JP2001153638A - Cross section measuring method and measuring device for underground structure - Google Patents

Cross section measuring method and measuring device for underground structure

Info

Publication number
JP2001153638A
JP2001153638A JP34071899A JP34071899A JP2001153638A JP 2001153638 A JP2001153638 A JP 2001153638A JP 34071899 A JP34071899 A JP 34071899A JP 34071899 A JP34071899 A JP 34071899A JP 2001153638 A JP2001153638 A JP 2001153638A
Authority
JP
Japan
Prior art keywords
wave
measurement
measured
cross
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34071899A
Other languages
Japanese (ja)
Other versions
JP4449048B2 (en
Inventor
Yoshinobu Kitani
好伸 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP34071899A priority Critical patent/JP4449048B2/en
Publication of JP2001153638A publication Critical patent/JP2001153638A/en
Application granted granted Critical
Publication of JP4449048B2 publication Critical patent/JP4449048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily measure the cross sectional dimension or quality of an under ground structure from the ground surface and easily display the cross sectional shape of an object. SOLUTION: Soil cement is filled in a posthole 36, a precast pile 39 is buried to construct a foundation pillar structure 35. A measuring hole 42 is opened in the foundation pillar structure 35, a measuring device 32 having a sensor unit 20 is inserted into the measuring hole 42, and the measuring device 32 is fixed with a fixing guide 5. AP wave is oscillated vertically to a hole wall 43 from the sensor unit 20 and propagated within the soil cement in almost the horizontal direction along the hole wall 43. Direct wave propagated along the hole wall 43 is received, and propagating speed Vp of the P wave at the measuring position is measured. The reflected wave from the outermost end (the boundary of the ground and the soil cement 41) of the soil cement layer, propagated in the horizontal direction is received. The diameter D of a wider bottom part 38 of the posthole 36 is measured from the assivol time of the reflected wave and the propagating speed Vp, and the quality such as presence of defeet in the cross section is confirmed from the received wave form.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、弾性波を発受振
して基礎杭等の断面寸法の測定等ができる弾性波を利用
した地中構造物の断面測定方法及び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the cross section of an underground structure using an elastic wave capable of transmitting and receiving an elastic wave to measure a cross-sectional dimension of a foundation pile or the like.

【0002】[0002]

【従来の技術】既製杭や場所打ち杭等のコンクリートや
セメントミルク等を使用した地中構造物は、地上の構造
物を支える重要な構造であるにもかかわらず、地上から
その内容を確認することができない為、地中構造物の健
全性を評価する方法が求められている。
2. Description of the Related Art Underground structures using concrete or cement milk, such as ready-made piles and cast-in-place piles, are important structures that support structures on the ground, but their contents are checked from the ground. Because of this, there is a need for a method to assess the integrity of underground structures.

【0003】また、近年における基礎杭構造の高支持力
化に伴い、杭穴拡底部での根固め液の役割や、杭周固定
液の役割が増しているなかで、これらを正確に評価する
ことが求められていた。
[0003] In addition, with the recent increase in the bearing capacity of the foundation pile structure, the role of the root consolidation liquid at the bottom of the pile hole and the role of the perimeter fixing liquid are increasing, and these are accurately evaluated. Was required.

【0004】従来、地盤を掘削して地中コンクリート構
造物の頭部を露出させて、その頭部を打撃して得られる
反射波形から測定する方法が知られていた。この方法で
は、簡便であるが、地中コンクリート構造物の深度が大
きい場合などでは正確な測定ができない問題があった。
Conventionally, there has been known a method of excavating the ground to expose the head of an underground concrete structure, and measuring the reflection waveform obtained by hitting the head. Although this method is simple, there is a problem that accurate measurement cannot be performed when the depth of the underground concrete structure is large.

【0005】また、杭穴内で固化した根固め液や杭周固
定液の健全性を評価する際には、未だ固まる前に、杭穴
内からサンプルを採取し、地上で固化させて供試体を作
り、圧縮強度試験などを行っていた。しかし、杭穴内で
固化した根固め液等を、固化後に基準通りの杭穴径や大
きさに構築されているか否かの調査はなされていなかっ
た。通常は、上記の固化前のサンプル検査と杭穴の掘削
データを元に判断されていた。
[0005] When evaluating the soundness of the root compaction liquid or pile fixation liquid solidified in the pile hole, a sample is taken from the pile hole before solidification, and solidified on the ground to produce a specimen. And compression strength tests. However, no investigation has been made as to whether the root consolidation liquid or the like solidified in the pile hole has been constructed to the standard pile hole diameter and size after solidification. Usually, the judgment was made based on the above-mentioned sample inspection before solidification and the drilling data of the pile hole.

【0006】一般的な地中コンクリート構造物の健全性
評価方法として、「場所打ちコンクリート杭など地中コ
ンクリート構造物の健全性評価方法及びその装置」(特
開平11−133004)が提案されている。
As a general method of evaluating the soundness of an underground concrete structure, "Method of evaluating soundness of an underground concrete structure such as cast-in-place concrete pile and its apparatus" (Japanese Patent Application Laid-Open No. H11-133004) has been proposed. .

【0007】また、他の方法として、地盤改良の分野で
は、S波を用いて地盤改良体の断面形状を測定する方法
も提案されている。
As another method, in the field of ground improvement, there has been proposed a method of measuring a sectional shape of a ground improvement body using S waves.

【0008】[0008]

【発明が解決しようとする課題】前記従来技術の内、前
者の場合には、超音波を利用したものであり、発振セン
サー装置と受振センサー装置とを用意し、地中構造物に
夫々のセンサー装置の挿入孔を設け、発振センサーから
発振した超音波を発振センサー下部の反射体に反射さ
せ、その反射波を受振センサーに伝搬させて測定するも
のである。
Among the above prior arts, in the former case, the ultrasonic wave is utilized, and an oscillation sensor device and a vibration sensor device are prepared, and each sensor is provided on the underground structure. An insertion hole of the device is provided, the ultrasonic wave oscillated from the oscillation sensor is reflected by a reflector below the oscillation sensor, and the reflected wave is propagated to the vibration sensor for measurement.

【0009】この方法では、発振センサー用、受振セン
サー用の2つの挿入孔が必須であり、作業が煩雑にな
り、また杭径が比較的大きな場所打ち杭では利用できる
が、比較的小径の既製杭では利用することが困難であっ
た。また、この方法では、両挿入孔間の欠陥箇所の有無
は測定できるが、施工された杭穴径の測定はできなかっ
た。
In this method, two insertion holes for an oscillation sensor and a vibration sensor are required, which makes the operation complicated and can be used for a cast-in-place pile having a relatively large pile diameter. It was difficult to use with piles. Further, according to this method, the presence or absence of a defective portion between the two insertion holes can be measured, but the diameter of the constructed pile hole cannot be measured.

【0010】また、後者の技術では、この弾性波を利用
した測定方法では、弾性波が固化した地盤改良体(コン
クリート系)内を伝搬する弾性波の速度を推定しなけれ
ばならないが、この方法では、多点での受振記録から到
達した反射波の位相差によって伝搬速度を推定してい
る。この方法では、各受振点で受振された振動の位相差
が小さい場合には、弾性波速度の推定が困難となる問題
点があった。
In the latter technique, in the measuring method using the elastic wave, it is necessary to estimate the velocity of the elastic wave propagating in the ground improvement body (concrete) in which the elastic wave is solidified. In, the propagation velocity is estimated based on the phase difference of the reflected waves that have arrived from the received recording at multiple points. This method has a problem that it is difficult to estimate the velocity of the elastic wave when the phase difference between the vibrations received at each vibration receiving point is small.

