JP2021067113A - Data transmission system - Google Patents

Data transmission system Download PDF

Info

Publication number
JP2021067113A
JP2021067113A JP2019194070A JP2019194070A JP2021067113A JP 2021067113 A JP2021067113 A JP 2021067113A JP 2019194070 A JP2019194070 A JP 2019194070A JP 2019194070 A JP2019194070 A JP 2019194070A JP 2021067113 A JP2021067113 A JP 2021067113A
Authority
JP
Japan
Prior art keywords
ground
visible light
unit
rod
light signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019194070A
Other languages
Japanese (ja)
Other versions
JP7316188B2 (en
Inventor
永谷 英基
Hidemoto Nagatani
英基 永谷
光太郎 久保田
Kotaro Kubota
光太郎 久保田
智 宇治川
Satoshi Ujigawa
智 宇治川
勝利 藤崎
Katsutoshi Fujisaki
勝利 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2019194070A priority Critical patent/JP7316188B2/en
Publication of JP2021067113A publication Critical patent/JP2021067113A/en
Application granted granted Critical
Publication of JP7316188B2 publication Critical patent/JP7316188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a data transmission system capable of properly transmitting measurement data.SOLUTION: Sensors 19-1, 19-2 are provided at a lower end portion of a high pressure injecting and stirring device 1, and measurement data is obtained using the sensors 19-1, 19-2 when the high pressure injecting and stirring device 1 drills or improves a ground 31. The measurement data is changed to visible light signals at a converter 23, and transmitted from a transmitting portion 21 into a flow passage 17-1. And, the visible light signals moving upward in the flow passage 17-1 to be transmitted are received at an aboveground receiving portion 27, are changed to electrical signals at an aboveground transmitting portion 29, and are transmitted to an analysis portion 35.SELECTED DRAWING: Figure 3

Description

本発明は、データ伝送システムに関する。 The present invention relates to a data transmission system.

地盤を削孔する際に、センサを用いて削孔装置の位置や傾斜、地盤の改良径などに関するデータを測定するシステムがある。例えば特許文献1、2では、掘削ヘッドに設けた超磁歪素子の振動をロッドに伝達したり、ロッド部材の接続部付近に光通信手段を設けて赤外線通信を行ったりすることにより測定データを地上に伝送している。 When drilling the ground, there is a system that uses a sensor to measure data related to the position and inclination of the drilling device, the improved diameter of the ground, and the like. For example, in Patent Documents 1 and 2, the measurement data is transmitted to the rod by transmitting the vibration of the supermagnetic strain element provided in the excavation head to the rod, or by providing an optical communication means near the connection portion of the rod member to perform infrared communication. Is transmitting to.

また特許文献3では、高圧噴射撹拌工法により地盤改良を行う際に、高圧噴射撹拌装置の下端部に設けられたセンサで測定した測定データを、電磁波等を用いて地上のコンピュータに伝送することが記載されている。 Further, in Patent Document 3, when the ground is improved by the high-pressure injection stirring method, the measurement data measured by the sensor provided at the lower end of the high-pressure injection stirring device can be transmitted to a computer on the ground using electromagnetic waves or the like. Are listed.

特許第2935179号公報Japanese Patent No. 2935179 特許第5984576号公報Japanese Patent No. 5948576 特開2014−181526号公報Japanese Unexamined Patent Publication No. 2014-181526

しかしながら、これらの方法は、測定データの伝送を実現する上での課題があった。例えば振動による伝送は減衰やノイズによる伝送距離の限界がある。また上記の赤外線通信では複雑な構成の光通信手段をロッド部材ごとに必要とし、各ロッド部材に相当の改変を要する。さらに、電磁波を用いる場合、金属製のロッドにより測定データの伝送が阻害される懸念がある。 However, these methods have a problem in realizing the transmission of measurement data. For example, transmission by vibration has a limit of transmission distance due to attenuation and noise. Further, in the above-mentioned infrared communication, an optical communication means having a complicated structure is required for each rod member, and each rod member needs to be considerably modified. Furthermore, when electromagnetic waves are used, there is a concern that the transmission of measurement data may be hindered by the metal rod.

本発明は、前述した問題点に鑑みてなされたものであり、測定データを好適に伝送できるデータ伝送システムを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a data transmission system capable of suitably transmitting measurement data.

前述した目的を達成するための本発明は、地盤に挿入させるロッドを有する施工装置に設けられたデータ伝送システムであって、センサと、前記センサにより地表面下で測定した測定データを、可視光信号またはレーザー信号に変換する変換部と、前記可視光信号またはレーザー信号を前記ロッドの内部を通して伝送させる通信部と、を具備することを特徴とするデータ伝送システムである。 The present invention for achieving the above-mentioned object is a data transmission system provided in a construction device having a rod to be inserted into the ground, and a sensor and measurement data measured under the ground surface by the sensor are subjected to visible light. The data transmission system includes a conversion unit that converts a signal or a laser signal, and a communication unit that transmits the visible light signal or the laser signal through the inside of the rod.

本発明では、センサで取得した測定データを可視光通信やレーザー通信によりロッド内を伝送させ、迅速に送信することができる。可視光通信やレーザー通信を用いることにより長距離の伝送が可能であり、ロッドの大部分は改変を要しない。また金属製のロッドにより伝送が阻害されることもない。そのため、測定データを好適に伝送することができる。 In the present invention, the measurement data acquired by the sensor can be transmitted in the rod by visible light communication or laser communication, and can be transmitted quickly. Long-distance transmission is possible by using visible light communication or laser communication, and most of the rods do not require modification. Moreover, the transmission is not hindered by the metal rod. Therefore, the measurement data can be suitably transmitted.

前記通信部は前記可視光信号またはレーザー信号の送信部と受信部を有し、前記施工装置の地表面下の端部に、前記変換部と前記送信部とを収容するハウジングが設けられることが望ましい。
ハウジングを設けることにより、変換部や送信部等の防水を実現し、またこれらの損傷を防ぐことができる。
The communication unit has a transmission unit and a reception unit for the visible light signal or a laser signal, and a housing for accommodating the conversion unit and the transmission unit may be provided at an end portion of the construction device below the ground surface. desirable.
By providing the housing, waterproofing of the conversion unit and the transmission unit can be realized, and damage to these can be prevented.

本発明では、例えば、前記ロッド内の水の流路で前記可視光信号またはレーザー信号が伝送される。または、前記ロッド内の空気の流路で前記可視光信号またはレーザー信号が伝送されてもよい。あるいは、前記ロッド内の固化材の流路で前記可視光信号またはレーザー信号が伝送されてもよい。さらに、前記ロッド内に、前記可視光信号またはレーザー信号を伝送するための専用の伝送路が管によって形成されてもよい。
このように、可視光信号やレーザー信号は水や空気や固化材の流路を用いて伝送することができ、この場合、ロッド内に可視光信号やレーザー信号を伝送するための空間を新たに追加する必要がない。一方、可視光信号やレーザー信号を伝送するための専用の伝送路を管によって形成してもよく、この場合は通信を阻害するものが無いので好適に信号を伝送できる。
In the present invention, for example, the visible light signal or the laser signal is transmitted through the water flow path in the rod. Alternatively, the visible light signal or the laser signal may be transmitted through the air flow path in the rod. Alternatively, the visible light signal or the laser signal may be transmitted through the flow path of the solidifying material in the rod. Further, a dedicated transmission line for transmitting the visible light signal or the laser signal may be formed in the rod by a tube.
In this way, the visible light signal and the laser signal can be transmitted using the flow path of water, air, and the solidifying material. In this case, a space for transmitting the visible light signal and the laser signal is newly provided in the rod. No need to add. On the other hand, a dedicated transmission line for transmitting a visible light signal or a laser signal may be formed by a tube, and in this case, since there is nothing that interferes with communication, the signal can be preferably transmitted.

前記流路または前記伝送路の壁面の一部または全部に、前記可視光信号またはレーザー信号の反射部が設けられることが望ましい。
壁面の一部または全部を反射部とすることにより、ロッドに曲がりや反りが生じた場合にも、可視光信号やレーザー信号を壁面で反射させて好適に伝送することができる。
It is desirable that the visible light signal or the laser signal reflecting portion is provided on a part or all of the wall surface of the flow path or the transmission line.
By using a part or all of the wall surface as the reflecting portion, even when the rod is bent or warped, the visible light signal or the laser signal can be reflected by the wall surface and transmitted suitably.

また、前記ロッド内の水、空気、または固化材の流れを利用して発電を行う発電部を備えることも望ましい。
上記の発電部を設けることにより、センサ等に電力を供給するバッテリが不要になる。
It is also desirable to provide a power generation unit that generates power by utilizing the flow of water, air, or a solidifying material in the rod.
By providing the above power generation unit, a battery for supplying electric power to the sensor or the like becomes unnecessary.

