JP2018193792A - Drilling method and drilling apparatus - Google Patents

Drilling method and drilling apparatus Download PDF

Info

Publication number
JP2018193792A
JP2018193792A JP2017099043A JP2017099043A JP2018193792A JP 2018193792 A JP2018193792 A JP 2018193792A JP 2017099043 A JP2017099043 A JP 2017099043A JP 2017099043 A JP2017099043 A JP 2017099043A JP 2018193792 A JP2018193792 A JP 2018193792A
Authority
JP
Japan
Prior art keywords
drilling
hole
locus
tip head
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017099043A
Other languages
Japanese (ja)
Other versions
JP6936047B2 (en
JP2018193792A5 (en
Inventor
健太 水野
Kenta Mizuno
健太 水野
稔 原
Minoru Hara
稔 原
和成 岡田
Kazunari Okada
和成 岡田
雅俊 平井
Masatoshi Hirai
雅俊 平井
勉 横井
Tsutomu Yokoi
勉 横井
鈴木 武志
Takeshi Suzuki
武志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Foundation Engineering Co Ltd
Wakachiku Construction Co Ltd
Original Assignee
Japan Foundation Engineering Co Ltd
Wakachiku Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Foundation Engineering Co Ltd, Wakachiku Construction Co Ltd filed Critical Japan Foundation Engineering Co Ltd
Priority to JP2017099043A priority Critical patent/JP6936047B2/en
Publication of JP2018193792A publication Critical patent/JP2018193792A/en
Publication of JP2018193792A5 publication Critical patent/JP2018193792A5/ja
Application granted granted Critical
Publication of JP6936047B2 publication Critical patent/JP6936047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)

Abstract

To grasp a drilling position more accurately and to perform drilling accurately.SOLUTION: A drilling method according to an embodiment of the present invention includes drilling locus measurement steps (S130, S180), posture measurement steps (S140, S190), and adjustment steps (S210-S260). In the drilling locus measurement steps, a current is caused to flow through a drill pipe to generate a magnetic field, and an absolute position (drilling locus) of the drill pipe is measured from a reception result of the magnetic field, so that the position of the drill pipe can be grasped more accurately. In the posture measurement steps, the rotation angle and the pitching angle of a distal end head are measured by an inclinometer installed inside the distal end head. In the adjustment steps, the rotation angle position of the distal end head is adjusted so that the drilling position approaches the planned arrival position and is corrected based on the measurement results in the drilling locus measurement steps and the posture measurement steps. In this way, by using the position information of the drill pipe together with the posture information of the distal end head, drilling can be performed with high accuracy.SELECTED DRAWING: Figure 3

Description

本発明は、先端ヘッドを装着した削孔管を利用して、地中に直線孔や曲線孔を削孔する削孔方法及び削孔装置に関するものである。   The present invention relates to a drilling method and a drilling apparatus that drill a straight hole or a curved hole in the ground using a drilling tube equipped with a tip head.

例えば地盤改良等を目的として、削孔管を利用して地中を削孔する際、設計通りに精度良く施工するために、削孔している位置、すなわち、削孔管の位置を正確に把握する必要がある。そのような削孔管の位置を把握する方法として、削孔管内や専用の磁界発生孔に磁界発生装置を設置して地中に磁界を発生させ、地上や削孔管内の受信器により磁界の強さを計測して位置を測定する方法や、削孔管の先端に送り込むジャイロセンサの計測値を利用する方法(例えば、特許文献1参照)等が挙げられる。一方、削孔管の先端に傾斜計やひずみ計を設置することで、削孔管の先端の姿勢を計測する技術も発案されている(例えば、特許文献2参照)。   For example, when drilling in the ground using a drilling tube for the purpose of ground improvement, etc., the drilling position, i.e., the position of the drilling tube, must be accurately set in order to carry out the work with high accuracy as designed. It is necessary to grasp. As a method of grasping the position of such a drilled tube, a magnetic field generator is installed in the drilled tube or a dedicated magnetic field generating hole to generate a magnetic field in the ground, and the magnetic field is generated by a receiver on the ground or in the drilled tube. A method of measuring the position by measuring the strength, a method of using the measured value of the gyro sensor fed to the tip of the drilling pipe (for example, see Patent Document 1), and the like. On the other hand, a technique for measuring the attitude of the tip of the drilled pipe by installing an inclinometer or a strain gauge at the tip of the drilled pipe has been proposed (for example, see Patent Document 2).

特開2010−181233号公報JP 2010-181233 A 特開2015−59317号公報JP2015-59317 A

ここで、上述した磁界を発生させる方法は、地上構造物や地中埋設物の影響により、測定が困難になる虞がある。このため、そのような場合でも削孔管の最終到達位置が予測できるように、削孔管の先端の姿勢を計測する技術を併用することが考えられるが、上記の磁界を発生させる方法は、削孔管に磁界発生装置や受信器を備える必要があるため、削孔管に傾斜計やひずみ計を設置するスペースを確保することが困難である。一方、ジャイロセンサを利用する方法は、起点からの相対位置が把握できるものの、絶対位置が把握できないため、計測位置の精度に改善の余地があり、又、一回の計測に時間を要するため、全体の作業時間が長くなってしまう。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、削孔位置をより正確に把握し、削孔を精度よく行うことにある。
Here, the above-described method for generating a magnetic field may be difficult to measure due to the influence of a ground structure or an underground object. For this reason, it is conceivable to use a technique for measuring the attitude of the tip of the drill tube so that the final position of the drill tube can be predicted even in such a case. Since it is necessary to provide a magnetic field generator and a receiver in the drilling tube, it is difficult to secure a space for installing an inclinometer or a strain gauge in the drilling tube. On the other hand, the method using the gyro sensor can grasp the relative position from the starting point, but cannot grasp the absolute position, so there is room for improvement in the accuracy of the measurement position, and it takes time for one measurement, Overall work time will be longer.
This invention is made | formed in view of the said subject, The place made into the objective is grasping | ascertaining a drilling position more correctly, and performing drilling accurately.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔工程と、前記回転ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔工程とを組み合わせて、地中を削孔する方法であって、地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させ、地上から受信器により前記磁界を受信し、該受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する削孔軌跡計測工程と、前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測工程と、前記削孔軌跡計測工程及び前記姿勢計測工程における計測結果に基づいて、前記先端ヘッドの回転角度位置を調整する調整工程と、を含む削孔方法(請求項1)。   (1) a linear drilling step of drilling a straight hole by using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip and pushing the drilling tube while rotating the tip head; , A method of drilling in the ground in combination with a curved drilling step of drilling a curved hole by pushing the drilling tube without rotating the rotary head, the method being exposed to the ground A current flows from a part of the drilling tube to generate a magnetic field centered on the drilling tube in the ground. The magnetic field is received from the ground by a receiver, and drilling starts based on the reception result. Drilling locus measurement step for measuring a drilling locus from a position to the tip head, an attitude measurement step for measuring a rotation angle and a pitching angle of the tip head, and a measurement in the drilling locus measurement step and the posture measurement step Based on the results, the destination Drilling method comprising adjusting step, the adjusting the rotation angle position of the head (claim 1).

本項に記載の削孔方法は、先端ヘッドを装着した削孔管を利用して、直線孔を削孔する直線削孔工程と、曲線孔を削孔する曲線削孔工程とを組み合わせて、地中を削孔するものであり、更に、削孔軌跡計測工程と、姿勢計測工程と、調整工程とを含んでいる。削孔軌跡計測工程では、地上に露出している削孔管の一部、すなわち、地中に挿入されている削孔管の尾端近傍から、削孔管に電流を流すことで、地中に挿入されている削孔管を中心とした磁界を発生させる。そして、作業員等に操作される受信器によって、地上から磁界を受信し、受信した磁界の強弱等の受信結果から、地中の削孔管の絶対位置を計測する。これにより、削孔開始位置から現状の先端ヘッドの位置までの、削孔管による削孔軌跡が計測される。このように、本項に記載の削孔方法は、削孔管を中心とした磁界を発生させながらも、地上に露出した削孔管の一部から電流を流す方法を採用しているため、削孔管に磁界発生装置や受信器を備える必要がなく、削孔管や先端ヘッドに別の計測器を設置するためのスペースが確保される。   The drilling method described in this section uses a drilling tube equipped with a tip head, and combines a linear drilling process for drilling a straight hole and a curved drilling process for drilling a curved hole. It drills the ground, and further includes a drilling locus measuring step, a posture measuring step, and an adjusting step. In the drilling trajectory measurement process, a current is passed through the drilling pipe from a part of the drilling pipe exposed on the ground, that is, near the tail end of the drilling pipe inserted into the ground. A magnetic field is generated around the drilled tube inserted in. A magnetic field is received from the ground by a receiver operated by a worker or the like, and the absolute position of the drilling tube in the ground is measured from the reception result of the received magnetic field strength and the like. Thereby, the drilling locus by the drilling pipe from the drilling start position to the current tip position is measured. As described above, the hole drilling method described in this section employs a method in which a current flows from a part of the hole drill tube exposed to the ground while generating a magnetic field centered on the hole drill tube. There is no need to provide a magnetic field generator or a receiver in the drilling tube, and a space for installing another measuring device in the drilling tube or the tip head is secured.

又、姿勢計測工程では、例えば、上記のように確保された先端ヘッドのスペースに傾斜計やひずみ計等を設置することで、先端ヘッドの回転角度とピッチング角度とを計測する。そして、調整工程では、削孔軌跡計測工程で得られた削孔軌跡と、姿勢計測工程で得られた先端ヘッドの回転角度及びピッチング角度とに基づいて、例えば、削孔管の予測到達位置を算出する。すなわち、それまでの削孔管による削孔軌跡と、現状の先端ヘッドの姿勢とが把握されることで、そのまま直線孔或いは曲線孔を削孔する場合の予測到達位置が算出される。そして、例えば、削孔管の予測到達位置が計画到達位置から逸れている場合に、実際の到達位置が計画到達位置へと近づいて修正されるように、先端ヘッドの回転角度位置、すなわち、先端ヘッドに設けられているテーパ面の向きを調整する。その後、テーパ面の向きを調整した状態で、先端ヘッドを回転させずに削孔管を押し込んで曲線孔を削孔することで、計画到達位置へと近づくように削孔位置が修正される。このように、本項に記載の削孔方法は、削孔軌跡計測工程において削孔管の位置をより正確に把握し、更に先端ヘッドの姿勢情報と併用することで得られる予測到達位置を利用することにより、削孔を精度よく行うものである。   Further, in the posture measurement step, for example, the rotation angle and the pitching angle of the tip head are measured by installing an inclinometer or a strain meter in the space of the tip head secured as described above. In the adjustment step, for example, based on the drilling locus obtained in the drilling locus measuring step and the rotation angle and pitching angle of the tip head obtained in the posture measuring step, the predicted arrival position of the drilling tube is determined. calculate. That is, by grasping the drilling trajectory by the drilling tube so far and the current posture of the tip head, the predicted arrival position in the case of drilling a straight hole or a curved hole as it is is calculated. And, for example, when the predicted arrival position of the drilled pipe is deviated from the planned arrival position, the rotational angle position of the tip head, that is, the tip is adjusted so that the actual arrival position approaches the planned arrival position and is corrected. The direction of the taper surface provided on the head is adjusted. Thereafter, with the direction of the taper surface adjusted, the drilling position is corrected so as to approach the planned arrival position by pushing the drilling tube without rotating the tip head and drilling the curved hole. As described above, the drilling method described in this section uses the predicted arrival position obtained by more accurately grasping the position of the drilled pipe in the drilling trajectory measurement process and using it together with the posture information of the tip head. By doing so, drilling is performed with high accuracy.

(2)上記(1)項における、前記削孔軌跡計測工程において、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、該複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測する削孔方法(請求項2)。
本項に記載の削孔方法は、削孔軌跡計測工程において、削孔開始位置から先端ヘッドまでの削孔軌跡を計測する際に、地上から受信器により削孔管の複数の部位の位置を検出し、これら複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づいて、削孔軌跡を計測するものである。すなわち、削孔管の位置を線状に連続的に計測するのではなく、複数の点状に断続的に計測することで、削孔管の計測位置の精度を維持しながら、作業時間を短縮するものである。更に、地上構造物や地中埋設物の影響によって、受信器による磁界の受信が困難な区間が存在する場合であっても、その区間を除いた複数の位置において削孔管の位置を計測することで、削孔軌跡が問題なく把握されるものである。
(2) In the drilling locus measurement step in the above (1), the positions of the plurality of parts of the drilling pipe are detected from the ground by the receiver, and the positions of the plurality of parts are virtually linear. A drilling method for measuring the drilling locus on the basis of a virtual curve obtained by connecting to a drilling (claim 2).
In the drilling method described in this section, when measuring the drilling trajectory from the drilling start position to the tip head in the drilling trajectory measurement step, the positions of the plurality of parts of the drilling pipe are determined from the ground by the receiver. The drilling locus is measured based on a virtual curve obtained by detecting and virtually connecting the positions of the plurality of parts in a linear shape. In other words, instead of continuously measuring the position of the drilled tube in a linear fashion, the work time is reduced while maintaining the accuracy of the measured position of the drilled tube by intermittently measuring it in multiple points. To do. Furthermore, even when there is a section where it is difficult to receive the magnetic field by the receiver due to the influence of the ground structure or underground structure, the position of the drilling tube is measured at a plurality of positions excluding the section. Thus, the drilling locus can be grasped without any problem.

(3)上記(1)(2)項における、前記姿勢計測工程において、前記先端ヘッドに予め取り付けた傾斜計に対して、地上から前記削孔管の内部を通して光受信手段を接近させることで、前記傾斜計から前記光受信手段へ、前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で送信させ、前記光受信手段からケーブルを介して前記データを取得する削孔方法(請求項3)。
本項に記載の削孔方法は、上記(1)項に記載した如く先端ヘッドに確保されるスペースに、予め傾斜計を取り付ける。傾斜計としては、先端ヘッドの回転角度とピッチング角度との夫々を計測する2つの傾斜計、或いは、それら2つの角度を同時に計測可能な2軸式の傾斜計が挙げられ、又、何れの場合であっても、光信号を送信可能な光送信手段と共に設置する。
(3) In the posture measurement step in (1) and (2) above, by bringing the light receiving means closer from the ground through the inside of the drilling tube to the inclinometer attached in advance to the tip head, A drilling method for transmitting data related to the rotation angle and pitching angle of the tip head from the inclinometer to the optical receiving means as an optical signal, and acquiring the data from the optical receiving means via a cable. ).
In the drilling method described in this section, an inclinometer is attached in advance to the space secured in the tip head as described in the above section (1). Examples of inclinometers include two inclinometers that measure the rotation angle and pitching angle of the tip head, or a two-axis inclinometer that can measure these two angles at the same time. Even so, it is installed together with an optical transmission means capable of transmitting an optical signal.

