JP6936047B2 - Drilling method and drilling device - Google Patents

Drilling method and drilling device Download PDF

Info

Publication number
JP6936047B2
JP6936047B2 JP2017099043A JP2017099043A JP6936047B2 JP 6936047 B2 JP6936047 B2 JP 6936047B2 JP 2017099043 A JP2017099043 A JP 2017099043A JP 2017099043 A JP2017099043 A JP 2017099043A JP 6936047 B2 JP6936047 B2 JP 6936047B2
Authority
JP
Japan
Prior art keywords
drilling
locus
hole
tip head
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017099043A
Other languages
Japanese (ja)
Other versions
JP2018193792A5 (en
JP2018193792A (en
Inventor
健太 水野
健太 水野
稔 原
稔 原
和成 岡田
和成 岡田
雅俊 平井
雅俊 平井
勉 横井
勉 横井
鈴木 武志
武志 鈴木
Original Assignee
若築建設株式会社
日本基礎技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 若築建設株式会社, 日本基礎技術株式会社 filed Critical 若築建設株式会社
Priority to JP2017099043A priority Critical patent/JP6936047B2/en
Publication of JP2018193792A publication Critical patent/JP2018193792A/en
Publication of JP2018193792A5 publication Critical patent/JP2018193792A5/ja
Application granted granted Critical
Publication of JP6936047B2 publication Critical patent/JP6936047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、先端ヘッドを装着した削孔管を利用して、地中に直線孔や曲線孔を削孔する削孔方法及び削孔装置に関するものである。 The present invention relates to a drilling method and a drilling device for drilling a straight hole or a curved hole in the ground by using a drilling pipe equipped with a tip head.

例えば地盤改良等を目的として、削孔管を利用して地中を削孔する際、設計通りに精度良く施工するために、削孔している位置、すなわち、削孔管の位置を正確に把握する必要がある。そのような削孔管の位置を把握する方法として、削孔管内や専用の磁界発生孔に磁界発生装置を設置して地中に磁界を発生させ、地上や削孔管内の受信器により磁界の強さを計測して位置を測定する方法や、削孔管の先端に送り込むジャイロセンサの計測値を利用する方法(例えば、特許文献1参照)等が挙げられる。一方、削孔管の先端に傾斜計やひずみ計を設置することで、削孔管の先端の姿勢を計測する技術も発案されている(例えば、特許文献2参照)。 For example, when drilling holes in the ground using a drilling pipe for the purpose of improving the ground, the position of the drilling pipe, that is, the position of the drilling pipe is accurately set in order to perform the construction accurately as designed. You need to figure it out. As a method of grasping the position of such a drilling pipe, a magnetic field generator is installed in the drilling pipe or in a dedicated magnetic field generating hole to generate a magnetic field in the ground, and the magnetic field is generated by a receiver on the ground or in the drilling pipe. Examples thereof include a method of measuring the strength and measuring the position, and a method of using the measured value of the gyro sensor sent to the tip of the drilling pipe (see, for example, Patent Document 1). On the other hand, a technique for measuring the posture of the tip of the drilling tube by installing an inclinometer or a strain gauge at the tip of the drilling tube has also been proposed (see, for example, Patent Document 2).

特開2010−181233号公報Japanese Unexamined Patent Publication No. 2010-181233 特開2015−59317号公報Japanese Unexamined Patent Publication No. 2015-559317

ここで、上述した磁界を発生させる方法は、地上構造物や地中埋設物の影響により、測定が困難になる虞がある。このため、そのような場合でも削孔管の最終到達位置が予測できるように、削孔管の先端の姿勢を計測する技術を併用することが考えられるが、上記の磁界を発生させる方法は、削孔管に磁界発生装置や受信器を備える必要があるため、削孔管に傾斜計やひずみ計を設置するスペースを確保することが困難である。一方、ジャイロセンサを利用する方法は、起点からの相対位置が把握できるものの、絶対位置が把握できないため、計測位置の精度に改善の余地があり、又、一回の計測に時間を要するため、全体の作業時間が長くなってしまう。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、削孔位置をより正確に把握し、削孔を精度よく行うことにある。
Here, the method for generating the magnetic field described above may be difficult to measure due to the influence of the above-ground structure and the underground buried object. Therefore, even in such a case, it is conceivable to use a technique for measuring the posture of the tip of the drilling pipe so that the final arrival position of the drilling pipe can be predicted. Since it is necessary to equip the drilling tube with a magnetic field generator and a receiver, it is difficult to secure a space for installing an inclination meter or a strain gauge in the drilling tube. On the other hand, in the method using a gyro sensor, although the relative position from the starting point can be grasped, the absolute position cannot be grasped, so that there is room for improvement in the accuracy of the measurement position, and it takes time for one measurement. The overall work time will be long.
The present invention has been made in view of the above problems, and an object of the present invention is to more accurately grasp the drilling position and to perform drilling with high accuracy.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the invention)
The following aspects of the invention exemplify the configurations of the present invention, and will be described separately in order to facilitate understanding of the various configurations of the present invention. Each section does not limit the technical scope of the present invention, and while taking into consideration the best mode for carrying out the invention, some of the components of each section are replaced, deleted, or further. Those to which the above-mentioned components are added can also be included in the technical scope of the present invention.

(1)先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔工程と、前記先端ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔工程とを組み合わせて、地中を削孔する方法であって、地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させ、地上から受信器により前記磁界を受信し、該受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する削孔軌跡計測工程と、前記先端ヘッドに設置した傾斜計或いはひずみ計を利用して、前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測工程と、前記削孔軌跡計測工程及び前記姿勢計測工程における計測結果に基づいて、前記先端ヘッドの回転角度位置を調整する調整工程と、を含む削孔方法(請求項1)。 (1) A linear drilling step of drilling a straight hole by pushing the drilling tube while rotating the tip head using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip. , A method of drilling holes in the ground by combining with a curved drilling step of drilling a curved hole by pushing the drilling tube without rotating the tip head, and is exposed to the ground. By passing a current from a part of the drilling tube, a magnetic field centered on the drilling tube in the ground is generated, the magnetic field is received from the ground by a receiver, and drilling is started based on the reception result. A drilling locus measurement process that measures the drilling locus from the position to the tip head, and posture measurement that measures the rotation angle and pitching angle of the tip head using an inclinometer or strain gauge installed on the tip head. A drilling method (claim 1) including a step, a drilling trajectory measuring step, and an adjusting step of adjusting the rotation angle position of the tip head based on the measurement results in the posture measuring step (claim 1).

本項に記載の削孔方法は、先端ヘッドを装着した削孔管を利用して、直線孔を削孔する直線削孔工程と、曲線孔を削孔する曲線削孔工程とを組み合わせて、地中を削孔するものであり、更に、削孔軌跡計測工程と、姿勢計測工程と、調整工程とを含んでいる。削孔軌跡計測工程では、地上に露出している削孔管の一部、すなわち、地中に挿入されている削孔管の尾端近傍から、削孔管に電流を流すことで、地中に挿入されている削孔管を中心とした磁界を発生させる。そして、作業員等に操作される受信器によって、地上から磁界を受信し、受信した磁界の強弱等の受信結果から、地中の削孔管の絶対位置を計測する。これにより、削孔開始位置から現状の先端ヘッドの位置までの、削孔管による削孔軌跡が計測される。このように、本項に記載の削孔方法は、削孔管を中心とした磁界を発生させながらも、地上に露出した削孔管の一部から電流を流す方法を採用しているため、削孔管に磁界発生装置や受信器を備える必要がなく、削孔管や先端ヘッドに別の計測器を設置するためのスペースが確保される。 The drilling method described in this section combines a straight drilling step of drilling a straight hole and a curved drilling step of drilling a curved hole by using a drilling tube equipped with a tip head. It drills holes in the ground, and further includes a drilling trajectory measurement step, an attitude measurement step, and an adjustment step. In the drilling locus measurement process, an electric current is passed through the drilling pipe from a part of the drilling pipe exposed on the ground, that is, near the tail end of the drilling pipe inserted in the ground. Generates a magnetic field centered on the drilling tube inserted in. Then, a magnetic field is received from the ground by a receiver operated by a worker or the like, and the absolute position of the drilling pipe in the ground is measured from the reception result such as the strength of the received magnetic field. As a result, the drilling locus by the drilling pipe from the drilling start position to the current position of the tip head is measured. As described above, the drilling method described in this section employs a method in which a current is passed from a part of the drilling tube exposed on the ground while generating a magnetic field centered on the drilling tube. It is not necessary to equip the drilling tube with a magnetic field generator or a receiver, and a space for installing another measuring instrument is secured in the drilling tube or the tip head.

又、姿勢計測工程では、例えば、上記のように確保された先端ヘッドのスペースに傾斜計やひずみ計等を設置することで、先端ヘッドの回転角度とピッチング角度とを計測する。そして、調整工程では、削孔軌跡計測工程で得られた削孔軌跡と、姿勢計測工程で得られた先端ヘッドの回転角度及びピッチング角度とに基づいて、例えば、削孔管の予測到達位置を算出する。すなわち、それまでの削孔管による削孔軌跡と、現状の先端ヘッドの姿勢とが把握されることで、そのまま直線孔或いは曲線孔を削孔する場合の予測到達位置が算出される。そして、例えば、削孔管の予測到達位置が計画到達位置から逸れている場合に、実際の到達位置が計画到達位置へと近づいて修正されるように、先端ヘッドの回転角度位置、すなわち、先端ヘッドに設けられているテーパ面の向きを調整する。その後、テーパ面の向きを調整した状態で、先端ヘッドを回転させずに削孔管を押し込んで曲線孔を削孔することで、計画到達位置へと近づくように削孔位置が修正される。このように、本項に記載の削孔方法は、削孔軌跡計測工程において削孔管の位置をより正確に把握し、更に先端ヘッドの姿勢情報と併用することで得られる予測到達位置を利用することにより、削孔を精度よく行うものである。 Further, in the posture measurement step, for example, the rotation angle and pitching angle of the tip head are measured by installing an inclinometer, a strain meter, or the like in the space of the tip head secured as described above. Then, in the adjustment step, for example, the predicted arrival position of the drilling pipe is determined based on the drilling locus obtained in the drilling locus measuring step and the rotation angle and pitching angle of the tip head obtained in the posture measuring step. calculate. That is, by grasping the drilling locus by the drilling pipe up to that point and the current posture of the tip head, the predicted arrival position when drilling a straight hole or a curved hole is calculated as it is. Then, for example, when the predicted arrival position of the drilling tube deviates from the planned arrival position, the rotation angle position of the tip head, that is, the tip is corrected so that the actual arrival position approaches the planned arrival position and is corrected. Adjust the direction of the tapered surface provided on the head. After that, with the direction of the tapered surface adjusted, the drilling tube is pushed in without rotating the tip head to drill a curved hole, so that the drilling position is corrected so as to approach the planned arrival position. As described above, the drilling method described in this section utilizes the predicted arrival position obtained by grasping the position of the drilling pipe more accurately in the drilling locus measurement step and further using it together with the posture information of the tip head. By doing so, drilling can be performed with high accuracy.

(2)上記(1)項における、前記削孔軌跡計測工程において、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、該複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測する削孔方法(請求項2)。
本項に記載の削孔方法は、削孔軌跡計測工程において、削孔開始位置から先端ヘッドまでの削孔軌跡を計測する際に、地上から受信器により削孔管の複数の部位の位置を検出し、これら複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づいて、削孔軌跡を計測するものである。すなわち、削孔管の位置を線状に連続的に計測するのではなく、複数の点状に断続的に計測することで、削孔管の計測位置の精度を維持しながら、作業時間を短縮するものである。更に、地上構造物や地中埋設物の影響によって、受信器による磁界の受信が困難な区間が存在する場合であっても、その区間を除いた複数の位置において削孔管の位置を計測することで、削孔軌跡が問題なく把握されるものである。
(2) In the drilling locus measurement step in the above item (1), the positions of a plurality of parts of the drilling tube are detected from the ground by the receiver, and the positions of the plurality of parts are virtually linear. A drilling method (claim 2) for measuring the drilling locus based on a virtual curve obtained by connecting to.
In the drilling method described in this section, when measuring the drilling locus from the drilling start position to the tip head in the drilling trajectory measuring step, the positions of a plurality of parts of the drilling pipe are determined by a receiver from the ground. The drilling locus is measured based on a virtual curve obtained by detecting and virtually connecting the positions of a plurality of parts in a linear shape. That is, the work time is shortened while maintaining the accuracy of the measurement position of the drilling pipe by measuring the position of the drilling pipe intermittently in a plurality of points instead of continuously measuring the position of the drilling pipe. To do. Further, even if there is a section where it is difficult for the receiver to receive the magnetic field due to the influence of the above-ground structure or the underground buried object, the position of the drilling pipe is measured at a plurality of positions excluding the section. Therefore, the drilling locus can be grasped without any problem.

(3)上記(1)(2)項における、前記姿勢計測工程において、前記先端ヘッドに予め取り付けた傾斜計に対して、地上から前記削孔管の内部を通して光受信手段を接近させることで、前記傾斜計から前記光受信手段へ、前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で送信させ、前記光受信手段からケーブルを介して前記データを取得する削孔方法(請求項3)。
本項に記載の削孔方法は、上記(1)項に記載した如く先端ヘッドに確保されるスペースに、予め傾斜計を取り付ける。傾斜計としては、先端ヘッドの回転角度とピッチング角度との夫々を計測する2つの傾斜計、或いは、それら2つの角度を同時に計測可能な2軸式の傾斜計が挙げられ、又、何れの場合であっても、光信号を送信可能な光送信手段と共に設置する。
(3) In the attitude measurement step according to the above items (1) and (2), the light receiving means is brought close to the inclinometer previously attached to the tip head from the ground through the inside of the drilling tube. A drilling method (claim 3) in which data relating to the rotation angle and pitching angle of the tip head is transmitted from the inclinometer to the optical receiving means as an optical signal, and the data is acquired from the optical receiving means via a cable. ).
In the hole drilling method described in this section, an inclinometer is attached in advance in the space secured in the tip head as described in the above item (1). Examples of the inclinometer include two inclinometers that measure the rotation angle and the pitching angle of the tip head, or a two-axis inclinometer that can measure these two angles at the same time, and in any case. Even so, it is installed together with an optical transmission means capable of transmitting an optical signal.

そして、姿勢計測工程において先端ヘッドの姿勢を計測する際に、先端ヘッドに取り付けた傾斜計に対して、地上から削孔管の内部を通して光受信手段を接近させ、傾斜計から光送信手段を介して光受信手段へ、先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で送信させる。この際、光受信手段にケーブルを接続しておくことで、先端ヘッドの回転角度及びピッチング角度に係るデータを、光受信手段からケーブルを介して地上側で取得する。これにより、先端ヘッドの姿勢情報が、必要に応じた任意のタイミングで、地上側において把握されることとなる。なお、傾斜計に対する光受信手段の接近は、削孔管の内部で光受信手段を推進させ得る剛性を有する、ワイヤ等を利用して行えばよい。 Then, when measuring the posture of the tip head in the attitude measurement step, the light receiving means is brought close to the tilt meter attached to the tip head from the ground through the inside of the drilling tube, and the tilt meter passes through the light transmitting means. The optical receiving means is made to transmit data related to the rotation angle and pitching angle of the tip head as an optical signal. At this time, by connecting the cable to the optical receiving means, the data related to the rotation angle and the pitching angle of the tip head is acquired from the optical receiving means on the ground side via the cable. As a result, the posture information of the tip head is grasped on the ground side at an arbitrary timing as needed. The light receiving means may be approached to the inclinometer by using a wire or the like having a rigidity capable of propelling the light receiving means inside the drilling tube.