【0011】また、後者の地盤改良の場合、ソイルセメ
ントが低品質であり、S波の伝搬速度300m/s以上
であり、改良の対象となる軟弱地盤でのS波の伝搬速度
(150m/s程度)と比べて高いため、S波でも地盤
との境界から有効な反射波が得られる。しかし、基礎杭
構造に使用される高品質のソイルセメントでは、S波を
使用した場合、伝搬速度との差からP波が最初に到達す
るため、S波の反射波の初動の到達は、P波の後続波と
合成される。従って、S波の反射波の正確な到達時間を
検出するのが困難になる。
In the latter case of soil improvement, the soil cement is of low quality, the propagation speed of the S wave is 300 m / s or more, and the propagation speed of the S wave on the soft ground to be improved (150 m / s). ), An effective reflected wave can be obtained even from the S wave from the boundary with the ground. However, in the high quality soil cement used for the foundation pile structure, when the S wave is used, the P wave arrives first due to the difference from the propagation speed, so that the initial movement of the reflected wave of the S wave is P It is combined with the wave following the wave. Therefore, it is difficult to accurately detect the arrival time of the reflected wave of the S wave.

【0012】また、逆に、軟弱地盤の地盤改良にP波を
使用した場合には、軟弱地盤のP波の伝搬速度(地盤が
飽和していれば1500m/s)と比べて、低品質のソ
イルセメント内でのP波の伝搬速度(1200〜160
0m/s程度)と比べて差がない為、有効な反射波が得
られない。
On the other hand, when the P-wave is used for soil improvement of the soft ground, the P-wave propagation speed of the soft ground (1500 m / s if the ground is saturated) is lower in quality. Propagation speed of P wave in soil cement (1200 to 160
(Approximately 0 m / s), an effective reflected wave cannot be obtained.

【0013】尚、前記における地盤改良等の低品質なソ
イルセメントとは、各地層において、圧縮強度が異なる
ため、深度方向に均質な強度が発揮できないようなソイ
ルセメントをいう。例えば、 粘土: 10kg/cm2 以下 シルト:20〜40kg/cm2 砂: 40kg/cm2 前後 ローム:10〜20kg/cm2 等のように異なる。また、異なる地層が重なる箇所につ
いては、更に均質なソイルセメントになりにくい。
[0013] The above-mentioned low-quality soil cement such as ground improvement refers to a soil cement that cannot exhibit uniform strength in the depth direction because the compressive strength is different in each layer. For example, Clay: 10 kg / cm 2 or less silt: 20~40kg / cm 2 sand: 40 kg / cm 2 before and after Rohm: different as such 10-20 kg / cm 2. In addition, it is difficult to obtain a more uniform soil cement at a portion where different strata overlap.

【0014】また、前記における基礎杭構造に使用する
高品質なソイルセメントとは、根固め部と杭周部での圧
縮強度は異なるが、夫々の深度方向全域での圧縮強度は
一定の値であり、均質なソイルセメントが形成されてい
るソイルセメントをいう。例えば、根固め部にソイルセ
メントの圧縮強度が約300kg/cm2 となるように
配合されたセメントミルクを注入したならば、根固め部
全域において、圧縮強度ほぼ300kg/cm2 のソイ
ルセメントが形成される。また、杭周部にソイルセメン
トの圧縮強度が約30kg/cm2 となるように配合さ
れたセメントミルクを注入したならば、杭周部全域にお
いて圧縮強度がほぼ30kg/cm2 のソイルセメント
が形成される。
Further, the high-strength soil cement used for the foundation pile structure described above has different compressive strengths at the root consolidation portion and at the periphery of the pile, but has a constant compressive strength over the entire region in the depth direction. Yes, refers to soil cement in which a homogeneous soil cement is formed. For example, if the compressive strength of soil cement in the root hardened portion is injected formulated cement milk to be about 300 kg / cm 2, in roots consolidated-wide and soil cement compressive strength approximately 300 kg / cm 2 is formed Is done. Also, if the compressive strength of soil cement in pile peripheral portion is injected formulated cement milk to be about 30kg / cm 2, is approximately 30kg / cm 2 of soil cement compressive strength at pile periphery whole form Is done.

【0015】よって、前記における低品質なソイルセメ
ントと高品質なソイルセメントとの違いは、均質なソイ
ルセメントが形成されているか否かという相違である。
Therefore, the difference between the low-quality soil cement and the high-quality soil cement in the above is whether or not a homogeneous soil cement is formed.

【0016】[0016]

【課題を解決するための手段】然るにこの発明では、測
定穴壁に垂直に、測定位置で予め得られた伝搬速度既知
の弾性波を発受振して測定対象物までの距離を測定する
ので、前記問題点を解決した。
According to the present invention, however, the distance to the object to be measured is measured by transmitting and receiving an elastic wave having a known propagation velocity previously obtained at the measurement position and perpendicular to the wall of the measurement hole. The above problem has been solved.

【0017】即ち、方法の発明は、コンクリート系地中
構造物からなる測定対象を測定する方法であって、地上
から測定対象物の測定位置深さまで、測定穴を穿設し、
該測定穴内の所定高さで、測定穴壁に垂直に、一方向に
伝搬速度既知の弾性波を発振し、測定対象からの反射波
を測定穴内で受振して、測定対象までの距離及び測定対
象の品質状態を測定することを特徴とした地中構造物の
断面測定方法である。
That is, the invention of the method is a method for measuring a measuring object composed of a concrete-based underground structure, wherein a measuring hole is drilled from the ground to a measuring position depth of the measuring object.
At a predetermined height in the measurement hole, an elastic wave having a known propagation velocity is oscillated in one direction, perpendicular to the measurement hole wall, a reflected wave from the measurement object is received in the measurement hole, and the distance to the measurement object and measurement. This is a method for measuring the cross section of an underground structure, characterized by measuring a quality state of an object.

【0018】また、杭穴内に、中空部を有する既製杭を
設置し、該既製杭の周面、底部及び中空部内にセメント
固化物層を形成する基礎杭構造において、前記中空部の
寸法内に測定位置深さまで、測定穴を穿設し、該測定穴
内の所定高さで、測定穴壁に垂直に、一方向に伝搬速度
既知の弾性波を発振し、測定対象からの反射波を測定穴
内で受振して、判定対象までの距離及び測定対象の品質
状態を測定することを特徴とした地中構造物の断面測定
方法である。
Further, in a foundation pile structure in which a ready-made pile having a hollow portion is installed in a pile hole and a cement solidified layer is formed on a peripheral surface, a bottom portion, and a hollow portion of the ready-made pile, A measurement hole is drilled to the depth of the measurement position, an elastic wave having a known propagation velocity is oscillated in one direction perpendicular to the measurement hole wall at a predetermined height in the measurement hole, and a reflected wave from the measurement object is measured in the measurement hole. And measuring the distance to the object to be determined and the quality state of the object to be measured.

【0019】また、同一高さにおいて、所定角度毎に複
数の方向において、弾性波を発振して、測定対象までの
距離及び測定対象の品質状態を測定することを特徴とし
た地中構造物の断面測定方法である。また、測定穴内
で、発振子から発振された弾性波を直達波受振子で受振
して、到達までに要した時間と、前記発振子と直達波受
振子との距離とから測定対象物内を伝わる弾性波の伝搬
速度を測定することを特徴とした地中構造物の断面測定
方法である。また、弾性波としてP波、S波を使用し、
P波によって測定対象までの距離を測定すると共に、P
波及び/又はS波によって測定対象の品質を測定するこ
とを特徴とした地中構造物の断面測定方法である。ま
た、P波の伝搬速度3500〜4500m/sを用い
て、測定対象までの距離及び測定対象の品質状態を測定
することを特徴とした地中構造物の断面測定方法であ
る。
An underground structure characterized by oscillating elastic waves in a plurality of directions at predetermined angles at the same height to measure a distance to a measurement object and a quality state of the measurement object. This is a cross-section measurement method. Further, in the measurement hole, the elastic wave oscillated from the oscillator is received by the direct wave receiver, and the time required for arrival and the distance between the oscillator and the direct wave receiver determine the inside of the measurement object. This is a method for measuring the cross section of an underground structure, characterized by measuring the propagation speed of a transmitted elastic wave. In addition, P waves and S waves are used as elastic waves,
The distance to the object to be measured is measured by the P wave,
This is a method for measuring the cross section of an underground structure, characterized by measuring the quality of a measurement target by using waves and / or S waves. A cross-section measuring method of an underground structure characterized by measuring a distance to a measuring object and a quality state of the measuring object using a P-wave propagation velocity of 3500 to 4500 m / s.