本発明のデータ伝送システムは、例えば、前記施工装置による前記地盤の削孔時に、前記センサで得られた測定データを用いて前記地盤の特性を判定する解析部を有する。
地盤の削孔時に測定データを解析部に伝送して地盤の特性を判定することで、判定結果を地盤の削孔工事にフィードバックしたり地盤改良体の施工等に反映させたりすることができる。
The data transmission system of the present invention has, for example, an analysis unit that determines the characteristics of the ground using the measurement data obtained by the sensor at the time of drilling the ground by the construction device.
By transmitting the measurement data to the analysis unit at the time of drilling the ground and determining the characteristics of the ground, the determination result can be fed back to the drilling work of the ground or reflected in the construction of the ground improvement body.

また、前記施工装置による前記地盤の改良時に、前記センサで得られた測定データを用いて地盤改良体の出来形を判定する解析部を有することも望ましい。
地盤改良時に測定データを解析部に伝送して地盤改良体の出来形を判定することで、判定結果を地盤改良工事にフィードバックするなどして地盤改良体の品質及び生産性を大幅に向上させることができる。
It is also desirable to have an analysis unit that determines the finished shape of the ground improvement body using the measurement data obtained by the sensor when the ground is improved by the construction device.
By transmitting the measurement data to the analysis unit at the time of ground improvement and judging the finished shape of the ground improvement body, the quality and productivity of the ground improvement body can be greatly improved by feeding back the judgment result to the ground improvement work. Can be done.

前記通信部は前記可視光信号またはレーザー信号の送信部と受信部を有し、前記受信部で受信した前記可視光信号またはレーザー信号を電気信号に変換して地上の解析部に伝送する地上伝送部をさらに具備することも望ましい。
これにより、受信した可視光信号やレーザー信号を地上に設置したコンピュータ等の解析部に伝送することができる。
The communication unit has a transmission unit and a reception unit for the visible light signal or the laser signal, and the visible light signal or the laser signal received by the reception unit is converted into an electric signal and transmitted to the analysis unit on the ground. It is also desirable to have more parts.
As a result, the received visible light signal and laser signal can be transmitted to an analysis unit such as a computer installed on the ground.

本発明によれば、測定データを好適に伝送できるデータ伝送システムを提供できる。 According to the present invention, it is possible to provide a data transmission system capable of suitably transmitting measurement data.

高圧噴射撹拌装置1を示す図。The figure which shows the high pressure injection stirring apparatus 1. 高圧噴射撹拌装置1を示す図。The figure which shows the high pressure injection stirring apparatus 1. 高圧噴射撹拌装置1による地盤31の削孔時の状態を示す図。The figure which shows the state at the time of drilling the ground 31 by a high pressure injection agitator 1. 高圧噴射撹拌装置1による地盤31の改良時の状態を示す図。The figure which shows the state at the time of improvement of the ground 31 by the high pressure injection agitation device 1. 比抵抗センサの例。Example of resistivity sensor. 高圧噴射撹拌装置1’を示す図。The figure which shows the high pressure injection agitator 1'. 高圧噴射撹拌装置1”を示す図。The figure which shows the high pressure injection agitator 1 ". 反射部53を示す図。The figure which shows the reflection part 53. 高圧噴射撹拌装置1aを示す図。The figure which shows the high pressure injection stirring apparatus 1a. 高圧噴射撹拌装置1bを示す図。The figure which shows the high pressure injection stirring apparatus 1b. 高圧噴射撹拌装置1cを示す図。The figure which shows the high pressure injection stirring apparatus 1c.

以下、図面に基づいて本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.高圧噴射撹拌装置1)
図1、図2は、本発明の実施形態に係るデータ伝送システムを有する高圧噴射撹拌装置1を示す図である。図1(a)、(b)は高圧噴射撹拌装置1のロッド3の軸方向に沿った断面を示す図であり、図2は高圧噴射撹拌装置1のロッド3の軸方向に直交する断面を示す図である。図1(a)は図2の線B1−B1による断面、図1(b)は図2の線B2−B2による断面であり、図2は図1(a)、(b)の線A−Aによる断面である。
[First Embodiment]
(1. High-pressure injection stirring device 1)
1 and 2 are views showing a high-pressure injection stirring device 1 having a data transmission system according to an embodiment of the present invention. 1A and 1B are views showing a cross section along the axial direction of the rod 3 of the high-pressure injection stirring device 1, and FIG. 2 is a cross section orthogonal to the axial direction of the rod 3 of the high-pressure injection stirring device 1. It is a figure which shows. 1 (a) is a cross section taken along line B1-B1 of FIG. 2, FIG. 1 (b) is a cross section taken along line B2-B2 of FIG. It is a cross section by A.

高圧噴射撹拌装置1は、複数の管体を軸方向に繋いで構成されたロッド3を有する。高圧噴射撹拌装置1の下端部には防水性のハウジング7と先端部材9が設けられ、上端部にはスイベル11が設けられる。 The high-pressure injection stirring device 1 has a rod 3 formed by connecting a plurality of pipe bodies in the axial direction. A waterproof housing 7 and a tip member 9 are provided at the lower end of the high-pressure injection stirring device 1, and a swivel 11 is provided at the upper end.

ハウジング7はロッド3の下方に設けられる。ハウジング7の外周形状はロッド3の外周形状に対応し、ロッド3とハウジング7の境界には隔壁13が設けられる。先端部材9はハウジング7の下方に設けられる。 The housing 7 is provided below the rod 3. The outer peripheral shape of the housing 7 corresponds to the outer peripheral shape of the rod 3, and a partition wall 13 is provided at the boundary between the rod 3 and the housing 7. The tip member 9 is provided below the housing 7.

スイベル11はロッド3の上方に設けられる。スイベル11は、ロッド3の内部に水、空気、固化材等を供給するためのものである。 The swivel 11 is provided above the rod 3. The swivel 11 is for supplying water, air, a solidifying material, and the like to the inside of the rod 3.

本実施形態の高圧噴射撹拌装置1は地盤改良に加えて地盤の削孔も可能な施工装置であり、先端部材9から高圧の削孔水を噴き出すことにより地盤を掘削し、またロッド3の下部からロッド3の外側にセメントミルク等の固化材を噴出することにより地盤改良を行う。 The high-pressure injection stirring device 1 of the present embodiment is a construction device capable of drilling holes in the ground in addition to improving the ground. The ground is excavated by ejecting high-pressure drilling water from the tip member 9, and the lower part of the rod 3 is drilled. The ground is improved by ejecting a solidifying material such as cement milk from the outside of the rod 3.

本実施形態において、ロッド3を構成する管体は三重管となっており、外側の管3−1および中央の管3−2の下端は隔壁13によって閉鎖される。内側の管3−3は、隔壁13を貫通してハウジング7内で屈曲し、その下端が先端部材9の外周面に達する。 In the present embodiment, the pipe body constituting the rod 3 is a triple pipe, and the lower ends of the outer pipe 3-1 and the central pipe 3-2 are closed by the partition wall 13. The inner pipe 3-3 penetrates the partition wall 13 and bends in the housing 7, and the lower end thereof reaches the outer peripheral surface of the tip member 9.

管3−1は空気の流路17−1となり、ロッド3の下部からロッド3の外側に向けて空気を噴出するための噴出口5−1を有する。管3−2は固化材の流路17−2となり、ロッド3の下部からロッド3の外側に向けて固化材を噴出するための噴出口5−2を有する。管3−3は水の流路17−3となり、先端部材9から斜め下方に向けて水を噴出するための噴出口5−3を有する。 The pipe 3-1 becomes an air flow path 17-1, and has an ejection port 5-1 for ejecting air from the lower part of the rod 3 toward the outside of the rod 3. The pipe 3-2 serves as a flow path 17-2 for the solidifying material, and has an outlet 5-2 for ejecting the solidifying material from the lower part of the rod 3 toward the outside of the rod 3. The pipe 3-3 serves as a water flow path 17-3, and has a spout 5-3 for ejecting water diagonally downward from the tip member 9.

本実施形態のデータ伝送システムは、高圧噴射撹拌装置1による地盤の削孔時や地盤改良時に、地表面下で測定した測定データを可視光通信により地上に伝送するものであり、センサ19(19−1、19−2)、送信部21、変換部23、バッテリ25、受信部27、地上伝送部29等を有する。 The data transmission system of the present embodiment transmits the measurement data measured under the ground surface to the ground by visible light communication at the time of drilling a hole in the ground or improving the ground by the high-pressure injection stirring device 1, and the sensor 19 (19) -1, 19-2), a transmission unit 21, a conversion unit 23, a battery 25, a reception unit 27, a terrestrial transmission unit 29, and the like.

センサ19−1は水圧を測定する間隙水圧計などのセンサであり、先端部材9またはハウジング7の表面に設けられる。センサ19−2は超音波センサであり、ハウジング7の表面に設けられる。 The sensor 19-1 is a sensor such as a pore water pressure gauge that measures water pressure, and is provided on the surface of the tip member 9 or the housing 7. The sensor 19-2 is an ultrasonic sensor and is provided on the surface of the housing 7.

送信部21、変換部23、バッテリ25は、ハウジング7内に収容される。 The transmission unit 21, the conversion unit 23, and the battery 25 are housed in the housing 7.