(4)上記(1)から(3)項における、前記直線削孔工程及び前記曲線削孔工程において、所定距離を削孔する毎に、前記削孔軌跡計測工程及び前記姿勢計測工程及び前記調整工程を行う削孔方法(請求項4)。
本項に記載の削孔方法は、直線削孔工程及び曲線削孔工程において、直線孔或いは曲線孔を所定距離削孔する毎に、削孔作業を一時中断して、削孔軌跡計測工程と姿勢計測工程と調整工程とを実行するものである。これにより、実際の削孔位置が計画位置から大幅に逸れる前に、削孔位置が修正されるため、削孔位置の精度がより向上されるものである。なお、上記の所定距離は、例えば地中の土質等に応じて任意の距離が設定でき、又、直線削孔工程と曲線削孔工程とで距離が異なっていてもよい。
(4) In the linear drilling step and the curved drilling step in the above items (1) to (3), each time a predetermined distance is drilled, the drilling locus measurement step, the posture measurement step, and the adjustment are performed. Drilling method for performing the process (claim 4).
The drilling method described in this section includes a drilling locus measurement step in which the drilling operation is temporarily interrupted every time a straight hole or a curved hole is drilled a predetermined distance in the linear drilling step and the curved drilling step. The attitude measurement process and the adjustment process are executed. As a result, the drilling position is corrected before the actual drilling position deviates significantly from the planned position, so that the accuracy of the drilling position is further improved. The above-mentioned predetermined distance can be set arbitrarily according to, for example, the soil quality in the ground, and the distance may be different between the straight drilling step and the curved drilling step.

(5)上記(4)項における、前記曲線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整した後、前記曲線削孔工程に復帰する削孔方法(請求項5)。 (5) In the adjustment step performed during the curved drilling step in the above item (4), the predicted end point position of the curved hole is calculated from the measurement results of the drilling locus measurement step and the attitude measurement step. , The difference between the predicted end point position of the curved hole and the planned end point position of the curved hole is calculated, and when the difference is out of the predetermined range, the hole locus measured in the hole locus measuring step is A vertical line is virtually drawn from the tip with respect to the planned line of the curved hole, and the rotation angle position of the tip head is set so that the tapered surface faces the opposite side of the planned line of the curved hole in the vertical line direction. A drilling method (claim 5) that returns to the curved drilling step after adjustment.

本項に記載の削孔方法は、曲線削孔工程中に行う調整工程、すなわち、曲線孔の削孔中に所定距離削孔する毎に削孔を中断して行う調整工程において、その直前の削孔軌跡計測工程で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程で計測した先端ヘッドの回転角度及びピッチング角度とから、曲線孔の予測終点位置を算出する。つまり、それまでの曲線孔の削孔軌跡と、現状の先端ヘッドの姿勢情報とが把握されることで、そのまま曲線孔の削孔を続けた場合の、曲線孔の予測終点位置が算出される。更に、そのように算出した曲線孔の予測終点位置と、施工前に予め設定した曲線孔の計画終点位置との差分を算出する。 The drilling method described in this section is performed immediately before the adjustment step performed during the curved drilling step, that is, the adjusting step performed by interrupting the drilling every time the drilling is performed for a predetermined distance during the drilling of the curved hole. The predicted end point position of the curved hole is calculated from the drilling locus measured in the drilling locus measuring step and the rotation angle and pitching angle of the tip head also measured in the posture measuring step immediately before the adjusting step. That is, by grasping the drilling locus of the curved hole up to that point and the current posture information of the tip head, the predicted end point position of the curved hole when the drilling of the curved hole is continued as it is is calculated. .. Further, the difference between the predicted end point position of the curved hole calculated in this way and the planned end point position of the curved hole set in advance before construction is calculated.

そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、曲線孔の削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッドの回転角度位置を算出する。具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、曲線孔の計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッドのテーパ面が曲線孔の計画線と反対側を向くような、先端ヘッドの回転角度位置を算出する。そして、先端ヘッドの回転角度位置を、算出した回転角度位置に調整した後、曲線削孔工程に復帰して曲線孔を削孔するものである。この状態で先端ヘッドを回転させずに削孔することにより、先端ヘッドは、テーパ面で受ける圧力の影響によって、計画終点位置に近づく方向へと推進することになる。このため、より精度よく曲線孔を削孔するものとなる。なお、上記の所定範囲は、削孔軌跡計測工程や姿勢計測工程において用いる計測器の性能等に応じて設定する。 Then, when the difference between the calculated end point positions deviates from the preset predetermined range, the rotation angle position of the tip head is calculated so that the drilling direction of the curved hole is corrected to approach the planned end point position. do. Specifically, a perpendicular line is virtually drawn from the tip of the drilling locus measured in the drilling locus measurement process to the planned line of the curved hole (planned drilling locus preset before construction), and the direction of this perpendicular line. Visually, the rotation angle position of the tip head is calculated so that the tapered surface of the tip head faces the side opposite to the planned line of the curved hole. Then, after adjusting the rotation angle position of the tip head to the calculated rotation angle position, the process returns to the curved hole drilling process to drill the curved hole. By drilling holes without rotating the tip head in this state, the tip head is propelled in a direction approaching the planned end point position due to the influence of the pressure received on the tapered surface. Therefore, the curved hole is drilled with higher accuracy. The above-mentioned predetermined range is set according to the performance of the measuring instrument used in the drilling locus measurement process and the posture measurement process.

(6)上記(4)(5)項における、前記直線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整して、前記曲線削孔工程を所定削孔長行った後、前記直線削孔工程に復帰する削孔方法(請求項6)。 (6) In the adjustment step performed during the linear drilling step in the above items (4) and (5), the predicted end point position of the straight hole is determined from the measurement results of the drilling locus measurement step and the attitude measurement step. In addition to the calculation, the difference between the predicted end point position of the straight hole and the planned end point position of the straight hole is calculated, and when the difference is out of the predetermined range, the cutting measured in the drilling locus measurement step is performed. A perpendicular line is virtually drawn from the tip of the hole locus with respect to the planned line of the straight hole, and the tip head is rotated so that the tapered surface faces the opposite side of the planned line of the straight hole in the vertical line direction. A drilling method (claim 6) in which the angular position is adjusted, the curved drilling step is performed for a predetermined drilling length, and then the process returns to the linear drilling step (claim 6).

本項に記載の削孔方法は、直線削孔工程中に行う調整工程、すなわち、直線孔の削孔中に所定距離削孔する毎に削孔を中断して行う調整工程において、その直前の削孔軌跡計測工程で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程で計測した先端ヘッドの回転角度及びピッチング角度とから、直線孔の予測終点位置を算出する。つまり、それまでの直線孔の削孔軌跡と、現状の先端ヘッドの姿勢情報とが把握されることで、そのまま直線孔の削孔を続けた場合の、直線孔の予測終点位置が算出される。更に、そのように算出した直線孔の予測終点位置と、施工前に予め設定した直線孔の計画終点位置との差分を算出する。そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、直線孔の削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッドの回転角度位置を算出する。 The drilling method described in this section is performed immediately before the adjustment step performed during the linear drilling process, that is, the adjustment step performed by interrupting the drilling every time a predetermined distance is drilled during the linear hole drilling. The predicted end point position of the straight hole is calculated from the drilling locus measured in the drilling locus measuring step and the rotation angle and pitching angle of the tip head also measured in the posture measuring step immediately before the adjusting step. That is, by grasping the drilling locus of the straight hole up to that point and the current posture information of the tip head, the predicted end point position of the straight hole when the drilling of the straight hole is continued as it is is calculated. .. Further, the difference between the predicted end point position of the straight hole calculated in this way and the planned end point position of the straight hole set in advance before construction is calculated. Then, when the difference between the calculated end point positions deviates from the preset predetermined range, the rotation angle position of the tip head is calculated so that the drilling direction of the straight hole is corrected to approach the planned end point position. do.

具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、直線孔の計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッドのテーパ面が直線孔の計画線と反対側を向くような、先端ヘッドの回転角度位置を算出する。そして、先端ヘッドの回転角度位置を、算出した回転角度位置に調整した後、所定削孔長のみ曲線孔を削孔する。この状態で先端ヘッドを回転させずに曲線孔を削孔することにより、先端ヘッドは、テーパ面で受ける圧力の影響によって、直線孔の計画終点位置に近づく方向へと推進することになる。すなわち、直線孔の予測終点位置が計画終点位置から逸れている場合、一時的に曲線孔を削孔して削孔方向を修正する必要があるため、その削孔方向の修正に必要な所定削孔長のみ、曲線孔を削孔する。その後、直線削孔工程に復帰して直線孔を削孔するものである。これにより、より精度よく直線孔を削孔するものとなる。なお、上記の所定範囲についても、削孔軌跡計測工程や姿勢計測工程において用いる計測器の性能等に応じて設定すればよい。 Specifically, a perpendicular line is virtually drawn from the tip of the drilling locus measured in the drilling locus measurement process to the planned line of the straight hole (planned drilling locus preset before construction), and the perpendicular direction is obtained. Visually, the rotation angle position of the tip head is calculated so that the tapered surface of the tip head faces the side opposite to the planned line of the straight hole. Then, after adjusting the rotation angle position of the tip head to the calculated rotation angle position, a curved hole is drilled only by a predetermined drilling length. By drilling a curved hole without rotating the tip head in this state, the tip head is propelled in a direction approaching the planned end point position of the straight hole due to the influence of the pressure received on the tapered surface. That is, when the predicted end point position of the straight hole deviates from the planned end point position, it is necessary to temporarily drill a curved hole to correct the drilling direction. A curved hole is drilled only for the hole length. After that, the process returns to the linear drilling process to drill a straight hole. As a result, a straight hole can be drilled with higher accuracy. The above-mentioned predetermined range may also be set according to the performance of the measuring instrument used in the drilling locus measurement step and the posture measurement step.

(7)上記(6)項において、前記所定削孔長を、削孔済みの前記曲線孔を削孔時の、前記削孔軌跡計測工程の計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて算出する削孔方法(請求項7)。
本項に記載の削孔方法は、直線孔の方向を修正する際に削孔する曲線孔の長さである所定削孔長を、既に削孔済みの曲線孔の曲率半径に基づいて算出するものである。この際、削孔済みの曲線孔の曲率半径は、その曲線孔の削孔中に実行した、削孔軌跡計測工程において計測した曲線孔の削孔軌跡から求められる。このように求められた曲線孔の曲率半径は、実際に削孔している地中の土質の影響等が反映された曲率半径となる。このため、それに基づいて算出される所定削孔長は、地中の土質の影響等が加味された、適切な削孔長が算出されるものとなる。
(7) In the above item (6), the curved hole that has been drilled has the predetermined drill length, which is obtained from the measurement result of the drilling locus measurement step when the curved hole that has been drilled is drilled. (Claim 7), which is a drilling method calculated based on the radius of curvature of.
In the drilling method described in this section, a predetermined drilling length, which is the length of a curved hole to be drilled when correcting the direction of a straight hole, is calculated based on the radius of curvature of the curved hole that has already been drilled. It is a thing. At this time, the radius of curvature of the curved hole that has been drilled is obtained from the drilling locus of the curved hole measured in the drilling locus measuring step performed during the drilling of the curved hole. The radius of curvature of the curved hole obtained in this way is the radius of curvature that reflects the influence of the soil quality in the ground that is actually drilled. Therefore, the predetermined drilling length calculated based on this is an appropriate drilling length that takes into account the influence of the soil quality in the ground.

(8)上記(1)から(7)項における、前記削孔軌跡計測工程において、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサを、前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込んだ後、前記ジャイロセンサを引き上げながら該ジャイロセンサにより計測を行うと共に、前記ジャイロセンサに接続した線状の送り込み手段の繰り出し量を計測し、前記ジャイロセンサによる計測結果と前記繰り出し量とに基づいて、前記削孔軌跡を計測する方法を併用する削孔方法(請求項8)。
本項に記載の削孔方法は、削孔軌跡計測工程において、削孔開始位置から先端ヘッドまで削孔軌跡を計測する方法として、2つの方法を併用するものである。すなわち、一方の方法は、上記(1)項に記載した削孔管に電流を流す方法であり、もう一方の方法は、先端ヘッドの近傍までジャイロセンサを送り込む方法である。
(8) In the drilling locus measurement step according to the above items (1) to (7), a gyro sensor capable of measuring at least the pitching direction and the yawing direction is passed through the inside of the drilling tube to the vicinity of the tip head. After feeding, measurement is performed by the gyro sensor while pulling up the gyro sensor, and the feeding amount of the linear feeding means connected to the gyro sensor is measured, and based on the measurement result by the gyro sensor and the feeding amount. A drilling method (claim 8) in which the method of measuring the drilling locus is used in combination.
The drilling method described in this section uses two methods in combination as a method of measuring the drilling locus from the drilling start position to the tip head in the drilling locus measuring step. That is, one method is a method of passing an electric current through the drilling pipe described in the above item (1), and the other method is a method of sending a gyro sensor to the vicinity of the tip head.

より詳しくは、もう一方の方法は、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサを、削孔管の内部を通して先端ヘッドの近傍まで送り込んだ後、削孔管の内部を通してジャイロセンサを引き上げながら、ジャイロセンサが移動した経路上で角速度の計測を行う。この際、削孔管内でジャイロセンサを推進させ得る剛性を有する、ワイヤ等の線状の送り込み手段を、ジャイロセンサに接続して送り込み、線状の送り込み手段の繰り出し量を計測する。このとき、送り込み手段の繰り出し量は、送り込み手段の繰り出し時と繰り取り時との、何れにおいて計測してもよい。そして、ジャイロセンサによる計測結果と、送り込み手段の繰り出し量とに基づいて、削孔軌跡を計測するものである。これにより、例えば、削孔軌跡のメインの計測方法として、削孔管に電流を流す方法を用い、この方法による計測が困難な区間については、ジャイロセンサを用いる計測方法を採用する、といった使い分けが行われる。このように削孔軌跡を計測することによって、削孔管の到達位置の予測精度が向上し、削孔をより精度よく行うものとなる。 More specifically, the other method sends a gyro sensor capable of measuring at least the pitching direction and the yawing direction through the inside of the drilling tube to the vicinity of the tip head, and then pulls up the gyro sensor through the inside of the drilling tube. However, the angular velocity is measured on the path that the gyro sensor has moved. At this time, a linear feeding means such as a wire having a rigidity capable of propelling the gyro sensor in the drilling pipe is connected to the gyro sensor and fed, and the feeding amount of the linear feeding means is measured. At this time, the feeding amount of the feeding means may be measured at either the feeding means or the feeding time of the feeding means. Then, the drilling locus is measured based on the measurement result by the gyro sensor and the feeding amount of the feeding means. As a result, for example, a method of passing an electric current through the drilling pipe is used as the main measuring method of the drilling locus, and a measuring method using a gyro sensor is adopted for a section where measurement by this method is difficult. Will be done. By measuring the drilling locus in this way, the prediction accuracy of the arrival position of the drilling pipe is improved, and the drilling can be performed more accurately.

(9)先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔と、前記先端ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔とを組み合わせて、地中を削孔する削孔機を備えた削孔装置であって、地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させる磁界発生手段と、前記磁界を地上から受信するための受信器と、該受信器による受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する第1の計測手段と、を備える第1の削孔軌跡計測手段と、前記先端ヘッドに設置された傾斜計或いはひずみ計を利用して、前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測手段と、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果に基づいて、前記先端ヘッドの回転角度位置を算出する回転角度算出手段と、装置全体を制御する制御手段と、を含む削孔装置(請求項9)。
(9) Using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip, a straight hole drilling is performed by pushing the drilling tube while rotating the tip head. A drilling device equipped with a drilling machine for drilling holes in the ground in combination with a curved drilling machine that drills a curved hole by pushing the drilling tube without rotating the tip head. A magnetic field generating means for generating a magnetic line centered on the drilling tube in the ground by passing a current from a part of the drilling tube exposed to the ground, and a receiver for receiving the magnetic field from the ground. A first measuring means for measuring the drilling locus from the drilling start position to the tip head based on the reception result by the receiver, and the tip head. Based on the posture measuring means for measuring the rotation angle and the pitching angle of the tip head, and the measurement results by the first drilling locus measuring means and the posture measuring means by using the tilt meter or the strain gauge installed in the above. A drilling device (9) including a rotation angle calculating means for calculating the rotation angle position of the tip head and a control means for controlling the entire device (claim 9).