【0020】また、装置の発明は、測定穴の軸方向に配
置される基軸の長さ方向一側に、該基軸を測定穴の中央
に保持する為の固定ガイドを設け、前記基軸の長さ方向
他側に、放射状に出没できる弾性波の送受振子を備えた
センサーユニットを設けたことを特徴とする断面測定装
置である。
Further, the invention of the apparatus is characterized in that a fixing guide for holding the base shaft at the center of the measurement hole is provided on one side in the length direction of the base shaft arranged in the axial direction of the measurement hole, A cross-section measuring device, characterized in that a sensor unit having an elastic wave transmitting / receiving element that can radially appear and disappear is provided on the other side in the direction.

【0021】また、センサーユニットは、弾性波の発振
子、受振子及び直達波受振子とを適宜順序で基軸方向に
並列して構成する断面測定装置である。また、センサー
ユニットは、P波受振子、P波発振子、S波発振子、P
直達波受振子、S波受振子を、基軸方向に順に並べて配
置したことを特徴とする断面測定装置である。また、セ
ンサーユニットは、ユニット全体を上下に移動させる操
作を変換して、ユニット全体を基軸に平行に移動させ
て、放射状に出没させる断面測定装置である。また、固
定ガイドは、放射状に出没して測定穴壁に押圧して当接
できる当接板を設け、該当接板を操作するエアーシリン
ダーを設けたことを特徴とする断面測定装置である。
The sensor unit is a cross-section measuring device in which an elastic wave oscillator, a transducer, and a direct wave transducer are arranged in parallel in the base axis direction in an appropriate order. The sensor unit includes a P-wave receiver, a P-wave oscillator, an S-wave oscillator,
A cross-sectional measurement device characterized in that a direct wave receiver and an S wave receiver are arranged side by side in the base axis direction. The sensor unit is a cross-section measuring device that converts the operation of moving the entire unit up and down, moves the entire unit in parallel with the base axis, and makes the unit protrude and retract radially. Further, the fixed guide is a cross-sectional measuring apparatus characterized in that a contact plate is provided which can radially protrude and come into contact with the measurement hole wall by pressing, and an air cylinder for operating the contact plate is provided.

【0022】前記におけるセメント固化物層は、主にソ
イルセメント層であるが、セメントミルクなど通常の杭
穴内の充填物として使用される各種セメント固化物から
なる層を含む。
The cement solidified layer in the above is mainly a soil cement layer, but includes a layer composed of various cement solidified materials such as cement milk used as a filler in a usual pile hole.

【0023】[0023]

【発明の実施の形態】拡底部38を有する杭穴36内
に、ソイルセメントを充填して、中空部を有する既製杭
39を埋設して、基礎杭構造35を構築してある(図2
(a)、図3)。基礎杭構造35に用いる高品質なソイ
ルセメントの場合、P波の伝搬速度が速い(4000m
/s前後)ので、周辺地盤でのP波の伝搬速度(170
0〜2000m/s程度)との速度差があるため、杭穴
壁との境界から有効な反射波が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION In a pile hole 36 having an enlarged bottom portion 38, soil cement is filled, and a ready-made pile 39 having a hollow portion is buried to construct a foundation pile structure 35 (FIG. 2).
(A), FIG. 3). In the case of high quality soil cement used for the foundation pile structure 35, the propagation speed of the P wave is high (4000 m).
/ S), the propagation speed of the P wave in the surrounding ground (170
(About 0 to 2000 m / s), an effective reflected wave can be obtained from the boundary with the pile hole wall.

【0024】基礎杭構造35の中心軸に沿って(既製杭
39の中空部に埋設されたソイルセメント層内)、測定
穴42を穿設し、孔壁43に垂直にP波発振子24を密
着し、放射状にP波を発振する。発振されたP波は固化
したソイルセメント40内を略水平方向及び孔壁43沿
った方向(矢示46方向)に伝搬する。孔壁43に沿っ
て伝搬したP波を、孔壁43に当接したP直達波受振子
26で受振する(図6(a))。直達波の到達時間から
測定位置でのP波の伝搬速度Vp を測定できる。
A measurement hole 42 is drilled along the central axis of the foundation pile structure 35 (in the soil cement layer embedded in the hollow portion of the ready-made pile 39), and the P-wave oscillator 24 is vertically mounted on the hole wall 43. It adheres closely and oscillates P-waves radially. The oscillated P wave propagates in the solidified soil cement 40 in a substantially horizontal direction and a direction along the hole wall 43 (the direction indicated by the arrow 46). The P wave propagated along the hole wall 43 is received by the P direct wave receiver 26 abutting on the hole wall 43 (FIG. 6A). The propagation velocity V p of the P wave at the measurement position from the time of arrival of the direct wave can be measured.

【0025】また、水平方向に伝搬して、固化したソイ
ルセメント層の最外端(地盤とソイルセメント41との
境界)45からの反射波をP波受振子23で受振して、
受振までの時間と、受振波形を計測する。P波到達時間
と、P波の伝搬速度Vp とから孔壁43からソイルセメ
ント層の最外端45までの距離Lを求め、杭穴36の拡
底部38の径D(固化したソイルセメント層の最外端4
5の位置)を測定できる(図7)。
Further, the reflected wave from the outermost end (boundary between the ground and the soil cement 41) 45 of the soil cement layer which propagates in the horizontal direction and is solidified is received by the P wave
Measure the time until receiving and the received waveform. And P-wave arrival time, obtains a distance L from the propagation velocity V p of the P-wave from the bore wall 43 to the outermost edge 45 of the soil cement layer, the diameter D (solidified soil cement layer of拡底portion 38 of Kuiana 36 Outermost end 4
5 position) (FIG. 7).

【0026】上記作業を、例えば、所定角度毎、1周測
定することにより、固化したソイルセメント層の断面を
測定できる。また、受振波形を処理することにより、ソ
イルセメント層の断面の欠損や異物の混入、所定の強度
に満たないソイルセメントの部分などが確認できる(図
9)。
The above operation is measured, for example, once at a predetermined angle, so that the cross section of the solidified soil cement layer can be measured. In addition, by processing the received waveform, it is possible to confirm a defect in the cross section of the soil cement layer, mixing of foreign matter, a portion of the soil cement less than a predetermined strength, and the like (FIG. 9).

【0027】[0027]

【実施例1】図1〜3に基づきこの発明の装置の実施例
を説明する。
Embodiment 1 An embodiment of the apparatus of the present invention will be described with reference to FIGS.

【0028】上基軸2と下基軸3とを同軸で上下に軸周
りに回転可能に連結して基軸1を構成する。
An upper base shaft 2 and a lower base shaft 3 are coaxially connected to each other so as to be rotatable up and down around the axis to form a base shaft 1.

【0029】前記上基軸2の上端部に、固定ガイド5を
取付け、該固定ガイド5の下方に第一ケース10を取付
ける。前記固定ガイド5は、測定穴壁に当接できる当接
板6、6を、基軸1に並列してかつ直径対象な位置に配
置し、該当接板6の上部と上基軸2とを連結杆7、7で
ピン連結してある。また、前記当接板6の下部は、上基
軸2に嵌装したエアーシリンダー9の上部(先端部)に
連結杆7a、7aでピン連結してある。前記エアーシリ
ンダー9の下部(基端部)は、前記第一ケース10内に
取り付けられて、エアーホース8を介して地上から送ら
れるエアーにより、エアーシリンダー9は上基軸2に沿
って摺動できる(図10)。
A fixed guide 5 is attached to the upper end of the upper base shaft 2, and a first case 10 is attached below the fixed guide 5. The fixed guide 5 has contact plates 6, 6, which can contact the measurement hole wall, arranged in parallel with the base shaft 1 and at positions symmetrical in diameter, and connects an upper portion of the contact plate 6 and the upper base shaft 2 to a connecting rod. Pins are connected at 7,7. The lower part of the contact plate 6 is connected to the upper part (tip part) of the air cylinder 9 fitted to the upper base shaft 2 by connecting rods 7a, 7a. The lower part (base end) of the air cylinder 9 is mounted in the first case 10, and the air cylinder 9 can slide along the upper base shaft 2 by air sent from the ground via the air hose 8. (FIG. 10).