送信部21は可視光線の光源であり、可視光信号を送信する。光源には例えばLED(Light Emitting Diode)が用いられ、可視光線の波長(色)は特に限定されない。可視光信号の送信時の絞り値(F値)も特に限定されないが、本実施形態では、適度な光の散乱が有り、可視光が管内で反射する方がロッドの曲がり等が有った場合でも通信できるので好ましい。例えばF値が30〜75の範囲であれば、長距離の通信にも耐え得、また光軸のズレにも強いので、様々な長さや径の管体に対して適用可能である。 The transmission unit 21 is a light source of visible light and transmits a visible light signal. For example, an LED (Light Emitting Diode) is used as the light source, and the wavelength (color) of visible light is not particularly limited. The aperture value (F value) at the time of transmitting the visible light signal is also not particularly limited, but in the present embodiment, when there is appropriate light scattering and the visible light is reflected in the tube, the rod is bent or the like. However, it is preferable because it can communicate. For example, if the F value is in the range of 30 to 75, it can withstand long-distance communication and is resistant to the deviation of the optical axis, so that it can be applied to tubes of various lengths and diameters.

送信部21は、流路17−1の直下の隔壁13の下面に設けられる。隔壁13は、送信部21から送信された可視光信号を透過させる透光部15を有する。透光部15は、例えば耐圧ガラス等によって形成される。 The transmission unit 21 is provided on the lower surface of the partition wall 13 directly below the flow path 17-1. The partition wall 13 has a light transmitting unit 15 that transmits a visible light signal transmitted from the transmitting unit 21. The light transmitting portion 15 is formed of, for example, pressure-resistant glass or the like.

変換部23は、センサ19−1、19−2で取得した測定データを可視光信号に変換する。変換部23は、送信部21の近傍に設置される。 The conversion unit 23 converts the measurement data acquired by the sensors 19-1 and 19-2 into a visible light signal. The conversion unit 23 is installed in the vicinity of the transmission unit 21.

バッテリ25は、センサ19−1、19−2、変換部23、送信部21等に電力を供給し、これらを動作させる。 The battery 25 supplies electric power to the sensors 19-1, 19-2, the conversion unit 23, the transmission unit 21, and the like to operate them.

受信部27は、送信部21が送信した可視光信号を受信する。受信部27は、スイベル11内の流路17−1に対応する位置で、送信部21の直上に設けられる。送信部21と受信部27は、本発明における通信部を構成する。 The receiving unit 27 receives the visible light signal transmitted by the transmitting unit 21. The receiving unit 27 is provided at a position corresponding to the flow path 17-1 in the swivel 11 and directly above the transmitting unit 21. The transmitting unit 21 and the receiving unit 27 constitute the communication unit in the present invention.

地上伝送部29は、受信部27で受信した可視光信号を電気信号に変換し、無線等の通信手段によって地上の解析部35(図3、図4参照)に伝送する。地上伝送部29は、受信部27の近傍に設置される。 The terrestrial transmission unit 29 converts the visible light signal received by the reception unit 27 into an electric signal and transmits it to the terrestrial analysis unit 35 (see FIGS. 3 and 4) by a communication means such as radio. The terrestrial transmission unit 29 is installed in the vicinity of the reception unit 27.

(2.測定データの伝送)
図3(a)は、高圧噴射撹拌装置1による地盤31の削孔時の状態を示す図である。
(2. Transmission of measurement data)
FIG. 3A is a diagram showing a state at the time of drilling the ground 31 by the high-pressure injection stirring device 1.

地盤31を削孔するには、図3(a)に示すように、ボーリングマシン33により高圧噴射撹拌装置1を保持し、ロッド3を回転させつつ地盤31に挿入する。同時に、スイベル11に接続したホースから流路17−3に水を供給し、噴出口5−3から高圧の削孔水37を噴出することにより地盤31が切削される。 To drill a hole in the ground 31, as shown in FIG. 3A, the high-pressure injection stirring device 1 is held by the boring machine 33, and the rod 3 is inserted into the ground 31 while rotating. At the same time, water is supplied to the flow path 17-3 from the hose connected to the swivel 11, and the high-pressure drilling water 37 is ejected from the ejection port 5-3 to cut the ground 31.

高圧噴射撹拌装置1の先端は、先端部材9が地盤31の所定の深さに到達するまで、矢印Cに示すように地盤31を切削しながら下降する。送信部21、変換部23、バッテリ25は高圧噴射撹拌装置1の下端部(地表面下の端部)のハウジング7内に収容されており、防水性が確保される。 The tip of the high-pressure injection stirring device 1 descends while cutting the ground 31 as shown by an arrow C until the tip member 9 reaches a predetermined depth of the ground 31. The transmission unit 21, the conversion unit 23, and the battery 25 are housed in the housing 7 at the lower end portion (the end portion below the ground surface) of the high-pressure injection stirring device 1, so that waterproofness is ensured.

本実施形態では、高圧噴射撹拌装置1による地盤の削孔時、センサ19−1を用いて削孔箇所の水圧を測定する。その測定データは図3(b)の矢印aで示すように変換部23に送られ、可視光信号に変換される。送信部21は、変換部23で変換された可視光信号を受信部27に向けて送信する。 In the present embodiment, when the ground is drilled by the high-pressure injection stirring device 1, the water pressure at the drilled portion is measured by using the sensor 19-1. The measurement data is sent to the conversion unit 23 as shown by the arrow a in FIG. 3B, and is converted into a visible light signal. The transmission unit 21 transmits the visible light signal converted by the conversion unit 23 toward the reception unit 27.

送信部21が送信した可視光信号は、矢印bで示すように透光部15を通過して流路17−1内に上向きに入り、上方に進んで地上の受信部27で受信される。 The visible light signal transmitted by the transmitting unit 21 passes through the translucent unit 15 as shown by the arrow b, enters the flow path 17-1 upward, travels upward, and is received by the receiving unit 27 on the ground.

地上伝送部29は、受信部27で受信した可視光信号を電気信号に変換し、地上の解析部35に伝送する。 The terrestrial transmission unit 29 converts the visible light signal received by the reception unit 27 into an electric signal and transmits it to the analysis unit 35 on the ground.

解析部35は例えば制御部、記憶部、表示部等を備えたコンピュータ端末であり、伝送された測定データに基づいて、地盤31の特性を判定する。 The analysis unit 35 is a computer terminal including, for example, a control unit, a storage unit, a display unit, and the like, and determines the characteristics of the ground 31 based on the transmitted measurement data.

例えば、これまでに蓄積されてきた高圧噴射撹拌装置1による地盤の削孔箇所の水圧のデータと、地盤の土質種別やN値との関係をあらかじめ得ておけば、当該関係に基づいて削孔時の測定データから地盤31の特性を判定できる。一般的に、水圧が高い場合には地盤31は硬く、水圧が低い場合には地盤31は軟らかい。 For example, if the relationship between the water pressure data of the drilled portion of the ground by the high-pressure injection stirring device 1 accumulated so far and the soil type and N value of the ground is obtained in advance, drilling is performed based on the relationship. The characteristics of the ground 31 can be determined from the measurement data at that time. Generally, when the water pressure is high, the ground 31 is hard, and when the water pressure is low, the ground 31 is soft.

一方、図4(a)は、高圧噴射撹拌装置1による地盤31の改良時の状態を示す図である。 On the other hand, FIG. 4A is a diagram showing a state at the time of improvement of the ground 31 by the high-pressure injection stirring device 1.

地盤31を改良するには、図4(a)に示すように、ボーリングマシン33で高圧噴射撹拌装置1を保持し、地盤31に挿入されたロッド3を回転させつつ引き上げる。同時に、スイベル11に接続したホースから流路17−1、17−2に空気と固化材をそれぞれ供給し、噴出口5−1、5−2(図1(a)参照)からそれぞれ噴出する。これにより、固化材と空気からなるジェット39でロッド3の外側の地盤31が切削されるとともに、固化材と地盤31の切削土砂とが混合撹拌されて円柱状の地盤改良体41が形成される。 To improve the ground 31, as shown in FIG. 4A, the boring machine 33 holds the high-pressure injection agitator 1 and pulls up the rod 3 inserted in the ground 31 while rotating it. At the same time, air and a solidifying material are supplied from the hose connected to the swivel 11 to the flow paths 17-1 and 17-2, respectively, and ejected from the spouts 5-1 and 5-2 (see FIG. 1A), respectively. As a result, the ground 31 on the outside of the rod 3 is cut by the jet 39 composed of the solidifying material and air, and the solidifying material and the cut earth and sand of the ground 31 are mixed and agitated to form a columnar ground improvement body 41. ..

高圧噴射撹拌装置1の先端は、地盤改良体41が地盤31の所定の深さ範囲に形成されるまで、矢印Dに示すように地盤31中を上昇する。 The tip of the high-pressure injection stirring device 1 rises in the ground 31 as shown by arrow D until the ground improvement body 41 is formed in a predetermined depth range of the ground 31.