(10)上記(9)項において、前記第1の削孔軌跡計測手段は、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、前記第1の計測手段により前記複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測するものである削孔装置(請求項10)。
(11)上記(9)(10)項において、前記姿勢計測手段は、前記先端ヘッドに予め取り付けられる傾斜計と、地上から前記削孔管の内部を通して前記傾斜計に接近させられることで、前記傾斜計から前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で受信する光受信手段と、該光受信手段からケーブルを介して前記データを取得するデータ取得手段と、を含む削孔装置(請求項11)。
(10) In the above item (9), the first drilling locus measuring means detects the positions of a plurality of parts of the drilling pipe from the ground by the receiver, and the plurality of drilling loci measuring means by the first measuring means. (Claim 10), which measures the drilling locus based on a virtual curve obtained by virtually connecting the positions of the portions of the above.
(11) In the above items (9) and (10), the attitude measuring means is brought close to the inclinometer from the ground through the inside of the drilling pipe and the inclinometer attached to the tip head in advance. A drilling device including an optical receiving means for receiving data relating to a rotation angle and a pitching angle of the tip head from an inclinometer as an optical signal, and a data acquiring means for acquiring the data from the optical receiving means via a cable. (Claim 11).

(12)上記(9)から(11)項において、前記制御手段は、前記削孔機による前記直線孔及び前記曲線孔の削孔中に、所定距離が削孔される毎に、前記第1の削孔軌跡計測手段による前記削孔軌跡の計測と、前記姿勢計測手段による前記先端ヘッドの回転角度及びピッチング角度の計測と、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出とが行われるように制御する削孔装置(請求項12)。
(13)上記(12)項において、前記回転角度算出手段は、前記削孔機による前記曲線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、前記制御手段は、前記削孔機による前記曲線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整した後、前記削孔機による前記曲線孔の削孔に復帰させることを特徴とする請求項12記載の削孔装置(請求項13)。
(12) In the above items (9) to (11), the first control means is used every time a predetermined distance is drilled in the straight hole and the curved hole by the drilling machine. The measurement of the drilling locus by the drilling locus measuring means, the measurement of the rotation angle and the pitching angle of the tip head by the posture measuring means, and the calculation of the rotation angle position of the tip head by the rotation angle calculating means. A drilling device that controls to be performed (claim 12).
(13) In the above item (12), the rotation angle calculating means is based on the measurement results of the first drilling locus measuring means and the attitude measuring means during the drilling of the curved hole by the drilling machine. The predicted end point position of the curved hole is calculated, and the difference between the predicted end point position of the curved hole and the planned end point position of the curved hole is calculated. From the tip of the drilling locus measured by the drilling locus measuring means, a vertical line is virtually drawn with respect to the planned line of the curved hole, and the tapered surface becomes the planned line of the curved hole in the vertical line direction. The rotation angle position of the tip head is calculated so as to face the opposite side, and the control means of the tip head by the rotation angle calculation means during drilling of the curved hole by the drilling machine. The drilling device according to claim 12, wherein the rotation angle position of the tip head is adjusted in response to the calculation of the rotation angle position, and then the rotation angle position is returned to the drilling of the curved hole by the drilling machine. Item 13).

(14)上記(12)(13)項において、前記回転角度算出手段は、前記削孔機による前記直線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、前記制御手段は、前記削孔機による前記直線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整し、前記削孔機による前記曲線孔の削孔を所定削孔長行わせた後、前記削孔機による前記直線孔の削孔に復帰させる削孔装置(請求項14)。
(15)上記(14)項において、前記制御手段は、削孔済みの前記曲線孔の削孔時に、前記第1の削孔軌跡計測手段による計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて、前記所定削孔長を算出する削孔装置(請求項15)。
(14) In the above items (12) and (13), the rotation angle calculating means measures by the first drilling locus measuring means and the attitude measuring means during drilling of the straight hole by the drilling machine. From the result, the predicted end point position of the straight hole is calculated, and the difference between the predicted end point position of the straight hole and the planned end point position of the straight hole is calculated. A perpendicular line is virtually drawn from the tip of the drilling locus measured by the first drilling locus measuring means with respect to the planned line of the straight hole, and the tapered surface is the straight hole in the vertical line direction. The rotation angle position of the tip head is calculated so as to face the side opposite to the planned line, and the control means is used by the rotation angle calculation means during drilling of the straight hole by the drilling machine. In response to the calculation of the rotation angle position of the tip head, the rotation angle position of the tip head is adjusted, the curved hole is drilled by the drilling machine for a predetermined drilling length, and then the drilling machine performs the drilling. A drilling device for returning to drilling a straight hole (claim 14).
(15) In the above item (14), the control means has already drilled the curved hole, which is obtained from the measurement result by the first drilling locus measuring means at the time of drilling the curved hole. (Claim 15), which calculates the predetermined drilling length based on the radius of curvature of the above.

(16)上記(9)から(15)項において、前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込まれ、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサと、該ジャイロセンサに接続された線状の送り込み手段の繰り出し量を計測する繰り出し量計測手段と、前記ジャイロセンサ及び前記繰り出し量計測手段による計測結果に基づいて、前記削孔軌跡を計測する第2の計測手段と、を備える第2の削孔軌跡計測手段を含み、前記回転角度算出手段及び前記制御手段は、前記第1の削孔軌跡計測手段により計測される前記削孔軌跡と、前記第2の削孔軌跡計測手段により計測される前記削孔軌跡とを併用して利用する削孔装置(請求項16)。
そして、(9)から(16)項に記載の削孔装置は、各々、上記(1)から(8)項の削孔方法に利用されるものであり、上記(1)から(8)項の削孔方法と同等の作用を奏するものである。
(16) In the above items (9) to (15), a gyro sensor that is sent to the vicinity of the tip head through the inside of the drilling tube and can measure at least the pitching direction and the yawing direction is connected to the gyro sensor. A feeding amount measuring means for measuring the feeding amount of the linear feeding means, and a second measuring means for measuring the drilling locus based on the measurement results by the gyro sensor and the feeding amount measuring means. The rotation angle calculating means and the control means include the second drilling locus measuring means provided, and the drilling locus measured by the first drilling locus measuring means and the second drilling locus measurement. A drilling device (claim 16) that is used in combination with the drilling locus measured by means.
The drilling devices according to items (9) to (16) are used in the hole drilling methods of items (1) to (8), respectively, and items (1) to (8) above. It has the same effect as the drilling method of.

本発明は上記のような構成であるため、削孔位置をより正確に把握し、削孔を精度よく行うことが可能となる。 Since the present invention has the above-described configuration, it is possible to more accurately grasp the drilling position and perform drilling with high accuracy.

本発明の実施の形態に係る削孔装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the hole drilling apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る削孔装置で利用する先端ヘッドの断面図である。It is sectional drawing of the tip head used in the drilling apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る削孔方法の一例を示すフロー図である。It is a flow chart which shows an example of the drilling method which concerns on embodiment of this invention. 図3に引き続き、本発明の実施の形態に係る削孔方法の一例を示すフロー図である。Continuing from FIG. 3, it is a flow chart which shows an example of the drilling method which concerns on embodiment of this invention. 本発明の実施の形態に係る削孔方法により地中を削孔する様子を示すイメージ図である。It is an image diagram which shows the state of drilling a hole in the ground by the drilling method which concerns on embodiment of this invention.

以下、本発明を実施するための形態を、添付図面に基づいて説明する。ここで、従来技術と同一部分、若しくは相当する部分については、詳しい説明を省略することとし、又、図面の全体にわたって、同一部分又は対応する部分は、同一符号で示している。
まず、図1には、本発明の実施の形態に係る削孔装置10の構成を示している。図示のように、削孔装置10は、削孔機12と、第1の削孔軌跡計測手段30と、姿勢計測手段40と、回転角度算出手段60と、制御手段64と、第2の削孔軌跡計測手段70とを含んでいる。削孔機12は、詳しい説明は省略するが、先端ヘッド14を装着した削孔管26を地中に押し込むことで削孔し、削孔管26を継ぎ足しながら順次押し込むことで、削孔距離を延ばしていくものである。この際、先端ヘッド14を回転させながら削孔管26を押し込むことで直線孔を削孔し、先端ヘッド14を回転させずに削孔管26を押し込むことで曲線孔を削孔する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. Here, detailed description of the same part or the corresponding part as in the prior art will be omitted, and the same part or the corresponding part will be indicated by the same reference numerals throughout the drawings.
First, FIG. 1 shows the configuration of the drilling device 10 according to the embodiment of the present invention. As shown in the figure, the drilling device 10 includes a drilling machine 12, a first drilling locus measuring means 30, a posture measuring means 40, a rotation angle calculating means 60, a control means 64, and a second drilling. The hole locus measuring means 70 and the like are included. Although detailed description is omitted, the drilling machine 12 drills a hole by pushing the drilling pipe 26 equipped with the tip head 14 into the ground, and sequentially pushes the drilling pipe 26 while adding the drilling pipe 26 to increase the drilling distance. It will be postponed. At this time, a straight hole is drilled by pushing the drilling tube 26 while rotating the tip head 14, and a curved hole is drilled by pushing the drilling tube 26 without rotating the tip head 14.

ここで、先端ヘッド14は、本実施例では、図2に示すような構成を有している。先端ヘッド14は、先端の一部にテーパ面16が形成されており、テーパ面16が設けられていない部位の先端側(図中左側)に、削孔中に削孔水を噴射するための噴射口18が設けられている。又、先端ヘッド14の内部には、削孔水の水圧を計測するための水圧センサ20が設置されている。更に、詳しくは後述するが、先端ヘッド14の内部には、姿勢計測手段40を構成するセンサ部42が設置されている。 Here, the tip head 14 has a configuration as shown in FIG. 2 in this embodiment. The tip head 14 has a tapered surface 16 formed at a part of the tip thereof, and is for injecting drilling water into the drilling on the tip side (left side in the drawing) of a portion where the tapered surface 16 is not provided. The injection port 18 is provided. Further, inside the tip head 14, a water pressure sensor 20 for measuring the water pressure of the drilled water is installed. Further, as will be described in detail later, a sensor unit 42 constituting the posture measuring means 40 is installed inside the tip head 14.

図1に戻ると、第1の削孔軌跡計測手段30は、削孔管26による削孔軌跡を計測するものであり、磁界発生手段32、受信器34、第1の計測手段36を備えている。磁界発生手段32は、地上に露出している削孔管26の一部26a(図5参照)から、削孔管26に電流を流すことで、地中において削孔管26を中心とした磁界を発生させるものである。受信器34は、地上において作業員等によって操作され、地中において削孔管26を中心として発生している磁界を地上から受信するものである。又、第1の計測手段36は、受信器34により受信した磁界の強弱等に基づいて、地中に挿入されている削孔管26の位置を計測することで、削孔管26による削孔軌跡を計測するものである。なお、第1の削孔軌跡計測手段30により計測される削孔管26の位置は、削孔管26の絶対位置である。 Returning to FIG. 1, the first drilling locus measuring means 30 measures the drilling locus by the drilling pipe 26, and includes the magnetic field generating means 32, the receiver 34, and the first measuring means 36. There is. The magnetic field generating means 32 causes a magnetic field centered on the drilling pipe 26 in the ground by passing an electric current through the drilling pipe 26 from a part 26a (see FIG. 5) of the drilling pipe 26 exposed on the ground. Is generated. The receiver 34 is operated by a worker or the like on the ground and receives a magnetic field generated around the drilling pipe 26 in the ground from the ground. Further, the first measuring means 36 measures the position of the drilling pipe 26 inserted in the ground based on the strength of the magnetic field received by the receiver 34, thereby drilling holes by the drilling pipe 26. It measures the trajectory. The position of the drilling pipe 26 measured by the first drilling locus measuring means 30 is the absolute position of the drilling pipe 26.

第2の削孔軌跡計測手段70は、第1の削孔軌跡計測手段30と同じく、削孔管26による削孔軌跡を計測するものであり、ジャイロセンサ72、繰り出し量計測手段74、第2の計測手段76を備えている。ジャイロセンサ72は、少なくともピッチング方向とヨーイング方向との加速度を計測するものであり、ワイヤ等の線状の送り込み手段によって、削孔管26の内部を通して先端ヘッド14の近傍まで送り込まれる。その後、線状の送り込み手段を介して、削孔管26の内部を通して引き上げられながら、ジャイロセンサ72が移動した経路上で加速度の計測を行うものである。繰り出し量計測手段74は、先端ヘッド14の近傍までジャイロセンサ72が送り込まれたときの、ジャイロセンサ72に接続された線状の送り込み手段の繰り出し量(繰り出し長さ)を計測するものである。第2の計測手段76は、ジャイロセンサ72による計測結果と、繰り出し量計測手段74による計測結果とに基づいて、ジャイロセンサ72が通された削孔管26の位置を計測することで、削孔管26による削孔軌跡を計測するものである。なお、第2の削孔軌跡計測手段70により計測される削孔管26の位置は、ジャイロセンサ72が削孔管26の内部に挿入され始めた位置を起点とした相対位置である。 The second drilling locus measuring means 70, like the first drilling locus measuring means 30, measures the drilling locus by the drilling pipe 26, and includes the gyro sensor 72, the feeding amount measuring means 74, and the second. The measuring means 76 of the above is provided. The gyro sensor 72 measures at least the acceleration in the pitching direction and the yawing direction, and is fed to the vicinity of the tip head 14 through the inside of the drilling pipe 26 by a linear feeding means such as a wire. After that, the acceleration is measured on the path where the gyro sensor 72 has moved while being pulled up through the inside of the drilling pipe 26 via the linear feeding means. The feeding amount measuring means 74 measures the feeding amount (feeding length) of the linear feeding means connected to the gyro sensor 72 when the gyro sensor 72 is fed to the vicinity of the tip head 14. The second measuring means 76 measures the position of the drilling pipe 26 through which the gyro sensor 72 is passed based on the measurement result by the gyro sensor 72 and the measurement result by the feeding amount measuring means 74, thereby drilling a hole. This is for measuring the drilling locus of the pipe 26. The position of the drilling pipe 26 measured by the second drilling locus measuring means 70 is a relative position starting from the position where the gyro sensor 72 starts to be inserted into the drilling pipe 26.