【0030】前記エアーシリンダー9が上基軸2に対し
て下方位置にある時には、前記連結杆7、7aは斜め又
は上基軸2に沿って位置し、当接板6、6は上基軸2に
最も近付く(図10(a))。前記エアーシリンダー9
が上基軸2に対して最も上方位置にある際には、連結杆
7、7aは当接板6及び上基軸2と略直角になり、当接
板6は放射状に突出する(図10(b))。
When the air cylinder 9 is at a lower position with respect to the upper base shaft 2, the connecting rods 7, 7a are positioned obliquely or along the upper base shaft 2, and the contact plates 6, 6 are most proximate to the upper base shaft 2. Approaching (FIG. 10A). The air cylinder 9
Is located at the uppermost position with respect to the upper base shaft 2, the connecting rods 7 and 7a are substantially perpendicular to the contact plate 6 and the upper base shaft 2, and the contact plate 6 protrudes radially (FIG. 10B )).

【0031】また、第一ケース10内のモーター(図示
していない)により、下基軸3を上基軸2に対して回動
できるようになっている。
The lower base shaft 3 can be rotated with respect to the upper base shaft 2 by a motor (not shown) in the first case 10.

【0032】前記下基軸(第一ケース10の下方)3に
断面略コ字状の取付枠12を固定し、該取付枠12内に
センサーユニット20が取り付けられている。
A mounting frame 12 having a substantially U-shaped cross section is fixed to the lower base shaft (below the first case 10) 3, and a sensor unit 20 is mounted in the mounting frame 12.

【0033】前記センサーユニット20は、基軸1に沿
った(縦方向の)取付基板21に、上からP波受振子2
3、P波発振子24、S波発振子25、下方に所定距離
29を空けて、P直達波受振子26、S波受振子27
が、縦に並列して取り付けられている。各発受振子23
〜27の先端(測定穴壁接触位置)23a〜27aが縦
方向同一に形成されている。前記取付板21の側面に、
各発受振子23〜27の位置(高さ)に、放射状でかつ
各発受振子23〜27と直角に、操作突起22、22が
夫々固定されている。
The sensor unit 20 is mounted on a (vertical) mounting substrate 21 along the base axis 1 from above with a P-wave transducer 2.
3, a P-wave oscillator 24, an S-wave oscillator 25, a predetermined distance 29 below the P-wave oscillator 26, an S-wave oscillator 27
However, they are attached vertically in parallel. Each pendulum 23
The tips (measurement hole wall contact positions) 23a to 27a are formed in the same longitudinal direction. On the side surface of the mounting plate 21,
Operation projections 22, 22 are fixed radially and at right angles to the respective oscillators 23 to 27 at the positions (heights) of the oscillators 23 to 27, respectively.

【0034】前記取付枠12は、背面板13の両縁に側
面板14、14が連接された断面略コ字状で、正面側に
開口して、各発受振子23〜27が突出している。側面
板14、14の操作長孔15、15に、前記取付基板2
1の操作突起22が挿入され、以上のようにして、取付
枠12にセンサーユニット20が取り付けられ、センサ
ーユニット20の各発受振子23〜27は取付枠12の
正面側の開口に位置している。前記操作長孔15は、操
作枠の背面板13側から正面側にかけて下降するように
傾斜して形成され、背面端16が最も高く、正面端17
が最も低形成されている。従って、センサーユニット
(取付基板)20が取付枠12に対して相対的に上位置
にあれば、センサーユニット20は下基軸3側に引き込
んだ位置にあり、逆に下位置にあれば、センサーユニッ
ト20は下基軸3から放射状に突出した位置となる。
The mounting frame 12 has a substantially U-shaped cross section in which side plates 14 and 14 are connected to both edges of a back plate 13 and is open to the front side, and each of the transducers 23 to 27 protrudes. . The operation board 2 is inserted into the operation slots 15 of the side plates 14.
The first operation projection 22 is inserted, and the sensor unit 20 is attached to the attachment frame 12 as described above. Each of the transducers 23 to 27 of the sensor unit 20 is located at the opening on the front side of the attachment frame 12. I have. The operation slot 15 is formed to be inclined so as to descend from the rear plate 13 side to the front side of the operation frame, the rear end 16 is the highest, and the front end 17 is formed.
Is the lowest formed. Therefore, if the sensor unit (mounting board) 20 is located relatively above the mounting frame 12, the sensor unit 20 is at a position retracted toward the lower base shaft 3; Reference numeral 20 denotes a position radially protruding from the lower base shaft 3.

【0035】前記下基軸3の取付枠12の下方に、第二
ケース30が固定され、前記取付基板21の下端部は該
第二ケース30内に収容され、第二ケース30内のモー
ター(図示していない)により、下基軸3(または第二
ケース30、取付枠12)に対して前記取付基板21を
上昇又は下降できるように取り付けられている。
A second case 30 is fixed below the mounting frame 12 of the lower base shaft 3, and a lower end of the mounting board 21 is accommodated in the second case 30, and a motor (see FIG. (Not shown), the mounting substrate 21 is mounted on the lower base shaft 3 (or the second case 30, the mounting frame 12) so as to be able to ascend or descend.

【0036】以上のようにして、測定装置32を構成す
る。図中33は、各発受振子23〜27、モーター等の
電源や信号ケーブルを束ねてこれを保護したケーブル
で、測定深さに応じた長さに形成されている。
The measuring device 32 is configured as described above. In the figure, reference numeral 33 denotes a cable that bundles and protects power supply and signal cables of the respective transducers 23 to 27, a motor and the like, and has a length corresponding to a measurement depth.

【0037】前記実施例において、固定ガイド5の当接
板6、6は、エアーにより開閉させたが、窒素ガスその
他の気体を使用することもできる。また、エアーシリン
ダー9で作動させたので、測定穴壁に多少の乱れが生じ
ても、確実に当接板6を測定穴壁に押圧できるが、エア
ーシリンダに代えて、油圧シリンダー、モーター等によ
り開閉することもできる。
In the above-described embodiment, the contact plates 6, 6 of the fixed guide 5 are opened and closed by air, but nitrogen gas or other gases may be used. In addition, since it is operated by the air cylinder 9, even if the measurement hole wall is slightly disturbed, the contact plate 6 can be surely pressed against the measurement hole wall. However, instead of the air cylinder, a hydraulic cylinder, a motor, or the like is used. Can be opened and closed.

【0038】また、固定ガイド5の構造は、当接板6と
連結杆5、5により構成したが、基軸1を測定穴42の
中央に容易に固定でき、また固定を容易に解除できる構
造であれば、他の構成とすることもできる(図示してい
ない)。
The structure of the fixed guide 5 is constituted by the contact plate 6 and the connecting rods 5 and 5. However, the base shaft 1 can be easily fixed to the center of the measurement hole 42, and the fixing can be easily released. If so, another configuration may be used (not shown).

【0039】また、前記実施例において、センサーユニ
ット20の取付基板21の昇降は、第二ケース30内の
モーターにより作動させたが、エアーシリンダーや油圧
シリンダー等により作動させることもできる。
In the above-described embodiment, the mounting substrate 21 of the sensor unit 20 is moved up and down by the motor in the second case 30, but it can be operated by an air cylinder or a hydraulic cylinder.