本実施形態では、高圧噴射撹拌装置1で地盤改良を行う際、センサ19−2を用いて超音波測定を行う。超音波測定では、センサ19−2が、ロッド3の外側に向けて超音波を発振する。発振された超音波は固化前の地盤改良体41内を伝搬し、その周面42の地盤で反射する。センサ19−2はこの反射波を受信し、超音波の発振時と受信時の時間差を測定する。 In the present embodiment, when the ground is improved by the high-pressure injection stirring device 1, ultrasonic measurement is performed using the sensor 19-2. In ultrasonic measurement, sensor 19-2 oscillates ultrasonic waves toward the outside of the rod 3. The oscillated ultrasonic waves propagate in the ground improvement body 41 before solidification and are reflected by the ground on the peripheral surface 42 thereof. The sensor 19-2 receives this reflected wave and measures the time difference between the oscillation and the reception of the ultrasonic wave.

センサ19−2による測定データは、図4(b)の矢印cで示すように変換部23に送られ、可視光信号に変換される。送信部21は、変換部23で変換された可視光信号を受信部27に向けて送信する。 The measurement data by the sensor 19-2 is sent to the conversion unit 23 as shown by the arrow c in FIG. 4B, and is converted into a visible light signal. The transmission unit 21 transmits the visible light signal converted by the conversion unit 23 toward the reception unit 27.

送信部21が送信した可視光信号は、前記と同様、矢印bで示すように透光部15を通過して流路17−1内に上向きに入り、上方に進んで地上の受信部27で受信される。地上伝送部29は、受信部27で受信した可視光信号を電気信号に変換し、地上の解析部35に伝送する。 The visible light signal transmitted by the transmission unit 21 passes through the light transmission unit 15 and enters the flow path 17-1 upward as shown by the arrow b, and proceeds upward to the reception unit 27 on the ground. Received. The terrestrial transmission unit 29 converts the visible light signal received by the reception unit 27 into an electric signal and transmits it to the analysis unit 35 on the ground.

解析部35は、伝送された測定データに基づいて、地盤改良体41の出来形を判定する。例えば、超音波の発振時と受信時の時間差に基づいて、ロッド3から前記の周面42までの距離を算出し、地盤改良体41のサイズや形状が所望のものかどうか判定する。 The analysis unit 35 determines the finished shape of the ground improvement body 41 based on the transmitted measurement data. For example, the distance from the rod 3 to the peripheral surface 42 is calculated based on the time difference between the oscillation and the reception of ultrasonic waves, and it is determined whether the size and shape of the ground improvement body 41 are desired.

以上説明したように、本実施形態では、センサ19−1、19−2で取得した測定データを可視光通信によりロッド3内を伝送させ、地上まで迅速に送ることができる。可視光通信を用いることにより長距離の伝送が可能になり、ロッド3の大部分は改変を要しない。また金属製のロッド3により伝送が阻害されることもない。そのため、測定データを好適に伝送することができる。 As described above, in the present embodiment, the measurement data acquired by the sensors 19-1 and 19-2 can be transmitted in the rod 3 by visible light communication and quickly sent to the ground. By using visible light communication, long-distance transmission becomes possible, and most of the rods 3 do not require modification. Further, the transmission is not hindered by the metal rod 3. Therefore, the measurement data can be suitably transmitted.

本実施形態では、地盤31の削孔時にセンサ19−1で測定した測定データにより地盤31の特性をリアルタイムで迅速に判定でき、これを地盤31の削孔工事にフィードバックしたり地盤改良体41の施工に反映させたりすることができる。また地盤改良中にはセンサ19−2で測定した測定データにより地盤改良体41の出来形をリアルタイムで迅速に判定して品質を確認することができ、高圧噴射撹拌装置1の制御にフィードバック等すること等が可能になるので、地盤改良体41の品質及び生産性を大幅に向上させることができ、工事の省力化や工期・コストの削減にもつながる。 In the present embodiment, the characteristics of the ground 31 can be quickly determined in real time from the measurement data measured by the sensor 19-1 at the time of drilling the ground 31, and this can be fed back to the drilling work of the ground 31 or the ground improvement body 41. It can be reflected in the construction. Further, during the ground improvement, the quality can be confirmed by quickly determining the finished shape of the ground improvement body 41 in real time based on the measurement data measured by the sensor 19-2, and feeds back to the control of the high-pressure injection stirring device 1. Since this is possible, the quality and productivity of the ground improvement body 41 can be significantly improved, leading to labor saving in construction work and reduction in construction period and cost.

また本実施形態では、変換部23や送信部21等をハウジング7に収容することでこれらの防水を実現し、またこれらの損傷を防ぐことができる。 Further, in the present embodiment, by accommodating the conversion unit 23, the transmission unit 21, and the like in the housing 7, waterproofing thereof can be realized and damage thereof can be prevented.

また、可視光信号はロッド3内の空気の流路17−1を用いて伝送することができ、ロッド3内に可視光信号を伝送するための空間を新たに追加する必要がない。そのため、ロッド3の径を既存のロッドより大きくすることなく、測定データの伝送が可能になる。 Further, the visible light signal can be transmitted using the air flow path 17-1 in the rod 3, and it is not necessary to newly add a space for transmitting the visible light signal in the rod 3. Therefore, the measurement data can be transmitted without making the diameter of the rod 3 larger than that of the existing rod.

また、本実施形態では受信部27で受信した可視光信号を地上伝送部29によって電気信号に変換し、地上に設置したコンピュータ等の解析部35に伝送することができる。 Further, in the present embodiment, the visible light signal received by the receiving unit 27 can be converted into an electric signal by the terrestrial transmission unit 29 and transmitted to the analysis unit 35 of a computer or the like installed on the ground.

しかしながら本発明はこれに限らない。例えば本実施形態では、地盤31の削孔時に削孔箇所の水圧を測定して地盤31の特性を判定したが、地盤31の削孔時に測定するデータはこれに限らない。 However, the present invention is not limited to this. For example, in the present embodiment, the water pressure at the drilled portion is measured at the time of drilling the ground 31 to determine the characteristics of the ground 31, but the data measured at the time of drilling the ground 31 is not limited to this.

一例として、高圧噴射撹拌装置1の下端部の加速度、下端部に加わる荷重、下端部に加わるモーメント、下端部の周面の摩擦力、削孔水37の噴射圧などを高圧噴射撹拌装置1の下端部に設けたセンサで測定してもよい。例えば加速度を測定するセンサ19としては3軸方向の加速度計を用いることができ、モーメントを測定するセンサ19としては6軸センサを用いることができる。また荷重を測定するセンサ19としてはロードセルを用いることができ、摩擦力を測定するセンサ19としては摩擦計を用いることができる。これらのセンサ19は例えばハウジング7や先端部材9の内部あるいは表面などに配置され、複数のセンサ19による測定データを組み合わせて判定に用いてもよい。 As an example, the acceleration of the lower end of the high-pressure injection agitator 1, the load applied to the lower end, the moment applied to the lower end, the frictional force of the peripheral surface of the lower end, the injection pressure of the drilled water 37, etc. It may be measured by a sensor provided at the lower end. For example, a 3-axis accelerometer can be used as the sensor 19 for measuring the acceleration, and a 6-axis sensor can be used as the sensor 19 for measuring the moment. A load cell can be used as the sensor 19 for measuring the load, and a friction meter can be used as the sensor 19 for measuring the frictional force. These sensors 19 may be arranged, for example, inside or on the surface of the housing 7 or the tip member 9, and may be used for determination by combining measurement data from a plurality of sensors 19.

また、地盤31の削孔時に測定するデータは、地盤31の特性の判定に用いるものに限らず、高圧噴射撹拌装置1の位置や姿勢の計測に用いるものであってもよい。例えば、センサ19としてジャイロセンサや地磁気センサを先端部材9に設け、地盤31の削孔時にこれらの測定データを可視光通信で地上に伝送する。これらの測定データと、地上のGPSセンサで測定した高圧噴射撹拌装置1の平面位置や地上で測定したロッド3の地盤挿入部分の長さ等のデータを総合すれば、先端部材9の3次元座標位置やロッド3の曲がり具合などをリアルタイムに算出し把握できる。 Further, the data measured at the time of drilling the ground 31 is not limited to the data used for determining the characteristics of the ground 31, but may be used for measuring the position and posture of the high-pressure injection stirring device 1. For example, a gyro sensor or a geomagnetic sensor is provided on the tip member 9 as the sensor 19, and these measurement data are transmitted to the ground by visible light communication at the time of drilling the ground 31. By combining these measurement data with the data such as the plane position of the high-pressure injection stirring device 1 measured by the GPS sensor on the ground and the length of the ground insertion portion of the rod 3 measured on the ground, the three-dimensional coordinates of the tip member 9 are combined. The position and the degree of bending of the rod 3 can be calculated and grasped in real time.