姿勢計測手段40は、削孔管26の先端に装着された先端ヘッド14の姿勢を計測するものであり、センサ部42を構成する傾斜計44、基板46、電池48、及び、光送信手段50と、光受信手段52と、データ取得手段54とを備えている。図2に示すように、センサ部42は、先端ヘッド14の内部に予め取り付けられ、傾斜計44は、本実施例では、先端ヘッド14の回転角度(ローリング角度)とピッチング角度とを計測可能な、2軸式のものが採用されている。基板46は、傾斜計44により計測されたデータの、光信号への変換等を行い、光送信手段50は、光信号に変換されたデータの送信を行う。電池48は、傾斜計44、基板46、光送信手段50等に、電力の供給を行うものである。図1に示す光受信手段52は、ワイヤ等によって削孔管26の内部を通して光送信手段50に接近させられることで、光送信手段50から傾斜計44による計測データを光信号として受信する。又、データ取得手段54は、光送信手段50に接近させられた光受信手段52とケーブル接続されることで、光送信手段50及び光受信手段52を介して、傾斜計44による計測データを地上側で取得するためのものである。 The posture measuring means 40 measures the posture of the tip head 14 attached to the tip of the drilling tube 26, and includes an inclinometer 44, a substrate 46, a battery 48, and an optical transmitting means 50 constituting the sensor unit 42. And an optical receiving means 52 and a data acquiring means 54. As shown in FIG. 2, the sensor unit 42 is preliminarily mounted inside the tip head 14, and the inclinometer 44 can measure the rotation angle (rolling angle) and pitching angle of the tip head 14 in this embodiment. A two-axis type is adopted. The substrate 46 converts the data measured by the inclinometer 44 into an optical signal, and the optical transmission means 50 transmits the data converted into an optical signal. The battery 48 supplies electric power to the inclinometer 44, the substrate 46, the optical transmission means 50, and the like. The optical receiving means 52 shown in FIG. 1 receives measurement data from the optical transmitting means 50 by the inclinometer 44 as an optical signal by being brought close to the optical transmitting means 50 through the inside of the drilling tube 26 by a wire or the like. Further, the data acquisition means 54 is connected to the optical receiving means 52 brought close to the optical transmitting means 50 by a cable, so that the measurement data by the inclinometer 44 is collected on the ground via the optical transmitting means 50 and the optical receiving means 52. It is for acquisition on the side.

回転角度算出手段60は、第1の削孔軌跡計測手段30又は第2の削孔軌跡計測手段70により計測された削孔管26の削孔軌跡と、姿勢計測手段40により計測された先端ヘッド14の姿勢情報とに基づいて、削孔管26による削孔方向を修正するための、先端ヘッド14の回転角度位置を算出するものである。回転角度算出手段60による算出方法については後述する。一方、制御手段64は、削孔装置10全体の制御を行うものであり、本実施例では、上記の回転角度算出手段60の役割も担っている。このため、制御手段64は、削孔機12、第1の削孔軌跡計測手段30、第2の削孔軌跡計測手段70、及び、姿勢計測手段40の各々と接続され、例えば、複数又は単数のコンピュータにより構成される。 The rotation angle calculating means 60 includes a drilling locus of the drilling pipe 26 measured by the first drilling locus measuring means 30 or the second drilling locus measuring means 70, and a tip head measured by the posture measuring means 40. Based on the posture information of 14, the rotation angle position of the tip head 14 for correcting the drilling direction by the drilling pipe 26 is calculated. The calculation method by the rotation angle calculation means 60 will be described later. On the other hand, the control means 64 controls the entire drilling device 10, and in this embodiment, also plays the role of the rotation angle calculation means 60. Therefore, the control means 64 is connected to each of the drilling machine 12, the first drilling locus measuring means 30, the second drilling locus measuring means 70, and the posture measuring means 40, and is, for example, plural or singular. Consists of computers.

続いて、図3及び図4に示すフロー図の流れに沿って、上述した削孔装置10を利用して実行する、本発明の実施の形態に係る削孔方法について説明する。本実施例では、削孔機12を利用して、図5のイメージ図に示すようにして削孔する場合を例に説明する。図5の例では、長さが約5mの直線孔SH1と、曲線長さが約21mの曲線孔CHと、長さが約44mの直線孔SH2とを組み合わせて削孔しており、曲線孔CHの曲率半径は約60m、直線孔CH2の深さは約5.3m、削孔開始位置から直線孔SH2の終点までの水平長さは約69mである。なお、図3及び図4に示している符号Aは、図3の符号Aから図4の符号Aへ処理が続くことを示している。又、削孔装置10の構成については図1を、先端ヘッド14の構成については図2を、適宜、参照のこと。
S100(削孔機据付):事前に計画した位置に削孔機12を据付け、先端ヘッド14を装着した削孔管26を削孔機12にセットする。なお、削孔管26には、通電性及び可撓性を有する金属製のもの等を用いることとする。
Subsequently, a drilling method according to an embodiment of the present invention, which is executed by using the drilling device 10 described above, will be described along with the flow of the flow charts shown in FIGS. 3 and 4. In this embodiment, a case where a hole drilling machine 12 is used to drill a hole as shown in the image of FIG. 5 will be described as an example. In the example of FIG. 5, a straight hole SH1 having a length of about 5 m, a curved hole CH having a curved length of about 21 m, and a straight hole SH2 having a length of about 44 m are combined to drill a curved hole. The radius of curvature of the CH is about 60 m, the depth of the straight hole CH2 is about 5.3 m, and the horizontal length from the drilling start position to the end point of the straight hole SH2 is about 69 m. Note that reference numeral A shown in FIGS. 3 and 4 indicates that the processing continues from reference numeral A in FIG. 3 to reference numeral A in FIG. Further, refer to FIG. 1 for the configuration of the drilling device 10 and FIG. 2 for the configuration of the tip head 14, as appropriate.
S100 (Installation of drilling machine): The drilling machine 12 is installed at a position planned in advance, and the drilling pipe 26 equipped with the tip head 14 is set in the drilling machine 12. The drilling tube 26 is made of a metal having electrical conductivity and flexibility.

S110(直線削孔開始):事前に計画した削孔開始位置から、削孔機12により、まずは初期の斜めの直線孔SH1の削孔を開始する。このとき、削孔管26の先端に装着した先端ヘッド14を回転させながら、かつ、先端ヘッド14の噴射口18から削孔水を噴射しながら、直線孔SH1を削孔する。
S120(直線削孔終了):直線孔SH1を事前に計画した削孔長削孔した後、直線孔SH1の削孔を終了する。なお、この初期の直線孔SH1は、削孔長がさほど長くなく(例えば5m程度)、削孔機12から近い部分であることから、削孔の計画位置からほとんど逸れることはない。このため、本実施例では、直線孔SH1の削孔中は、後述する削孔軌跡計測工程や先端ヘッド14の姿勢計測工程を行わず、例えば、削孔管26の地中Gに挿入された部分の長さ等から、直線孔SH1の削孔長を判断すればよい。
S110 (Start of linear drilling): From the drilling start position planned in advance, the drilling machine 12 first starts drilling the initial diagonal straight hole SH1. At this time, the straight hole SH1 is drilled while rotating the tip head 14 attached to the tip of the drilling tube 26 and injecting drilling water from the injection port 18 of the tip head 14.
S120 (End of linear hole drilling): After drilling a straight hole SH1 with a planned drilling length, the drilling of the straight hole SH1 is completed. Since the initial straight hole SH1 has a not so long drilling length (for example, about 5 m) and is close to the drilling machine 12, it hardly deviates from the planned drilling position. Therefore, in this embodiment, during the drilling of the straight hole SH1, the drilling locus measurement step and the posture measurement step of the tip head 14 described later are not performed, and the straight hole SH1 is inserted into the underground G of the drilling pipe 26, for example. The drilling length of the straight hole SH1 may be determined from the length of the portion and the like.

S130(削孔軌跡計測):第1の削孔軌跡計測手段30、或いは、第2の削孔軌跡計測手段70により、直線孔SH1の削孔が終了した時点での削孔軌跡を計測する。第1の削孔軌跡計測手段30を用いて計測を行う場合は、まず、磁界発生手段32を、削孔管26の地上に露出している一部26aに接続し、削孔管26全体に電流を流すことで、地中G内の削孔管26を中心とした磁界を発生させる。そして、受信器34により、地上から地中Gの磁界を受信し、第1の計測手段36により、受信器34で受信した磁界の強弱等から、削孔管26の位置(絶対位置及び深度)を計測する。このとき、削孔管26の位置は、線状に連続的に計測してもよく、複数の点状に断続的に計測してもよい。その後、第1の計測手段36により、削孔管26の位置から削孔軌跡を計測する。すなわち、削孔管26の位置が、線状に連続的に計測された場合は、それがそのまま削孔軌跡を示しており、複数の点状に断続的に計測された場合は、それら複数の位置が仮想的に線状に繋げられることで得られる仮想曲線が、削孔軌跡を示すこととなる。 S130 (Measurement of drilling locus): The drilling locus at the time when the drilling of the straight hole SH1 is completed is measured by the first drilling locus measuring means 30 or the second drilling locus measuring means 70. When measuring using the first drilling locus measuring means 30, first, the magnetic field generating means 32 is connected to a part 26a of the drilling pipe 26 exposed above the ground, and the entire drilling pipe 26 is connected. By passing an electric current, a magnetic field centered on the drilling pipe 26 in the underground G is generated. Then, the receiver 34 receives the magnetic field of underground G from the ground, and the first measuring means 36 determines the position (absolute position and depth) of the drilling tube 26 based on the strength and weakness of the magnetic field received by the receiver 34. To measure. At this time, the position of the drilling tube 26 may be continuously measured linearly or intermittently as a plurality of points. After that, the drilling locus is measured from the position of the drilling pipe 26 by the first measuring means 36. That is, when the position of the drilling tube 26 is continuously measured linearly, it shows the drilling locus as it is, and when it is measured intermittently in a plurality of points, those plurality of holes are displayed. The virtual curve obtained by virtually connecting the positions in a linear shape shows the drilling locus.

他方、第2の削孔軌跡計測手段70を用いて計測を行う場合は、まず、ジャイロセンサ72を、ワイヤ等の線状の送り込み手段によって、削孔管26の尾端側から削孔管26の内部を通して先端ヘッド14の近傍まで送り込む。その後、線状の送り込み手段を繰り取ることで、削孔管26の内部を通してジャイロセンサ72を引き上げながら、ジャイロセンサ72が移動した経路上で、ジャイロセンサ72によりピッチング方向とヨーイング方向との加速度を計測する。又、ジャイロセンサ72の送り込み時或いは引き上げ時に、繰り出し量計測手段74によって、線状の送り込み手段の繰り出し量を計測する。そして、第2の計測手段76により、ジャイロセンサ72による計測結果と、繰り出し量計測手段74による計測結果とに基づいて、ジャイロセンサ72が移動した経路の位置、すなわち、ジャイロセンサ72が通された削孔管26の位置(ジャイロセンサ72の送り込み開始位置を起点とした相対位置)を計測する。このように計測した削孔管26の位置が、削孔管26による削孔軌跡となる。 On the other hand, when measuring using the second drilling locus measuring means 70, first, the gyro sensor 72 is driven from the tail end side of the drilling pipe 26 by a linear feeding means such as a wire. It is fed to the vicinity of the tip head 14 through the inside of. After that, by repeating the linear feeding means, the gyro sensor 72 is pulled up through the inside of the drilling pipe 26, and the gyro sensor 72 accelerates the acceleration in the pitching direction and the yawing direction on the path to which the gyro sensor 72 has moved. measure. Further, when the gyro sensor 72 is fed or pulled up, the feeding amount measuring means 74 measures the feeding amount of the linear feeding means. Then, the second measuring means 76 passed the position of the path on which the gyro sensor 72 moved, that is, the gyro sensor 72, based on the measurement result by the gyro sensor 72 and the measurement result by the feeding amount measuring means 74. The position of the drilling pipe 26 (relative position starting from the feeding start position of the gyro sensor 72) is measured. The position of the drilling pipe 26 measured in this way becomes the drilling locus by the drilling pipe 26.

ここで、第1の削孔軌跡計測手段30と第2の削孔軌跡計測手段70との使い分けについて言及する。例えば、削孔軌跡の計測には、基本的に第1の削孔軌跡計測手段30を用いることとし、地上構造物や地中埋設物の影響等によって、第1の削孔軌跡計測手段30の磁界発生手段32により発生させた磁界を、受信器34で受信するのが困難な区間のみ、第2の削孔軌跡計測手段70を用いることとすればよい。又、同じタイミングで第1の削孔軌跡計測手段30と第2の削孔軌跡計測手段70との双方を用いて計測を行うことで、計測結果の精度を高めることとしてもよい。 Here, the proper use of the first drilling locus measuring means 30 and the second drilling locus measuring means 70 will be described. For example, the first drilling locus measuring means 30 is basically used for measuring the drilling locus, and the first drilling locus measuring means 30 is affected by the influence of the above-ground structure and the underground buried object. The second drilling locus measuring means 70 may be used only in the section where it is difficult for the receiver 34 to receive the magnetic field generated by the magnetic field generating means 32. Further, the accuracy of the measurement result may be improved by performing the measurement using both the first drilling locus measuring means 30 and the second drilling locus measuring means 70 at the same timing.

S140(先端ヘッド姿勢計測):姿勢計測手段40により、直線孔SH1の削孔が終了した時点での、先端ヘッド14の姿勢を計測する。ここで、本実施例において、先端ヘッド14に内蔵されている姿勢計測手段40のセンサ部42は、削孔中は常にオン状態にあり、傾斜計44によって先端ヘッド14の回転角度及びピッチング角度を常時計測するように設定されている。このため、本工程では、傾斜計44により計測されたデータを取得するために、光受信手段52をセンサ部42の光送信手段50に接近させる作業を行う。具体的に、光受信手段52とデータ取得手段54とをケーブルで接続し、ケーブルで接続した状態の光受信手段52を、ワイヤ等によって削孔管26の内部を通して光送信手段50に接近させる。そして、基板46等によって光信号に変換された傾斜計44による計測データを、光送信手段50から光受信手段52に受信し、ケーブルを介して、光受信手段52からデータ取得手段54へ送信させる。このようにして、姿勢計測手段40の傾斜計44により計測した、先端ヘッド14の回転角度及びピッチング角度のデータを、地上側において取得する。 S140 (tip head posture measurement): The posture measuring means 40 measures the posture of the tip head 14 at the time when the drilling of the straight hole SH1 is completed. Here, in the present embodiment, the sensor unit 42 of the posture measuring means 40 built in the tip head 14 is always on during drilling, and the tilt meter 44 measures the rotation angle and pitching angle of the tip head 14. It is set to measure at all times. Therefore, in this step, in order to acquire the data measured by the inclinometer 44, the light receiving means 52 is brought closer to the light transmitting means 50 of the sensor unit 42. Specifically, the optical receiving means 52 and the data acquiring means 54 are connected by a cable, and the optical receiving means 52 in a state of being connected by the cable is brought close to the optical transmitting means 50 through the inside of the drilling tube 26 by a wire or the like. Then, the measurement data by the inclinometer 44 converted into an optical signal by the substrate 46 or the like is received from the optical transmitting means 50 to the optical receiving means 52, and transmitted from the optical receiving means 52 to the data acquiring means 54 via the cable. .. In this way, the data of the rotation angle and the pitching angle of the tip head 14 measured by the inclination meter 44 of the posture measuring means 40 are acquired on the ground side.

S150(回転角度位置算出):回転角度算出手段60により、上記S130及び上記S140における計測結果に基づき、直線孔SH1に続く曲線孔CHを削孔するための、先端ヘッド14の回転角度位置を算出する。具体的には、上記S130で把握された位置にあり、上記S140で把握された姿勢にある先端ヘッド14により、計画通りに曲線孔CHを削孔するための、先端ヘッド14に設けられているテーパ面16の向きを算出する。そのようなテーパ面16の向きは、通常、曲線孔CHの径方向視で曲線孔CHの曲がり方向と反対側の向きである。このため、テーパ面16がそのような方向を向くように、先端ヘッド14の回転角度位置を算出する。 S150 (Rotation angle position calculation): The rotation angle calculation means 60 calculates the rotation angle position of the tip head 14 for drilling the curved hole CH following the straight hole SH1 based on the measurement results in S130 and S140. do. Specifically, the tip head 14 is provided at the tip head 14 for drilling the curved hole CH as planned by the tip head 14 at the position grasped in S130 and in the posture grasped in S140. The orientation of the tapered surface 16 is calculated. The direction of such a tapered surface 16 is usually the direction opposite to the bending direction of the curved hole CH in the radial direction of the curved hole CH. Therefore, the rotation angle position of the tip head 14 is calculated so that the tapered surface 16 faces such a direction.