そして、姿勢計測工程において先端ヘッドの姿勢を計測する際に、先端ヘッドに取り付けた傾斜計に対して、地上から削孔管の内部を通して光受信手段を接近させ、傾斜計から光送信手段を介して光受信手段へ、先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で送信させる。この際、光受信手段にケーブルを接続しておくことで、先端ヘッドの回転角度及びピッチング角度に係るデータを、光受信手段からケーブルを介して地上側で取得する。これにより、先端ヘッドの姿勢情報が、必要に応じた任意のタイミングで、地上側において把握されることとなる。なお、傾斜計に対する光受信手段の接近は、削孔管の内部で光受信手段を推進させ得る剛性を有する、ワイヤ等を利用して行えばよい。   Then, when measuring the attitude of the tip head in the attitude measurement process, the light receiving means is approached from the ground through the inside of the drilling pipe to the inclinometer attached to the tip head, and the inclinometer is passed through the light transmitting means. Then, data relating to the rotation angle and pitching angle of the tip head is transmitted as an optical signal to the optical receiving means. At this time, by connecting a cable to the optical receiving means, data relating to the rotation angle and pitching angle of the tip head is acquired from the optical receiving means via the cable on the ground side. Thereby, the posture information of the tip head is grasped on the ground side at an arbitrary timing as necessary. In addition, what is necessary is just to perform the approach of the optical receiving means with respect to an inclinometer using the wire etc. which have the rigidity which can propel an optical receiving means inside a drilling pipe.

(4)上記(1)から(3)項における、前記直線削孔工程及び前記曲線削孔工程において、所定距離を削孔する毎に、前記削孔軌跡計測工程及び前記姿勢計測工程及び前記調整工程を行う削孔方法(請求項4)。
本項に記載の削孔方法は、直線削孔工程及び曲線削孔工程において、直線孔或いは曲線孔を所定距離削孔する毎に、削孔作業を一時中断して、削孔軌跡計測工程と姿勢計測工程と調整工程とを実行するものである。これにより、実際の削孔位置が計画位置から大幅に逸れる前に、削孔位置が修正されるため、削孔位置の精度がより向上されるものである。なお、上記の所定距離は、例えば地中の土質等に応じて任意の距離が設定でき、又、直線削孔工程と曲線削孔工程とで距離が異なっていてもよい。
(4) In the linear drilling step and the curved drilling step in the above items (1) to (3), the drilling locus measuring step, the posture measuring step, and the adjustment each time a predetermined distance is drilled A drilling method for carrying out the process (claim 4).
In the drilling method described in this section, in the straight drilling process and the curved drilling process, every time a straight hole or a curved hole is drilled for a predetermined distance, the drilling operation is temporarily interrupted, The posture measurement process and the adjustment process are executed. As a result, since the drilling position is corrected before the actual drilling position deviates significantly from the planned position, the accuracy of the drilling position is further improved. The predetermined distance can be set to an arbitrary distance according to, for example, the soil quality in the ground, and the distance may be different between the linear drilling process and the curved drilling process.

(5)上記(4)項における、前記曲線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整した後、前記曲線削孔工程に復帰する削孔方法(請求項5)。   (5) In the adjustment step performed during the curved hole drilling step in the above (4), the predicted end point position of the curved hole is calculated from the measurement results of the drilling locus measuring step and the posture measuring step. The difference between the predicted end point position of the curved hole and the planned end position of the curved hole is calculated, and when the difference is out of a predetermined range, the hole trajectory measured in the hole trajectory measuring step is calculated. From the tip, a perpendicular line is virtually drawn with respect to the plan line of the curved hole, and the rotational angle position of the tip head is set so that the tapered surface faces the side opposite to the plan line of the curved hole when viewed in the perpendicular direction. A drilling method for returning to the curved drilling step after adjustment (Claim 5).

本項に記載の削孔方法は、曲線削孔工程中に行う調整工程、すなわち、曲線孔の削孔中に所定距離削孔する毎に削孔を中断して行う調整工程において、その直前の削孔軌跡計測工程で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程で計測した先端ヘッドの回転角度及びピッチング角度とから、曲線孔の予測終点位置を算出する。つまり、それまでの曲線孔の削孔軌跡と、現状の先端ヘッドの姿勢情報とが把握されることで、そのまま曲線孔の削孔を続けた場合の、曲線孔の予測終点位置が算出される。更に、そのように算出した曲線孔の予測終点位置と、施工前に予め設定した曲線孔の計画終点位置との差分を算出する。   The drilling method described in this section is an adjustment process performed during the curved drilling process, that is, an adjustment process performed by interrupting the drilling every time a predetermined distance is drilled during the drilling of the curved hole. The predicted end point position of the curved hole is calculated from the hole trajectory measured in the hole trajectory measuring step and the rotation angle and pitching angle of the tip head measured in the posture measuring step just before the adjustment step. In other words, the predicted end point position of the curved hole when the drilling of the curved hole is continued is calculated by grasping the drilling locus of the curved hole so far and the posture information of the current tip head. . Furthermore, the difference between the predicted end point position of the curved hole calculated as described above and the planned end point position of the curved hole set in advance before construction is calculated.

そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、曲線孔の削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッドの回転角度位置を算出する。具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、曲線孔の計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッドのテーパ面が曲線孔の計画線と反対側を向くような、先端ヘッドの回転角度位置を算出する。そして、先端ヘッドの回転角度位置を、算出した回転角度位置に調整した後、曲線削孔工程に復帰して曲線孔を削孔するものである。この状態で先端ヘッドを回転させずに削孔することにより、先端ヘッドは、テーパ面で受ける圧力の影響によって、計画終点位置に近づく方向へと推進することになる。このため、より精度よく曲線孔を削孔するものとなる。なお、上記の所定範囲は、削孔軌跡計測工程や姿勢計測工程において用いる計測器の性能等に応じて設定する。   Then, when the calculated difference in the end point position deviates from the predetermined range set in advance, the rotation angle position of the tip head is calculated so that the cutting direction of the curved hole is corrected in the direction approaching the planned end point position. To do. Specifically, from the tip of the drilling locus measured in the drilling locus measurement step, a perpendicular line is virtually drawn with respect to the planned line of the curved hole (planned drilling locus set in advance before construction). The rotation angle position of the tip head is calculated so that the taper surface of the tip head faces the opposite side of the curved hole plan line. Then, after adjusting the rotation angle position of the tip head to the calculated rotation angle position, the process returns to the curve drilling step to drill the curve hole. By drilling the hole without rotating the tip head in this state, the tip head is propelled in a direction approaching the planned end position due to the influence of the pressure received on the tapered surface. For this reason, a curved hole is drilled more accurately. In addition, said predetermined range is set according to the performance etc. of the measuring instrument used in a drilling locus measurement process or an attitude | position measurement process.

(6)上記(4)(5)項における、前記直線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整して、前記曲線削孔工程を所定削孔長行った後、前記直線削孔工程に復帰する削孔方法(請求項6)。   (6) In the adjustment step performed during the linear drilling step in (4) and (5) above, the predicted end point position of the linear hole is determined from the measurement results of the drilling locus measurement step and the posture measurement step. And calculating a difference between the predicted end point position of the straight hole and the planned end point position of the straight hole, and if the difference is out of a predetermined range, the cutting hole measured in the hole trajectory measuring step is calculated. The tip head is rotated so that a perpendicular line is virtually drawn from the tip of the hole trajectory with respect to the planned line of the straight hole, and the tapered surface faces the opposite side of the planned line of the straight hole as viewed in the perpendicular direction. A drilling method for adjusting the angular position and performing the curved drilling step for a predetermined drilling length, and then returning to the linear drilling step (Claim 6).

本項に記載の削孔方法は、直線削孔工程中に行う調整工程、すなわち、直線孔の削孔中に所定距離削孔する毎に削孔を中断して行う調整工程において、その直前の削孔軌跡計測工程で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程で計測した先端ヘッドの回転角度及びピッチング角度とから、直線孔の予測終点位置を算出する。つまり、それまでの直線孔の削孔軌跡と、現状の先端ヘッドの姿勢情報とが把握されることで、そのまま直線孔の削孔を続けた場合の、直線孔の予測終点位置が算出される。更に、そのように算出した直線孔の予測終点位置と、施工前に予め設定した直線孔の計画終点位置との差分を算出する。そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、直線孔の削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッドの回転角度位置を算出する。   The drilling method described in this section is an adjustment process performed during the straight hole drilling process, that is, an adjustment process performed by interrupting the drilling every time a predetermined distance is drilled during the straight hole drilling process. The predicted end point position of the straight hole is calculated from the drilling trajectory measured in the drilling trajectory measuring step and the rotation angle and pitching angle of the tip head measured in the posture measuring step immediately before the adjusting step. In other words, the predicted end point position of the straight hole when the straight hole is continuously drilled is calculated by grasping the drilling trajectory of the straight hole up to that point and the current posture information of the tip head. . Furthermore, the difference between the predicted end point position of the straight hole thus calculated and the planned end point position of the straight hole set in advance before the construction is calculated. Then, when the calculated difference in the end point position is out of the predetermined range, the rotation angle position of the tip head is calculated so that the drilling direction of the straight hole is corrected to approach the planned end point position. To do.

具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、直線孔の計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッドのテーパ面が直線孔の計画線と反対側を向くような、先端ヘッドの回転角度位置を算出する。そして、先端ヘッドの回転角度位置を、算出した回転角度位置に調整した後、所定削孔長のみ曲線孔を削孔する。この状態で先端ヘッドを回転させずに曲線孔を削孔することにより、先端ヘッドは、テーパ面で受ける圧力の影響によって、直線孔の計画終点位置に近づく方向へと推進することになる。すなわち、直線孔の予測終点位置が計画終点位置から逸れている場合、一時的に曲線孔を削孔して削孔方向を修正する必要があるため、その削孔方向の修正に必要な所定削孔長のみ、曲線孔を削孔する。その後、直線削孔工程に復帰して直線孔を削孔するものである。これにより、より精度よく直線孔を削孔するものとなる。なお、上記の所定範囲についても、削孔軌跡計測工程や姿勢計測工程において用いる計測器の性能等に応じて設定すればよい。   Specifically, from the tip of the drilling locus measured in the drilling locus measurement step, a perpendicular line is virtually drawn with respect to the straight hole planned line (planned drilling locus set in advance before construction). The rotational angle position of the tip head is calculated so that the taper surface of the tip head faces the opposite side of the straight line hole plan line. Then, after adjusting the rotation angle position of the tip head to the calculated rotation angle position, a curved hole is drilled for a predetermined drilling length. By cutting the curved hole without rotating the tip head in this state, the tip head is propelled in a direction approaching the planned end point position of the straight hole due to the influence of the pressure received on the tapered surface. In other words, when the predicted end point position of a straight hole deviates from the planned end point position, it is necessary to temporarily cut a curved hole to correct the drilling direction. A curved hole is drilled only for the hole length. Thereafter, the process returns to the linear drilling step to drill the linear hole. Thereby, a straight hole is drilled more accurately. In addition, what is necessary is just to set about said predetermined range according to the performance etc. of the measuring device used in a drilling locus measurement process or an attitude | position measurement process.

(7)上記(6)項において、前記所定削孔長を、削孔済みの前記曲線孔を削孔時の、前記削孔軌跡計測工程の計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて算出する削孔方法(請求項7)。
本項に記載の削孔方法は、直線孔の方向を修正する際に削孔する曲線孔の長さである所定削孔長を、既に削孔済みの曲線孔の曲率半径に基づいて算出するものである。この際、削孔済みの曲線孔の曲率半径は、その曲線孔の削孔中に実行した、削孔軌跡計測工程において計測した曲線孔の削孔軌跡から求められる。このように求められた曲線孔の曲率半径は、実際に削孔している地中の土質の影響等が反映された曲率半径となる。このため、それに基づいて算出される所定削孔長は、地中の土質の影響等が加味された、適切な削孔長が算出されるものとなる。
(7) In the above item (6), the predetermined drilling length is determined from the measurement result of the drilling trajectory measurement step when the curved hole that has been drilled is drilled. A drilling method that is calculated based on the radius of curvature of (Claim 7).
The drilling method described in this section calculates a predetermined drilling length, which is a length of a curved hole to be drilled when correcting the direction of the straight hole, based on the curvature radius of the already drilled curved hole. Is. At this time, the radius of curvature of the curved hole that has been drilled is obtained from the drilling locus of the curved hole measured in the drilling locus measuring step performed during the drilling of the curved hole. The radius of curvature of the curved hole thus obtained is a radius of curvature reflecting the influence of the soil in the ground that is actually drilled. For this reason, the predetermined drilling length calculated on the basis of it is calculated as an appropriate drilling length in consideration of the influence of underground soil quality.

(8)上記(1)から(7)項における、前記削孔軌跡計測工程において、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサを、前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込んだ後、前記ジャイロセンサを引き上げながら該ジャイロセンサにより計測を行うと共に、前記ジャイロセンサに接続した線状の送り込み手段の繰り出し量を計測し、前記ジャイロセンサによる計測結果と前記繰り出し量とに基づいて、前記削孔軌跡を計測する方法を併用する削孔方法(請求項8)。
本項に記載の削孔方法は、削孔軌跡計測工程において、削孔開始位置から先端ヘッドまで削孔軌跡を計測する方法として、2つの方法を併用するものである。すなわち、一方の方法は、上記(1)項に記載した削孔管に電流を流す方法であり、もう一方の方法は、先端ヘッドの近傍までジャイロセンサを送り込む方法である。
(8) A gyro sensor capable of measuring at least the pitching direction and the yawing direction is passed through the inside of the hole drill tube to the vicinity of the tip head in the hole trajectory measuring step in the above items (1) to (7). After feeding, the gyro sensor performs measurement while pulling up the gyro sensor, and the feeding amount of the linear feeding means connected to the gyro sensor is measured. Based on the measurement result by the gyro sensor and the feeding amount Then, a drilling method using the method of measuring the drilling locus in combination (Claim 8).
The drilling method described in this section uses two methods together as a method for measuring the drilling locus from the drilling start position to the tip head in the drilling locus measuring step. That is, one method is a method in which a current is passed through the drilling tube described in the above section (1), and the other method is a method in which a gyro sensor is sent to the vicinity of the tip head.

より詳しくは、もう一方の方法は、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサを、削孔管の内部を通して先端ヘッドの近傍まで送り込んだ後、削孔管の内部を通してジャイロセンサを引き上げながら、ジャイロセンサが移動した経路上で角速度の計測を行う。この際、削孔管内でジャイロセンサを推進させ得る剛性を有する、ワイヤ等の線状の送り込み手段を、ジャイロセンサに接続して送り込み、線状の送り込み手段の繰り出し量を計測する。このとき、送り込み手段の繰り出し量は、送り込み手段の繰り出し時と繰り取り時との、何れにおいて計測してもよい。そして、ジャイロセンサによる計測結果と、送り込み手段の繰り出し量とに基づいて、削孔軌跡を計測するものである。これにより、例えば、削孔軌跡のメインの計測方法として、削孔管に電流を流す方法を用い、この方法による計測が困難な区間については、ジャイロセンサを用いる計測方法を採用する、といった使い分けが行われる。このように削孔軌跡を計測することによって、削孔管の到達位置の予測精度が向上し、削孔をより精度よく行うものとなる。   More specifically, the other method is to feed a gyro sensor capable of measuring at least the pitching direction and the yawing direction through the inside of the drilling pipe to the vicinity of the tip head, and then lift the gyro sensor through the inside of the drilling pipe. However, the angular velocity is measured on the path along which the gyro sensor has moved. At this time, linear feeding means such as a wire having rigidity capable of propelling the gyro sensor in the hole drilling pipe is connected to the gyro sensor and fed, and the feeding amount of the linear feeding means is measured. At this time, the feeding amount of the feeding means may be measured either when the feeding means is fed or when the feeding means is fed. And a drilling locus | trajectory is measured based on the measurement result by a gyro sensor, and the feeding amount of a feeding means. Thus, for example, as a main method of measuring the drilling locus, a method of passing a current through the drilling tube is used, and a measurement method using a gyro sensor is adopted for a section where measurement by this method is difficult. Done. By measuring the drilling locus in this way, the accuracy of predicting the arrival position of the drilling tube is improved, and drilling is performed with higher accuracy.