また、本実施形態では地盤改良時に超音波センサの測定データにより地盤改良体41の出来形を判定したが、地盤改良時に測定するデータはこれに限らない。例えば、固化材の噴射圧を噴出口5−2の近傍に配置されたセンサ19で測定したり、地盤改良箇所の圧力を測定するセンサ19をハウジング7の表面に設けたり、地盤改良箇所とその周囲の地盤との間の比抵抗(電気の流れやすさ)の違いをセンサ19によって測定して、これらのセンサ19の測定データを地盤改良体41の出来形の判定に利用することも可能である。前記と同様、複数のセンサ19による測定データを組み合わせて判定に用いてもよい。 Further, in the present embodiment, the finished shape of the ground improvement body 41 is determined from the measurement data of the ultrasonic sensor at the time of ground improvement, but the data measured at the time of ground improvement is not limited to this. For example, the injection pressure of the solidifying material may be measured by a sensor 19 arranged in the vicinity of the ejection port 5-2, or a sensor 19 for measuring the pressure at the ground improvement location may be provided on the surface of the housing 7, or the ground improvement location and its portion may be provided. It is also possible to measure the difference in specific resistance (ease of flow of electricity) with the surrounding ground with sensors 19, and use the measurement data of these sensors 19 to determine the finished shape of the ground improvement body 41. is there. Similar to the above, the measurement data from the plurality of sensors 19 may be combined and used for the determination.

図5はセンサ19としてリング状の一組の電流電極191とリング状の一組の電位電極192を有する比抵抗センサを用いる例であり、一組の電流電極191が、噴出口5−1、5−2の下のハウジング7の周面に上下に間隔を空けて配置され、一組の電位電極192が、一組の電流電極191の間で上下に間隔を空けてハウジング7の周面に配置される。電流電極191と電位電極192を合わせた計4つの電極は等間隔aで配置され、その間隔aは例えば施工予定の地盤改良体41の半径程度の値とする。 FIG. 5 shows an example in which a specific resistance sensor having a ring-shaped set of current electrodes 191 and a ring-shaped set of potential electrodes 192 is used as the sensor 19, and the set of current electrodes 191 is the ejection port 5-1. A set of potential electrodes 192 are arranged on the peripheral surface of the housing 7 under 5-2 with an upper and lower spacing, and a set of potential electrodes 192 are arranged on the peripheral surface of the housing 7 with a vertical spacing between the set of current electrodes 191. Be placed. A total of four electrodes, including the current electrode 191 and the potential electrode 192, are arranged at equal intervals a, and the interval a is, for example, a value about the radius of the ground improvement body 41 to be constructed.

比抵抗センサはバッテリ25から電力の供給を受けて動作し、一方の電流電極191からハウジング7の外側に向けて電流を流す。電流は、固化前の地盤改良体41または地盤31内を矢印Iに示すように流れ、他方の電流電極191に到達する。比抵抗センサは、電流を流した時の電位電極192間の電位差に基づき、測定データとしてハウジング7からの離間距離がa以下の範囲の比抵抗の値を算出する。測定データ(比抵抗)は可視光通信等により地上の解析部35まで伝送され、地盤改良体41の出来形の判定に用いられる。比抵抗は固化前の地盤改良体41と地盤31とで異なるので(一般的に固化前の地盤改良体41の方が小さい)、算出される比抵抗が固化前の地盤改良体41特有の値を示していれば、おおよそ予定通りに地盤改良体41が形成されていると判定できる。 The resistivity sensor operates by receiving power supplied from the battery 25, and a current flows from one of the current electrodes 191 toward the outside of the housing 7. The current flows through the ground improvement body 41 or the ground 31 before solidification as shown by arrow I, and reaches the other current electrode 191. The resistivity sensor calculates the value of the resistivity in the range where the distance from the housing 7 is a or less as measurement data based on the potential difference between the potential electrodes 192 when a current is passed. The measurement data (resistivity) is transmitted to the analysis unit 35 on the ground by visible light communication or the like, and is used for determining the finished shape of the ground improvement body 41. Since the specific resistance differs between the ground improvement body 41 before solidification and the ground 31 (generally, the ground improvement body 41 before solidification is smaller), the calculated specific resistance is a value peculiar to the ground improvement body 41 before solidification. If is shown, it can be determined that the ground improvement body 41 is formed approximately as planned.

このように、削孔時の測定データや地盤改良時の測定データ、およびその測定に用いるセンサ19としては様々なものが考えられ、これは後述する各実施形態でも同様である。また、削孔時の測定データや地盤改良時の測定データは、削孔時や地盤改良時の各種の施工データと紐付け、これを地盤31の特性や地盤改良体41の出来形と対応させて記録しておく。こうして記録したデータから機械学習を行うなどして得たAI(人工知能)を利用すれば、一連の施工作業を完全に自動化することも可能である。 As described above, various measurement data at the time of drilling, measurement data at the time of ground improvement, and the sensor 19 used for the measurement can be considered, and this is the same in each embodiment described later. In addition, the measurement data at the time of drilling and the measurement data at the time of ground improvement are linked with various construction data at the time of drilling and ground improvement, and this is made to correspond to the characteristics of the ground 31 and the finished shape of the ground improvement body 41. And record it. By using AI (artificial intelligence) obtained by performing machine learning from the data recorded in this way, it is possible to completely automate a series of construction work.

また本実施形態では、空気の流路17−1を通して可視光信号を伝送したが、他の流路を通して可視光信号を伝送してもよい。例えば図6の高圧噴射撹拌装置1’では、可視光信号が矢印eに示すように固化材の流路17−2を通して伝送される。この場合、送信部21は流路17−2の直下の隔壁13の下面に設けられ、隔壁13において送信部21に対応する位置には透光部15が設けられる。受信部27は、スイベル11において流路17−2に対応する位置に設けられる。可視光信号として波長の短い青色光を用いることで、濁った固化材中でも可視光信号の伝送を好適に行うことができる。 Further, in the present embodiment, the visible light signal is transmitted through the air flow path 17-1, but the visible light signal may be transmitted through another flow path. For example, in the high-pressure jet stirring device 1'of FIG. 6, the visible light signal is transmitted through the flow path 17-2 of the solidifying material as shown by the arrow e. In this case, the transmission unit 21 is provided on the lower surface of the partition wall 13 directly below the flow path 17-2, and the light transmission unit 15 is provided at a position corresponding to the transmission unit 21 on the partition wall 13. The receiving unit 27 is provided at a position corresponding to the flow path 17-2 in the swivel 11. By using blue light having a short wavelength as the visible light signal, it is possible to suitably transmit the visible light signal even in a turbid solidifying material.

図7(a)の高圧噴射撹拌装置1”では、可視光信号が矢印fに示すように水の流路17−3を通して伝送される。この場合、送信部21は管3−3の屈曲部の下方に設けられる。図7(b)に示すようにハウジング7内でコの字型の屈曲部を管3−3に設け、この屈曲部の下方に送信部21を設けてもよい。いずれの場合も、管3−3において送信部21に対応する位置には透光部15が設けられ、受信部27はスイベル11において流路17−3に対応する位置に設けられる。 In the high-pressure jet stirring device 1 ”of FIG. 7A, the visible light signal is transmitted through the water flow path 17-3 as shown by the arrow f. In this case, the transmitting unit 21 is the bent portion of the pipe 3-3. As shown in FIG. 7B, a U-shaped bent portion may be provided in the pipe 3-3 in the housing 7, and a transmitting portion 21 may be provided below the bent portion. Also in the case of, the light transmitting unit 15 is provided at the position corresponding to the transmitting unit 21 in the tube 3-3, and the receiving unit 27 is provided at the position corresponding to the flow path 17-3 in the swivel 11.

また図8に示すように、流路17−1の壁面に塗装を施して壁面より高い反射率を有する反射部53を設けてもよい。これにより、地盤の削孔や地盤改良の過程でロッド3に曲がりや反りが生じた場合にも、点線で示すように可視光信号を壁面の反射部53で反射させて伝送することができる。この例では、可視光信号の伝送に用いられる流路17−1の壁面、すなわち管3−1の内周面および管3−2の外周面に反射部53が形成される。本実施形態では、壁面の一部を反射部53としてもよく、壁面の全部を反射部53としてもよい。すなわち、反射部53の形成範囲は、流路17−1の壁面全体でもよいし、ロッド3に曲がりや反りが生じる箇所が既知の場合はその箇所のみでもよい。 Further, as shown in FIG. 8, the wall surface of the flow path 17-1 may be coated to provide a reflecting portion 53 having a higher reflectance than the wall surface. As a result, even when the rod 3 is bent or warped in the process of drilling holes in the ground or improving the ground, the visible light signal can be reflected by the reflecting portion 53 on the wall surface and transmitted as shown by the dotted line. In this example, the reflecting portion 53 is formed on the wall surface of the flow path 17-1 used for transmitting the visible light signal, that is, the inner peripheral surface of the tube 3-1 and the outer peripheral surface of the tube 3-2. In the present embodiment, a part of the wall surface may be used as the reflecting portion 53, or the entire wall surface may be used as the reflecting portion 53. That is, the forming range of the reflecting portion 53 may be the entire wall surface of the flow path 17-1, or may be only the portion where the rod 3 is bent or warped if it is known.