S160(回転角度位置調整):上記S150で算出した先端ヘッド14の回転角度位置になるように、制御手段64により、先端ヘッド14の回転角度位置を調整する。具体的には、上記S140で把握した先端ヘッド14の現状の姿勢(回転角度)と、上記S150で算出した先端ヘッド14の回転角度位置との角度の差分を算出し、この角度の差分だけ先端ヘッド14を回転させる。
S170(曲線削孔開始):上記S160において先端ヘッド14の回転角度位置を調整した状態で、削孔機12により、曲線孔CHの削孔を開始する。このとき、削孔管26の先端に装着した先端ヘッド14を回転させずに、先端ヘッド14の噴射口18から削孔水を噴射しながら、曲線孔CHを削孔する。
S160 (Rotation angle position adjustment): The rotation angle position of the tip head 14 is adjusted by the control means 64 so as to be the rotation angle position of the tip head 14 calculated in S150. Specifically, the difference in angle between the current posture (rotation angle) of the tip head 14 grasped in S140 and the rotation angle position of the tip head 14 calculated in S150 is calculated, and the tip is only the difference in this angle. Rotate the head 14.
S170 (start of curved hole drilling): With the rotation angle position of the tip head 14 adjusted in the above S160, the drilling machine 12 starts drilling the curved hole CH. At this time, the curved hole CH is drilled while the drilling water is injected from the injection port 18 of the tip head 14 without rotating the tip head 14 attached to the tip of the drilling pipe 26.

S180(削孔軌跡計測):曲線孔CHを所定距離(例えば3m)削孔した後、曲線孔CHの削孔を一時中断し、第1の削孔軌跡計測手段30、或いは、第2の削孔軌跡計測手段70により、現時点での削孔軌跡を計測する。計測の方法は、上記S130と同様であるため、詳しい説明を省略する。
S190(先端ヘッド姿勢計測):上記S180に引き続き、曲線孔CHを所定距離(例えば3m)削孔した時点での、先端ヘッド14の姿勢を、姿勢計測手段40により計測する。計測の方法は、上記S140と同様であるため、詳しい説明を省略する。
S180 (Measurement of drilling locus): After drilling the curved hole CH by a predetermined distance (for example, 3 m), the drilling of the curved hole CH is temporarily suspended, and the first drilling locus measuring means 30 or the second drilling is performed. The hole locus measuring means 70 measures the current drilling locus. Since the measurement method is the same as that of S130, detailed description thereof will be omitted.
S190 (tip head posture measurement): Following the above S180, the posture of the tip head 14 at the time when the curved hole CH is drilled by a predetermined distance (for example, 3 m) is measured by the posture measuring means 40. Since the measurement method is the same as that of S140, detailed description thereof will be omitted.

S200(曲線孔終点判定):上記S180で計測した削孔軌跡に基づき、制御手段64により、曲線孔CHが、予め設定されている曲線孔CHの計画終点位置に達したか否かを判定する。そして、計画終点位置に達したと判定した場合(YES)は、S270へ移行し、計画終点位置に達していないと判定した場合(NO)は、S210へ移行する。
S210(曲線孔終点位置の差分算出):回転角度算出手段60により、上記S180及び上記S190における計測結果から、曲線孔CHの予測終点位置を算出する。具体的に、上記S180で計測された削孔管26の位置から、上記S190で計測された先端ヘッド14の姿勢で、曲線孔CHを削孔し続けた場合の、曲線孔CHの予測終点位置を算出する。このとき、上記S180で計測された削孔軌跡から、現時点での曲線孔CHの曲率半径Rを算出し、それを曲線孔CHの予測終点位置の算出に利用すればよい。更に、回転角度算出手段60により、算出した曲線孔CHの予測終点位置と、予め設定されている曲線孔CHの計画終点位置との差分を算出する。
S200 (Curved hole end point determination): Based on the drilling locus measured in S180, it is determined by the control means 64 whether or not the curved hole CH has reached the planned end point position of the curved hole CH set in advance. .. Then, when it is determined that the planned end point position has been reached (YES), the process proceeds to S270, and when it is determined that the planned end point position has not been reached (NO), the process proceeds to S210.
S210 (Calculation of difference in curved hole end point position): The rotation angle calculating means 60 calculates the predicted end point position of the curved hole CH from the measurement results in S180 and S190. Specifically, the predicted end point position of the curved hole CH when the curved hole CH is continuously drilled from the position of the drilling pipe 26 measured in S180 in the posture of the tip head 14 measured in S190. Is calculated. At this time, the radius of curvature R of the curved hole CH at the present time may be calculated from the drilling locus measured in S180, and this may be used for calculating the predicted end point position of the curved hole CH. Further, the rotation angle calculating means 60 calculates the difference between the calculated predicted end point position of the curved hole CH and the planned end point position of the curved hole CH set in advance.

S220(差分判定):回転角度算出手段60により、上記S210において算出した曲線孔CHの終点位置の差分が、所定範囲内であるか否かを判定する。そして、差分が所定範囲内であると判定した場合(YES)は、S230へ移行し、差分が所定範囲内でないと判定した場合(NO)は、S240へ移行する。なお、判定に用いる所定範囲は、上記S180で利用した第1の削孔軌跡計測手段30又は第2の削孔軌跡計測手段70や、上記S190で利用した姿勢計測手段40の、計測性能等に応じて、任意の範囲を設定すればよい。
S230(曲線削孔継続):上記S220において、そのまま曲線孔CHを削孔しても問題ないと判定されたため、削孔機12による曲線孔CHの削孔を継続する。そして、曲線孔CHを所定距離(例えば3m)削孔した後、上記S180へ復帰する。
S220 (difference determination): The rotation angle calculating means 60 determines whether or not the difference between the end point positions of the curved hole CH calculated in S210 is within a predetermined range. Then, when it is determined that the difference is within the predetermined range (YES), the process proceeds to S230, and when it is determined that the difference is not within the predetermined range (NO), the process proceeds to S240. The predetermined range used for the determination is the measurement performance of the first drilling locus measuring means 30 or the second drilling locus measuring means 70 used in S180, the posture measuring means 40 used in S190, and the like. An arbitrary range may be set accordingly.
S230 (Continued curved hole drilling): In the above S220, since it was determined that there is no problem in drilling the curved hole CH as it is, the drilling of the curved hole CH by the drilling machine 12 is continued. Then, after drilling the curved hole CH by a predetermined distance (for example, 3 m), the process returns to S180.

S240(回転角度位置算出):上記S220において、削孔方向の修正が必要と判定されたため、曲線孔CHの削孔方向を修正するための、先端ヘッド14の回転角度位置を、回転角度算出手段60により算出する。具体的には、まず、上記S180において計測した削孔軌跡の先端(曲線孔CHの現時点での先端)から、予め設定されている曲線孔CHの計画線(計画削孔軌跡)に対して、仮想的に垂線を引く。そして、この垂線方向視で、先端ヘッド14のテーパ面16が、曲線孔CHの計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。
S250(回転角度位置調整):上記S240で算出した先端ヘッド14の回転角度位置になるように、制御手段64により、先端ヘッド14の回転角度位置を調整する。具体的な方法は、上記S160と同様であるため、詳しい説明を省略する。
S240 (Rotation angle position calculation): In the above S220, since it was determined that the drilling direction needs to be corrected, the rotation angle position of the tip head 14 for correcting the drilling direction of the curved hole CH is determined by the rotation angle calculation means. Calculated by 60. Specifically, first, from the tip of the drilling locus measured in S180 (the current tip of the curved hole CH) to the preset planned line of the curved hole CH (planned drilling locus). Draw a vertical line virtually. Then, in this perpendicular direction view, the rotation angle position of the tip head 14 is calculated so that the tapered surface 16 of the tip head 14 faces the side opposite to the planned line of the curved hole CH.
S250 (Rotation angle position adjustment): The rotation angle position of the tip head 14 is adjusted by the control means 64 so as to be the rotation angle position of the tip head 14 calculated in S240. Since the specific method is the same as that of S160, detailed description thereof will be omitted.

S260(曲線削孔再開):上記S250において先端ヘッド14の回転角度位置を調整した状態で、削孔機12による曲線孔CHの削孔を再開する。そして、曲線孔CHを所定距離(例えば3m)削孔した後、上記S180へ復帰する。
ここで、S230或いはS260からS180へ復帰することを考慮すると、S180〜S260は、曲線孔CHが終点に到達するまでの間、曲線孔CHが所定距離(例えば3m)削孔される毎に、繰り返し実行されることとなる。
S260 (Restart of curved hole drilling): With the rotation angle position of the tip head 14 adjusted in the above S250, drilling of the curved hole CH by the drilling machine 12 is restarted. Then, after drilling the curved hole CH by a predetermined distance (for example, 3 m), the process returns to S180.
Here, considering the return from S230 or S260 to S180, in S180 to S260, every time the curved hole CH is drilled by a predetermined distance (for example, 3 m) until the curved hole CH reaches the end point, It will be executed repeatedly.

S270(直線削孔開始):上記S200において曲線孔CHの削孔が終了したと判定されたため、削孔機12により、曲線孔CHに続いて直線孔SH2の削孔を開始する。このとき、削孔管26の先端に装着した先端ヘッド14を回転させながら、かつ、先端ヘッド14の噴射口18から削孔水を噴射しながら、直線孔SH2を削孔する。
S280(削孔軌跡計測):直線孔SH2を所定距離(例えば3〜6m)削孔した後、直線孔SH2の削孔を一時中断し、第1の削孔軌跡計測手段30、或いは、第2の削孔軌跡計測手段70により、現時点での削孔軌跡を計測する。計測の方法は、上記S130と同様であるため、詳しい説明を省略する。
S270 (start of linear hole drilling): Since it was determined in S200 that the drilling of the curved hole CH was completed, the drilling machine 12 starts drilling the straight hole SH2 following the curved hole CH. At this time, the straight hole SH2 is drilled while rotating the tip head 14 attached to the tip of the drilling tube 26 and injecting drilling water from the injection port 18 of the tip head 14.
S280 (Measurement of drilling locus): After drilling the straight hole SH2 by a predetermined distance (for example, 3 to 6 m), the drilling of the straight hole SH2 is temporarily suspended, and the first drilling locus measuring means 30 or the second drilling locus measurement means 30 or the second. The drilling locus measuring means 70 of the above measures the drilling locus at the present time. Since the measurement method is the same as that of S130, detailed description thereof will be omitted.

S290(先端ヘッド姿勢計測):上記S280に引き続き、直線孔SH2を所定距離(例えば3〜6m)削孔した時点での、先端ヘッド14の姿勢を、姿勢計測手段40により計測する。計測の方法は、上記S140と同様であるため、詳しい説明を省略する。
S300(直線孔終点判定):上記S280で計測した削孔軌跡に基づき、制御手段64により、直線孔SH2が、予め設定されている直線孔SH2の計画終点位置に達したか否かを判定する。そして、計画終点位置に達したと判定した場合(YES)は、直線孔SH2までの削孔が全て終了したことになり、本発明の実施の形態に係る削孔方法による削孔が終了となる。一方、計画終点位置に達していないと判定した場合(NO)は、S310へ移行する。
S290 (tip head posture measurement): Following the above S280, the posture of the tip head 14 at the time when the straight hole SH2 is drilled by a predetermined distance (for example, 3 to 6 m) is measured by the posture measuring means 40. Since the measurement method is the same as that of S140, detailed description thereof will be omitted.
S300 (Straight hole end point determination): Based on the drilling locus measured in S280, the control means 64 determines whether or not the linear hole SH2 has reached the preset planned end point position of the linear hole SH2. .. When it is determined that the planned end point position has been reached (YES), all the drilling up to the straight hole SH2 is completed, and the drilling by the drilling method according to the embodiment of the present invention is completed. .. On the other hand, if it is determined that the planned end point position has not been reached (NO), the process proceeds to S310.

S310(直線孔終点位置の差分算出):回転角度算出手段60により、上記S280及び上記S290における計測結果から、直線孔SH2の予測終点位置を算出する。具体的に、上記S280で計測された削孔管26の位置から、上記S290で計測された先端ヘッド14の姿勢で、直線孔SH2を削孔し続けた場合の、直線孔SH2の予測終点位置を算出する。更に、回転角度算出手段60により、算出した直線孔SH2の予測終点位置と、予め設定されている直線孔SH2の計画終点位置との差分を算出する。このとき、上記S280で計測された削孔軌跡と、予め設定されている直線孔SH2の計画線(計画削孔軌跡)との差分や、それらが成す角度等を利用すればよい。 S310 (Calculation of difference in straight hole end point position): The rotation angle calculating means 60 calculates the predicted end point position of the straight hole SH2 from the measurement results in S280 and S290. Specifically, the predicted end point position of the straight hole SH2 when the straight hole SH2 is continuously drilled from the position of the drilling pipe 26 measured in S280 in the posture of the tip head 14 measured in S290. Is calculated. Further, the rotation angle calculating means 60 calculates the difference between the calculated predicted end point position of the straight hole SH2 and the planned end point position of the linear hole SH2 set in advance. At this time, the difference between the drilling locus measured in S280 and the preset planned line (planned drilling locus) of the straight hole SH2, the angle formed by them, and the like may be used.

S320(差分判定):回転角度算出手段60により、上記S310において算出した直線孔SH2の終点位置の差分が、所定範囲内であるか否かを判定する。そして、差分が所定範囲内であると判定した場合(YES)は、S330へ移行し、差分が所定範囲内でないと判定した場合(NO)は、S340へ移行する。なお、判定に用いる所定範囲は、上記S280で利用した第1の削孔軌跡計測手段30又は第2の削孔軌跡計測手段70や、上記S290で利用した姿勢計測手段40の、計測性能等に応じて、任意の範囲を設定すればよい。 S320 (difference determination): The rotation angle calculating means 60 determines whether or not the difference between the end point positions of the straight hole SH2 calculated in S310 is within a predetermined range. Then, when it is determined that the difference is within the predetermined range (YES), the process proceeds to S330, and when it is determined that the difference is not within the predetermined range (NO), the process proceeds to S340. The predetermined range used for the determination is the measurement performance of the first drilling locus measuring means 30 or the second drilling locus measuring means 70 used in S280, the posture measuring means 40 used in S290, and the like. An arbitrary range may be set accordingly.

S330(直線削孔継続):上記S320において、そのまま直線孔SH2を削孔しても問題ないと判定されたため、削孔機12による直線孔SH2の削孔を継続する。そして、直線孔SH2を所定距離(例えば3〜6m)削孔した後、上記S280へ復帰する。
S340(回転角度位置算出):上記S320において、削孔方向の修正が必要と判定されたため、直線孔SH2の削孔方向を修正する曲線削孔を行うための、先端ヘッド14の回転角度位置を、回転角度算出手段60により算出する。具体的には、まず、上記S280において計測した削孔軌跡の先端(直線孔SH2の現時点での先端)から、予め設定されている直線孔SH2の計画線(計画削孔軌跡)に対して、仮想的に垂線を引く。そして、この垂線方向視で、先端ヘッド14のテーパ面16が、直線孔SH2の計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。
S330 (Continued straight hole drilling): In the above S320, since it was determined that there is no problem in drilling the straight hole SH2 as it is, the drilling of the straight hole SH2 by the drilling machine 12 is continued. Then, after drilling the straight hole SH2 by a predetermined distance (for example, 3 to 6 m), the process returns to S280.
S340 (Rotation angle position calculation): In the above S320, since it was determined that the drilling direction needs to be corrected, the rotation angle position of the tip head 14 for performing curved drilling to correct the drilling direction of the straight hole SH2 is determined. , Calculated by the rotation angle calculating means 60. Specifically, first, from the tip of the drilling locus measured in S280 (the current tip of the straight hole SH2) to the preset planned line of the straight hole SH2 (planned drilling locus). Draw a vertical line virtually. Then, in this perpendicular direction view, the rotation angle position of the tip head 14 is calculated so that the tapered surface 16 of the tip head 14 faces the side opposite to the planned line of the straight hole SH2.