【0040】また、前記実施例において、測定装置32
全体、特にセンサーユニット20部分については、取扱
い時における損傷防止及び防水加工を施した構成とする
ことが望ましい。
In the above embodiment, the measuring device 32
It is desirable that the whole, especially the sensor unit 20 be configured to have been subjected to damage prevention and waterproofing during handling.

【0041】また、前記実施例において、センサーユニ
ット20は上からP波受振子23、P波発振子24、S
波発振子25、P直達波受振子26、S波受振子27を
順位に設けが、上下を逆順に配置することもできる。ま
た、この順で配置したたので、各発受振子が干渉するこ
となく良好な測定ができるが、適宜の間隔を確保できれ
ば、他の順序に位置することもできる(図示していな
い)。
In the above embodiment, the sensor unit 20 includes the P-wave oscillator 23, the P-wave oscillator 24,
The wave oscillator 25, the P direct wave receiver 26, and the S wave receiver 27 are provided in order, but they may be arranged in the reverse order. In addition, since they are arranged in this order, good measurement can be performed without interference between the transducers. However, if an appropriate interval can be secured, they can be positioned in another order (not shown).

【0042】また、P波のみで測定する場合には、S波
発振子25、S波受振子27は省略することもできる。
また、伝搬速度を地上で測定する場合には、P直達波受
振子26は省略することもできる(いずれも図示してい
ない)。
When the measurement is performed using only the P wave, the S wave oscillator 25 and the S wave receiver 27 can be omitted.
When measuring the propagation velocity on the ground, the P direct wave receiver 26 may be omitted (neither is shown).

【0043】[0043]

【実施例2】次に、前記測定装置32の使用、即ちこの
発明の方法の実施例を説明する。
Embodiment 2 Next, the use of the measuring device 32, that is, an embodiment of the method of the present invention will be described.

【0044】(1)ます、測定対象の杭基礎構造35に
ついて説明する。
(1) First, the pile foundation structure 35 to be measured will be described.

【0045】軸部37及び拡底部38を有する杭穴36
を掘削して、拡底部38及び軸部37にセメントミルク
を注入して、掘削土と撹拌混合してソイルセメント状と
なし、ソイルセメントで満たされた杭穴36内にコンク
リート系の既製杭39を挿入して沈設する。既製杭39
の外側と杭穴36内にソイルセメント41、既製杭39
の中空部にもソイルセメント40が充填されている。
A pile hole 36 having a shaft portion 37 and an enlarged bottom portion 38
Is excavated, cement milk is poured into the expanded bottom portion 38 and the shaft portion 37, and is stirred and mixed with the excavated soil to form a soil cement, and a concrete-based ready-made pile 39 is inserted into a pile hole 36 filled with soil cement. Insert and sink. Ready-made pile 39
Soil cement 41 and ready-made pile 39
Is also filled with soil cement 40.

【0046】既製杭39とソイルセメント40、41と
が一体となり、ソイルセメント40、41が固化後に杭
穴36内に基礎杭構造35が構築される。本発明によ
り、この基礎杭構造35の軸部37及び拡底部38の大
きさ(径)、品質を地上から測定する。
The ready-made pile 39 and the soil cements 40 and 41 are integrated, and after the soil cements 40 and 41 are solidified, the foundation pile structure 35 is constructed in the pile hole 36. According to the present invention, the size (diameter) and quality of the shaft portion 37 and the expanded bottom portion 38 of the foundation pile structure 35 are measured from the ground.

【0047】尚、ここで、杭穴充填物をソイルセメント
としたが、セメントミルク、コンクリート等の単独又は
組合せでも可能である。
Although the pile hole filling material is soil cement here, cement milk, concrete or the like may be used alone or in combination.

【0048】(2)前記基礎杭構造35の中心軸に沿っ
て、コアボーリングすることにより、測定地点(拡底
部)まで測定穴42を穿設する。現状の発受振子の大き
さによれば、測定穴42は、直径8〜10cm程度必要
である。
(2) A core bore is formed along the central axis of the foundation pile structure 35 to form a measurement hole 42 up to a measurement point (an expanded bottom). According to the current size of the transducer, the measurement hole 42 needs to have a diameter of about 8 to 10 cm.

【0049】(3)地上44から測定穴42内に、測定
装置32を挿入し、測定位置(ここでは拡底部)に到達
したならば、測定装置32内に、エアホース8を通じて
エアを送り、エアーシリンダー9を作動させ、固定ガイ
ド5の当接板6、6を測定穴42の孔壁43に押圧させ
て、測定装置32を、測定穴42内に固定する(図10
(b))。ここで、当接板6、6は、基軸1に対して直
径対称に配置されているので、測定装置32の基軸1
(上基軸2、下基軸3)は測定穴43の略中央位置に配
置される。
(3) The measuring device 32 is inserted from the ground 44 into the measuring hole 42, and when it reaches the measuring position (here, the expanded bottom portion), air is sent into the measuring device 32 through the air hose 8, The cylinder 9 is actuated, and the contact plates 6, 6 of the fixed guide 5 are pressed against the hole wall 43 of the measurement hole 42, thereby fixing the measurement device 32 in the measurement hole 42 (FIG. 10).
(B)). Here, since the contact plates 6 and 6 are arranged diametrically symmetric with respect to the base shaft 1,
The (upper base shaft 2 and lower base shaft 3) are arranged at substantially the center of the measurement hole 43.

【0050】測定装置32のエアーホース8は、地上の
ボンベに接続され、ケーブル33は、発振装置(アン
プ)に接続され、発振装置及びデータはパソコンで制御
・蓄積・処理される(図8)。
The air hose 8 of the measuring device 32 is connected to a cylinder on the ground, the cable 33 is connected to an oscillating device (amplifier), and the oscillating device and data are controlled, stored and processed by a personal computer (FIG. 8). .

【0051】(4)続いて、第二ケース30内のモータ
ーを作動させ、取付基板21を下降させる。取付基板2
1の下降により、操作突起22は、取付枠12の長孔1
5に沿って背面端16から前面端17に移動し、取付基
板21は基軸1から放射状に突出し、各発受振子23〜
27は測定穴42の孔壁43に当接して密着する。
(4) Subsequently, the motor in the second case 30 is operated to lower the mounting board 21. Mounting board 2
1 lowers the operation projection 22 so that the slot 1
5, the mounting board 21 radially protrudes from the base shaft 1 and moves from the rear end 16 to the front end 17.
Reference numeral 27 abuts against and is closely attached to the hole wall 43 of the measurement hole 42.

【0052】(5)伝搬速度の測定 まず、P波発振子24から、P波を測定穴42の孔壁4
3に垂直に発振し、発振されたP波は固化したソイルセ
メント40内を水平方向(一定の指向角で略円錐状に軸
方向に伝搬する成分)に伝搬すると共に、測定穴42の
孔壁43に沿った方向に伝搬する成分(孔壁43面から
深さ20cm程度以内)が伝搬する。孔壁43に沿って
伝搬したP波のうち、孔壁43の表面付近を矢示46方
向に伝搬した成分が、直達波として下方に位置するP直
達波受振子26で受振される(図6(a))。
(5) Measurement of Propagation Speed First, a P-wave is applied from the P-wave oscillator 24 to the hole wall 4 of the measurement hole 42.
3 oscillates vertically, and the oscillated P-wave propagates in the solidified soil cement 40 in the horizontal direction (a component that propagates in a substantially conical axial direction at a constant directional angle), and the hole wall of the measurement hole 42. The component propagating in the direction along 43 (within a depth of about 20 cm from the hole wall 43 surface) propagates. Of the P waves that have propagated along the hole wall 43, the component that has propagated in the direction of the arrow 46 near the surface of the hole wall 43 is received as a direct wave by the P direct wave receiver 26 located below (FIG. 6). (A)).