(9)先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔と、前記回転ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔とを組み合わせて、地中を削孔する削孔機を備えた削孔装置であって、地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させる磁界発生手段と、前記磁界を地上から受信するための受信器と、該受信器による受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する第1の計測手段と、を備える第1の削孔軌跡計測手段と、前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測手段と、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果に基づいて、前記先端ヘッドの回転角度位置を算出する回転角度算出手段と、装置全体を制御する制御手段と、を含む削孔装置(請求項9)。   (9) Using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip, a straight hole drilling a straight hole by pushing the drilling tube while rotating the tip head; A drilling device comprising a drilling machine that drills a hole in the ground in combination with a curved drilling machine that drills a curved hole by pushing the drilling tube without rotating the rotary head, Magnetic field generating means for generating a magnetic field centered on the drilling tube in the ground by flowing current from a part of the drilling tube exposed to the ground, and a receiver for receiving the magnetic field from the ground And a first measuring means for measuring a drilling trajectory from a drilling start position to the tip head based on a reception result by the receiver, and the tip head Posture measuring means for measuring the rotation angle and pitching angle of A drilling hole comprising: a rotation angle calculation unit that calculates a rotation angle position of the tip head based on measurement results by the first drilling locus measurement unit and the posture measurement unit; and a control unit that controls the entire apparatus. Device (claim 9).

(10)上記(9)項において、前記第1の削孔軌跡計測手段は、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、前記第1の計測手段により前記複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測するものである削孔装置(請求項10)。
(11)上記(9)(10)項において、前記姿勢計測手段は、前記先端ヘッドに予め取り付けられる傾斜計と、地上から前記削孔管の内部を通して前記傾斜計に接近させられることで、前記傾斜計から前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で受信する光受信手段と、該光受信手段からケーブルを介して前記データを取得するデータ取得手段と、を含む削孔装置(請求項11)。
(10) In the above item (9), the first drilling locus measuring means detects the positions of a plurality of parts of the drilling tube from the ground using the receiver, and the first measuring means uses the plurality of holes. A drilling device for measuring the drilling trajectory based on a virtual curve obtained by virtually connecting the positions of these parts in a linear form (Claim 10).
(11) In the above paragraphs (9) and (10), the posture measuring means is made to approach the inclinometer through the inside of the drilling tube from the ground and an inclinometer attached in advance to the tip head, A hole drilling device comprising: an optical receiver that receives data relating to the rotation angle and pitching angle of the tip head from an inclinometer as an optical signal; and a data acquisition unit that acquires the data from the optical receiver via a cable (Claim 11).

(12)上記(9)から(11)項において、前記制御手段は、前記削孔機による前記直線孔及び前記曲線孔の削孔中に、所定距離が削孔される毎に、前記第1の削孔軌跡計測手段による前記削孔軌跡の計測と、前記姿勢計測手段による前記先端ヘッドの回転角度及びピッチング角度の計測と、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出とが行われるように制御する削孔装置(請求項12)。
(13)上記(12)項において、前記回転角度算出手段は、前記削孔機による前記曲線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、前記制御手段は、前記削孔機による前記曲線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整した後、前記削孔機による前記曲線孔の削孔に復帰させることを特徴とする請求項12記載の削孔装置(請求項13)。
(12) In the above items (9) to (11), the control means performs the first operation every time a predetermined distance is drilled during the drilling of the straight hole and the curved hole by the drilling machine. Measurement of the drilling locus by the drilling locus measuring means, measurement of the rotation angle and pitching angle of the tip head by the attitude measurement means, and calculation of the rotation angle position of the tip head by the rotation angle calculation means. A drilling device that controls to be performed (claim 12).
(13) In the above item (12), the rotation angle calculation means, during the drilling of the curved hole by the drilling machine, from the measurement results by the first drilling locus measuring means and the posture measuring means, The predicted end point position of the curved hole is calculated, and the difference between the predicted end point position of the curved hole and the planned end point position of the curved hole is calculated, and when the difference is out of a predetermined range, the first From the tip of the drilling locus measured by the drilling locus measuring means, a perpendicular line is virtually drawn with respect to the planned line of the curved hole, and the taper surface and the planned line of the curved hole are viewed in the perpendicular direction. The rotation angle position of the tip head is calculated so as to face the opposite side, and the control means is configured to cut the curved head by the rotation angle calculation means during the drilling of the curved hole by the drilling machine. In response to the calculation of the rotation angle position, After adjusting the rotational angular position of the end head, drilling device according to claim 12, characterized in that to return the drilling of the curved hole by the drilling machine (claim 13).

(14)上記(12)(13)項において、前記回転角度算出手段は、前記削孔機による前記直線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、前記制御手段は、前記削孔機による前記直線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整し、前記削孔機による前記曲線孔の削孔を所定削孔長行わせた後、前記削孔機による前記直線孔の削孔に復帰させる削孔装置(請求項14)。
(15)上記(14)項において、前記制御手段は、削孔済みの前記曲線孔の削孔時に、前記第1の削孔軌跡計測手段による計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて、前記所定削孔長を算出する削孔装置(請求項15)。
(14) In the above items (12) and (13), the rotation angle calculation means is measured by the first drilling locus measuring means and the posture measuring means during the drilling of the straight hole by the drilling machine. From the results, calculate the predicted end point position of the straight hole, calculate the difference between the predicted end point position of the straight hole and the planned end point position of the straight hole, and when the difference is out of the predetermined range, From the tip of the drilling locus measured by the first drilling locus measuring means, a perpendicular line is virtually drawn with respect to the planned line of the straight hole, and the taper surface of the straight hole is viewed in the perpendicular direction. The rotation angle position of the tip head is calculated so as to face the side opposite to the planned line, and the control means is configured to perform the rotation angle calculation means during the drilling of the linear hole by the drilling machine. Based on the calculation of the rotation angle position of the tip head A drilling device that adjusts the rotational angle position of the tip head, causes the curved hole to be drilled by the drilling machine to a predetermined drilling length, and then returns to the straight hole drilling by the drilling machine (Claim 14).
(15) In the above-mentioned item (14), the control means obtains the curved hole that has been drilled and is obtained from a measurement result by the first drilling locus measuring means when the curved hole that has been drilled is drilled. A drilling device that calculates the predetermined drilling length based on the radius of curvature of the drilling device (claim 15).

(16)上記(9)から(15)項において、前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込まれ、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサと、該ジャイロセンサに接続された線状の送り込み手段の繰り出し量を計測する繰り出し量計測手段と、前記ジャイロセンサ及び前記繰り出し量計測手段による計測結果に基づいて、前記削孔軌跡を計測する第2の計測手段と、を備える第2の削孔軌跡計測手段を含み、前記回転角度算出手段及び前記制御手段は、前記第1の削孔軌跡計測手段により計測される前記削孔軌跡と、前記第2の削孔軌跡計測手段により計測される前記削孔軌跡とを併用して利用する削孔装置(請求項16)。
そして、(9)から(16)項に記載の削孔装置は、各々、上記(1)から(8)項の削孔方法に利用されるものであり、上記(1)から(8)項の削孔方法と同等の作用を奏するものである。
(16) In the above items (9) to (15), a gyro sensor that is sent to the vicinity of the tip head through the inside of the drilling tube and that can measure at least the pitching direction and the yawing direction, and is connected to the gyro sensor A feeding amount measuring means for measuring the feeding amount of the linear feeding means, and a second measuring means for measuring the drilling locus based on the measurement results by the gyro sensor and the feeding amount measuring means. The rotation angle calculation means and the control means include the drilling locus measured by the first drilling locus measurement means and the second drilling locus measurement. A drilling device using the drilling locus measured by the means together (Claim 16).
The hole drilling devices described in the items (9) to (16) are used for the hole drilling methods described in the items (1) to (8), respectively, and the items (1) to (8) above. This has the same effect as the hole drilling method.

本発明は上記のような構成であるため、削孔位置をより正確に把握し、削孔を精度よく行うことが可能となる。   Since this invention is the above structures, it becomes possible to grasp | ascertain a drilling position more correctly and to drill a hole precisely.

本発明の実施の形態に係る削孔装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the drilling apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る削孔装置で利用する先端ヘッドの断面図である。It is sectional drawing of the front-end | tip head utilized with the hole drilling apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る削孔方法の一例を示すフロー図である。It is a flowchart which shows an example of the drilling method which concerns on embodiment of this invention. 図3に引き続き、本発明の実施の形態に係る削孔方法の一例を示すフロー図である。FIG. 4 is a flowchart illustrating an example of the drilling method according to the embodiment of the present invention, following FIG. 3. 本発明の実施の形態に係る削孔方法により地中を削孔する様子を示すイメージ図である。It is an image figure which shows a mode that the ground is drilled with the drilling method which concerns on embodiment of this invention.

以下、本発明を実施するための形態を、添付図面に基づいて説明する。ここで、従来技術と同一部分、若しくは相当する部分については、詳しい説明を省略することとし、又、図面の全体にわたって、同一部分又は対応する部分は、同一符号で示している。
まず、図1には、本発明の実施の形態に係る削孔装置10の構成を示している。図示のように、削孔装置10は、削孔機12と、第1の削孔軌跡計測手段30と、姿勢計測手段40と、回転角度算出手段60と、制御手段64と、第2の削孔軌跡計測手段70とを含んでいる。削孔機12は、詳しい説明は省略するが、先端ヘッド14を装着した削孔管26を地中に押し込むことで削孔し、削孔管26を継ぎ足しながら順次押し込むことで、削孔距離を延ばしていくものである。この際、先端ヘッド14を回転させながら削孔管26を押し込むことで直線孔を削孔し、先端ヘッド14を回転させずに削孔管26を押し込むことで曲線孔を削孔する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. Here, detailed description of the same or corresponding parts as those of the prior art is omitted, and the same or corresponding parts are denoted by the same reference numerals throughout the drawings.
First, FIG. 1 shows a configuration of a drilling device 10 according to an embodiment of the present invention. As illustrated, the drilling device 10 includes a drilling machine 12, a first drilling locus measuring unit 30, an attitude measuring unit 40, a rotation angle calculating unit 60, a control unit 64, a second drilling unit. Hole trajectory measuring means 70. Although the detailed description is omitted, the hole drilling machine 12 drills holes by pushing the hole drilling pipe 26 fitted with the tip head 14 into the ground, and sequentially pushes the hole drilling pipe 26 while adding the holes. It will be extended. At this time, a straight hole is drilled by pushing the drilling tube 26 while rotating the tip head 14, and a curved hole is drilled by pushing the drilling tube 26 without rotating the tip head 14.

ここで、先端ヘッド14は、本実施例では、図2に示すような構成を有している。先端ヘッド14は、先端の一部にテーパ面16が形成されており、テーパ面16が設けられていない部位の先端側(図中左側)に、削孔中に削孔水を噴射するための噴射口18が設けられている。又、先端ヘッド14の内部には、削孔水の水圧を計測するための水圧センサ20が設置されている。更に、詳しくは後述するが、先端ヘッド14の内部には、姿勢計測手段40を構成するセンサ部42が設置されている。   Here, the tip head 14 has a structure as shown in FIG. 2 in this embodiment. The tip head 14 has a tapered surface 16 formed at a part of the tip, and is used for injecting drilling water into the drilling hole on the tip side (left side in the figure) where the tapered surface 16 is not provided. An injection port 18 is provided. Further, a water pressure sensor 20 for measuring the water pressure of the drilling water is installed inside the tip head 14. Further, as will be described in detail later, a sensor unit 42 constituting the posture measuring means 40 is installed inside the tip head 14.

図1に戻ると、第1の削孔軌跡計測手段30は、削孔管26による削孔軌跡を計測するものであり、磁界発生手段32、受信器34、第1の計測手段36を備えている。磁界発生手段32は、地上に露出している削孔管26の一部26a(図5参照)から、削孔管26に電流を流すことで、地中において削孔管26を中心とした磁界を発生させるものである。受信器34は、地上において作業員等によって操作され、地中において削孔管26を中心として発生している磁界を地上から受信するものである。又、第1の計測手段36は、受信器34により受信した磁界の強弱等に基づいて、地中に挿入されている削孔管26の位置を計測することで、削孔管26による削孔軌跡を計測するものである。なお、第1の削孔軌跡計測手段30により計測される削孔管26の位置は、削孔管26の絶対位置である。   Returning to FIG. 1, the first drilling trajectory measuring means 30 measures the drilling trajectory by the drilling pipe 26, and includes a magnetic field generating means 32, a receiver 34, and a first measuring means 36. Yes. The magnetic field generating means 32 causes a current to flow from the portion 26a (see FIG. 5) of the drilling tube 26 exposed to the ground to the drilling tube 26, thereby magnetic field around the drilling tube 26 in the ground. Is generated. The receiver 34 is operated by a worker or the like on the ground, and receives a magnetic field generated from the ground around the drilled pipe 26 in the ground. Further, the first measuring means 36 measures the position of the drilling tube 26 inserted in the ground based on the strength of the magnetic field received by the receiver 34, thereby drilling the hole by the drilling tube 26. This is to measure the trajectory. Note that the position of the drilling tube 26 measured by the first drilling locus measuring means 30 is the absolute position of the drilling tube 26.

第2の削孔軌跡計測手段70は、第1の削孔軌跡計測手段30と同じく、削孔管26による削孔軌跡を計測するものであり、ジャイロセンサ72、繰り出し量計測手段74、第2の計測手段76を備えている。ジャイロセンサ72は、少なくともピッチング方向とヨーイング方向との加速度を計測するものであり、ワイヤ等の線状の送り込み手段によって、削孔管26の内部を通して先端ヘッド14の近傍まで送り込まれる。その後、線状の送り込み手段を介して、削孔管26の内部を通して引き上げられながら、ジャイロセンサ72が移動した経路上で加速度の計測を行うものである。繰り出し量計測手段74は、先端ヘッド14の近傍までジャイロセンサ72が送り込まれたときの、ジャイロセンサ72に接続された線状の送り込み手段の繰り出し量(繰り出し長さ)を計測するものである。第2の計測手段76は、ジャイロセンサ72による計測結果と、繰り出し量計測手段74による計測結果とに基づいて、ジャイロセンサ72が通された削孔管26の位置を計測することで、削孔管26による削孔軌跡を計測するものである。なお、第2の削孔軌跡計測手段70により計測される削孔管26の位置は、ジャイロセンサ72が削孔管26の内部に挿入され始めた位置を起点とした相対位置である。   Similar to the first drilling locus measuring means 30, the second drilling locus measuring means 70 measures a drilling locus by the drilling pipe 26, and includes a gyro sensor 72, a feed amount measuring means 74, and a second. Measuring means 76 is provided. The gyro sensor 72 measures at least accelerations in the pitching direction and the yawing direction, and is fed to the vicinity of the tip head 14 through the inside of the hole drilling tube 26 by a linear feeding means such as a wire. Thereafter, the acceleration is measured along the path along which the gyro sensor 72 has moved while being pulled up through the inside of the drilling tube 26 via the linear feeding means. The feeding amount measuring means 74 measures the feeding amount (feeding length) of the linear feeding means connected to the gyro sensor 72 when the gyro sensor 72 is sent to the vicinity of the tip head 14. The second measuring means 76 measures the position of the drilled pipe 26 through which the gyro sensor 72 is passed, based on the measurement result by the gyro sensor 72 and the measurement result by the feed amount measuring means 74. The drilling locus by the pipe 26 is measured. The position of the drilling pipe 26 measured by the second drilling path measuring means 70 is a relative position starting from the position where the gyro sensor 72 starts to be inserted into the drilling pipe 26.