また、本実施形態のデータ伝送システムを設置する対象は、前記した高圧噴射撹拌装置1に限らず、地盤31に挿入させるロッド3を有する施工装置であればよい。例えば削孔機能を持たない高圧噴射撹拌装置であってもよく、その他、杭や地中連続壁の造成に用いるオーガーや、グラウンドアンカーの施工・トンネル施工時のフォアパイリング・薬液注入・BH工法、BCH工法、TBH工法などの各種の杭の施工等に用いるボーリングロッドなどの削孔装置でもよい。またロッド3の構成も内部で可視光信号による通信を行えるものであれば特に限定されない。 Further, the target for installing the data transmission system of the present embodiment is not limited to the high-pressure injection stirring device 1 described above, but may be a construction device having a rod 3 to be inserted into the ground 31. For example, it may be a high-pressure injection agitator that does not have a drilling function. A drilling device such as a boring rod used for construction of various piles such as the BCH method and the TBH method may be used. Further, the configuration of the rod 3 is not particularly limited as long as it can internally communicate with a visible light signal.

例えばSMW工法などで地中連続壁を造成する際に用いるオーガーの場合、オーガー(ロッド)の先端に設けた傾斜計などのセンサの測定データをオーガー内の空間で伝送させ、地上でリアルタイムにモニタリングすることで削孔精度を向上させることができる。 For example, in the case of an auger used when constructing a continuous underground wall by the SMW method, the measurement data of a sensor such as an inclinometer installed at the tip of the auger (rod) is transmitted in the space inside the auger and monitored in real time on the ground. By doing so, the drilling accuracy can be improved.

また、カーベックス(登録商標)工法など、曲線削孔が可能な削孔ロッドを用いて地盤を削孔し、当該孔より薬液を注入して地盤改良を行う自在ボーリング式地盤改良工法(例えば特開2013-023888号公報など)にも適用でき、この場合はジャイロセンサなどのセンサによって計測した削孔ロッドの先端の位置情報を可視光通信を利用して地上まで伝送し、地上で削孔ロッドの位置を確認しつつ、削孔ロッドによる削孔を行うことができる。 In addition, a free boring type ground improvement method (for example, special method) such as the Carbex (registered trademark) method, in which a drilling rod capable of curved drilling is used to drill a hole in the ground and a chemical solution is injected through the hole to improve the ground. It can also be applied to (Open 2013-023888, etc.). In this case, the position information of the tip of the drilling rod measured by a sensor such as a gyro sensor is transmitted to the ground using visible light communication, and the drilling rod is grounded. It is possible to drill holes with a drilling rod while confirming the position of.

その他、トンネル掘削時にフォアパイリング用のボーリングを行う際に、ボーリングロッドの先端にカメラによるセンサを設け、カメラで穿孔内を撮影した画像データを可視光通信を利用してトンネル内の端末まで伝送し、亀裂等が無いか確認することなども可能である。 In addition, when boring for fore-piling during tunnel excavation, a sensor by a camera is provided at the tip of the boring rod, and image data taken inside the perforation by the camera is transmitted to the terminal in the tunnel using visible light communication. It is also possible to check if there are any cracks.

また本実施形態では可視光信号を用いたデータ伝送を行っているが、可視光信号の代わりにレーザー信号を用いてもよく、前記と同様の効果が得られる。この場合、前記の変換部23はセンサ19−1、19−2で取得した測定データをレーザー信号に変換し、地上伝送部29は、受信部27で受信したレーザー信号を電気信号に変換し、解析部35に伝送する。 Further, in the present embodiment, data transmission using a visible light signal is performed, but a laser signal may be used instead of the visible light signal, and the same effect as described above can be obtained. In this case, the conversion unit 23 converts the measurement data acquired by the sensors 19-1 and 19-2 into a laser signal, and the terrestrial transmission unit 29 converts the laser signal received by the reception unit 27 into an electric signal. It is transmitted to the analysis unit 35.

以下、本発明の別の例について第2〜第4の実施形態として説明する。各実施形態はそれまでに説明した実施形態と異なる点について説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせることができる。 Hereinafter, another example of the present invention will be described as the second to fourth embodiments. The differences between the embodiments and the embodiments described so far will be described, and the same configurations will be omitted by adding the same reference numerals in the drawings and the like. In addition, the configurations described in each embodiment, including the first embodiment, can be combined as needed.

[第2の実施形態]
図9は、第2の実施形態に係る高圧噴射撹拌装置1aを図1(b)と同様に示す図である。図9に示す高圧噴射撹拌装置1aは、バッテリ25の代わりに羽根車49および発電機51を有する発電部50を備えた点で第1の実施形態と異なる。
[Second Embodiment]
FIG. 9 is a diagram showing the high-pressure injection stirring device 1a according to the second embodiment in the same manner as in FIG. 1 (b). The high-pressure injection stirring device 1a shown in FIG. 9 differs from the first embodiment in that it includes a power generation unit 50 having an impeller 49 and a generator 51 instead of the battery 25.

羽根車49は、水の流路17−3の内部に設けられる。羽根車49および発電機51はハウジング7内に配置される。高圧噴射撹拌装置1aでは、流路17−3内に水を供給すると水流によって羽根車49が回転する。発電機51は、羽根車49の回転から電力を得て蓄電し、センサ19−1、19−2、変換部23、送信部21等に給電してこれらを作動させる。 The impeller 49 is provided inside the water flow path 17-3. The impeller 49 and the generator 51 are arranged in the housing 7. In the high-pressure injection stirring device 1a, when water is supplied into the flow path 17-3, the impeller 49 rotates due to the water flow. The generator 51 obtains electric power from the rotation of the impeller 49, stores electric power, and supplies electric power to the sensors 19-1, 19-2, the conversion unit 23, the transmission unit 21, and the like to operate them.

第2の実施形態では、測定データの可視光通信を行うことで第1の実施形態と同様の効果が得られるのに加え、水の流れを利用した発電を行うことでバッテリ25が不要になる。 In the second embodiment, the same effect as that of the first embodiment can be obtained by performing visible light communication of the measurement data, and the battery 25 becomes unnecessary by performing power generation using the flow of water. ..

なお、第2の実施形態では水流によって発電を行ったが、発電方法はこれに限らない。空気の流路17−1や固化材の流路17−2に設置した羽根車49を空気や固化材の流れによって回転させて発電してもよい。また、可視光通信の光を用いて発電することも可能である。 In the second embodiment, power is generated by a water stream, but the power generation method is not limited to this. The impeller 49 installed in the air flow path 17-1 or the solidifying material flow path 17-2 may be rotated by the flow of air or the solidifying material to generate electricity. It is also possible to generate electricity using the light of visible light communication.

[第3の実施形態]
図10は、第3の実施形態に係る高圧噴射撹拌装置1bを図1(b)と同様に示す図である。高圧噴射撹拌装置1bは、可視光信号の送信部43および受信部47を追加した点で第1の実施形態と異なる。
[Third Embodiment]
FIG. 10 is a diagram showing the high-pressure injection stirring device 1b according to the third embodiment in the same manner as in FIG. 1 (b). The high-pressure jet stirring device 1b is different from the first embodiment in that a visible light signal transmitting unit 43 and a receiving unit 47 are added.

送信部43は、スイベル11において、流路17−1に対応する位置に設けられる。受信部47は、流路17−1に対応する位置の隔壁13の下面で送信部43の直下に設けられる。隔壁13において受信部47に対応する位置には可視光信号を透過させる透光部45が設けられる。 The transmission unit 43 is provided at a position corresponding to the flow path 17-1 in the swivel 11. The receiving unit 47 is provided on the lower surface of the partition wall 13 at a position corresponding to the flow path 17-1 and directly below the transmitting unit 43. A translucent portion 45 for transmitting a visible light signal is provided at a position corresponding to the receiving portion 47 on the partition wall 13.

高圧噴射撹拌装置1bでは、地上の解析部35からの制御指令が図示しない変換部で可視光信号に変換され、この可視光信号が送信部43から送信される。可視光信号は矢印gに示すように流路17−1を下方に進み、透光部45を通って受信部47で受信される。受信した可視光信号は、図示しない変換部で制御指令に変換され、例えばセンサ19−1、19−2に伝送されてサンプリングタイムなどの測定仕様が制御される。前記と同様、可視光信号の代わりにレーザー信号を用いることも可能である。 In the high-pressure injection stirring device 1b, the control command from the analysis unit 35 on the ground is converted into a visible light signal by a conversion unit (not shown), and this visible light signal is transmitted from the transmission unit 43. The visible light signal travels downward through the flow path 17-1 as shown by the arrow g, passes through the translucent unit 45, and is received by the receiving unit 47. The received visible light signal is converted into a control command by a conversion unit (not shown) and transmitted to sensors 19-1 and 19-2 to control measurement specifications such as sampling time. Similar to the above, it is also possible to use a laser signal instead of the visible light signal.