S350(回転角度位置調整):上記S340で算出した先端ヘッド14の回転角度位置になるように、制御手段64により、先端ヘッド14の回転角度位置を調整する。具体的な方法は、上記S160と同様であるため、詳しい説明を省略する。
S360(所定削孔長のみ曲線削孔):上記S350において先端ヘッド14の回転角度位置を調整した状態で、直線孔SH2の削孔方向を修正するための所定削孔長のみ、削孔機12により曲線孔を削孔する。このような所定削孔長は、制御手段64により、既に削孔した曲線孔CHの曲率半径Rから算出すればよく、曲線孔CHの曲率半径Rは、曲線孔CHの削孔中に計測した削孔軌跡、すなわち、上記S180で計測した曲線孔CHの削孔軌跡から求めればよい。そして、算出した所定削孔長のみ、先端ヘッド14を回転させずに、曲線孔を削孔する。
S350 (Rotation angle position adjustment): The rotation angle position of the tip head 14 is adjusted by the control means 64 so as to be the rotation angle position of the tip head 14 calculated in S340. Since the specific method is the same as that of S160, detailed description thereof will be omitted.
S360 (curved drilling only for a predetermined drilling length): With the rotation angle position of the tip head 14 adjusted in the above S350, only the predetermined drilling length for correcting the drilling direction of the straight hole SH2 is the drilling machine 12 The curved hole is drilled by. Such a predetermined drilling length may be calculated from the radius of curvature R of the curved hole CH already drilled by the control means 64, and the radius of curvature R of the curved hole CH was measured during drilling of the curved hole CH. It may be obtained from the drilling locus, that is, the drilling locus of the curved hole CH measured in S180. Then, the curved hole is drilled only by the calculated predetermined drilling length without rotating the tip head 14.

S370(直線削孔再開):上記S360の曲線削孔により削孔方向を修正した後、削孔機12による直線孔SH2の削孔を再開する。そして、直線孔SH2を所定距離(例えば3〜6m)削孔した後、上記S280へ復帰する。
ここで、S330或いはS370からS280へ復帰することを考慮すると、S280〜S370は、直線孔SH2が終点に到達するまでの間、直線孔SH2が所定距離(例えば3〜6m)削孔される毎に、繰り返し実行されることとなる。
なお、図3及び図4のフロー図では、削孔軌跡計測工程(S130、S180、S280)と、先端ヘッド姿勢計測工程(S140、S190、S290)とは、削孔軌跡計測工程の方を先に行っているが、その実行順序が逆であってもよい。
S370 (Resume linear drilling): After correcting the drilling direction by the curved drilling of S360, the drilling of the straight hole SH2 by the drilling machine 12 is restarted. Then, after drilling the straight hole SH2 by a predetermined distance (for example, 3 to 6 m), the process returns to S280.
Here, in consideration of returning from S330 or S370 to S280, in S280 to S370, every time the straight hole SH2 is drilled by a predetermined distance (for example, 3 to 6 m) until the straight hole SH2 reaches the end point. In addition, it will be executed repeatedly.
In the flow charts of FIGS. 3 and 4, the drilling locus measurement step (S130, S180, S280) and the tip head posture measuring step (S140, S190, S290) are preceded by the drilling locus measurement step. However, the execution order may be reversed.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。すなわち、本発明の実施の形態に係る削孔方法は、図1に示すような構成の削孔装置10を利用して、図3及び図4に示すような流れに沿って、図5に示すように削孔するものである。より具体的には、先端ヘッド14を装着した削孔管26を利用して、直線孔SH1、SH2を削孔する直線削孔工程(S110〜S120、S270〜S370)と、曲線孔CHを削孔する曲線削孔工程(S170〜S260)とを組み合わせて、地中Gを削孔するものであり、更に、削孔軌跡計測工程(S130、S180、S280)と、姿勢計測工程(S140、S190、S290)と、調整工程(S210〜S260、S310〜S370)とを含んでいる。 Now, according to the embodiment of the present invention having the above configuration, it is possible to obtain the following effects. That is, the drilling method according to the embodiment of the present invention is shown in FIG. 5 by using the drilling device 10 having the configuration shown in FIG. 1 and following the flow as shown in FIGS. 3 and 4. The hole is drilled in this way. More specifically, a linear drilling step (S110-S120, S270-S370) for drilling straight holes SH1 and SH2 and a curved hole CH are drilled using a drilling tube 26 equipped with a tip head 14. The underground G is drilled in combination with the curved drilling steps (S170 to S260) for drilling, and further, the drilling locus measurement steps (S130, S180, S280) and the attitude measurement steps (S140, S190). , S290) and adjustment steps (S210-S260, S310-S370).

削孔軌跡計測工程では、第1の削孔軌跡計測手段30の磁界発生手段32により、地上に露出している削孔管26の一部26a、すなわち、地中Gに挿入されている削孔管26の尾端近傍から、削孔管26に電流を流すことで、地中Gに挿入されている削孔管26を中心とした磁界を発生させる。そして、作業員等に操作される受信器34によって、地上から磁界を受信し、受信した磁界の強弱等の受信結果から、第1の計測手段36により、地中Gの削孔管26の絶対位置を計測する。これにより、削孔開始位置から現状の先端ヘッド14の位置までの、削孔管26による削孔軌跡が計測される。このように、本発明の実施の形態に係る削孔方法は、削孔管26を中心とした磁界を発生させながらも、地上に露出した削孔管26の一部26aから電流を流す方法を採用しているため、削孔管26に磁界発生装置や受信器を備える必要がなく、削孔管26や先端ヘッド14に別の計測器を設置するためのスペースを確保することができる。 In the drilling locus measurement step, a part 26a of the drilling pipe 26 exposed to the ground by the magnetic field generating means 32 of the first drilling locus measuring means 30, that is, a hole inserted into the underground G. By passing an electric current through the drilling pipe 26 from the vicinity of the tail end of the pipe 26, a magnetic field centered on the drilling pipe 26 inserted in the underground G is generated. Then, the magnetic field is received from the ground by the receiver 34 operated by the worker or the like, and based on the reception result such as the strength of the received magnetic field, the first measuring means 36 is used by the first measuring means 36 to make the hole 26 of the underground G absolute. Measure the position. As a result, the drilling locus by the drilling pipe 26 from the drilling start position to the current position of the tip head 14 is measured. As described above, the drilling method according to the embodiment of the present invention is a method in which a current is passed from a part 26a of the drilling tube 26 exposed on the ground while generating a magnetic field centered on the drilling tube 26. Since it is adopted, it is not necessary to equip the drilling tube 26 with a magnetic field generator or a receiver, and it is possible to secure a space for installing another measuring instrument in the drilling tube 26 or the tip head 14.

又、姿勢計測工程では、上記のように確保された先端ヘッド14のスペースに、本実施例では傾斜計44を設置することで、先端ヘッド14の回転角度とピッチング角度とを計測する。そして、調整工程では、削孔軌跡計測工程で得られた削孔軌跡と、姿勢計測工程で得られた先端ヘッド14の回転角度及びピッチング角度とに基づいて、例えば、削孔管26の予測到達位置を算出する。すなわち、それまでの削孔管26による削孔軌跡と、現状の先端ヘッド14の姿勢とが把握されることで、そのまま直線孔SH2或いは曲線孔CHを削孔する場合の予測到達位置が算出される。 Further, in the posture measurement step, the rotation angle and the pitching angle of the tip head 14 are measured by installing the inclination meter 44 in the space of the tip head 14 secured as described above in this embodiment. Then, in the adjustment step, for example, the predicted arrival of the drilling pipe 26 is achieved based on the drilling locus obtained in the drilling locus measuring step and the rotation angle and pitching angle of the tip head 14 obtained in the posture measuring step. Calculate the position. That is, by grasping the drilling locus of the drilling pipe 26 up to that point and the current posture of the tip head 14, the predicted arrival position when drilling the straight hole SH2 or the curved hole CH is calculated as it is. NS.

そして、例えば、削孔管26の予測到達位置が計画到達位置から逸れている場合に、実際の到達位置が計画到達位置へと近づいて修正されるように、先端ヘッド14の回転角度位置、すなわち、先端ヘッド14に設けられているテーパ面16の向きを調整する。その後、テーパ面16の向きを調整した状態で、先端ヘッド14を回転させずに削孔管26を押し込んで曲線孔を削孔することで、計画到達位置へと近づくように削孔位置が修正される。このように、本発明の実施の形態に係る削孔方法は、削孔軌跡計測工程において削孔管26の位置をより正確に把握することができ、更に先端ヘッド14の姿勢情報と併用することで得られる予測到達位置を利用することにより、削孔を精度よく行うことが可能となる。 Then, for example, when the predicted arrival position of the drilling pipe 26 deviates from the planned arrival position, the rotation angle position of the tip head 14, that is, the tip head 14 is corrected so that the actual arrival position approaches the planned arrival position and is corrected. , The direction of the tapered surface 16 provided on the tip head 14 is adjusted. After that, with the direction of the tapered surface 16 adjusted, the drilling tube 26 is pushed in without rotating the tip head 14 to drill a curved hole, so that the drilling position is corrected so as to approach the planned arrival position. Will be done. As described above, the drilling method according to the embodiment of the present invention can more accurately grasp the position of the drilling pipe 26 in the drilling locus measurement step, and is further used in combination with the posture information of the tip head 14. By using the predicted arrival position obtained in the above, it is possible to perform drilling with high accuracy.

更に、本発明の実施の形態に係る削孔方法は、削孔軌跡計測工程(S130、S180、S280)において、削孔開始位置から先端ヘッド14までの削孔軌跡を計測する際に、地上から受信器34により削孔管26の複数の部位の位置を検出し、これら複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づいて、削孔軌跡を計測してもよい。すなわち、削孔管26の位置を線状に連続的に計測するのではなく、複数の点状に断続的に計測することで、削孔管26の計測位置の精度を維持しながら、作業時間を短縮することができる。更に、地上構造物や地中埋設物の影響によって、受信器34による磁界の受信が困難な区間が存在する場合であっても、その区間を除いた複数の位置において削孔管26の位置を計測することで、削孔軌跡を問題なく把握することができる。 Further, in the drilling method according to the embodiment of the present invention, in the drilling locus measurement step (S130, S180, S280), when measuring the drilling locus from the drilling start position to the tip head 14, from the ground. The position of a plurality of parts of the drilling tube 26 may be detected by the receiver 34, and the drilling locus may be measured based on a virtual curve obtained by virtually connecting the positions of the plurality of parts in a linear shape. .. That is, by measuring the position of the drilling pipe 26 intermittently in a plurality of points instead of continuously measuring the position in a linear shape, the working time is maintained while maintaining the accuracy of the measuring position of the drilling pipe 26. Can be shortened. Further, even if there is a section where it is difficult for the receiver 34 to receive the magnetic field due to the influence of the above-ground structure or the underground buried object, the position of the drilling pipe 26 can be set at a plurality of positions excluding the section. By measuring, the drilling locus can be grasped without any problem.

又、本発明の実施の形態に係る削孔方法は、削孔軌跡計測工程(S130、S180、S280)において、削孔開始位置から先端ヘッド14まで削孔軌跡を計測する方法として、2つの方法を併用してもよい。すなわち、一方の方法は、上述した第1の削孔軌跡計測手段30を利用する方法であり、もう一方の方法は、第2の削孔軌跡計測手段70を利用する方法である。第2の削孔軌跡計測手段70を利用する方法では、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサ72を、削孔管26の内部を通して先端ヘッド14の近傍まで送り込んだ後、削孔管26の内部を通してジャイロセンサ72を引き上げながら、ジャイロセンサ72が移動した経路上で角速度の計測を行う。 Further, the drilling method according to the embodiment of the present invention is two methods as a method of measuring the drilling locus from the drilling start position to the tip head 14 in the drilling locus measurement steps (S130, S180, S280). May be used together. That is, one method is a method using the first drilling locus measuring means 30 described above, and the other method is a method using the second drilling locus measuring means 70. In the method using the second drilling locus measuring means 70, a gyro sensor 72 capable of measuring at least the pitching direction and the yawing direction is sent through the inside of the drilling pipe 26 to the vicinity of the tip head 14, and then drilled. While pulling up the gyro sensor 72 through the inside of the pipe 26, the angular velocity is measured on the path where the gyro sensor 72 has moved.

この際、削孔管26内でジャイロセンサ72を推進させ得る剛性を有する、ワイヤ等の線状の送り込み手段を、ジャイロセンサ72に接続して送り込み、繰り出し量計測手段74によって、線状の送り込み手段の繰り出し量を計測する。このとき、送り込み手段の繰り出し量は、送り込み手段の繰り出し時と繰り取り時との、何れにおいて計測してもよい。そして、ジャイロセンサ72による計測結果と、繰り出し量計測手段74による計測結果とに基づいて、第2の計測手段76により削孔軌跡を計測するものである。これにより、例えば、削孔軌跡のメインの計測方法として、第1の削孔軌跡計測手段30を利用する方法を用い、この方法による計測が困難な区間については、第2の削孔軌跡計測手段70を利用する方法を採用する、といった使い分けを行うことができる。このように削孔軌跡を計測することによって、削孔管26の到達位置の予測精度が向上し、削孔をより精度よく行うことができる。 At this time, a linear feeding means such as a wire having a rigidity capable of propelling the gyro sensor 72 in the drilling pipe 26 is connected to the gyro sensor 72 and fed, and the feeding amount measuring means 74 linearly feeds the gyro sensor 72. Measure the amount of feeding of the means. At this time, the feeding amount of the feeding means may be measured at either the feeding means or the feeding time of the feeding means. Then, the drilling locus is measured by the second measuring means 76 based on the measurement result by the gyro sensor 72 and the measurement result by the feeding amount measuring means 74. As a result, for example, a method using the first drilling locus measuring means 30 is used as the main measuring method of the drilling locus, and the second drilling locus measuring means is used for a section where measurement by this method is difficult. It is possible to use the method of using 70 properly. By measuring the drilling locus in this way, the prediction accuracy of the arrival position of the drilling pipe 26 is improved, and the drilling can be performed more accurately.

又、本発明の実施の形態に係る削孔方法は、姿勢計測工程(S140、S190、S290)において、姿勢計測手段40を用いて計測を行うものである。すなわち、施工に先立ち、上述した如く先端ヘッド14に確保される設置スペースに、予め傾斜計44を含むセンサ部42を取り付ける。傾斜計44としては、先端ヘッド14の回転角度とピッチング角度との夫々を計測する2つの傾斜計、或いは、それら2つの角度を同時に計測可能な2軸式の傾斜計が挙げられ、又、何れの場合であっても、光信号を送信可能な光送信手段50と共に設置する。 Further, the drilling method according to the embodiment of the present invention measures by using the posture measuring means 40 in the posture measuring step (S140, S190, S290). That is, prior to the construction, the sensor unit 42 including the inclinometer 44 is attached in advance to the installation space secured in the tip head 14 as described above. Examples of the inclinometer 44 include two inclinometers that measure the rotation angle and the pitching angle of the tip head 14, or a two-axis inclinometer that can measure these two angles at the same time. Even in the case of, it is installed together with the optical transmission means 50 capable of transmitting an optical signal.