【0053】このP波発振子24から発振されたパルス
24Aが、P直達波受振子26に受振される(26A)
までの時間t1 と(図6(b))、予め設定されている
P波発振子24とP直達波受振子26との上下方向の距
離H1 とによって(図6(a))、下記の式により、P
波のソイルセメント40、41内の伝搬速度Vp を測定
できる。
The pulse 24A oscillated from the P wave oscillator 24 is received by the P direct wave receiver 26 (26A).
Until the time t 1 and in (FIG. 6 (b)), by a vertical distance H 1 between the P-wave oscillator 24 and P direct wave受振Ko 26 which is set in advance (FIG. 6 (a)), the following According to the equation, P
The propagation velocity V p of the soil cement 40 and 41 of the wave can be measured.

【0054】Vp =H1 /t1 続いて、第一ケース10内のモーターを作動させ、下基
軸3を所定角度(例えば30°)回転させて、同様に、
伝搬速度Vp を測定する。以下同様に、30°毎の伝搬
速度を測定するので、より正確に伝搬速度Vp を測定で
きる。また、このP波の伝搬速度Vp の測定は、更に所
定高さ毎に、複数箇所で測定して計算することもでき
る。
V p = H 1 / t 1 Subsequently, the motor in the first case 10 is operated to rotate the lower base shaft 3 by a predetermined angle (for example, 30 °).
The propagation speed Vp is measured. Similarly, since measuring the propagation velocity of each 30 °, it can be measured more accurately the propagation velocity V p. The measurement of the propagation velocity V p of the P-wave can also be computed more for each predetermined height, measured at a plurality of locations.

【0055】また、このP波の伝搬速度Vp の測定は、
複数箇所(回転方向、高さ方向)で測定することが望ま
しいが、少なくとも1ヶ所で測定できれば可能である。
The measurement of the propagation velocity V p of the P-wave is as follows.
It is desirable to measure at a plurality of points (rotational direction, height direction), but it is possible if at least one point can be measured.

【0056】(6)杭基礎構造35の径・健全化の測定 (a) 前記のように、P波発振子24から、発振されたP
波が水平方向に伝搬して、固化したソイルセメント層の
最外端(杭穴36の穴壁とソイルセメント41との境
界)45より跳ね返る反射波をP波受振子23で受振し
て、受振までの時間t3 と、受振波形を計測する。
(6) Measurement of Diameter and Soundness of Pile Foundation 35 (a) As described above, P oscillated from P-wave oscillator 24
The P wave receiver 23 receives the reflected wave which propagates in the horizontal direction and rebounds from the outermost end (boundary between the hole wall of the pile hole 36 and the soil cement 41) 45 of the solidified soil cement layer. The time t 3 up to and the received waveform are measured.

【0057】このP波到達時間t3 と、P波の伝搬速度
p とにより、下記の式、 L=Vp ・t3 /2 により、測定穴壁43から固化したソイルセメント層の
最外端45までの距離Lを求めることができる。尚、こ
こで、距離Lについて、必要ならば、P波発振子24と
P波受振子との距離(高さ)H3 を補正する。
[0057] this P-wave arrival time t 3, by the propagation velocity V p of the P-wave, the outermost of the following formula, by L = V p · t 3/ 2, soil cement layer solidified from the measurement hole walls 43 The distance L to the end 45 can be obtained. Here, the distance L, if necessary, the distance between the P-wave oscillator 24 and P Nami受pendulum (height) for correcting the H 3.

【0058】測定した距離Lと測定穴42の口径dか
ら、固化したソイルセメント層の半径距離rを求めるこ
とができる(図7)。この半径距離rから拡底部38の
径D(固化したソイルセメント層の最外端45の位置)
を測定できる。
From the measured distance L and the diameter d of the measurement hole 42, the radial distance r of the solidified soil cement layer can be obtained (FIG. 7). From the radius distance r, the diameter D of the expanded portion 38 (the position of the outermost end 45 of the solidified soil cement layer)
Can be measured.

【0059】(b) 上記作業を、例えば、15°づつ1周
(360°)測定することにより、固化したソイルセメ
ント層の断面を測定できる。また、拡底部38内の所定
高さ毎(例えば、50cm毎)に測定すれば、拡底部3
8の全体が基準通りの大きさでソイルセメント41層が
構築されているか否かを検証できる。尚、センサーユニ
ット20の回動は、前記伝搬速度の計測と同様に、第一
ケース10内のモーターにより下基軸3を回動させるこ
とにより行う。また、測定高さの切替は、エアーホース
8からのエアーの切替により、固定ガイド5の当接板6
の固定を解除し、測定装置32を地上44から引き上げ
又は降ろして行う。
(B) The cross section of the solidified soil cement layer can be measured by measuring the above operation, for example, one revolution (360 °) in 15 ° increments. In addition, if the measurement is performed at every predetermined height (for example, every 50 cm) in the widened portion 38, the widened portion 3 is measured.
It is possible to verify whether 41 of the soil cement is constructed with the entire size of 8 as the standard. The rotation of the sensor unit 20 is performed by rotating the lower base shaft 3 by the motor in the first case 10 in the same manner as the measurement of the propagation speed. The measurement height is switched by switching the air from the air hose 8 to the contact plate 6 of the fixed guide 5.
Is released, and the measurement device 32 is lifted or lowered from the ground 44 to perform the measurement.

【0060】(c) 上記で測定されたデータは、スタック
処理、フィルター処理などによって、ノイズ成分(例え
ば、拡底部最外端45ではなく、既製杭39の外面で反
射してきたP波の反射波等)を低減して、コンピュータ
処理することにより、固化したソイルセメント層の横断
面図を作成する(図9(a))。ここで、反射波の初動
位置を結ぶことにより、拡底部38の径D(固化したソ
イルセメント層の最外端45の位置)を測定でき、この
横断面図により、断面形状を容易に目視で確認できる
(図9(b))。ここでは、径Dは約85cmのほぼ円
形を保った健全な形状であることが確認できる。
(C) The data measured as described above is subjected to a noise component (for example, a reflected wave of a P-wave reflected on the outer surface of the ready-made pile 39 instead of the outermost end 45 of the expanded bottom portion) by stacking processing, filtering processing, or the like. , Etc.) and computer processing to create a cross-sectional view of the solidified soil cement layer (FIG. 9 (a)). Here, by connecting the initial positions of the reflected waves, the diameter D of the expanded bottom portion 38 (the position of the outermost end 45 of the solidified soil cement layer) can be measured. It can be confirmed (FIG. 9B). Here, it can be confirmed that the diameter D is a healthy shape that maintains a substantially circular shape of about 85 cm.

【0061】(d) また、(a) で測定したP波の受振波形
で、セメントミルク層内に空洞等が生じた場合には、波
形の乱れが生じるので、係る非健全部分を確認できる。
(D) In addition, when a cavity or the like is generated in the cement milk layer in the received waveform of the P wave measured in (a), the waveform is disturbed, so that such an unhealthy portion can be confirmed.

【0062】(e) また、前記(a) 〜(c) の測定・処理
を、P波の発受振と同時に又は所定時間をおいて、S波
発振子25から発振した弾性波をS波受振子27で受振
して、同様のデータ処理をすることもできる。この場合
には、P波の受振波形とS波の受振波形で、同様に非健
全部分を確認でき、P波単独の測定より測定精度を高め
ることができる。この場合、S波の伝搬速度又はS波と
P波との伝搬速度比は予め地上で測定しておく。
(E) The measurement and processing of the above (a) to (c) are performed simultaneously with the transmission and reception of the P wave or at a predetermined time, by receiving the elastic wave oscillated from the S wave oscillator 25 into the S wave. The same data processing can also be performed by receiving a signal with the pendulum 27. In this case, an unhealthy portion can be similarly confirmed in the received waveform of the P wave and the received waveform of the S wave, and the measurement accuracy can be improved as compared with the measurement of the P wave alone. In this case, the propagation speed of the S wave or the propagation speed ratio between the S wave and the P wave is measured in advance on the ground.