姿勢計測手段40は、削孔管26の先端に装着された先端ヘッド14の姿勢を計測するものであり、センサ部42を構成する傾斜計44、基板46、電池48、及び、光送信手段50と、光受信手段52と、データ取得手段54とを備えている。図2に示すように、センサ部42は、先端ヘッド14の内部に予め取り付けられ、傾斜計44は、本実施例では、先端ヘッド14の回転角度(ローリング角度)とピッチング角度とを計測可能な、2軸式のものが採用されている。基板46は、傾斜計44により計測されたデータの、光信号への変換等を行い、光送信手段50は、光信号に変換されたデータの送信を行う。電池48は、傾斜計44、基板46、光送信手段50等に、電力の供給を行うものである。図1に示す光受信手段52は、ワイヤ等によって削孔管26の内部を通して光送信手段50に接近させられることで、光送信手段50から傾斜計44による計測データを光信号として受信する。又、データ取得手段54は、光送信手段50に接近させられた光受信手段52とケーブル接続されることで、光送信手段50及び光受信手段52を介して、傾斜計44による計測データを地上側で取得するためのものである。   The attitude measuring means 40 measures the attitude of the tip head 14 attached to the tip of the hole drilling pipe 26, and includes an inclinometer 44, a substrate 46, a battery 48, and an optical transmission means 50 that constitute the sensor unit 42. And an optical receiving means 52 and a data acquisition means 54. As shown in FIG. 2, the sensor unit 42 is attached in advance to the inside of the tip head 14, and the inclinometer 44 can measure the rotation angle (rolling angle) and the pitching angle of the tip head 14 in this embodiment. A two-axis type is adopted. The substrate 46 converts the data measured by the inclinometer 44 into an optical signal, and the optical transmission means 50 transmits the data converted into the optical signal. The battery 48 supplies power to the inclinometer 44, the substrate 46, the optical transmission means 50, and the like. The light receiving means 52 shown in FIG. 1 receives measurement data from the light transmitting means 50 by the inclinometer 44 as an optical signal by being brought close to the light transmitting means 50 through the inside of the drilling tube 26 by a wire or the like. Further, the data acquisition means 54 is connected to the optical receiving means 52 that is brought close to the optical transmitting means 50 by a cable, so that the measurement data obtained by the inclinometer 44 is transferred to the ground via the optical transmitting means 50 and the optical receiving means 52. Is to get on the side.

回転角度算出手段60は、第1の削孔軌跡計測手段30又は第2の削孔軌跡計測手段70により計測された削孔管26の削孔軌跡と、姿勢計測手段40により計測された先端ヘッド14の姿勢情報とに基づいて、削孔管26による削孔方向を修正するための、先端ヘッド14の回転角度位置を算出するものである。回転角度算出手段60による算出方法については後述する。一方、制御手段64は、削孔装置10全体の制御を行うものであり、本実施例では、上記の回転角度算出手段60の役割も担っている。このため、制御手段64は、削孔機12、第1の削孔軌跡計測手段30、第2の削孔軌跡計測手段70、及び、姿勢計測手段40の各々と接続され、例えば、複数又は単数のコンピュータにより構成される。   The rotation angle calculation means 60 includes a drilling trajectory of the drilled pipe 26 measured by the first drilling trajectory measuring means 30 or the second drilling trajectory measuring means 70, and a tip head measured by the attitude measuring means 40. The rotational angle position of the tip head 14 for correcting the direction of drilling by the hole drilling tube 26 is calculated based on the posture information 14. A calculation method by the rotation angle calculation means 60 will be described later. On the other hand, the control means 64 controls the entire hole drilling apparatus 10, and also serves as the rotation angle calculation means 60 in the present embodiment. For this reason, the control means 64 is connected to each of the drilling machine 12, the first drilling locus measuring means 30, the second drilling locus measuring means 70, and the posture measuring means 40. It is composed of computers.

続いて、図3及び図4に示すフロー図の流れに沿って、上述した削孔装置10を利用して実行する、本発明の実施の形態に係る削孔方法について説明する。本実施例では、削孔機12を利用して、図5のイメージ図に示すようにして削孔する場合を例に説明する。図5の例では、長さが約5mの直線孔SH1と、曲線長さが約21mの曲線孔CHと、長さが約44mの直線孔SH2とを組み合わせて削孔しており、曲線孔CHの曲率半径は約60m、直線孔CH2の深さは約5.3m、削孔開始位置から直線孔SH2の終点までの水平長さは約69mである。なお、図3及び図4に示している符号Aは、図3の符号Aから図4の符号Aへ処理が続くことを示している。又、削孔装置10の構成については図1を、先端ヘッド14の構成については図2を、適宜、参照のこと。
S100(削孔機据付):事前に計画した位置に削孔機12を据付け、先端ヘッド14を装着した削孔管26を削孔機12にセットする。なお、削孔管26には、通電性及び可撓性を有する金属製のもの等を用いることとする。
Next, the drilling method according to the embodiment of the present invention, which is performed using the above-described drilling apparatus 10, will be described along the flow of the flowcharts shown in FIGS. 3 and 4. In the present embodiment, an example will be described in which drilling is performed using the drilling machine 12 as shown in the image diagram of FIG. In the example of FIG. 5, a straight hole SH1 having a length of about 5 m, a curved hole CH having a curve length of about 21 m, and a straight hole SH2 having a length of about 44 m are drilled in combination. The radius of curvature of CH is about 60 m, the depth of the straight hole CH2 is about 5.3 m, and the horizontal length from the drilling start position to the end point of the straight hole SH2 is about 69 m. 3 and 4 indicates that the processing continues from the reference A in FIG. 3 to the reference A in FIG. Also, refer to FIG. 1 for the configuration of the drilling device 10 and FIG. 2 for the configuration of the tip head 14 as appropriate.
S100 (Drilling machine installation): The drilling machine 12 is installed at a position planned in advance, and the drilling pipe 26 to which the tip head 14 is attached is set in the drilling machine 12. In addition, the drilling tube 26 is made of a metal having electrical conductivity and flexibility.

S110(直線削孔開始):事前に計画した削孔開始位置から、削孔機12により、まずは初期の斜めの直線孔SH1の削孔を開始する。このとき、削孔管26の先端に装着した先端ヘッド14を回転させながら、かつ、先端ヘッド14の噴射口18から削孔水を噴射しながら、直線孔SH1を削孔する。
S120(直線削孔終了):直線孔SH1を事前に計画した削孔長削孔した後、直線孔SH1の削孔を終了する。なお、この初期の直線孔SH1は、削孔長がさほど長くなく(例えば5m程度)、削孔機12から近い部分であることから、削孔の計画位置からほとんど逸れることはない。このため、本実施例では、直線孔SH1の削孔中は、後述する削孔軌跡計測工程や先端ヘッド14の姿勢計測工程を行わず、例えば、削孔管26の地中Gに挿入された部分の長さ等から、直線孔SH1の削孔長を判断すればよい。
S110 (Start of straight hole drilling): First, the drilling of the initial oblique straight hole SH1 is started by the driller 12 from the drilling start position planned in advance. At this time, the straight hole SH1 is drilled while rotating the tip head 14 attached to the tip of the drilling tube 26 and jetting drilling water from the jet port 18 of the tip head 14.
S120 (End of straight hole drilling): After the straight hole SH1 has been drilled long in advance, the drilling of the straight hole SH1 is terminated. The initial straight hole SH1 is not so long (for example, about 5 m) and is a portion close to the drilling machine 12, so that it hardly deviates from the planned drilling position. For this reason, in this embodiment, during the drilling of the straight hole SH1, the drilling locus measurement process and the attitude measurement process of the tip head 14 described later are not performed, for example, inserted into the underground G of the drilling pipe 26. What is necessary is just to judge the drilling length of the straight hole SH1 from the length of a part.

S130(削孔軌跡計測):第1の削孔軌跡計測手段30、或いは、第2の削孔軌跡計測手段70により、直線孔SH1の削孔が終了した時点での削孔軌跡を計測する。第1の削孔軌跡計測手段30を用いて計測を行う場合は、まず、磁界発生手段32を、削孔管26の地上に露出している一部26aに接続し、削孔管26全体に電流を流すことで、地中G内の削孔管26を中心とした磁界を発生させる。そして、受信器34により、地上から地中Gの磁界を受信し、第1の計測手段36により、受信器34で受信した磁界の強弱等から、削孔管26の位置(絶対位置及び深度)を計測する。このとき、削孔管26の位置は、線状に連続的に計測してもよく、複数の点状に断続的に計測してもよい。その後、第1の計測手段36により、削孔管26の位置から削孔軌跡を計測する。すなわち、削孔管26の位置が、線状に連続的に計測された場合は、それがそのまま削孔軌跡を示しており、複数の点状に断続的に計測された場合は、それら複数の位置が仮想的に線状に繋げられることで得られる仮想曲線が、削孔軌跡を示すこととなる。   S130 (drilling trajectory measurement): The first excavation trajectory measuring means 30 or the second excavation trajectory measuring means 70 measures the drilling trajectory at the time when the drilling of the straight hole SH1 is completed. When performing measurement using the first drilling locus measuring means 30, first, the magnetic field generating means 32 is connected to a part 26a exposed to the ground of the drilling pipe 26, and the entire drilling pipe 26 is connected. By passing an electric current, a magnetic field is generated around the drilled tube 26 in the underground G. Then, the receiver 34 receives the underground G magnetic field from the ground, and the first measuring means 36 determines the position (absolute position and depth) of the drilling tube 26 based on the strength of the magnetic field received by the receiver 34. Measure. At this time, the position of the drilled tube 26 may be continuously measured linearly or intermittently measured in a plurality of dots. Thereafter, the first measurement means 36 measures the drilling locus from the position of the drilling tube 26. That is, when the position of the drilling tube 26 is continuously measured linearly, it indicates the drilling locus as it is, and when it is measured intermittently in a plurality of points, the plurality of these A virtual curve obtained by virtually connecting the positions in a linear shape indicates a drilling locus.

他方、第2の削孔軌跡計測手段70を用いて計測を行う場合は、まず、ジャイロセンサ72を、ワイヤ等の線状の送り込み手段によって、削孔管26の尾端側から削孔管26の内部を通して先端ヘッド14の近傍まで送り込む。その後、線状の送り込み手段を繰り取ることで、削孔管26の内部を通してジャイロセンサ72を引き上げながら、ジャイロセンサ72が移動した経路上で、ジャイロセンサ72によりピッチング方向とヨーイング方向との加速度を計測する。又、ジャイロセンサ72の送り込み時或いは引き上げ時に、繰り出し量計測手段74によって、線状の送り込み手段の繰り出し量を計測する。そして、第2の計測手段76により、ジャイロセンサ72による計測結果と、繰り出し量計測手段74による計測結果とに基づいて、ジャイロセンサ72が移動した経路の位置、すなわち、ジャイロセンサ72が通された削孔管26の位置(ジャイロセンサ72の送り込み開始位置を起点とした相対位置)を計測する。このように計測した削孔管26の位置が、削孔管26による削孔軌跡となる。   On the other hand, when measurement is performed using the second drilling locus measuring means 70, first, the gyro sensor 72 is moved from the tail end side of the drilling pipe 26 by the linear feeding means such as a wire. Is fed to the vicinity of the tip head 14 through the inside of the head. Thereafter, by taking up the linear feeding means, while pulling up the gyro sensor 72 through the inside of the drilling pipe 26, the gyro sensor 72 accelerates the acceleration in the pitching direction and the yawing direction on the path along which the gyro sensor 72 has moved. measure. Further, when the gyro sensor 72 is fed or pulled up, the feeding amount measuring means 74 measures the feeding amount of the linear feeding means. Then, based on the measurement result by the gyro sensor 72 and the measurement result by the feed amount measurement means 74, the position of the path along which the gyro sensor 72 has moved, that is, the gyro sensor 72 is passed by the second measurement means 76. The position of the drill tube 26 (relative position starting from the feed start position of the gyro sensor 72) is measured. The position of the drilling tube 26 measured in this way becomes a drilling locus by the drilling tube 26.

ここで、第1の削孔軌跡計測手段30と第2の削孔軌跡計測手段70との使い分けについて言及する。例えば、削孔軌跡の計測には、基本的に第1の削孔軌跡計測手段30を用いることとし、地上構造物や地中埋設物の影響等によって、第1の削孔軌跡計測手段30の磁界発生手段32により発生させた磁界を、受信器34で受信するのが困難な区間のみ、第2の削孔軌跡計測手段70を用いることとすればよい。又、同じタイミングで第1の削孔軌跡計測手段30と第2の削孔軌跡計測手段70との双方を用いて計測を行うことで、計測結果の精度を高めることとしてもよい。   Here, reference will be made to the proper use of the first drilling locus measuring means 30 and the second drilling locus measuring means 70. For example, the first drilling trajectory measuring unit 30 is basically used for measuring the drilling trajectory, and the first drilling trajectory measuring unit 30 is influenced by the influence of the ground structure or the underground object. The second drilling locus measuring means 70 may be used only in a section where it is difficult for the receiver 34 to receive the magnetic field generated by the magnetic field generating means 32. Moreover, it is good also as improving the precision of a measurement result by measuring using both the 1st drilling locus | trajectory measurement means 30 and the 2nd drilling locus | trajectory measurement means 70 at the same timing.

S140(先端ヘッド姿勢計測):姿勢計測手段40により、直線孔SH1の削孔が終了した時点での、先端ヘッド14の姿勢を計測する。ここで、本実施例において、先端ヘッド14に内蔵されている姿勢計測手段40のセンサ部42は、削孔中は常にオン状態にあり、傾斜計44によって先端ヘッド14の回転角度及びピッチング角度を常時計測するように設定されている。このため、本工程では、傾斜計44により計測されたデータを取得するために、光受信手段52をセンサ部42の光送信手段50に接近させる作業を行う。具体的に、光受信手段52とデータ取得手段54とをケーブルで接続し、ケーブルで接続した状態の光受信手段52を、ワイヤ等によって削孔管26の内部を通して光送信手段50に接近させる。そして、基板46等によって光信号に変換された傾斜計44による計測データを、光送信手段50から光受信手段52に受信し、ケーブルを介して、光受信手段52からデータ取得手段54へ送信させる。このようにして、姿勢計測手段40の傾斜計44により計測した、先端ヘッド14の回転角度及びピッチング角度のデータを、地上側において取得する。   S140 (tip head attitude measurement): The attitude measuring means 40 measures the attitude of the tip head 14 at the time when the drilling of the straight hole SH1 is completed. Here, in the present embodiment, the sensor unit 42 of the posture measuring means 40 built in the tip head 14 is always in an on state during drilling, and the tilt angle 44 is used to set the rotation angle and pitching angle of the tip head 14. It is set to always measure. For this reason, in this process, in order to acquire the data measured by the inclinometer 44, the work which makes the optical receiving means 52 approach the optical transmitting means 50 of the sensor part 42 is performed. Specifically, the light receiving means 52 and the data acquisition means 54 are connected by a cable, and the light receiving means 52 in the state connected by the cable is brought close to the light transmitting means 50 through the inside of the hole drilling tube 26 by a wire or the like. Then, the measurement data obtained by the inclinometer 44 converted into an optical signal by the substrate 46 or the like is received from the optical transmission means 50 to the optical reception means 52 and transmitted from the optical reception means 52 to the data acquisition means 54 via a cable. . In this way, data on the rotation angle and pitching angle of the tip head 14 measured by the inclinometer 44 of the posture measuring means 40 is acquired on the ground side.