そして、姿勢計測工程において先端ヘッド14の姿勢を計測する際に、先端ヘッド14に取り付けた光送信手段50に対して、地上から削孔管26の内部を通して光受信手段52を接近させ、傾斜計44から光送信手段50を介して光受信手段52へ、先端ヘッド14の回転角度及びピッチング角度に係るデータを光信号で送信させる。この際、光受信手段52とデータ取得手段54とをケーブルで接続しておくことで、先端ヘッド14の回転角度及びピッチング角度に係るデータを、光受信手段52からケーブルを介して地上側のデータ取得手段54で取得する。これにより、先端ヘッド14の姿勢情報を、必要に応じた任意のタイミングで、地上側において把握することが可能となる。 Then, when measuring the posture of the tip head 14 in the attitude measurement step, the light receiving means 52 is brought close to the light transmitting means 50 attached to the tip head 14 from the ground through the inside of the drilling tube 26, and the tilt meter is used. Data relating to the rotation angle and pitching angle of the tip head 14 is transmitted as an optical signal from 44 to the optical receiving means 52 via the optical transmitting means 50. At this time, by connecting the optical receiving means 52 and the data acquiring means 54 with a cable, the data related to the rotation angle and the pitching angle of the tip head 14 can be obtained from the optical receiving means 52 via the cable on the ground side. It is acquired by the acquisition means 54. As a result, the posture information of the tip head 14 can be grasped on the ground side at an arbitrary timing as needed.

更に、本発明の実施の形態に係る削孔方法は、直線削孔工程(S270〜S370)及び曲線削孔工程(S170〜S260)において、直線孔SH2或いは曲線孔CHを所定距離削孔する毎に、削孔作業を一時中断して、削孔軌跡計測工程と姿勢計測工程と調整工程とを実行するものである。これにより、実際の削孔位置が計画位置から大幅に逸れる前に、削孔位置を修正することができるため、削孔位置の精度をより向上することが可能となる。 Further, in the drilling method according to the embodiment of the present invention, every time the straight hole SH2 or the curved hole CH is drilled by a predetermined distance in the linear drilling step (S270 to S370) and the curved drilling step (S170 to S260). In addition, the drilling work is temporarily suspended, and the drilling locus measurement step, the attitude measurement step, and the adjustment step are executed. As a result, the drilling position can be corrected before the actual drilling position deviates significantly from the planned position, so that the accuracy of the drilling position can be further improved.

又、本発明の実施の形態に係る削孔方法は、曲線削孔工程中に行う調整工程、すなわち、曲線孔CHの削孔中に所定距離削孔する毎に削孔を中断して行う調整工程(S210〜S260)において、その直前の削孔軌跡計測工程(S180)で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程(S190)で計測した先端ヘッド14の回転角度及びピッチング角度とから、回転角度算出手段60により、曲線孔CHの予測終点位置を算出する。つまり、それまでの曲線孔CHの削孔軌跡と、現状の先端ヘッド14の姿勢情報とが把握されることで、そのまま曲線孔CHの削孔を続けた場合の、曲線孔CHの予測終点位置が算出される。更に、そのように算出した曲線孔CHの予測終点位置と、施工前に予め設定した曲線孔CHの計画終点位置との差分を算出する。 Further, the drilling method according to the embodiment of the present invention is an adjustment step performed during the curved drilling step, that is, an adjustment performed by interrupting the drilling every time a predetermined distance is drilled during the drilling of the curved hole CH. In the steps (S210 to S260), the drilling locus measured in the drilling locus measurement step (S180) immediately before the step, and the rotation angle and pitching of the tip head 14 measured in the posture measuring step (S190) immediately before the adjustment step. From the angle, the rotation angle calculating means 60 calculates the predicted end point position of the curved hole CH. That is, by grasping the drilling locus of the curved hole CH up to that point and the current posture information of the tip head 14, the predicted end point position of the curved hole CH when the drilling of the curved hole CH is continued as it is. Is calculated. Further, the difference between the predicted end point position of the curved hole CH calculated in this way and the planned end point position of the curved hole CH preset before construction is calculated.

そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、曲線孔CHの削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッド14の回転角度位置を算出する。具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、曲線孔CHの計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッド14のテーパ面16が曲線孔CHの計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。そして、先端ヘッド14の回転角度位置を、算出した回転角度位置に調整した後、曲線削孔工程に復帰して曲線孔CHを削孔するものである。この状態で先端ヘッド14を回転させずに削孔することにより、先端ヘッド14は、テーパ面16で受ける圧力の影響によって、計画終点位置に近づく方向へと推進することになる。このため、より精度よく曲線孔CHを削孔することができる。 Then, when the difference between the calculated end point positions deviates from the preset predetermined range, the rotation angle position of the tip head 14 is corrected so that the drilling direction of the curved hole CH approaches the planned end point position. Is calculated. Specifically, a perpendicular line is virtually drawn from the tip of the drilling locus measured in the drilling locus measurement process to the planned line of the curved hole CH (planned drilling locus preset before construction), and this perpendicular line is drawn. The rotation angle position of the tip head 14 is calculated so that the tapered surface 16 of the tip head 14 faces the side opposite to the planned line of the curved hole CH in the directional view. Then, after adjusting the rotation angle position of the tip head 14 to the calculated rotation angle position, the process returns to the curved hole drilling process to drill the curved hole CH. By drilling holes without rotating the tip head 14 in this state, the tip head 14 is propelled in a direction approaching the planned end point position due to the influence of the pressure received by the tapered surface 16. Therefore, the curved hole CH can be drilled more accurately.

又、本発明の実施の形態に係る削孔方法は、直線削孔工程中に行う調整工程、すなわち、直線孔SH2の削孔中に所定距離削孔する毎に削孔を中断して行う調整工程(S310〜S370)において、その直前の削孔軌跡計測工程(S280)で計測した削孔軌跡と、同じく調整工程の直前の姿勢計測工程(S290)で計測した先端ヘッド14の回転角度及びピッチング角度とから、回転角度算出手段60により、直線孔SH2の予測終点位置を算出する。つまり、それまでの直線孔SH2の削孔軌跡と、現状の先端ヘッド14の姿勢情報とが把握されることで、そのまま直線孔SH2の削孔を続けた場合の、直線孔S2の予測終点位置が算出される。更に、そのように算出した直線孔SH2の予測終点位置と、施工前に予め設定した直線孔SH2の計画終点位置との差分を算出する。そして、算出した終点位置の差分が、予め設定した所定範囲から外れている場合に、直線孔SH2の削孔方向が計画終点位置に近づく方向に修正されるような、先端ヘッド14の回転角度位置を算出する。 Further, the drilling method according to the embodiment of the present invention is an adjustment step performed during the linear drilling step, that is, an adjustment performed by interrupting the drilling every time a predetermined distance is drilled during the drilling of the straight hole SH2. In the steps (S310 to S370), the drilling locus measured in the drilling locus measurement step (S280) immediately before the step, and the rotation angle and pitching of the tip head 14 measured in the posture measuring step (S290) immediately before the adjustment step. From the angle, the rotation angle calculating means 60 calculates the predicted end point position of the straight hole SH2. That is, by grasping the drilling locus of the straight hole SH2 up to that point and the current posture information of the tip head 14, the predicted end point position of the straight hole S2 when the drilling of the straight hole SH2 is continued as it is. Is calculated. Further, the difference between the predicted end point position of the straight hole SH2 calculated in this way and the planned end point position of the straight hole SH2 set in advance before construction is calculated. Then, when the difference between the calculated end point positions deviates from the preset predetermined range, the rotation angle position of the tip head 14 is corrected so that the drilling direction of the straight hole SH2 approaches the planned end point position. Is calculated.

具体的には、削孔軌跡計測工程で計測した削孔軌跡の先端から、直線孔SH2の計画線(施工前に予め設定した計画削孔軌跡)に対して仮想的に垂線を引き、この垂線方向視で、先端ヘッド14のテーパ面16が直線孔SH2の計画線と反対側を向くような、先端ヘッド14の回転角度位置を算出する。そして、先端ヘッド14の回転角度位置を、算出した回転角度位置に調整した後、所定削孔長のみ曲線孔を削孔する。この状態で先端ヘッド14を回転させずに曲線孔を削孔することにより、先端ヘッド14は、テーパ面16で受ける圧力の影響によって、直線孔SH2の計画終点位置に近づく方向へと推進することになる。すなわち、直線孔SH2の予測終点位置が計画終点位置から逸れている場合、一時的に曲線孔を削孔して削孔方向を修正する必要があるため、その削孔方向の修正に必要な所定削孔長のみ、曲線孔を削孔する。その後、直線削孔工程に復帰して直線孔SH2を削孔するものである。これにより、より精度よく直線孔SH2を削孔することができる。 Specifically, a perpendicular line is virtually drawn from the tip of the drilling locus measured in the drilling locus measurement process to the planned line of the straight hole SH2 (planned drilling locus preset before construction), and this perpendicular line is drawn. The rotation angle position of the tip head 14 is calculated so that the tapered surface 16 of the tip head 14 faces the side opposite to the planned line of the straight hole SH2 in a directional view. Then, after adjusting the rotation angle position of the tip head 14 to the calculated rotation angle position, a curved hole is drilled only by a predetermined drilling length. By drilling a curved hole without rotating the tip head 14 in this state, the tip head 14 is propelled in a direction approaching the planned end point position of the straight hole SH2 due to the influence of the pressure received by the tapered surface 16. become. That is, when the predicted end point position of the straight hole SH2 deviates from the planned end point position, it is necessary to temporarily drill a curved hole to correct the drilling direction. A curved hole is drilled only for the drilling length. After that, the process returns to the linear drilling process to drill the straight hole SH2. As a result, the straight hole SH2 can be drilled with higher accuracy.

更に、本発明の実施の形態に係る削孔方法は、制御手段64により、直線孔SH2の方向を修正する際に削孔する曲線孔の長さである所定削孔長を、既に削孔済みの曲線孔CHの曲率半径Rに基づいて算出するものである。この際、削孔済みの曲線孔CHの曲率半径Rは、その曲線孔CHの削孔中に実行した、削孔軌跡計測工程(S180)において計測した曲線孔CHの削孔軌跡から求めることができる。このように求められた曲線孔CHの曲率半径Rは、実際に削孔している地中Gの土質の影響等が反映された曲率半径となる。このため、それに基づいて算出される所定削孔長は、地中Gの土質の影響等が加味された、適切な削孔長を算出することができる。 Further, in the drilling method according to the embodiment of the present invention, the control means 64 has already drilled a predetermined drilling length which is the length of the curved hole to be drilled when the direction of the straight hole SH2 is corrected. It is calculated based on the radius of curvature R of the curved hole CH of. At this time, the radius of curvature R of the curved hole CH that has been drilled can be obtained from the drilling locus of the curved hole CH measured in the drilling locus measurement step (S180) executed during the drilling of the curved hole CH. can. The radius of curvature R of the curved hole CH thus obtained is a radius of curvature that reflects the influence of the soil quality of the underground G that is actually drilled. Therefore, the predetermined drilling length calculated based on the drilling length can be calculated as an appropriate drilling length in consideration of the influence of the soil quality of the underground G and the like.

10:削孔装置、12:削孔機、14:先端ヘッド、16:テーパ面、26:削孔管、26a:削孔管の地上に露出している一部、30:第1の削孔軌跡計測手段、32:磁界発生手段、34:受信器、36:第1の計測手段、40:姿勢計測手段、44:傾斜計、52:光受信手段、54:データ取得手段、60:回転角度算出手段、64:制御手段、70:第2の削孔軌跡計測手段、72:ジャイロセンサ、74:繰り出し量計測手段、76:第2の計測手段、SH1、SH2:直線孔、CH:曲線孔、G:地中、R:曲線孔の曲率半径 10: Drilling device, 12: Drilling machine, 14: Tip head, 16: Tapered surface, 26: Drilling tube, 26a: Part of the drilling tube exposed above the ground, 30: First drilling Trajectory measuring means, 32: Magnetic field generating means, 34: Receiver, 36: First measuring means, 40: Attitude measuring means, 44: Tilt meter, 52: Optical receiving means, 54: Data acquisition means, 60: Rotation angle Calculation means, 64: Control means, 70: Second drilling locus measuring means, 72: Gyro sensor, 74: Feeding amount measuring means, 76: Second measuring means, SH1, SH2: Straight hole, CH: Curved hole , G: Underground, R: Radius of curvature of curved hole

Claims (16)