【0063】(7)測定が完了したならば、固定ガイド
5のエアーを抜き、エアーシリンダー9を下げて(図1
0(a))、測定穴42から測定装置32を引き上げ、
測定穴42内にセメントミルクを注入して、埋める。こ
こで、測定穴42は、杭基礎構造35の中央部を穿設し
たので、杭基礎構造35の強度低下に与える影響は極め
て低い。
(7) When the measurement is completed, the air in the fixed guide 5 is released, and the air cylinder 9 is lowered (FIG. 1).
0 (a)), the measuring device 32 is pulled up from the measuring hole 42,
Inject and fill the cement milk into the measurement hole 42. Here, since the measurement hole 42 is formed at the center of the pile foundation structure 35, the influence on the strength reduction of the pile foundation structure 35 is extremely low.

【0064】(8)他の実施例 また、前記実施例において、コンクリート製の既製杭を
埋設した基礎杭構造について説明したが、鋼管杭やいわ
ゆる場所打ち杭その他の杭基礎構造についても同様に適
用できる。また、基礎杭構造における場合に有効に測定
できるが、地盤改良工法における地盤改良柱などの地中
構造物にも適宜調節して同様に適用できる。
(8) Other Embodiments In the above-described embodiment, a description has been given of a foundation pile structure in which a ready-made concrete pile is embedded. However, the present invention is similarly applied to steel pipe piles, so-called cast-in-place piles, and other pile foundation structures. it can. In addition, although it can be effectively measured in the case of a foundation pile structure, it can be similarly applied to underground structures such as soil improvement columns in a soil improvement method by appropriately adjusting the same.

【0065】また、前記実施例において、弾性波の伝搬
速度は、施工場所の杭穴の測定位置において、実際のソ
イルセメント固化物内で測定するので、正確な基礎杭の
径が計算できるが、地上において、同一ソイルセメント
等から試験体を形成し、固化後に試験体を使用して伝搬
速度を測定することもできる。
In the above embodiment, since the propagation speed of the elastic wave is measured in the actual solidified soil cement at the measurement position of the pile hole at the construction site, the diameter of the foundation pile can be calculated accurately. On the ground, a specimen may be formed from the same soil cement or the like, and after solidification, the propagation velocity may be measured using the specimen.

【0066】また、前記実施例において、P波発振子2
4から軸方向(水平方向)と孔壁43に沿った方向(直
達波)とを同時に発振したが、別々に発振して、P波受
振子23、P直達波受振子26で夫々受振することもで
きる。
In the above embodiment, the P-wave oscillator 2
4, the axis direction (horizontal direction) and the direction along the hole wall 43 (direct wave) oscillated simultaneously, but oscillate separately and are received by the P wave receiver 23 and the P direct wave receiver 26, respectively. Can also.

【0067】[0067]

【実施例3】前記実施例1、2に基づき、実際の測定を
行い、掘り起こした調査対象(基礎杭構造)の実測値と
比較する。
Third Embodiment Based on the first and second embodiments, actual measurements are made and compared with the actually measured values of the excavated object (foundation pile structure).

【0068】杭穴36は、軸部37の径58cm、拡底
部38の径80cm(高さ250cm)で設定し、掘削
する。杭穴36の拡底部38内に根固め液、軸部37内
に杭周固定液を充填し、拡底部38内の所定深度に先端
部が位置するように、既製杭39を沈設して、基礎杭構
造物35を構築する(図3)。
The pile hole 36 is set with a diameter of 58 cm of the shaft portion 37 and a diameter of 80 cm (height of 250 cm) of the expanded bottom portion 38, and is excavated. Filling the root-fixing liquid in the expanded bottom portion 38 of the pile hole 36 and the perimeter fixing liquid in the shaft portion 37, and submerging the ready-made pile 39 so that the tip is located at a predetermined depth in the expanded bottom portion 38. The foundation pile structure 35 is constructed (FIG. 3).

【0069】既製杭39は、上杭39aと下杭39bと
からなる。下杭39bは、軸部外径40cm、突起部外
径55cm、中空部径27cmの突起付杭で形成されて
いる。上杭39aは、軸部外経40cm、中空部径27
cmの円筒杭で形成されている(図2(a))。
The ready-made pile 39 comprises an upper pile 39a and a lower pile 39b. The lower pile 39b is formed of a pile with projections having a shaft outer diameter of 40 cm, a protrusion outer diameter of 55 cm, and a hollow part diameter of 27 cm. The upper pile 39a has a shaft outer diameter of 40 cm and a hollow diameter of 27.
cm (FIG. 2 (a)).

【0070】根固液、杭周固定液が固化後(既製杭39
の沈設から約1ヶ月)、拡底部における断面形状の測定
を実施する。既製杭39の中空部(固化した杭周固定
液、根固め液が充填されている)の中央部に直径約10
cmの測定穴42(コアボーリング孔)を杭穴36の拡
底部38最下端付近まで開け、前記実施例2のように、
本発明の測定装置32を挿入する。
After the root solid solution and the pile circumference fixing solution have solidified (the ready-made pile 39).
Approximately one month after the installation), the cross-sectional shape of the expanded bottom is measured. The diameter of about 10 mm is set at the center of the hollow part of the ready-made pile 39 (filled with the solidified pile periphery fixing liquid and the root compaction liquid).
cm measuring hole 42 (core boring hole) is drilled to the vicinity of the lowermost end of the expanded bottom portion 38 of the pile hole 36,
The measuring device 32 of the present invention is inserted.

【0071】測定装置32による測定は、拡底部38の
最下端から上方に向け、10cm、20cm、30c
m、60cm、160cm、220cmの各位置の計6
ヶ所において、1ヶ所につき15°ずつ360°行っ
た。測定方法は、実施例2と同様である。
The measurement by the measuring device 32 is performed upward from the lowermost end of the expanded bottom portion 38 by 10 cm, 20 cm, and 30 cm.
m, 60cm, 160cm, 220cm each position total 6
In each of the three positions, 15 ° was performed at 360 ° each time. The measuring method is the same as in Example 2.

【0072】P波発振子24からP波(発振電圧300
V、発振インターバル10Secのワンショット起震、
発振周波数10kHz)を発振し、P直達波受振子2
6、P波受振子23に夫々受振させる。この作業を各測
定位置(各方向)において実施する。各測定位置(各方
向)の直達波の記録から、拡底部38内の固化した根固
液内をP波が伝播する速度Vp =約4300m/s の
値が得られた。
The P wave (oscillation voltage 300
V, one-shot oscillation with oscillation interval 10Sec,
Oscillation frequency of 10 kHz) and P direct wave receiver 2
6. The P-wave receiver 23 receives the respective waves. This operation is performed at each measurement position (each direction). From the recording of the direct wave at each measurement position (in each direction), a value of the velocity V p of the P wave propagating in the solidified root solid solution in the expanded bottom portion 38 being about 4300 m / s was obtained.

【0073】このとき、P波だけでなく、S波発振子2
5からS波(発振電圧40V、発振インターバル2H
z、発振周波数10kHz)も発振して、S波受振子2
7で受振し、拡底部38内の品質を反射波形から調査、
記録する。尚、S波の伝搬速度は、予め地上において、
配合その他の同一条件による杭周固定液や根固め液を固
化させたテストピースにおいて測定しておく(または、
材料毎のP波とS波との速度比を予め測定しておく)。
At this time, not only the P wave but also the S wave oscillator 2
5 to S wave (oscillation voltage 40V, oscillation interval 2H
z, oscillation frequency 10 kHz) also oscillate, and the S wave
7, the quality inside the widened part 38 is investigated from the reflected waveform.
Record. Note that the propagation speed of the S wave is
Measure in a test piece that has solidified the pile circumference fixation solution and the root consolidation solution under the same conditions as the formulation (or
The velocity ratio between the P wave and the S wave for each material is measured in advance).