S150(回転角度位置算出):回転角度算出手段60により、上記S130及び上記S140における計測結果に基づき、直線孔SH1に続く曲線孔CHを削孔するための、先端ヘッド14の回転角度位置を算出する。具体的には、上記S130で把握された位置にあり、上記S140で把握された姿勢にある先端ヘッド14により、計画通りに曲線孔CHを削孔するための、先端ヘッド14に設けられているテーパ面16の向きを算出する。そのようなテーパ面16の向きは、通常、曲線孔CHの径方向視で曲線孔CHの曲がり方向と反対側の向きである。このため、テーパ面16がそのような方向を向くように、先端ヘッド14の回転角度位置を算出する。   S150 (rotation angle position calculation): The rotation angle calculation means 60 calculates the rotation angle position of the tip head 14 for drilling the curved hole CH following the straight hole SH1 based on the measurement results in S130 and S140. To do. Specifically, it is provided in the tip head 14 for drilling the curved hole CH as planned by the tip head 14 at the position grasped in S130 and in the posture grasped in S140. The direction of the tapered surface 16 is calculated. The direction of the tapered surface 16 is usually the direction opposite to the bending direction of the curved hole CH in the radial view of the curved hole CH. Therefore, the rotational angle position of the tip head 14 is calculated so that the tapered surface 16 faces in such a direction.

S160(回転角度位置調整):上記S150で算出した先端ヘッド14の回転角度位置になるように、制御手段64により、先端ヘッド14の回転角度位置を調整する。具体的には、上記S140で把握した先端ヘッド14の現状の姿勢(回転角度)と、上記S150で算出した先端ヘッド14の回転角度位置との角度の差分を算出し、この角度の差分だけ先端ヘッド14を回転させる。
S170(曲線削孔開始):上記S160において先端ヘッド14の回転角度位置を調整した状態で、削孔機12により、曲線孔CHの削孔を開始する。このとき、削孔管26の先端に装着した先端ヘッド14を回転させずに、先端ヘッド14の噴射口18から削孔水を噴射しながら、曲線孔CHを削孔する。
S160 (Rotation angle position adjustment): The control unit 64 adjusts the rotation angle position of the tip head 14 so as to be the rotation angle position of the tip head 14 calculated in S150. Specifically, the difference in angle between the current posture (rotation angle) of the tip head 14 grasped in S140 and the rotation angle position of the tip head 14 calculated in S150 is calculated, and the tip difference is calculated by this angle difference. The head 14 is rotated.
S170 (curve drilling start): Drilling of the curved hole CH is started by the drilling machine 12 with the rotational angle position of the tip head 14 adjusted in S160. At this time, the curved hole CH is drilled while jetting water from the jet port 18 of the tip head 14 without rotating the tip head 14 attached to the tip of the bore pipe 26.

S180(削孔軌跡計測):曲線孔CHを所定距離(例えば3m)削孔した後、曲線孔CHの削孔を一時中断し、第1の削孔軌跡計測手段30、或いは、第2の削孔軌跡計測手段70により、現時点での削孔軌跡を計測する。計測の方法は、上記S130と同様であるため、詳しい説明を省略する。
S190(先端ヘッド姿勢計測):上記S180に引き続き、曲線孔CHを所定距離(例えば3m)削孔した時点での、先端ヘッド14の姿勢を、姿勢計測手段40により計測する。計測の方法は、上記S140と同様であるため、詳しい説明を省略する。
S180 (drilling trajectory measurement): After the curved hole CH is drilled for a predetermined distance (for example, 3 m), the drilling of the curved hole CH is temporarily interrupted, and the first drilling trajectory measuring means 30 or the second drilling path The hole trajectory measuring means 70 measures the current drilling trajectory. Since the measurement method is the same as that in S130, detailed description is omitted.
S190 (tip head attitude measurement): Following S180, the attitude measuring means 40 measures the attitude of the tip head 14 when the curved hole CH is drilled by a predetermined distance (for example, 3 m). Since the measurement method is the same as that in S140, detailed description is omitted.

S200(曲線孔終点判定):上記S180で計測した削孔軌跡に基づき、制御手段64により、曲線孔CHが、予め設定されている曲線孔CHの計画終点位置に達したか否かを判定する。そして、計画終点位置に達したと判定した場合(YES)は、S270へ移行し、計画終点位置に達していないと判定した場合(NO)は、S210へ移行する。
S210(曲線孔終点位置の差分算出):回転角度算出手段60により、上記S180及び上記S190における計測結果から、曲線孔CHの予測終点位置を算出する。具体的に、上記S180で計測された削孔管26の位置から、上記S190で計測された先端ヘッド14の姿勢で、曲線孔CHを削孔し続けた場合の、曲線孔CHの予測終点位置を算出する。このとき、上記S180で計測された削孔軌跡から、現時点での曲線孔CHの曲率半径Rを算出し、それを曲線孔CHの予測終点位置の算出に利用すればよい。更に、回転角度算出手段60により、算出した曲線孔CHの予測終点位置と、予め設定されている曲線孔CHの計画終点位置との差分を算出する。
S200 (curved hole end point determination): Based on the drilling locus measured in S180, the control means 64 determines whether or not the curved hole CH has reached a preset planned end position of the curved hole CH. . If it is determined that the planned end position has been reached (YES), the process proceeds to S270, and if it is determined that the planned end position has not been reached (NO), the process proceeds to S210.
S210 (Calculation of difference in curve hole end point position): The rotation angle calculation means 60 calculates the predicted end point position of the curve hole CH from the measurement results in S180 and S190. Specifically, the predicted end point position of the curved hole CH when the curved hole CH is continuously drilled from the position of the drilled pipe 26 measured in S180 with the attitude of the tip head 14 measured in S190. Is calculated. At this time, the radius of curvature R of the curved hole CH at the present time may be calculated from the drilling locus measured in S180 and used for calculating the predicted end point position of the curved hole CH. Further, the rotation angle calculation means 60 calculates a difference between the calculated predicted end point position of the curved hole CH and a preset planned end position of the curved hole CH.

S220(差分判定):回転角度算出手段60により、上記S210において算出した曲線孔CHの終点位置の差分が、所定範囲内であるか否かを判定する。そして、差分が所定範囲内であると判定した場合(YES)は、S230へ移行し、差分が所定範囲内でないと判定した場合(NO)は、S240へ移行する。なお、判定に用いる所定範囲は、上記S180で利用した第1の削孔軌跡計測手段30又は第2の削孔軌跡計測手段70や、上記S190で利用した姿勢計測手段40の、計測性能等に応じて、任意の範囲を設定すればよい。
S230(曲線削孔継続):上記S220において、そのまま曲線孔CHを削孔しても問題ないと判定されたため、削孔機12による曲線孔CHの削孔を継続する。そして、曲線孔CHを所定距離(例えば3m)削孔した後、上記S180へ復帰する。
S220 (Difference determination): The rotation angle calculation means 60 determines whether or not the difference in the end point position of the curved hole CH calculated in S210 is within a predetermined range. When it is determined that the difference is within the predetermined range (YES), the process proceeds to S230, and when it is determined that the difference is not within the predetermined range (NO), the process proceeds to S240. The predetermined range used for the determination is based on the measurement performance of the first drilling locus measuring means 30 or the second drilling locus measuring means 70 used in S180 and the posture measuring means 40 used in S190. An arbitrary range may be set accordingly.
S230 (Continuous curve drilling): Since it was determined in S220 that there is no problem with drilling the curved hole CH as it is, the drilling of the curved hole CH by the drilling machine 12 is continued. Then, after the curved hole CH is drilled by a predetermined distance (for example, 3 m), the process returns to S180.

S240(回転角度位置算出):上記S220において、削孔方向の修正が必要と判定されたため、曲線孔CHの削孔方向を修正するための、先端ヘッド14の回転角度位置を、回転角度算出手段60により算出する。具体的には、まず、上記S180において計測した削孔軌跡の先端(曲線孔CHの現時点での先端)から、予め設定されている曲線孔CHの計画線(計画削孔軌跡)に対して、仮想的に垂線を引く。そして、この垂線方向視で、先端ヘッド14のテーパ面16が、曲線孔CHの計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。
S250(回転角度位置調整):上記S240で算出した先端ヘッド14の回転角度位置になるように、制御手段64により、先端ヘッド14の回転角度位置を調整する。具体的な方法は、上記S160と同様であるため、詳しい説明を省略する。
S240 (rotation angle position calculation): Since it is determined in S220 that the drilling direction needs to be corrected, the rotation angle position of the tip head 14 for correcting the drilling direction of the curved hole CH is set as the rotation angle calculation means. 60. Specifically, first, from the tip of the drilling locus measured in S180 (the tip at the present time of the curved hole CH) to the preset plan line (planned drilling locus) of the curved hole CH, Virtually draw a perpendicular line. Then, the rotational angle position of the tip head 14 is calculated such that the taper surface 16 of the tip head 14 faces the opposite side of the plan line of the curved hole CH in this perpendicular direction view.
S250 (Rotation angle position adjustment): The rotation angle position of the tip head 14 is adjusted by the control means 64 so as to be the rotation angle position of the tip head 14 calculated in S240. Since the specific method is the same as that of S160, detailed description thereof is omitted.

S260(曲線削孔再開):上記S250において先端ヘッド14の回転角度位置を調整した状態で、削孔機12による曲線孔CHの削孔を再開する。そして、曲線孔CHを所定距離(例えば3m)削孔した後、上記S180へ復帰する。
ここで、S230或いはS260からS180へ復帰することを考慮すると、S180〜S260は、曲線孔CHが終点に到達するまでの間、曲線孔CHが所定距離(例えば3m)削孔される毎に、繰り返し実行されることとなる。
S260 (Curve drilling restart): With the rotational angle position of the tip head 14 adjusted in S250, drilling of the curved hole CH by the drilling machine 12 is restarted. Then, after the curved hole CH is drilled by a predetermined distance (for example, 3 m), the process returns to S180.
Here, in consideration of returning from S230 or S260 to S180, S180 to S260 are performed every time the curved hole CH is drilled by a predetermined distance (for example, 3 m) until the curved hole CH reaches the end point. It will be executed repeatedly.

S270(直線削孔開始):上記S200において曲線孔CHの削孔が終了したと判定されたため、削孔機12により、曲線孔CHに続いて直線孔SH2の削孔を開始する。このとき、削孔管26の先端に装着した先端ヘッド14を回転させながら、かつ、先端ヘッド14の噴射口18から削孔水を噴射しながら、直線孔SH2を削孔する。
S280(削孔軌跡計測):直線孔SH2を所定距離(例えば3〜6m)削孔した後、直線孔SH2の削孔を一時中断し、第1の削孔軌跡計測手段30、或いは、第2の削孔軌跡計測手段70により、現時点での削孔軌跡を計測する。計測の方法は、上記S130と同様であるため、詳しい説明を省略する。
S270 (Start of straight hole drilling): Since it is determined in S200 that the drilling of the curved hole CH has been completed, the drilling machine 12 starts the drilling of the straight hole SH2 following the curved hole CH. At this time, the straight hole SH2 is drilled while rotating the tip head 14 attached to the tip of the drilling tube 26 and jetting drilling water from the jet port 18 of the tip head 14.
S280 (drilling trajectory measurement): After the straight hole SH2 has been drilled by a predetermined distance (for example, 3 to 6 m), the drilling of the straight hole SH2 is temporarily interrupted, and the first drilling trajectory measuring means 30 or second The drilling locus measurement unit 70 measures the current drilling locus. Since the measurement method is the same as that in S130, detailed description is omitted.

S290(先端ヘッド姿勢計測):上記S280に引き続き、直線孔SH2を所定距離(例えば3〜6m)削孔した時点での、先端ヘッド14の姿勢を、姿勢計測手段40により計測する。計測の方法は、上記S140と同様であるため、詳しい説明を省略する。
S300(直線孔終点判定):上記S280で計測した削孔軌跡に基づき、制御手段64により、直線孔SH2が、予め設定されている直線孔SH2の計画終点位置に達したか否かを判定する。そして、計画終点位置に達したと判定した場合(YES)は、直線孔SH2までの削孔が全て終了したことになり、本発明の実施の形態に係る削孔方法による削孔が終了となる。一方、計画終点位置に達していないと判定した場合(NO)は、S310へ移行する。
S290 (tip head attitude measurement): Following the above S280, the attitude measuring means 40 measures the attitude of the tip head 14 when the straight hole SH2 is drilled by a predetermined distance (for example, 3 to 6 m). Since the measurement method is the same as that in S140, detailed description is omitted.
S300 (Straight hole end point determination): Based on the drilling locus measured in S280, the control means 64 determines whether or not the straight hole SH2 has reached the preset end position of the straight hole SH2. . When it is determined that the planned end position has been reached (YES), all the drilling up to the straight hole SH2 has been completed, and the drilling by the drilling method according to the embodiment of the present invention is completed. . On the other hand, when it determines with not having reached the plan end position (NO), it transfers to S310.

S310(直線孔終点位置の差分算出):回転角度算出手段60により、上記S280及び上記S290における計測結果から、直線孔SH2の予測終点位置を算出する。具体的に、上記S280で計測された削孔管26の位置から、上記S290で計測された先端ヘッド14の姿勢で、直線孔SH2を削孔し続けた場合の、直線孔SH2の予測終点位置を算出する。更に、回転角度算出手段60により、算出した直線孔SH2の予測終点位置と、予め設定されている直線孔SH2の計画終点位置との差分を算出する。このとき、上記S280で計測された削孔軌跡と、予め設定されている直線孔SH2の計画線(計画削孔軌跡)との差分や、それらが成す角度等を利用すればよい。   S310 (difference calculation of linear hole end point position): The rotation angle calculation means 60 calculates the predicted end point position of the straight hole SH2 from the measurement results in S280 and S290. Specifically, the predicted end point position of the straight hole SH2 when the straight hole SH2 is continuously drilled from the position of the drilled pipe 26 measured in S280 with the attitude of the tip head 14 measured in S290. Is calculated. Further, the rotation angle calculation means 60 calculates the difference between the calculated predicted end point position of the straight hole SH2 and the preset planned end point position of the straight hole SH2. At this time, the difference between the drilling trajectory measured in S280 and the preset plan line (planned drilling trajectory) of the straight hole SH2, the angle formed by them, or the like may be used.

S320(差分判定):回転角度算出手段60により、上記S310において算出した直線孔SH2の終点位置の差分が、所定範囲内であるか否かを判定する。そして、差分が所定範囲内であると判定した場合(YES)は、S330へ移行し、差分が所定範囲内でないと判定した場合(NO)は、S340へ移行する。なお、判定に用いる所定範囲は、上記S280で利用した第1の削孔軌跡計測手段30又は第2の削孔軌跡計測手段70や、上記S290で利用した姿勢計測手段40の、計測性能等に応じて、任意の範囲を設定すればよい。   S320 (difference determination): The rotation angle calculation means 60 determines whether or not the difference in the end point position of the straight hole SH2 calculated in S310 is within a predetermined range. And when it determines with a difference being in a predetermined range (YES), it transfers to S330, and when it determines with a difference not being in a predetermined range (NO), it transfers to S340. The predetermined range used for the determination is based on the measurement performance of the first drilling locus measuring means 30 or the second drilling locus measuring means 70 used in S280 and the posture measuring means 40 used in S290. An arbitrary range may be set accordingly.