先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔工程と、前記先端ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔工程とを組み合わせて、地中を削孔する方法であって、
地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させ、地上から受信器により前記磁界を受信し、該受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する削孔軌跡計測工程と、
前記先端ヘッドに設置した傾斜計或いはひずみ計を利用して、前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測工程と、
前記削孔軌跡計測工程及び前記姿勢計測工程における計測結果に基づいて、前記先端ヘッドの回転角度位置を調整する調整工程と、を含むことを特徴とする削孔方法。
A linear drilling step of drilling a straight hole by pushing the drilling tube while rotating the tip head using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip, and the tip It is a method of drilling in the ground in combination with a curved drilling step of drilling a curved hole by pushing the drilling pipe without rotating the head.
By passing an electric current from a part of the drilling tube exposed on the ground, a magnetic field centered on the drilling tube in the ground is generated, and the magnetic field is received from the ground by a receiver, and the reception result is obtained. The drilling locus measurement step of measuring the drilling locus from the drilling start position to the tip head based on
A posture measurement process for measuring the rotation angle and pitching angle of the tip head using an inclinometer or strain gauge installed on the tip head.
A drilling method comprising a drilling trajectory measuring step and an adjusting step of adjusting the rotation angle position of the tip head based on the measurement results in the posture measuring step.
前記削孔軌跡計測工程において、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、該複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測することを特徴とする請求項1記載の削孔方法。 In the drilling locus measurement step, the positions of a plurality of parts of the drilling pipe are detected from the ground by the receiver, and the positions of the plurality of parts are virtually linearly connected to each other based on a virtual curve. The drilling method according to claim 1, wherein the drilling locus is measured. 前記姿勢計測工程において、前記先端ヘッドに予め取り付けた傾斜計に対して、地上から前記削孔管の内部を通して光受信手段を接近させることで、前記傾斜計から前記光受信手段へ、前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で送信させ、前記光受信手段からケーブルを介して前記データを取得することを特徴とする請求項1又は2記載の削孔方法。 In the attitude measurement step, the tip head is brought from the inclinometer to the light receiving means by bringing the light receiving means close to the inclinometer previously attached to the tip head from the ground through the inside of the drilling tube. The hole drilling method according to claim 1 or 2, wherein data relating to a rotation angle and a pitching angle of the above is transmitted as an optical signal, and the data is acquired from the optical receiving means via a cable. 前記直線削孔工程及び前記曲線削孔工程において、所定距離を削孔する毎に、前記削孔軌跡計測工程及び前記姿勢計測工程及び前記調整工程を行うことを特徴とする請求項1から3のいずれか1項記載の削孔方法。 Claims 1 to 3, wherein in the linear drilling step and the curved drilling step, the drilling locus measurement step, the posture measurement step, and the adjustment step are performed every time a predetermined distance is drilled. The drilling method according to any one of the items. 前記曲線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整した後、前記曲線削孔工程に復帰することを特徴とする請求項4記載の削孔方法。 In the adjustment step performed during the curved hole drilling step, the predicted end point position of the curved hole is calculated from the measurement results of the drilling locus measurement step and the attitude measurement step, and the predicted end point position of the curved hole and the predicted end point position of the curved hole are obtained. The difference from the planned end point position of the curved hole is calculated, and when the difference is out of the predetermined range, from the tip of the drilling locus measured in the drilling locus measuring step to the planned line of the curved hole. On the other hand, a vertical line is virtually drawn, and the rotation angle position of the tip head is adjusted so that the tapered surface faces the side opposite to the planned line of the curved hole in the vertical line direction, and then the curved hole drilling step is performed. The drilling method according to claim 4, wherein the hole is restored. 前記直線削孔工程中に行う前記調整工程において、前記削孔軌跡計測工程及び前記姿勢計測工程の計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記削孔軌跡計測工程で計測した前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を調整して、前記曲線削孔工程を所定削孔長行った後、前記直線削孔工程に復帰することを特徴とする請求項4又は5記載の削孔方法。 In the adjustment step performed during the straight hole drilling step, the predicted end point position of the straight hole is calculated from the measurement results of the drilling locus measurement step and the attitude measurement step, and the predicted end point position of the straight hole and the predicted end point position of the straight hole. The difference from the planned end point position of the straight hole is calculated, and when the difference is out of the predetermined range, the tip of the drilling locus measured in the drilling locus measurement step is transferred to the planned line of the straight hole. On the other hand, a vertical line is virtually drawn, and the rotation angle position of the tip head is adjusted so that the tapered surface faces the side opposite to the planned line of the straight hole in the vertical line direction, and the curved drilling step is performed. The drilling method according to claim 4 or 5, wherein after performing a predetermined drilling length, the process returns to the linear drilling step. 前記所定削孔長を、削孔済みの前記曲線孔を削孔時の、前記削孔軌跡計測工程の計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて算出することを特徴とする請求項6記載の削孔方法。 The predetermined drilling length is calculated based on the radius of curvature of the curved hole that has been drilled, which is obtained from the measurement result of the drilling locus measurement step when the curved hole that has been drilled is drilled. The drilling method according to claim 6, wherein the drilling method is characterized. 前記削孔軌跡計測工程において、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサを、前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込んだ後、前記ジャイロセンサを引き上げながら該ジャイロセンサにより計測を行うと共に、前記ジャイロセンサに接続した線状の送り込み手段の繰り出し量を計測し、前記ジャイロセンサによる計測結果と前記繰り出し量とに基づいて、前記削孔軌跡を計測する方法を併用することを特徴とする請求項1から7のいずれか1項記載の削孔方法。 In the drilling locus measurement step, a gyro sensor capable of measuring at least the pitching direction and the yawing direction is sent to the vicinity of the tip head through the inside of the drilling tube, and then the gyro sensor is pulled up by the gyro sensor. In addition to the measurement, the method of measuring the feeding amount of the linear feeding means connected to the gyro sensor and measuring the drilling locus based on the measurement result by the gyro sensor and the feeding amount is also used. The drilling method according to any one of claims 1 to 7, wherein the drilling method is characterized by 先端にテーパ面を有する回転可能な先端ヘッドを装着した削孔管を利用し、前記先端ヘッドを回転させながら前記削孔管を押し込むことで直線孔を削孔する直線削孔と、前記先端ヘッドを回転させずに前記削孔管を押し込むことで曲線孔を削孔する曲線削孔とを組み合わせて、地中を削孔する削孔機を備えた削孔装置であって、
地上に露出している前記削孔管の一部から電流を流すことで、地中の前記削孔管を中心とした磁界を発生させる磁界発生手段と、前記磁界を地上から受信するための受信器と、該受信器による受信結果に基づいて、削孔開始位置から前記先端ヘッドまでの削孔軌跡を計測する第1の計測手段と、を備える第1の削孔軌跡計測手段と、
前記先端ヘッドに設置された傾斜計或いはひずみ計を利用して、前記先端ヘッドの回転角度及びピッチング角度を計測する姿勢計測手段と、
前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果に基づいて、前記先端ヘッドの回転角度位置を算出する回転角度算出手段と、
装置全体を制御する制御手段と、を含むことを特徴とする削孔装置。
Using a drilling tube equipped with a rotatable tip head having a tapered surface at the tip, a straight hole drilling that drills a straight hole by pushing the drilling tube while rotating the tip head, and the tip head It is a drilling device equipped with a drilling machine for drilling holes in the ground in combination with a curved drilling machine that drills a curved hole by pushing the drilling pipe without rotating.
A magnetic field generating means for generating a magnetic field centered on the drilling tube in the ground by passing an electric current from a part of the drilling tube exposed on the ground, and receiving for receiving the magnetic field from the ground. A first drilling locus measuring means including a device and a first measuring means for measuring a drilling locus from a drilling start position to the tip head based on a reception result by the receiver.
A posture measuring means for measuring the rotation angle and pitching angle of the tip head by using a tilt meter or a strain gauge installed on the tip head.
A rotation angle calculating means for calculating the rotation angle position of the tip head based on the measurement results of the first drilling locus measuring means and the posture measuring means, and
A drilling device comprising: a control means for controlling the entire device.
前記第1の削孔軌跡計測手段は、地上から前記受信器により前記削孔管の複数の部位の位置を検出し、前記第1の計測手段により前記複数の部位の位置を仮想的に線状に繋げて得られる仮想曲線に基づき、前記削孔軌跡を計測するものであることを特徴とする請求項9記載の削孔装置。 The first drilling locus measuring means detects the positions of a plurality of parts of the drilling pipe from the ground by the receiver, and the positions of the plurality of parts are virtually linear by the first measuring means. The drilling device according to claim 9, wherein the drilling locus is measured based on a virtual curve obtained by connecting to. 前記姿勢計測手段は、前記先端ヘッドに予め取り付けられる傾斜計と、地上から前記削孔管の内部を通して前記傾斜計に接近させられることで、前記傾斜計から前記先端ヘッドの回転角度及びピッチング角度に係るデータを光信号で受信する光受信手段と、該光受信手段からケーブルを介して前記データを取得するデータ取得手段と、を含むことを特徴とする請求項9又は10記載の削孔装置。 The attitude measuring means is brought close to the inclinometer from the ground through the inside of the drilling pipe and the inclinometer attached to the tip head in advance, so that the rotation angle and the pitching angle of the tip head can be changed from the inclinometer. The drilling device according to claim 9 or 10, further comprising an optical receiving means for receiving the data as an optical signal and a data acquiring means for acquiring the data from the optical receiving means via a cable. 前記制御手段は、前記削孔機による前記直線孔及び前記曲線孔の削孔中に、所定距離が削孔される毎に、前記第1の削孔軌跡計測手段による前記削孔軌跡の計測と、前記姿勢計測手段による前記先端ヘッドの回転角度及びピッチング角度の計測と、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出とが行われるように制御することを特徴とする請求項9から11のいずれか1項記載の削孔装置。 The control means measures the drilling locus by the first drilling locus measuring means every time a predetermined distance is drilled in the straight hole and the curved hole by the drilling machine. 9. The aspect 9 is characterized in that the rotation angle and pitching angle of the tip head are measured by the posture measuring means and the rotation angle position of the tip head is calculated by the rotation angle calculating means. The drilling device according to any one of items 1 to 11. 前記回転角度算出手段は、前記削孔機による前記曲線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記曲線孔の予測終点位置を算出すると共に、該曲線孔の予測終点位置と、前記曲線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記曲線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記曲線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、
前記制御手段は、前記削孔機による前記曲線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整した後、前記削孔機による前記曲線孔の削孔に復帰させることを特徴とする請求項12記載の削孔装置。
The rotation angle calculating means calculates the predicted end point position of the curved hole from the measurement results of the first drilling locus measuring means and the attitude measuring means during the drilling of the curved hole by the drilling machine. At the same time, the difference between the predicted end point position of the curved hole and the planned end point position of the curved hole is calculated, and when the difference is out of the predetermined range, it is measured by the first drilling locus measuring means. A vertical line is virtually drawn from the tip of the drilling locus with respect to the planned line of the curved hole, and the tip head is directed so that the tapered surface faces the opposite side of the planned line of the curved hole in the direction of the vertical line. It calculates the rotation angle position of
The control means receives the calculation of the rotation angle position of the tip head by the rotation angle calculation means during the drilling of the curved hole by the hole drilling machine, adjusts the rotation angle position of the tip head, and then adjusts the rotation angle position of the tip head. The drilling device according to claim 12, wherein the drilling device returns to drilling the curved hole by the drilling machine.
前記回転角度算出手段は、前記削孔機による前記直線孔の削孔中に、前記第1の削孔軌跡計測手段及び前記姿勢計測手段による計測結果から、前記直線孔の予測終点位置を算出すると共に、該直線孔の予測終点位置と、前記直線孔の計画終点位置との差分を算出し、該差分が所定範囲から外れている場合に、前記第1の削孔軌跡計測手段により計測された前記削孔軌跡の先端から、前記直線孔の計画線に対して仮想的に垂線を引き、該垂線方向視で前記テーパ面が前記直線孔の計画線と反対側を向くように、前記先端ヘッドの回転角度位置を算出するものであり、
前記制御手段は、前記削孔機による前記直線孔の削孔中に、前記回転角度算出手段による前記先端ヘッドの回転角度位置の算出を受けて、前記先端ヘッドの回転角度位置を調整し、前記削孔機による前記曲線孔の削孔を所定削孔長行わせた後、前記削孔機による前記直線孔の削孔に復帰させることを特徴とする請求項12又は13記載の削孔装置。
The rotation angle calculating means calculates the predicted end point position of the straight hole from the measurement results of the first drilling locus measuring means and the attitude measuring means during the drilling of the straight hole by the drilling machine. At the same time, the difference between the predicted end point position of the straight hole and the planned end point position of the straight hole is calculated, and when the difference is out of the predetermined range, it is measured by the first drilling locus measuring means. A vertical line is virtually drawn from the tip of the drilling locus with respect to the planned line of the straight hole, and the tip head is directed so that the tapered surface faces the opposite side of the planned line of the straight hole in the direction of the vertical line. It calculates the rotation angle position of
The control means receives the calculation of the rotation angle position of the tip head by the rotation angle calculation means during the drilling of the straight hole by the hole drilling machine, adjusts the rotation angle position of the tip head, and adjusts the rotation angle position. The drilling device according to claim 12 or 13, wherein the drilling of the curved hole by the drilling machine is performed for a predetermined drilling length, and then the drilling is returned to the drilling of the straight hole by the drilling machine.
前記制御手段は、削孔済みの前記曲線孔の削孔時に、前記第1の削孔軌跡計測手段による計測結果から求められる、削孔済みの前記曲線孔の曲率半径に基づいて、前記所定削孔長を算出することを特徴とする請求項14記載の削孔装置。 The control means performs the predetermined drilling based on the radius of curvature of the curved hole that has been drilled, which is obtained from the measurement result by the first drilling locus measuring means at the time of drilling the curved hole that has been drilled. The hole drilling device according to claim 14, wherein the hole length is calculated. 前記削孔管の内部を通して前記先端ヘッドの近傍まで送り込まれ、少なくともピッチング方向とヨーイング方向とを計測可能なジャイロセンサと、該ジャイロセンサに接続された線状の送り込み手段の繰り出し量を計測する繰り出し量計測手段と、前記ジャイロセンサ及び前記繰り出し量計測手段による計測結果に基づいて、前記削孔軌跡を計測する第2の計測手段と、を備える第2の削孔軌跡計測手段を含み、
前記回転角度算出手段及び前記制御手段は、前記第1の削孔軌跡計測手段により計測される前記削孔軌跡と、前記第2の削孔軌跡計測手段により計測される前記削孔軌跡とを併用して利用することを特徴とする請求項9から15のいずれか1項記載の削孔装置。
A gyro sensor that is fed through the inside of the drilling tube to the vicinity of the tip head and can measure at least the pitching direction and the yawing direction, and a feeding amount that measures the feeding amount of the linear feeding means connected to the gyro sensor. A second drilling locus measuring means including a quantity measuring means and a second measuring means for measuring the drilling locus based on the measurement results by the gyro sensor and the feeding amount measuring means.
The rotation angle calculating means and the control means use the drilling locus measured by the first drilling locus measuring means and the drilling locus measured by the second drilling locus measuring means in combination. The drilling device according to any one of claims 9 to 15, wherein the drilling device is used.
JP2017099043A 2017-05-18 2017-05-18 Drilling method and drilling device Active JP6936047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099043A JP6936047B2 (en) 2017-05-18 2017-05-18 Drilling method and drilling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099043A JP6936047B2 (en) 2017-05-18 2017-05-18 Drilling method and drilling device

Publications (3)

Publication Number Publication Date
JP2018193792A JP2018193792A (en) 2018-12-06
JP2018193792A5 JP2018193792A5 (en) 2020-06-18
JP6936047B2 true JP6936047B2 (en) 2021-09-15

Family

ID=64568914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099043A Active JP6936047B2 (en) 2017-05-18 2017-05-18 Drilling method and drilling device

Country Status (1)

Country Link
JP (1) JP6936047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316188B2 (en) * 2019-10-25 2023-07-27 鹿島建設株式会社 data transmission system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679637A (en) * 1985-05-14 1987-07-14 Cherrington Martin D Apparatus and method for forming an enlarged underground arcuate bore and installing a conduit therein
ES2045453T3 (en) * 1988-09-02 1994-01-16 British Gas Plc DEVICE TO CONTROL THE POSITION OF A SELF-PROPELLED DRILLING TOOL.
JPH10318748A (en) * 1997-03-19 1998-12-04 Kokusai Denshin Denwa Co Ltd <Kdd> Method and system for measuring position
JP2003121151A (en) * 2001-10-16 2003-04-23 Hitachi Metals Ltd Method and apparatus for prospecting position in excavation body
US6736222B2 (en) * 2001-11-05 2004-05-18 Vector Magnetics, Llc Relative drill bit direction measurement
JP3891345B2 (en) * 2002-11-01 2007-03-14 五洋建設株式会社 Underground curve drilling device and drilling control method using the device
JP2010181233A (en) * 2009-02-04 2010-08-19 Nemoto Kikaku Kogyo Kk Gyro positioning system
JP5468315B2 (en) * 2009-06-23 2014-04-09 東亜建設工業株式会社 Drilling position measuring method and system
JP5873052B2 (en) * 2013-09-17 2016-03-01 根本企画工業株式会社 Method and apparatus for detecting inclination of underground excavation head

Also Published As

Publication number Publication date
JP2018193792A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US11598198B2 (en) Advanced underground homing system, apparatus and method
US11555352B2 (en) Multimode steering and homing system, method and apparatus
JP6936047B2 (en) Drilling method and drilling device
JP2001091242A (en) Measuring device for propulsion locus and propulsion attitude in propulsion shield tunneling method, measuring method, propulsion locus control device and propulsion locus control method
JP4105392B2 (en) A rock control method and a rock drill machine
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JP2021067113A (en) Data transmission system
JP5933238B2 (en) Hole trajectory measuring device and measuring method
JP3969721B2 (en) Drilling position detection method and drilling apparatus used therefor
JP5873052B2 (en) Method and apparatus for detecting inclination of underground excavation head
JP2010181233A (en) Gyro positioning system
JP5559008B2 (en) Fixed measuring device and direction control drilling device
US11592457B2 (en) Methods and systems for tunnel profiling
JP3757767B2 (en) Non-cutting propulsion method, excavation pipe tip position measurement method and excavation pipe tip position measurement device
JP4055188B2 (en) Shaft insertion device and shaft insertion method
JP3822521B2 (en) State estimation method and apparatus for buried pipe propulsion device tip device
JP5466023B2 (en) Drilling tube tip position measuring method and tip position measuring system
JP2006010628A (en) Detector for detecting object
JP2005213743A (en) Pipe insertion control device and pipe insertion control method
JP2020016647A (en) Borehole locus measurement device and method of the same
JP2002090141A (en) Method and device for measuring leader position
JP2013011074A (en) Direction control drilling method, direction control drilling system, and drilling system
JP2005113524A (en) Propulsive excavator and calculation method of position of boring machine
JPH07113638A (en) Position sensing system of tunnel excavating machine
JP2006144449A (en) Surveying cylinder body for curve

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6936047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150