第3の実施形態では、第1の実施形態と同様の効果に加えて、地上の解析部35からの制御指令をロッド3内を通して伝送することにより、センサ19−1、19−2の測定仕様等を適切に制御することができる。その他、制御指令をロッド3内を通して伝送することによりロッドによる削孔制御や薬液注入方向の制御などの施工制御を行うことも可能である。また、前記した自在ボーリング式地盤改良工法の場合であれば、上記制御指令に基づき削孔ロッド先端の角度を制御するなどして削孔位置の変更を行うことも可能である。 In the third embodiment, in addition to the same effect as in the first embodiment, the measurement specifications of the sensors 19-1 and 19-2 are transmitted by transmitting the control command from the analysis unit 35 on the ground through the rod 3. Etc. can be appropriately controlled. In addition, by transmitting a control command through the rod 3, it is also possible to perform construction control such as drilling control by the rod and control of the chemical solution injection direction. Further, in the case of the universal boring type ground improvement method described above, it is possible to change the drilling position by controlling the angle of the tip of the drilling rod based on the control command.

[第4の実施形態]
図11は、第4の実施形態に係る高圧噴射撹拌装置1cを図1(b)と同様に示す図である。この高圧噴射撹拌装置1cは、可視光信号の送受信のため専用の伝送路を設けた点で第1の実施形態と主に異なる。なお、本実施形態でも第3の実施形態と同様、可視光信号の送信部43および受信部47を追加することで双方向通信を可能としている。
[Fourth Embodiment]
FIG. 11 is a diagram showing the high-pressure injection stirring device 1c according to the fourth embodiment in the same manner as in FIG. 1 (b). This high-pressure injection stirring device 1c is mainly different from the first embodiment in that a dedicated transmission line is provided for transmitting and receiving visible light signals. In this embodiment as well as in the third embodiment, bidirectional communication is possible by adding a visible light signal transmitting unit 43 and a receiving unit 47.

また、高圧噴射撹拌装置1cは削孔機能を持たないものであり、前記の先端部材9が省略され、削孔水の流路17−3(管3−3)の代わりにロッド3’の流路17−2の中央部に管3−4が設けられ、管3−4の内側に可視光信号の送受信のための中空の伝送路17−4を形成する。 Further, the high-pressure jet stirring device 1c does not have a drilling function, the tip member 9 is omitted, and the flow of the rod 3'is replaced with the flow path 17-3 (tube 3-3) of the drilled water. A tube 3-4 is provided in the central portion of the path 17-2, and a hollow transmission path 17-4 for transmitting and receiving a visible light signal is formed inside the tube 3-4.

可視光信号の送信部21と受信部47は、伝送路17−4の直下の隔壁13の下面に設けられる。透光部15、45は、隔壁13においてこれらの送信部21、受信部47に対応する位置に設けられる。 The visible light signal transmitting unit 21 and the receiving unit 47 are provided on the lower surface of the partition wall 13 directly below the transmission line 17-4. The light transmitting units 15 and 45 are provided at positions corresponding to the transmitting unit 21 and the receiving unit 47 on the partition wall 13.

一方、上記の送信部21、受信部47と対をなす可視光信号の受信部27、送信部43は、スイベル11の上端に設けられたキャップ30内で、伝送路17−4に対応する位置に設けられる。可視光信号の受信部27、送信部43はそれぞれ、上記の送信部21、受信部47の直上に当たる位置に設けられる。 On the other hand, the visible light signal receiving unit 27 and the transmitting unit 43 paired with the transmitting unit 21 and the receiving unit 47 are located in the cap 30 provided at the upper end of the swivel 11 and correspond to the transmission lines 17-4. It is provided in. The visible light signal receiving unit 27 and the transmitting unit 43 are provided at positions directly above the transmitting unit 21 and the receiving unit 47, respectively.

本実施形態では可視光信号を伝送するための専用の伝送路を管3−4によって設けるので、通信を阻害するものが無く、好適に信号を伝送できる。また管3−4はロッド3’の断面中心にあるので、ロッド3’の回転による位置変化が無く、通信の難度も低い。 In the present embodiment, since the dedicated transmission line for transmitting the visible light signal is provided by the tube 3-4, there is no obstacle to communication, and the signal can be suitably transmitted. Further, since the pipe 3-4 is located at the center of the cross section of the rod 3', the position does not change due to the rotation of the rod 3', and the difficulty of communication is low.

本実施形態では、測定データの送受信を行う送信部21と受信部27の組、制御指令の送受信を行う送信部43と受信部47の組を異なる平面位置とすることで双方向通信を可能にしているが、送信部21と受信部47の機能を一纏めにした送受信部、および、送信部43と受信部27の機能を一纏めにした送受信部を伝送路17−4の上下に設け、測定データを送受信するタイミングと、制御指令を送受信するタイミングを異ならせてもよい。このように異なるタイミングで通信を行うことでも双方向通信は可能である。 In the present embodiment, bidirectional communication is enabled by setting the pair of the transmitting unit 21 and the receiving unit 27 for transmitting and receiving measurement data and the pair of the transmitting unit 43 and the receiving unit 47 for transmitting and receiving control commands at different plane positions. However, a transmission / reception unit in which the functions of the transmission unit 21 and the reception unit 47 are integrated, and a transmission / reception unit in which the functions of the transmission unit 43 and the reception unit 27 are integrated are provided above and below the transmission line 17-4, and measurement data is measured. The timing of transmitting and receiving the control command may be different from the timing of transmitting and receiving the control command. Bidirectional communication is also possible by performing communication at different timings in this way.

その他、本実施形態の管3−4についても、内面を鏡面仕上げとするなどして前記の反射部を設けることが可能である。また管3−4の内部には水や固化材等が流通しないので、鏡面反射性を有する紙筒などの筒体を内部に挿入するなどして反射部を簡易に設けることもできる。 In addition, the tube 3-4 of the present embodiment can also be provided with the above-mentioned reflecting portion by making the inner surface mirror-finished. Further, since water, a solidifying material, or the like does not flow inside the pipe 3-4, a reflecting portion can be easily provided by inserting a cylinder such as a paper cylinder having specular reflection into the inside.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1、1’、1”、1a、1b、1c:高圧噴射撹拌装置
3、3’:ロッド
3−1、3−2、3−3、3−4:管
5−1、5−2、5−3:噴出口
7:ハウジング
9:先端部材
11:スイベル
13:隔壁
15、45:透光部
17−1、17−2、17−3:流路
17−4:伝送路
19、19−1、19−2:センサ
21、43:送信部
23:変換部
25:バッテリ
27、47:受信部
29:地上伝送部
30:キャップ
31:地盤
33:ボーリングマシン
35:解析部
37:削孔水
39:ジェット
41:地盤改良体
42:周面
49:羽根車
50:発電部
51:発電機
53:反射部
191;電流電極
192;電位電極
1, 1', 1 ", 1a, 1b, 1c: High-pressure jet agitator 3, 3': Rod 3-1, 3-2, 3-3, 3-4: Tube 5-1, 5-2, 5 -3: Spout 7: Housing 9: Tip member 11: Swivel 13: Partition 15, 45: Transmissive part 17-1, 17-2, 17-3: Flow path 17-4: Transmission path 19, 19-1 , 19-2: Sensor 21, 43: Transmission unit 23: Conversion unit 25: Battery 27, 47: Reception unit 29: Ground transmission unit 30: Cap 31: Ground 33: Boring machine 35: Analysis unit 37: Drilling water 39 : Jet 41: Ground improvement body 42: Peripheral surface 49: Impeller 50: Power generation unit 51: Generator 53: Reflection unit 191; Current electrode 192; Potential electrode

Claims (11)