S330(直線削孔継続):上記S320において、そのまま直線孔SH2を削孔しても問題ないと判定されたため、削孔機12による直線孔SH2の削孔を継続する。そして、直線孔SH2を所定距離(例えば3〜6m)削孔した後、上記S280へ復帰する。
S340(回転角度位置算出):上記S320において、削孔方向の修正が必要と判定されたため、直線孔SH2の削孔方向を修正する曲線削孔を行うための、先端ヘッド14の回転角度位置を、回転角度算出手段60により算出する。具体的には、まず、上記S280において計測した削孔軌跡の先端(直線孔SH2の現時点での先端)から、予め設定されている直線孔SH2の計画線(計画削孔軌跡)に対して、仮想的に垂線を引く。そして、この垂線方向視で、先端ヘッド14のテーパ面16が、直線孔SH2の計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。
S330 (Continuous straight hole drilling): Since it is determined in S320 that there is no problem even if the straight hole SH2 is drilled as it is, the drilling of the straight hole SH2 by the drilling machine 12 is continued. Then, after the straight hole SH2 is drilled by a predetermined distance (for example, 3 to 6 m), the process returns to S280.
S340 (rotation angle position calculation): Since it was determined in S320 that correction of the drilling direction is necessary, the rotation angle position of the tip head 14 for performing curved drilling for correcting the drilling direction of the straight hole SH2 is determined. The rotation angle is calculated by the rotation angle calculation means 60. Specifically, first, from the tip of the drilling locus measured in S280 (the tip at the present time of the straight hole SH2) to the preset plan line (planned drilling locus) of the straight hole SH2, Virtually draw a perpendicular line. Then, the rotational angle position of the tip head 14 is calculated so that the taper surface 16 of the tip head 14 faces the opposite side of the straight line SH2 in the perpendicular direction.

S350(回転角度位置調整):上記S340で算出した先端ヘッド14の回転角度位置になるように、制御手段64により、先端ヘッド14の回転角度位置を調整する。具体的な方法は、上記S160と同様であるため、詳しい説明を省略する。
S360(所定削孔長のみ曲線削孔):上記S350において先端ヘッド14の回転角度位置を調整した状態で、直線孔SH2の削孔方向を修正するための所定削孔長のみ、削孔機12により曲線孔を削孔する。このような所定削孔長は、制御手段64により、既に削孔した曲線孔CHの曲率半径Rから算出すればよく、曲線孔CHの曲率半径Rは、曲線孔CHの削孔中に計測した削孔軌跡、すなわち、上記S180で計測した曲線孔CHの削孔軌跡から求めればよい。そして、算出した所定削孔長のみ、先端ヘッド14を回転させずに、曲線孔を削孔する。
S350 (rotation angle position adjustment): The rotation angle position of the tip head 14 is adjusted by the control means 64 so as to be the rotation angle position of the tip head 14 calculated in S340. Since the specific method is the same as that of S160, detailed description thereof is omitted.
S360 (curved drilling only for a predetermined drilling length): only the predetermined drilling length for correcting the drilling direction of the straight hole SH2 in the state where the rotational angle position of the tip head 14 is adjusted in S350, the drilling machine 12 To cut a curved hole. Such a predetermined drilling length may be calculated from the radius of curvature R of the curved hole CH that has already been drilled by the control means 64, and the radius of curvature R of the curved hole CH was measured during the drilling of the curved hole CH. What is necessary is just to obtain | require from a drilling locus | trajectory, ie, the drilling locus | trajectory of the curved hole CH measured by said S180. Then, the curved hole is drilled without rotating the tip head 14 only for the calculated predetermined drilling length.

S370(直線削孔再開):上記S360の曲線削孔により削孔方向を修正した後、削孔機12による直線孔SH2の削孔を再開する。そして、直線孔SH2を所定距離(例えば3〜6m)削孔した後、上記S280へ復帰する。
ここで、S330或いはS370からS280へ復帰することを考慮すると、S280〜S370は、直線孔SH2が終点に到達するまでの間、直線孔SH2が所定距離(例えば3〜6m)削孔される毎に、繰り返し実行されることとなる。
なお、図3及び図4のフロー図では、削孔軌跡計測工程(S130、S180、S280)と、先端ヘッド姿勢計測工程(S140、S190、S290)とは、削孔軌跡計測工程の方を先に行っているが、その実行順序が逆であってもよい。
S370 (Resume linear drilling): After correcting the drilling direction by the curved drilling of S360, the drilling of the straight hole SH2 by the drilling machine 12 is resumed. Then, after the straight hole SH2 is drilled by a predetermined distance (for example, 3 to 6 m), the process returns to S280.
Here, considering the return from S330 or S370 to S280, S280 to S370 are performed every time the straight hole SH2 is drilled by a predetermined distance (for example, 3 to 6 m) until the straight hole SH2 reaches the end point. This is repeatedly executed.
In the flow charts of FIGS. 3 and 4, the drilling locus measurement step (S130, S180, S280) and the tip head posture measurement step (S140, S190, S290) precede the drilling locus measurement step. However, the execution order may be reversed.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。すなわち、本発明の実施の形態に係る削孔方法は、図1に示すような構成の削孔装置10を利用して、図3及び図4に示すような流れに沿って、図5に示すように削孔するものである。より具体的には、先端ヘッド14を装着した削孔管26を利用して、直線孔SH1、SH2を削孔する直線削孔工程(S110〜S120、S270〜S370)と、曲線孔CHを削孔する曲線削孔工程(S170〜S260)とを組み合わせて、地中Gを削孔するものであり、更に、削孔軌跡計測工程(S130、S180、S280)と、姿勢計測工程(S140、S190、S290)と、調整工程(S210〜S260、S310〜S370)とを含んでいる。   Now, according to the embodiment of the present invention configured as described above, the following operational effects can be obtained. That is, the drilling method according to the embodiment of the present invention is shown in FIG. 5 along the flow shown in FIGS. 3 and 4 by using the drilling device 10 having the configuration shown in FIG. So as to drill holes. More specifically, using the drilling tube 26 to which the tip head 14 is mounted, a straight drilling process (S110 to S120, S270 to S370) for drilling the straight holes SH1 and SH2, and a curved hole CH are cut. A combination of the hole drilling step (S170 to S260) to drill the underground G, and further, a hole trajectory measurement step (S130, S180, S280) and a posture measurement step (S140, S190). , S290) and adjustment steps (S210 to S260, S310 to S370).

削孔軌跡計測工程では、第1の削孔軌跡計測手段30の磁界発生手段32により、地上に露出している削孔管26の一部26a、すなわち、地中Gに挿入されている削孔管26の尾端近傍から、削孔管26に電流を流すことで、地中Gに挿入されている削孔管26を中心とした磁界を発生させる。そして、作業員等に操作される受信器34によって、地上から磁界を受信し、受信した磁界の強弱等の受信結果から、第1の計測手段36により、地中Gの削孔管26の絶対位置を計測する。これにより、削孔開始位置から現状の先端ヘッド14の位置までの、削孔管26による削孔軌跡が計測される。このように、本発明の実施の形態に係る削孔方法は、削孔管26を中心とした磁界を発生させながらも、地上に露出した削孔管26の一部26aから電流を流す方法を採用しているため、削孔管26に磁界発生装置や受信器を備える必要がなく、削孔管26や先端ヘッド14に別の計測器を設置するためのスペースを確保することができる。   In the drilling trajectory measurement step, the magnetic field generating means 32 of the first drilling trajectory measuring means 30 makes a part 26a of the drilled pipe 26 exposed to the ground, that is, the drilled hole inserted into the underground G. By supplying an electric current to the drilling tube 26 from the vicinity of the tail end of the tube 26, a magnetic field is generated with the drilling tube 26 inserted in the underground G as a center. Then, a magnetic field is received from the ground by a receiver 34 operated by a worker and the like, and the absolute value of the borehole 26 in the underground G is detected by the first measuring means 36 from the reception result of the received magnetic field strength and the like. Measure the position. Thereby, the drilling locus by the drilling tube 26 from the drilling start position to the current position of the tip head 14 is measured. As described above, the drilling method according to the embodiment of the present invention is a method in which a current is supplied from a part 26a of the drilled tube 26 exposed to the ground while generating a magnetic field around the drilled tube 26. Since it employs, it is not necessary to provide a magnetic field generator or a receiver in the drilling tube 26, and a space for installing another measuring device in the drilling tube 26 or the tip head 14 can be secured.

又、姿勢計測工程では、上記のように確保された先端ヘッド14のスペースに、本実施例では傾斜計44を設置することで、先端ヘッド14の回転角度とピッチング角度とを計測する。そして、調整工程では、削孔軌跡計測工程で得られた削孔軌跡と、姿勢計測工程で得られた先端ヘッド14の回転角度及びピッチング角度とに基づいて、例えば、削孔管26の予測到達位置を算出する。すなわち、それまでの削孔管26による削孔軌跡と、現状の先端ヘッド14の姿勢とが把握されることで、そのまま直線孔SH2或いは曲線孔CHを削孔する場合の予測到達位置が算出される。   In the posture measurement process, the rotation angle and the pitching angle of the tip head 14 are measured by installing an inclinometer 44 in this embodiment in the space of the tip head 14 secured as described above. In the adjustment process, for example, the predicted arrival of the drill tube 26 is based on the drilling path obtained in the drilling path measurement process and the rotation angle and pitching angle of the tip head 14 obtained in the posture measurement process. Calculate the position. That is, by grasping the drilling trajectory by the drilling pipe 26 and the current posture of the tip head 14, the predicted arrival position when the straight hole SH2 or the curved hole CH is drilled as it is is calculated. The

そして、例えば、削孔管26の予測到達位置が計画到達位置から逸れている場合に、実際の到達位置が計画到達位置へと近づいて修正されるように、先端ヘッド14の回転角度位置、すなわち、先端ヘッド14に設けられているテーパ面16の向きを調整する。その後、テーパ面16の向きを調整した状態で、先端ヘッド14を回転させずに削孔管26を押し込んで曲線孔を削孔することで、計画到達位置へと近づくように削孔位置が修正される。このように、本発明の実施の形態に係る削孔方法は、削孔軌跡計測工程において削孔管26の位置をより正確に把握することができ、更に先端ヘッド14の姿勢情報と併用することで得られる予測到達位置を利用することにより、削孔を精度よく行うことが可能となる。   Then, for example, when the predicted arrival position of the drilled pipe 26 deviates from the planned arrival position, the rotational angle position of the tip head 14, that is, the actual arrival position approaches the planned arrival position, that is, is corrected. The direction of the tapered surface 16 provided on the tip head 14 is adjusted. Then, with the orientation of the taper surface 16 adjusted, the drilling position is corrected so that the curved hole is drilled by pushing the drilling pipe 26 without rotating the tip head 14 so as to approach the planned arrival position. Is done. As described above, the drilling method according to the embodiment of the present invention can more accurately grasp the position of the drill tube 26 in the drilling locus measurement step, and can be used in combination with the posture information of the tip head 14. It is possible to perform drilling with high accuracy by using the predicted arrival position obtained in (1).

更に、本発明の実施の形態に係る削孔方法は、削孔軌跡計測工程(S130、S180、S280)において、削孔開始位置から先端ヘッド14までの削孔軌跡を計測する際に、地上から受信器34により削孔管26の複数の部位の位置を検出し、これら複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づいて、削孔軌跡を計測してもよい。すなわち、削孔管26の位置を線状に連続的に計測するのではなく、複数の点状に断続的に計測することで、削孔管26の計測位置の精度を維持しながら、作業時間を短縮することができる。更に、地上構造物や地中埋設物の影響によって、受信器34による磁界の受信が困難な区間が存在する場合であっても、その区間を除いた複数の位置において削孔管26の位置を計測することで、削孔軌跡を問題なく把握することができる。   Furthermore, in the drilling method according to the embodiment of the present invention, when measuring the drilling locus from the drilling start position to the tip head 14 in the drilling locus measuring step (S130, S180, S280), The position of a plurality of parts of the drilling tube 26 may be detected by the receiver 34, and the drilling locus may be measured based on a virtual curve obtained by virtually connecting the positions of the plurality of parts in a linear shape. . That is, the working time is maintained while maintaining the accuracy of the measurement position of the drilled tube 26 by measuring the position of the drilled tube 26 continuously in a plurality of dots rather than continuously measuring the position of the drilled tube 26 linearly. Can be shortened. Further, even when there is a section where it is difficult to receive the magnetic field by the receiver 34 due to the influence of the ground structure or the underground structure, the position of the drilling tube 26 is set at a plurality of positions excluding the section. By measuring, the drilling locus can be grasped without any problem.

又、本発明の実施の形態に係る削孔方法は、削孔軌跡計測工程(S130、S180、S280)において、削孔開始位置から先端ヘッド14まで削孔軌跡を計測する方法として、2つの方法を併用してもよい。すなわち、一方の方法は、上述した第1の削孔軌跡計測手段30を利用する方法であり、もう一方の方法は、第2の削孔軌跡計測手段70を利用する方法である。第2の削孔軌跡計測手段70を利用する方法では、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサ72を、削孔管26の内部を通して先端ヘッド14の近傍まで送り込んだ後、削孔管26の内部を通してジャイロセンサ72を引き上げながら、ジャイロセンサ72が移動した経路上で角速度の計測を行う。   In addition, the drilling method according to the embodiment of the present invention includes two methods as methods for measuring the drilling locus from the drilling start position to the tip head 14 in the drilling locus measuring step (S130, S180, S280). May be used in combination. That is, one method is a method using the first drilling locus measuring means 30 described above, and the other method is a method using the second drilling locus measuring means 70. In the method using the second drilling locus measuring means 70, a gyro sensor 72 capable of measuring at least the pitching direction and the yawing direction is sent to the vicinity of the tip head 14 through the inside of the drilling tube 26, and then the hole drilling is performed. While pulling up the gyro sensor 72 through the inside of the pipe 26, the angular velocity is measured on the path along which the gyro sensor 72 has moved.

この際、削孔管26内でジャイロセンサ72を推進させ得る剛性を有する、ワイヤ等の線状の送り込み手段を、ジャイロセンサ72に接続して送り込み、繰り出し量計測手段74によって、線状の送り込み手段の繰り出し量を計測する。このとき、送り込み手段の繰り出し量は、送り込み手段の繰り出し時と繰り取り時との、何れにおいて計測してもよい。そして、ジャイロセンサ72による計測結果と、繰り出し量計測手段74による計測結果とに基づいて、第2の計測手段76により削孔軌跡を計測するものである。これにより、例えば、削孔軌跡のメインの計測方法として、第1の削孔軌跡計測手段30を利用する方法を用い、この方法による計測が困難な区間については、第2の削孔軌跡計測手段70を利用する方法を採用する、といった使い分けを行うことができる。このように削孔軌跡を計測することによって、削孔管26の到達位置の予測精度が向上し、削孔をより精度よく行うことができる。   At this time, a linear feeding means such as a wire having rigidity capable of propelling the gyro sensor 72 in the hole drilling pipe 26 is connected to the gyro sensor 72 and fed, and the feeding amount measuring means 74 performs linear feeding. The amount of feeding of the means is measured. At this time, the feeding amount of the feeding means may be measured either when the feeding means is fed or when the feeding means is fed. Then, based on the measurement result by the gyro sensor 72 and the measurement result by the feed amount measuring means 74, the drilling locus is measured by the second measuring means 76. Thereby, for example, a method using the first drilling locus measuring means 30 is used as the main measuring method of the drilling locus, and the second drilling locus measuring means is used for a section where measurement by this method is difficult. It is possible to selectively use such as adopting a method using 70. By measuring the drilling locus in this way, the accuracy of predicting the arrival position of the drilling tube 26 is improved, and drilling can be performed with higher accuracy.

