.
JP1073769A 1989-03-28 1989-03-28 Measuring device for crushing range in jet injection method Expired - Lifetime JP2675129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073769A JP2675129B2 (en) 1989-03-28 1989-03-28 Measuring device for crushing range in jet injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073769A JP2675129B2 (en) 1989-03-28 1989-03-28 Measuring device for crushing range in jet injection method

Publications (2)

Publication Number Publication Date
JPH02252813A true JPH02252813A (en) 1990-10-11
JP2675129B2 JP2675129B2 (en) 1997-11-12

Family

ID=13527752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073769A Expired - Lifetime JP2675129B2 (en) 1989-03-28 1989-03-28 Measuring device for crushing range in jet injection method

Country Status (1)

Country Link
JP (1) JP2675129B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133610A (en) * 1992-04-20 1995-05-23 Tokiwa Kensetsu Kk Hardener injection area assuring works
JP2019132097A (en) * 2018-02-02 2019-08-08 五洋建設株式会社 Measurement device for scp method, casing pipe for scp method, and construction management method of scp method
JP2019196595A (en) * 2018-05-07 2019-11-14 小野田ケミコ株式会社 Ground improvement method
JP2020172833A (en) * 2019-04-15 2020-10-22 株式会社大林組 Finished shape management method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924020A (en) * 1982-07-30 1984-02-07 Hitachi Zosen Corp Installation of bottomed type marine structure using used tanker
JPS62146906U (en) * 1987-02-26 1987-09-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924020A (en) * 1982-07-30 1984-02-07 Hitachi Zosen Corp Installation of bottomed type marine structure using used tanker
JPS62146906U (en) * 1987-02-26 1987-09-17

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133610A (en) * 1992-04-20 1995-05-23 Tokiwa Kensetsu Kk Hardener injection area assuring works
JP2019132097A (en) * 2018-02-02 2019-08-08 五洋建設株式会社 Measurement device for scp method, casing pipe for scp method, and construction management method of scp method
JP2019196595A (en) * 2018-05-07 2019-11-14 小野田ケミコ株式会社 Ground improvement method
JP2020172833A (en) * 2019-04-15 2020-10-22 株式会社大林組 Finished shape management method and apparatus

Also Published As

Publication number Publication date
JP2675129B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
CA2529173C (en) Determination of the impedance of a material behind a casing combining two sets of ultrasonic measurements
WO2021129381A1 (en) Phased-array acoustic wave advance geological detection system and method of shield tunnelling machine
EP2894496B1 (en) Ultrasonic logging methods and apparatus for measuring cement and casing properties using acoustic echoes
WO1991014077A1 (en) System and method for transmitting and calculating data in shield machine
JP2001153638A (en) Cross section measuring method and measuring device for underground structure
CN106567713B (en) For the construction method and system of shield driving forward probe in marine bed
JPH02252813A (en) Measurement of crushing range and its device in blast injection work process
JPS6218690B2 (en)
JP2023073440A (en) Survey system, shield excavator, and survey method
JP2021067113A (en) Data transmission system
JP6886860B2 (en) Method of confirming the range of ground improvement in the high-pressure injection stirring method
JP6761709B2 (en) Face ground exploration method and equipment
JPH07280946A (en) Device for searching front of cutting edge in tunnel diggingmachine
JP3514569B2 (en) Mud shield excavator
JP3007302B2 (en) Judgment method of ground improvement area
CN206583852U (en) A kind of sonic test couplant conveying device suitable for a variety of bore angles
US3406779A (en) Acoustic well logging tool
JPS60157065A (en) Soil monitoring device for shield drilling machine
JPH0336120B2 (en)
JPH0826743B2 (en) Face collapse detector for shield machine
JP2921675B2 (en) Hardened body construction method
JPS62156496A (en) Falling-in detector for shielding excavator
JPH02296184A (en) Detection of spring water within subsoil
JPH06240983A (en) Facing monitor in shield machine
JP2023079670A (en) Search system, shield excavator and search method