地盤に挿入させるロッドを有する施工装置に設けられたデータ伝送システムであって、
センサと、
前記センサにより地表面下で測定した測定データを、可視光信号またはレーザー信号に変換する変換部と、
前記可視光信号またはレーザー信号を前記ロッドの内部を通して伝送させる通信部と、
を具備することを特徴とするデータ伝送システム。
A data transmission system installed in a construction device having a rod to be inserted into the ground.
With the sensor
A conversion unit that converts the measurement data measured under the ground surface by the sensor into a visible light signal or a laser signal, and
A communication unit that transmits the visible light signal or the laser signal through the inside of the rod,
A data transmission system characterized by comprising.
前記通信部は前記可視光信号またはレーザー信号の送信部と受信部を有し、
前記施工装置の地表面下の端部に、前記変換部と前記送信部とを収容するハウジングが設けられたことを特徴とする請求項1記載のデータ伝送システム。
The communication unit has a transmission unit and a reception unit for the visible light signal or a laser signal.
The data transmission system according to claim 1, wherein a housing for accommodating the conversion unit and the transmission unit is provided at an end portion of the construction device below the ground surface.
前記ロッド内の水の流路で前記可視光信号またはレーザー信号が伝送されることを特徴とする請求項1または請求項2に記載のデータ伝送システム。 The data transmission system according to claim 1 or 2, wherein the visible light signal or the laser signal is transmitted through the flow path of water in the rod. 前記ロッド内の空気の流路で前記可視光信号またはレーザー信号が伝送されることを特徴とする請求項1または請求項2に記載のデータ伝送システム。 The data transmission system according to claim 1 or 2, wherein the visible light signal or the laser signal is transmitted through the air flow path in the rod. 前記ロッド内の固化材の流路で前記可視光信号またはレーザー信号が伝送されることを特徴とする請求項1または請求項2に記載のデータ伝送システム。 The data transmission system according to claim 1 or 2, wherein the visible light signal or the laser signal is transmitted through the flow path of the solidifying material in the rod. 前記ロッド内に、前記可視光信号またはレーザー信号を伝送するための専用の伝送路が管によって形成されたことを特徴とする請求項1または請求項2に記載のデータ伝送システム。 The data transmission system according to claim 1 or 2, wherein a dedicated transmission path for transmitting the visible light signal or a laser signal is formed in the rod by a tube. 前記流路または前記伝送路の壁面の一部または全部に、前記可視光信号またはレーザー信号の反射部が設けられたことを特徴とする請求項3から請求項6のいずれかに記載のデータ伝送システム。 The data transmission according to any one of claims 3 to 6, wherein the visible light signal or the laser signal reflecting portion is provided on a part or all of the wall surface of the flow path or the transmission line. system. 前記ロッド内の水、空気、または固化材の流れを利用して発電を行う発電部を備えることを特徴とする請求項3から請求項7のいずれかに記載のデータ伝送システム。 The data transmission system according to any one of claims 3 to 7, further comprising a power generation unit that generates power by utilizing the flow of water, air, or a solidifying material in the rod. 前記施工装置による前記地盤の削孔時に、前記センサで得られた測定データを用いて前記地盤の特性を判定する解析部を有することを特徴とする請求項1から請求項8のいずれかに記載のデータ伝送システム。 The method according to any one of claims 1 to 8, further comprising an analysis unit for determining the characteristics of the ground using the measurement data obtained by the sensor when the ground is drilled by the construction device. Data transmission system. 前記施工装置による前記地盤の改良時に、前記センサで得られた測定データを用いて地盤改良体の出来形を判定する解析部を有することを特徴とする請求項1から請求項9のいずれかに記載のデータ伝送システム。 The method according to any one of claims 1 to 9, further comprising an analysis unit for determining the finished shape of the ground improvement body using the measurement data obtained by the sensor when the ground is improved by the construction device. The data transmission system described. 前記通信部は前記可視光信号またはレーザー信号の送信部と受信部を有し、
前記受信部で受信した前記可視光信号またはレーザー信号を電気信号に変換して地上の解析部に伝送する地上伝送部をさらに具備することを特徴とする請求項1から請求項10のいずれかに記載のデータ伝送システム。
The communication unit has a transmission unit and a reception unit for the visible light signal or a laser signal.
The invention according to any one of claims 1 to 10, further comprising a terrestrial transmission unit that converts the visible light signal or the laser signal received by the reception unit into an electric signal and transmits the electric signal to the analysis unit on the ground. The data transmission system described.
JP2019194070A 2019-10-25 2019-10-25 data transmission system Active JP7316188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019194070A JP7316188B2 (en) 2019-10-25 2019-10-25 data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019194070A JP7316188B2 (en) 2019-10-25 2019-10-25 data transmission system

Publications (2)

Publication Number Publication Date
JP2021067113A true JP2021067113A (en) 2021-04-30
JP7316188B2 JP7316188B2 (en) 2023-07-27

Family

ID=75637782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019194070A Active JP7316188B2 (en) 2019-10-25 2019-10-25 data transmission system

Country Status (1)

Country Link
JP (1) JP7316188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737764A (en) * 2021-09-02 2021-12-03 中铁时代建筑设计院有限公司 Static sounding device and static sounding method
JP7012893B1 (en) 2021-06-02 2022-02-14 小野田ケミコ株式会社 Soil improvement status monitoring system and soil improvement status monitoring method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329336A (en) * 1991-05-02 1992-11-18 Meisei Electric Co Ltd Two-way signal transmitting system and signal repeater for cone penetration tester
JPH06173569A (en) * 1992-12-07 1994-06-21 Mitsui Zosen Akishima Kenkyusho:Kk Measuring robot for collecting bottom hole information
JPH06193044A (en) * 1992-12-28 1994-07-12 Kajima Corp Execution control method for original position soil stirring method
JP2001050500A (en) * 1999-05-27 2001-02-23 Usui Internatl Ind Co Ltd Fluid pipe with light signal transmitting function and piping parts thereof
US6308787B1 (en) * 1999-09-24 2001-10-30 Vermeer Manufacturing Company Real-time control system and method for controlling an underground boring machine
JP2013072215A (en) * 2011-09-28 2013-04-22 Shimizu Corp Signal transmission mechanism for measuring diameter of improvement
JP2015059317A (en) * 2013-09-17 2015-03-30 根本企画工業株式会社 Method and device for detecting gradient of underground excavation head
JP2017137619A (en) * 2016-02-01 2017-08-10 株式会社不動テトラ Ground improvement construction machine
JP2018193792A (en) * 2017-05-18 2018-12-06 若築建設株式会社 Drilling method and drilling apparatus
JP2019027209A (en) * 2017-08-02 2019-02-21 フジモリ産業株式会社 Method for inspecting ground improvement state

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329336A (en) * 1991-05-02 1992-11-18 Meisei Electric Co Ltd Two-way signal transmitting system and signal repeater for cone penetration tester
JPH06173569A (en) * 1992-12-07 1994-06-21 Mitsui Zosen Akishima Kenkyusho:Kk Measuring robot for collecting bottom hole information
JPH06193044A (en) * 1992-12-28 1994-07-12 Kajima Corp Execution control method for original position soil stirring method
JP2001050500A (en) * 1999-05-27 2001-02-23 Usui Internatl Ind Co Ltd Fluid pipe with light signal transmitting function and piping parts thereof
US6308787B1 (en) * 1999-09-24 2001-10-30 Vermeer Manufacturing Company Real-time control system and method for controlling an underground boring machine
JP2013072215A (en) * 2011-09-28 2013-04-22 Shimizu Corp Signal transmission mechanism for measuring diameter of improvement
JP2015059317A (en) * 2013-09-17 2015-03-30 根本企画工業株式会社 Method and device for detecting gradient of underground excavation head
JP2017137619A (en) * 2016-02-01 2017-08-10 株式会社不動テトラ Ground improvement construction machine
JP2018193792A (en) * 2017-05-18 2018-12-06 若築建設株式会社 Drilling method and drilling apparatus
JP2019027209A (en) * 2017-08-02 2019-02-21 フジモリ産業株式会社 Method for inspecting ground improvement state

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012893B1 (en) 2021-06-02 2022-02-14 小野田ケミコ株式会社 Soil improvement status monitoring system and soil improvement status monitoring method
JP2022185457A (en) * 2021-06-02 2022-12-14 小野田ケミコ株式会社 Soil improvement state monitoring system and soil improvement state monitoring method
CN113737764A (en) * 2021-09-02 2021-12-03 中铁时代建筑设计院有限公司 Static sounding device and static sounding method
CN113737764B (en) * 2021-09-02 2023-04-14 中铁时代建筑设计院有限公司 Static sounding device and static sounding method

Also Published As

Publication number Publication date
JP7316188B2 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US10494920B2 (en) Method and apparatus for resistivity measurements
CN106065767B (en) Method for the drilling equipment for generating cased bore-bole and for operating drilling equipment
US6577954B2 (en) Automated bore planning method and apparatus for horizontal directional drilling
US8893785B2 (en) Location of downhole lines
CN109116411B (en) Microseismic sensors are fixed and recyclable device in a kind of hole suitable for different pore size
JP7316188B2 (en) data transmission system
US6526818B1 (en) Seabed analysis
EP3109400B1 (en) Drill sensor system and method
KR101039834B1 (en) Apparatus and method for investigating joint exploitation of three-dimensional underground
US20120000649A1 (en) Apparatus and methods for improved cement plug placement
EP2177713A1 (en) Methods and apparatus for improved cement plug placement
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JP5873052B2 (en) Method and apparatus for detecting inclination of underground excavation head
JPH1130518A (en) Measuring apparatus for cavity
CN111119863A (en) Fish measuring cable logging instrument based on magnetic signal and ultrasonic wave principle
JP2010285765A (en) Pile hole excavator
JP3007302B2 (en) Judgment method of ground improvement area
JP6936047B2 (en) Drilling method and drilling device
US10921478B2 (en) Method and transducer for acoustic logging
JPH08320228A (en) Attitude measuring device for boring rod
CN111119862A (en) Logging-while-drilling instrument for fish measurement based on electrical method and ultrasonic wave principle
CN217931545U (en) Down-putting push rod of radial transducer for acoustic wave measurement of loose circle of underground surrounding rock
NO20151502A1 (en) Apparatus and method for measuring inclination in subsea running setting and testing tools
JP3894637B2 (en) Radar propulsion device and excavation route survey method
JP6754302B2 (en) Ground exploration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R150 Certificate of patent or registration of utility model

Ref document number: 7316188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150