又、本発明の実施の形態に係る削孔方法は、姿勢計測工程(S140、S190、S290)において、姿勢計測手段40を用いて計測を行うものである。すなわち、施工に先立ち、上述した如く先端ヘッド14に確保される設置スペースに、予め傾斜計44を含むセンサ部42を取り付ける。傾斜計44としては、先端ヘッド14の回転角度とピッチング角度との夫々を計測する2つの傾斜計、或いは、それら2つの角度を同時に計測可能な2軸式の傾斜計が挙げられ、又、何れの場合であっても、光信号を送信可能な光送信手段50と共に設置する。   In addition, the hole drilling method according to the embodiment of the present invention performs measurement using the posture measuring means 40 in the posture measuring step (S140, S190, S290). That is, prior to construction, the sensor unit 42 including the inclinometer 44 is attached in advance to the installation space secured in the tip head 14 as described above. Examples of the inclinometer 44 include two inclinometers that measure the rotation angle and the pitching angle of the tip head 14, or a two-axis inclinometer that can simultaneously measure these two angles. Even in this case, it is installed together with the optical transmission means 50 capable of transmitting an optical signal.

そして、姿勢計測工程において先端ヘッド14の姿勢を計測する際に、先端ヘッド14に取り付けた光送信手段50に対して、地上から削孔管26の内部を通して光受信手段52を接近させ、傾斜計44から光送信手段50を介して光受信手段52へ、先端ヘッド14の回転角度及びピッチング角度に係るデータを光信号で送信させる。この際、光受信手段52とデータ取得手段54とをケーブルで接続しておくことで、先端ヘッド14の回転角度及びピッチング角度に係るデータを、光受信手段52からケーブルを介して地上側のデータ取得手段54で取得する。これにより、先端ヘッド14の姿勢情報を、必要に応じた任意のタイミングで、地上側において把握することが可能となる。   Then, when measuring the posture of the tip head 14 in the posture measurement step, the light receiving means 52 is made to approach the light transmitting means 50 attached to the tip head 14 from the ground through the inside of the drilling tube 26, and the inclinometer Data relating to the rotation angle and pitching angle of the tip head 14 is transmitted as an optical signal from 44 to the optical receiver 52 via the optical transmitter 50. At this time, by connecting the light receiving means 52 and the data acquiring means 54 with a cable, data relating to the rotation angle and pitching angle of the tip head 14 can be obtained from the light receiving means 52 via the cable. Obtained by the obtaining means 54. As a result, the posture information of the tip head 14 can be grasped on the ground side at an arbitrary timing as necessary.

更に、本発明の実施の形態に係る削孔方法は、直線削孔工程(S270〜S370)及び曲線削孔工程(S170〜S260)において、直線孔SH2或いは曲線孔CHを所定距離削孔する毎に、削孔作業を一時中断して、削孔軌跡計測工程と姿勢計測工程と調整工程とを実行するものである。これにより、実際の削孔位置が計画位置から大幅に逸れる前に、削孔位置を修正することができるため、削孔位置の精度をより向上することが可能となる。   Furthermore, in the drilling method according to the embodiment of the present invention, each time the straight hole SH2 or the curved hole CH is drilled by a predetermined distance in the straight drilling process (S270 to S370) and the curved drilling process (S170 to S260). In addition, the drilling operation is temporarily interrupted, and the drilling locus measurement process, the attitude measurement process, and the adjustment process are executed. Thereby, since the drilling position can be corrected before the actual drilling position deviates significantly from the planned position, the accuracy of the drilling position can be further improved.

又、本発明の実施の形態に係る削孔方法は、曲線削孔工程中に行う調整工程、すなわち、曲線孔CHの削孔中に所定距離削孔する毎に削孔を中断して行う調整工程(S210〜S260)において、その直前の削孔軌跡計測工程(S180)で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程(S190)で計測した先端ヘッド14の回転角度及びピッチング角度とから、回転角度算出手段60により、曲線孔CHの予測終点位置を算出する。つまり、それまでの曲線孔CHの削孔軌跡と、現状の先端ヘッド14の姿勢情報とが把握されることで、そのまま曲線孔CHの削孔を続けた場合の、曲線孔CHの予測終点位置が算出される。更に、そのように算出した曲線孔CHの予測終点位置と、施工前に予め設定した曲線孔CHの計画終点位置との差分を算出する。   Further, the drilling method according to the embodiment of the present invention is an adjustment process performed during the curved drilling process, that is, an adjustment performed by interrupting the drilling every time a predetermined distance is drilled during the drilling of the curved hole CH. In the steps (S210 to S260), the drilling locus measured in the immediately preceding drilling locus measuring step (S180) and the rotation angle and pitching of the tip head 14 measured in the posture measuring step (S190) immediately before the adjusting step. From the angle, the rotation angle calculation means 60 calculates the predicted end point position of the curved hole CH. In other words, the predicted end point position of the curved hole CH when the drilling of the curved hole CH is continued as it is by grasping the drilling locus of the curved hole CH so far and the current posture information of the tip head 14. Is calculated. Furthermore, the difference between the predicted end point position of the curved hole CH calculated as described above and the planned end point position of the curved hole CH set in advance before the construction is calculated.

そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、曲線孔CHの削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッド14の回転角度位置を算出する。具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、曲線孔CHの計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッド14のテーパ面16が曲線孔CHの計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。そして、先端ヘッド14の回転角度位置を、算出した回転角度位置に調整した後、曲線削孔工程に復帰して曲線孔CHを削孔するものである。この状態で先端ヘッド14を回転させずに削孔することにより、先端ヘッド14は、テーパ面16で受ける圧力の影響によって、計画終点位置に近づく方向へと推進することになる。このため、より精度よく曲線孔CHを削孔することができる。   Then, when the calculated difference in the end point position is out of the predetermined range set in advance, the rotational angle position of the tip head 14 is corrected so that the drilling direction of the curved hole CH approaches the planned end point position. Is calculated. Specifically, a perpendicular line is virtually drawn from the tip of the drilling locus measured in the drilling locus measuring step to the planned line of the curved hole CH (the planned drilling locus set in advance before construction). The rotational angle position of the tip head 14 is calculated so that the tapered surface 16 of the tip head 14 faces the opposite side of the curved hole CH in the direction view. Then, after adjusting the rotation angle position of the tip head 14 to the calculated rotation angle position, the process returns to the curve drilling step to drill the curve hole CH. By drilling the hole without rotating the tip head 14 in this state, the tip head 14 is propelled in a direction approaching the planned end position due to the influence of the pressure received by the tapered surface 16. For this reason, the curved hole CH can be drilled with higher accuracy.

又、本発明の実施の形態に係る削孔方法は、直線削孔工程中に行う調整工程、すなわち、直線孔SH2の削孔中に所定距離削孔する毎に削孔を中断して行う調整工程(S310〜S370)において、その直前の削孔軌跡計測工程(S280)で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程(S290)で計測した先端ヘッド14の回転角度及びピッチング角度とから、回転角度算出手段60により、直線孔SH2の予測終点位置を算出する。つまり、それまでの直線孔SH2の削孔軌跡と、現状の先端ヘッド14の姿勢情報とが把握されることで、そのまま直線孔SH2の削孔を続けた場合の、直線孔S2の予測終点位置が算出される。更に、そのように算出した直線孔SH2の予測終点位置と、施工前に予め設定した直線孔SH2の計画終点位置との差分を算出する。そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、直線孔SH2の削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッド14の回転角度位置を算出する。   In addition, the drilling method according to the embodiment of the present invention is an adjustment process performed during the linear drilling process, that is, an adjustment performed by interrupting the drilling every time a predetermined distance is drilled in the drilling of the straight hole SH2. In the steps (S310 to S370), the drilling locus measured in the immediately preceding drilling locus measuring step (S280) and the rotation angle and pitching of the tip head 14 measured in the posture measuring step (S290) immediately before the adjusting step. From the angle, the rotation angle calculation means 60 calculates the predicted end point position of the straight hole SH2. That is, the predicted end point position of the straight hole S2 when the drilling of the straight hole SH2 is continued as it is by grasping the drilling locus of the straight hole SH2 up to that point and the current posture information of the tip head 14. Is calculated. Furthermore, the difference between the predicted end point position of the straight hole SH2 calculated as described above and the planned end point position of the straight hole SH2 set in advance before the construction is calculated. Then, when the calculated difference in the end point position is out of the predetermined range set in advance, the rotational angle position of the tip head 14 is corrected so that the drilling direction of the straight hole SH2 approaches the planned end point position. Is calculated.

具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、直線孔SH2の計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッド14のテーパ面16が直線孔SH2の計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。そして、先端ヘッド14の回転角度位置を、算出した回転角度位置に調整した後、所定削孔長のみ曲線孔を削孔する。この状態で先端ヘッド14を回転させずに曲線孔を削孔することにより、先端ヘッド14は、テーパ面16で受ける圧力の影響によって、直線孔SH2の計画終点位置に近づく方向へと推進することになる。すなわち、直線孔SH2の予測終点位置が計画終点位置から逸れている場合、一時的に曲線孔を削孔して削孔方向を修正する必要があるため、その削孔方向の修正に必要な所定削孔長のみ、曲線孔を削孔する。その後、直線削孔工程に復帰して直線孔SH2を削孔するものである。これにより、より精度よく直線孔SH2を削孔することができる。   Specifically, a perpendicular line is virtually drawn from the tip of the drilling locus measured in the drilling locus measuring step to the planned line of the straight hole SH2 (the planned drilling locus set in advance before construction). The rotational angle position of the tip head 14 is calculated so that the tapered surface 16 of the tip head 14 faces the opposite side of the straight line SH2 in the direction view. Then, after adjusting the rotation angle position of the tip head 14 to the calculated rotation angle position, a curved hole is drilled for a predetermined drilling length. By cutting the curved hole without rotating the tip head 14 in this state, the tip head 14 is propelled in a direction approaching the planned end point position of the straight hole SH2 due to the influence of the pressure received by the tapered surface 16. become. That is, when the predicted end point position of the straight hole SH2 deviates from the planned end point position, it is necessary to temporarily cut the curved hole to correct the drilling direction. Only curved holes are drilled in curved holes. Thereafter, the process returns to the straight hole drilling step to drill the straight hole SH2. As a result, the straight hole SH2 can be drilled with higher accuracy.

更に、本発明の実施の形態に係る削孔方法は、制御手段64により、直線孔SH2の方向を修正する際に削孔する曲線孔の長さである所定削孔長を、既に削孔済みの曲線孔CHの曲率半径Rに基づいて算出するものである。この際、削孔済みの曲線孔CHの曲率半径Rは、その曲線孔CHの削孔中に実行した、削孔軌跡計測工程(S180)において計測した曲線孔CHの削孔軌跡から求めることができる。このように求められた曲線孔CHの曲率半径Rは、実際に削孔している地中Gの土質の影響等が反映された曲率半径となる。このため、それに基づいて算出される所定削孔長は、地中Gの土質の影響等が加味された、適切な削孔長を算出することができる。   Furthermore, in the drilling method according to the embodiment of the present invention, the control means 64 has already drilled a predetermined drilling length which is the length of the curved hole to be drilled when correcting the direction of the straight hole SH2. Is calculated based on the radius of curvature R of the curved hole CH. At this time, the radius of curvature R of the curved hole CH that has been drilled can be obtained from the drilling locus of the curved hole CH measured in the drilling locus measuring step (S180) performed during the drilling of the curved hole CH. it can. The curvature radius R of the curved hole CH obtained in this way is a curvature radius reflecting the influence of soil quality of the underground G that is actually drilled. For this reason, the predetermined drilling length calculated based thereon can be calculated as an appropriate drilling length in consideration of the influence of the soil quality of the underground G.

10:削孔装置、12:削孔機、14:先端ヘッド、16:テーパ面、26:削孔管、26a:削孔管の地上に露出している一部、30:第1の削孔軌跡計測手段、32:磁界発生手段、34:受信器、36:第1の計測手段、40:姿勢計測手段、44:傾斜計、52:光受信手段、54:データ取得手段、60:回転角度算出手段、64:制御手段、70:第2の削孔軌跡計測手段、72:ジャイロセンサ、74:繰り出し量計測手段、76:第2の計測手段、SH1、SH2:直線孔、CH:曲線孔、G:地中、R:曲線孔の曲率半径   10: Drilling device, 12: Drilling machine, 14: Tip head, 16: Tapered surface, 26: Drilling tube, 26a: Part of the drilling tube exposed to the ground, 30: First drilling Trajectory measurement means, 32: magnetic field generation means, 34: receiver, 36: first measurement means, 40: attitude measurement means, 44: inclinometer, 52: light reception means, 54: data acquisition means, 60: rotation angle Calculation means, 64: control means, 70: second drilling locus measurement means, 72: gyro sensor, 74: feed amount measurement means, 76: second measurement means, SH1, SH2: straight hole, CH: curve hole , G: underground, R: radius of curvature of curved hole

Claims (16)

先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔工程と、前記回転ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔工程とを組み合わせて、地中を削孔する方法であって、
地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させ、地上から受信器により前記磁界を受信し、該受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する削孔軌跡計測工程と、
前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測工程と、
前記削孔軌跡計測工程及び前記姿勢計測工程における計測結果に基づいて、前記先端ヘッドの回転角度位置を調整する調整工程と、を含むことを特徴とする削孔方法。
Using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip, the linear drilling step of drilling a straight hole by pushing the drilling tube while rotating the tip head, and the rotation It is a method of drilling the underground by combining with a curved drilling step of drilling a curved hole by pushing the drilled tube without rotating the head,
A current is caused to flow from a part of the drilled tube exposed to the ground to generate a magnetic field centered on the drilled tube in the ground, and the magnetic field is received from the ground by a receiver. Based on the drilling locus measurement step of measuring the drilling locus from the drilling start position to the tip head,
A posture measuring step for measuring a rotation angle and a pitching angle of the tip head;
A drilling method comprising: an adjusting step of adjusting a rotational angle position of the tip head based on measurement results in the drilling locus measuring step and the posture measuring step.
前記削孔軌跡計測工程において、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、該複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測することを特徴とする請求項1記載の削孔方法。   In the drilling locus measurement step, the position of a plurality of parts of the drilling tube is detected by the receiver from the ground, and based on a virtual curve obtained by connecting the positions of the plurality of parts virtually linearly, The drilling method according to claim 1, wherein the drilling locus is measured. 前記姿勢計測工程において、前記先端ヘッドに予め取り付けた傾斜計に対して、地上から前記削孔管の内部を通して光受信手段を接近させることで、前記傾斜計から前記光受信手段へ、前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で送信させ、前記光受信手段からケーブルを介して前記データを取得することを特徴とする請求項1又は2記載の削孔方法。   In the posture measurement step, the tip head is moved from the ground to the light receiving means by bringing the light receiving means closer to the inclinometer previously attached to the tip head from the ground through the inside of the drilling tube. The hole drilling method according to claim 1 or 2, wherein data relating to the rotation angle and pitching angle is transmitted as an optical signal, and the data is obtained from the optical receiving means via a cable. 前記直線削孔工程及び前記曲線削孔工程において、所定距離を削孔する毎に、前記削孔軌跡計測工程及び前記姿勢計測工程及び前記調整工程を行うことを特徴とする請求項1から3のいずれか1項記載の削孔方法。   4. The method according to claim 1, wherein, in each of the linear drilling step and the curved drilling step, the drilling locus measurement step, the posture measurement step, and the adjustment step are performed every time a predetermined distance is drilled. The hole drilling method of any one of Claims. 前記曲線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整した後、前記曲線削孔工程に復帰することを特徴とする請求項4記載の削孔方法。   In the adjusting step performed during the curved hole drilling step, the predicted end point position of the curved hole is calculated from the measurement results of the drilling locus measurement step and the posture measuring step, and the predicted end point position of the curved hole, When the difference from the planned end position of the curved hole is calculated, and the difference is out of a predetermined range, from the tip of the drilling trajectory measured in the drilling trajectory measuring step, to the planned line of the curved hole Virtually drawing a perpendicular line, and adjusting the rotational angle position of the tip head so that the tapered surface faces the opposite side of the curved hole plan line in the perpendicular direction view, the curved hole drilling step The hole drilling method according to claim 4, wherein the drilling method returns. 前記直線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整して、前記曲線削孔工程を所定削孔長行った後、前記直線削孔工程に復帰することを特徴とする請求項4又は5記載の削孔方法。   In the adjustment step performed during the straight hole drilling step, the predicted end point position of the straight hole is calculated from the measurement results of the drilling locus measurement step and the posture measurement step, and the predicted end point position of the straight hole, When the difference from the planned end point position of the straight hole is calculated, and the difference is out of a predetermined range, from the tip of the drilling locus measured in the drilling locus measuring step, to the planned line of the straight hole. Virtually drawing a perpendicular line, and adjusting the rotational angle position of the tip head so that the tapered surface faces the opposite side to the planned line of the straight hole in the perpendicular direction view, the curved hole drilling step 6. The drilling method according to claim 4 or 5, wherein the process returns to the linear drilling step after a predetermined drilling length. 前記所定削孔長を、削孔済みの前記曲線孔を削孔時の、前記削孔軌跡計測工程の計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて算出することを特徴とする請求項6記載の削孔方法。   The predetermined drilling length is calculated based on the radius of curvature of the curved hole that has been drilled, which is obtained from the measurement result of the drilling locus measurement step when the curved hole that has been drilled is drilled. The drilling method according to claim 6, wherein 前記削孔軌跡計測工程において、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサを、前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込んだ後、前記ジャイロセンサを引き上げながら該ジャイロセンサにより計測を行うと共に、前記ジャイロセンサに接続した線状の送り込み手段の繰り出し量を計測し、前記ジャイロセンサによる計測結果と前記繰り出し量とに基づいて、前記削孔軌跡を計測する方法を併用することを特徴とする請求項1から7のいずれか1項記載の削孔方法。   In the drilling locus measurement step, after feeding a gyro sensor capable of measuring at least the pitching direction and the yawing direction to the vicinity of the tip head through the inside of the drilling tube, the gyro sensor lifts the gyro sensor In addition to performing the measurement, a method of measuring a feed amount of the linear feeding means connected to the gyro sensor and measuring the drilling locus based on the measurement result by the gyro sensor and the feed amount is used in combination. The drilling method according to any one of claims 1 to 7, wherein: 先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔と、前記回転ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔とを組み合わせて、地中を削孔する削孔機を備えた削孔装置であって、
地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させる磁界発生手段と、前記磁界を地上から受信するための受信器と、該受信器による受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する第1の計測手段と、を備える第1の削孔軌跡計測手段と、
前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測手段と、
前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果に基づいて、前記先端ヘッドの回転角度位置を算出する回転角度算出手段と、
装置全体を制御する制御手段と、を含むことを特徴とする削孔装置。
A linear drilling hole that drills a straight hole by pushing in the drilling tube while rotating the distal end head using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip, and the rotary head A drilling device equipped with a drilling machine for drilling in the ground, in combination with a curved drilling that drills a curved hole by pushing the drilling tube without rotating,
Magnetic field generating means for generating a magnetic field centered on the drilling tube in the ground by flowing current from a part of the drilling tube exposed to the ground, and reception for receiving the magnetic field from the ground A first drilling locus measuring means comprising: a measuring device; and a first measuring means for measuring a drilling locus from the drilling start position to the tip head based on a reception result by the receiver;
Attitude measuring means for measuring the rotation angle and pitching angle of the tip head;
A rotation angle calculation means for calculating a rotation angle position of the tip head based on measurement results by the first drilling locus measurement means and the attitude measurement means;
A drilling device comprising: control means for controlling the entire device.
前記第1の削孔軌跡計測手段は、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、前記第1の計測手段により前記複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測するものであることを特徴とする請求項9記載の削孔装置。   The first drilling locus measuring means detects the positions of the plurality of parts of the drilling pipe from the ground by the receiver, and the first measuring means virtually linearly positions the plurality of parts. The drilling device according to claim 9, wherein the drilling locus is measured based on a virtual curve obtained by connecting to a hole. 前記姿勢計測手段は、前記先端ヘッドに予め取り付けられる傾斜計と、地上から前記削孔管の内部を通して前記傾斜計に接近させられることで、前記傾斜計から前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で受信する光受信手段と、該光受信手段からケーブルを介して前記データを取得するデータ取得手段と、を含むことを特徴とする請求項9又は10記載の削孔装置。   The posture measuring means is configured to adjust the rotation angle and the pitching angle of the tip head from the inclinometer by being brought close to the inclinometer through the inside of the drilling pipe from the ground with an inclinometer attached in advance to the tip head. The hole drilling device according to claim 9 or 10, comprising: an optical receiving unit that receives such data as an optical signal; and a data acquisition unit that acquires the data from the optical receiving unit via a cable. 前記制御手段は、前記削孔機による前記直線孔及び前記曲線孔の削孔中に、所定距離が削孔される毎に、前記第1の削孔軌跡計測手段による前記削孔軌跡の計測と、前記姿勢計測手段による前記先端ヘッドの回転角度及びピッチング角度の計測と、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出とが行われるように制御することを特徴とする請求項9から11のいずれか1項記載の削孔装置。   The control means measures the drilling trajectory by the first drilling trajectory measuring means each time a predetermined distance is drilled during drilling of the straight hole and the curved hole by the drilling machine. The control is performed such that measurement of the rotation angle and pitching angle of the tip head by the posture measurement means and calculation of the rotation angle position of the tip head by the rotation angle calculation means are performed. The drilling device according to any one of 1 to 11. 前記回転角度算出手段は、前記削孔機による前記曲線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、
前記制御手段は、前記削孔機による前記曲線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整した後、前記削孔機による前記曲線孔の削孔に復帰させることを特徴とする請求項12記載の削孔装置。
The rotation angle calculating means calculates the predicted end point position of the curved hole from the measurement results of the first drilling locus measuring means and the attitude measuring means during the drilling of the curved hole by the drilling machine. In addition, the difference between the predicted end point position of the curved hole and the planned end point position of the curved hole is calculated, and when the difference is out of the predetermined range, the difference is measured by the first drilling locus measuring unit. The tip head is virtually drawn from the tip of the drilling locus with respect to the planned line of the curved hole, and the tapered surface faces the side opposite to the planned line of the curved hole as viewed in the perpendicular direction. The rotation angle position of is calculated,
The control means receives the calculation of the rotation angle position of the tip head by the rotation angle calculation means during the drilling of the curved hole by the hole drilling machine, and after adjusting the rotation angle position of the tip head, 13. The drilling device according to claim 12, wherein the drilling device is returned to the curved hole drilling by the drilling machine.
前記回転角度算出手段は、前記削孔機による前記直線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、
前記制御手段は、前記削孔機による前記直線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整し、前記削孔機による前記曲線孔の削孔を所定削孔長行わせた後、前記削孔機による前記直線孔の削孔に復帰させることを特徴とする請求項12又は13記載の削孔装置。
The rotation angle calculation means calculates the predicted end point position of the straight hole from the measurement results of the first hole trajectory measurement means and the attitude measurement means during the drilling of the straight hole by the hole drilling machine. In addition, the difference between the predicted end point position of the straight hole and the planned end position of the straight hole is calculated, and when the difference is out of the predetermined range, the difference is measured by the first drilling locus measuring means. The tip head is virtually drawn from the tip of the drilling locus with respect to the planned line of the straight hole, and the tapered surface faces the side opposite to the planned line of the straight hole in the perpendicular direction. The rotation angle position of is calculated,
The control means receives the calculation of the rotation angle position of the tip head by the rotation angle calculation means during the drilling of the straight hole by the hole drilling machine, adjusts the rotation angle position of the tip head, 14. The drilling device according to claim 12 or 13, wherein the curved hole drilling by the drilling machine is performed for a predetermined drilling length and then returned to the straight hole drilling by the drilling machine.
前記制御手段は、削孔済みの前記曲線孔の削孔時に、前記第1の削孔軌跡計測手段による計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて、前記所定削孔長を算出することを特徴とする請求項14記載の削孔装置。   The control means, based on the radius of curvature of the curved hole that has been drilled, is obtained from the measurement result by the first drilling locus measuring means when drilling the curved hole that has been drilled. The hole drilling device according to claim 14, wherein the hole length is calculated. 前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込まれ、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサと、該ジャイロセンサに接続された線状の送り込み手段の繰り出し量を計測する繰り出し量計測手段と、前記ジャイロセンサ及び前記繰り出し量計測手段による計測結果に基づいて、前記削孔軌跡を計測する第2の計測手段と、を備える第2の削孔軌跡計測手段を含み、
前記回転角度算出手段及び前記制御手段は、前記第1の削孔軌跡計測手段により計測される前記削孔軌跡と、前記第2の削孔軌跡計測手段により計測される前記削孔軌跡とを併用して利用することを特徴とする請求項9から15のいずれか1項記載の削孔装置。
A gyro sensor that is fed to the vicinity of the tip head through the inside of the hole drilling tube and that can measure at least the pitching direction and the yawing direction, and a feeding amount that measures the feeding amount of a linear feeding means connected to the gyro sensor A second drilling locus measuring means comprising: a quantity measuring means; and a second measuring means for measuring the drilling locus based on a measurement result by the gyro sensor and the feed amount measuring means,
The rotation angle calculating means and the control means use the drilling locus measured by the first drilling locus measuring means and the drilling locus measured by the second drilling locus measuring means in combination. The drilling device according to any one of claims 9 to 15, wherein the drilling device is used.
JP2017099043A 2017-05-18 2017-05-18 Drilling method and drilling device Active JP6936047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099043A JP6936047B2 (en) 2017-05-18 2017-05-18 Drilling method and drilling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099043A JP6936047B2 (en) 2017-05-18 2017-05-18 Drilling method and drilling device

Publications (3)

Publication Number Publication Date
JP2018193792A true JP2018193792A (en) 2018-12-06
JP2018193792A5 JP2018193792A5 (en) 2020-06-18
JP6936047B2 JP6936047B2 (en) 2021-09-15

Family

ID=64568914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099043A Active JP6936047B2 (en) 2017-05-18 2017-05-18 Drilling method and drilling device

Country Status (1)

Country Link
JP (1) JP6936047B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021067113A (en) * 2019-10-25 2021-04-30 鹿島建設株式会社 Data transmission system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679637A (en) * 1985-05-14 1987-07-14 Cherrington Martin D Apparatus and method for forming an enlarged underground arcuate bore and installing a conduit therein
JPH0637825B2 (en) * 1988-09-02 1994-05-18 ブリティッシュ ガス ピーエルシー Mooring equipment
JPH10318748A (en) * 1997-03-19 1998-12-04 Kokusai Denshin Denwa Co Ltd <Kdd> Method and system for measuring position
JP2003121151A (en) * 2001-10-16 2003-04-23 Hitachi Metals Ltd Method and apparatus for prospecting position in excavation body
US20030085059A1 (en) * 2001-11-05 2003-05-08 Vector Magnetics Llc Relative drill bit direction measurement
JP2004150222A (en) * 2002-11-01 2004-05-27 Penta Ocean Constr Co Ltd Underground curved hole drilling device and hole drilling control method using this device
JP2010181233A (en) * 2009-02-04 2010-08-19 Nemoto Kikaku Kogyo Kk Gyro positioning system
JP2011007502A (en) * 2009-06-23 2011-01-13 Toa Harbor Works Co Ltd Method and system for measuring drilling position
JP2015059317A (en) * 2013-09-17 2015-03-30 根本企画工業株式会社 Method and device for detecting gradient of underground excavation head

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679637A (en) * 1985-05-14 1987-07-14 Cherrington Martin D Apparatus and method for forming an enlarged underground arcuate bore and installing a conduit therein
JPH0637825B2 (en) * 1988-09-02 1994-05-18 ブリティッシュ ガス ピーエルシー Mooring equipment
JPH10318748A (en) * 1997-03-19 1998-12-04 Kokusai Denshin Denwa Co Ltd <Kdd> Method and system for measuring position
JP2003121151A (en) * 2001-10-16 2003-04-23 Hitachi Metals Ltd Method and apparatus for prospecting position in excavation body
US20030085059A1 (en) * 2001-11-05 2003-05-08 Vector Magnetics Llc Relative drill bit direction measurement
JP2004150222A (en) * 2002-11-01 2004-05-27 Penta Ocean Constr Co Ltd Underground curved hole drilling device and hole drilling control method using this device
JP2010181233A (en) * 2009-02-04 2010-08-19 Nemoto Kikaku Kogyo Kk Gyro positioning system
JP2011007502A (en) * 2009-06-23 2011-01-13 Toa Harbor Works Co Ltd Method and system for measuring drilling position
JP2015059317A (en) * 2013-09-17 2015-03-30 根本企画工業株式会社 Method and device for detecting gradient of underground excavation head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021067113A (en) * 2019-10-25 2021-04-30 鹿島建設株式会社 Data transmission system
JP7316188B2 (en) 2019-10-25 2023-07-27 鹿島建設株式会社 data transmission system

Also Published As

Publication number Publication date
JP6936047B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
CA2573375C (en) Closed loop control bore hole drilling system
US11598198B2 (en) Advanced underground homing system, apparatus and method
US11555352B2 (en) Multimode steering and homing system, method and apparatus
JP2018193792A (en) Drilling method and drilling apparatus
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
US11592457B2 (en) Methods and systems for tunnel profiling
JP2021067113A (en) Data transmission system
JP3969721B2 (en) Drilling position detection method and drilling apparatus used therefor
JP2013113829A (en) Hole trajectory measuring instrument and measurement method
JP2010181233A (en) Gyro positioning system
JP5559008B2 (en) Fixed measuring device and direction control drilling device
JP5031623B2 (en) Underground position detection system
JP4055188B2 (en) Shaft insertion device and shaft insertion method
JP5559007B2 (en) Directionally controlled drilling method and apparatus
JP3822521B2 (en) State estimation method and apparatus for buried pipe propulsion device tip device
JP2006010628A (en) Detector for detecting object
JPH06100468B2 (en) Measuring method of oblique hole displacement
JP2007247298A (en) Measurement method of excavation locus and excavation method
JP2005232834A (en) Ground hole drilling device and hole bend measuring method in ground drilling hole
JP2020016647A (en) Borehole locus measurement device and method of the same
JP5466023B2 (en) Drilling tube tip position measuring method and tip position measuring system
JP2013011074A (en) Direction control drilling method, direction control drilling system, and drilling system
JP3757767B2 (en) Non-cutting propulsion method, excavation pipe tip position measurement method and excavation pipe tip position measurement device
JP2005213743A (en) Pipe insertion control device and pipe insertion control method
JPH0412219A (en) Position/attitude measuring method for underground excavator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6936047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150