【0074】上記測定したP波が伝播する速度Vp によ
って、既製杭39の中心部から拡底部38最外端までの
半径距離rを求めて、拡底部39の径Dを算出したとこ
ろ、各判定位置で際立って寸法変動の大きい箇所はみら
れず、平均約85cmの換算値が得られた(図9)。
[0074] the speed V p of P waves the measurement propagates, seeking radial distance r from the center of the prefabricated pile 39 to拡底portion 38 outermost end, calculation of the diameter D of拡底portion 39, each At the judgment position, there was no markedly large dimensional variation, and a converted value of about 85 cm was obtained on average (FIG. 9).

【0075】また、P波、S波の両波から、拡底部38
内において品質に悪影響を及ぽす異物の混入、欠陥箇所
等がなく、健全な拡底部38が形成されていると判断さ
れた。
Also, from both the P wave and the S wave,
It was determined that there was no foreign matter that would adversely affect the quality, no defective spots, etc., and that a sound expanded portion 38 was formed.

【0076】次に測定装置32を引き上げて、ケーシン
グを使用して測定した基礎杭構造物35を引き抜いて、
実際の径D’を調べた結果、拡底部38全体で際立って
寸法変動の大きい箇所はみられず、拡底部38の径D’
は平均約83cmの実測値が得られた。測定値D(=約
85cm)より若干小さい値となったのは、掘り出し時
に、ケーシングと拡底部38の間にあった礫が、ケーシ
ングの回転により拡底部38外周を研磨、切削したため
であり、実際は実施例1、2による測定装置32により
測定された径Dの値と何ら変わりがないことが判明し
た。また、品質についても、異物の混入、欠陥箇所等は
なく、健全な基礎杭構造物であることが判明した。
Next, the measuring device 32 is pulled up, and the foundation pile structure 35 measured using the casing is pulled out.
As a result of examining the actual diameter D ', there was no place where the dimensional variation was remarkably large in the entire expanded portion 38, and the diameter D'
The average of the measured values was about 83 cm. The value slightly smaller than the measured value D (= approximately 85 cm) is because gravel between the casing and the expanded portion 38 at the time of excavation polished and cut the outer periphery of the expanded portion 38 by rotating the casing. It was found that there was no difference from the value of the diameter D measured by the measuring device 32 according to Examples 1 and 2. Also, regarding the quality, it was found that there was no foreign matter mixing, no defective spots, etc., and the foundation pile structure was sound.

【0077】尚、固化強度が高く(例えば200kg/
cm2 以上)、高品質なソイルセメント層の断面形状を
測定する上で、P波の伝搬速度を3500〜4500m
/sの範囲で決定できれば、本実施例のように誤差の極
めて少ない精度の断面径及び品質状態を測定することが
できる。
The solidification strength is high (for example, 200 kg /
cm 2 or more), in order to measure the cross-sectional shape of the high-quality soil cement layer, 3500~4500M propagation velocity of P-wave
If it can be determined in the range of / s, it is possible to measure the cross-sectional diameter and the quality state with an extremely small error as in this embodiment.

【0078】また、固化強度が低く(例えば、5〜30
kg/cm2 程度)、高品質なソイルセメント層の断面
形状を測定する場合には、更に低い伝搬速度でも有効に
測定することもできる。
Further, the solidification strength is low (for example, 5 to 30).
kg / cm 2 ), the cross-sectional shape of a high-quality soil cement layer can be effectively measured even at a lower propagation speed.

【0079】[0079]

【発明の効果】測定穴壁から発振した弾性波を測定対象
で反射させて、反射波の受振までの時間を計測するの
で、極めて簡易に、対象物までの距離を測定できる効果
がある。また、同一高さで、所定角度毎に複数方向で測
定すれば、対象物の断面形状を容易に表示させることが
できる。
The elastic wave oscillated from the measurement hole wall is reflected by the object to be measured, and the time until the reflected wave is received is measured. Therefore, the distance to the object can be measured very easily. In addition, if the measurement is performed at the same height in a plurality of directions at predetermined angles, the sectional shape of the object can be easily displayed.

【0080】また、発振子より垂直方向に発振された弾
性波の成分を直達波受振子に受振することにより、杭基
礎構造の固化充填物層の内部で直接に伝搬する弾性波の
伝搬速度を、実施の口径測定位置で容易に算出できる効
果がある。従って、測定される口径などのデータをより
現実に近い値とすることができる。
Further, by receiving the component of the elastic wave oscillated in the vertical direction from the oscillator to the direct wave receiver, the propagation speed of the elastic wave propagating directly inside the solidified filling layer of the pile foundation structure is reduced. There is an effect that it can be easily calculated at the actual diameter measurement position. Therefore, data such as the measured aperture can be set to values closer to reality.

【0081】また、弾性波としては、P波によって基礎
杭構造の断面、大きさ、品質状態を測定し、さらに品質
面に関してS波を併用することにより、確実な測定結果
が得られる効果がある。
As the elastic wave, the cross section, the size, and the quality state of the foundation pile structure are measured by the P wave, and the combined use of the S wave in terms of quality has an effect of obtaining a reliable measurement result. .

【0082】また、受振子及び発振子を縦に並べて1つ
の測定装置を構成したので、測定装置を小型化し、1つ
の小径の測定穴で、測定ができる効果がある。また、杭
基礎構造の測定では、杭基礎構造の中央部に1つの測定
穴を穿設するだけで、測定できるので、測定穴が杭基礎
構造の強度に与える影響をほとんどなくすことができ
る。
Further, since a single measuring device is formed by vertically arranging the resonator and the oscillator, there is an effect that the measuring device can be made compact and measurement can be performed with one small-diameter measuring hole. Further, in the measurement of the pile foundation structure, since the measurement can be performed only by drilling one measurement hole in the center of the pile foundation structure, the influence of the measurement hole on the strength of the pile foundation structure can be almost eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の測定装置の正面図で、(a)は非測
定時、(b)は測定時を夫々表す。
FIG. 1 is a front view of a measuring apparatus according to the present invention, in which (a) shows a non-measurement time and (b) shows a measurement time.

【図2】(a)はこの発明の測定対象の基礎杭構造の正
面図、(b)は測定装置を測定穴内に挿入する状態の拡
大断面図である。
2A is a front view of a foundation pile structure to be measured according to the present invention, and FIG. 2B is an enlarged cross-sectional view of a state where a measuring device is inserted into a measurement hole.

【図3】同じく測定装置を測定穴に挿入して測定してい
る状態の拡大断面図である。
FIG. 3 is an enlarged cross-sectional view showing a state where a measurement device is inserted into a measurement hole and measurement is being performed.

【図4】測定中のセンサーユニットの拡大正面図であ
る。
FIG. 4 is an enlarged front view of the sensor unit during measurement.

【図5】センサーユニットの送受振子の出没を説明する
拡大正面図で、(a)は非測定上体、(b)は測定中を
夫々表す。
FIGS. 5A and 5B are enlarged front views illustrating the appearance of a transmitting / receiving pendulum of the sensor unit. FIG. 5A shows a non-measurement upper body, and FIG.

【図6】直達速度の測定を説明する図で(a)はセンサ
ーユニットの拡大正面図、(b)はパルスの概念図であ
る。
FIGS. 6A and 6B are diagrams for explaining measurement of a direct speed, wherein FIG. 6A is an enlarged front view of a sensor unit, and FIG. 6B is a conceptual diagram of a pulse.

【図7】反射波の測定を説明する図で、センサーユニッ
トの拡大正面図である。
FIG. 7 is a diagram illustrating measurement of a reflected wave, and is an enlarged front view of a sensor unit.

【図8】この発明の測定装置の構成を表す概念図であ
る。
FIG. 8 is a conceptual diagram illustrating a configuration of a measuring device according to the present invention.

【図9】(a)は、この測定方法・装置で計測した横断
方向のパルスデータで、データー処理後を表し、(b)
は、(a)に反射波の初動位置を記入したものを表す。
FIG. 9 (a) shows pulse data in the transverse direction measured by this measuring method / apparatus, after data processing, and FIG. 9 (b)
Represents the initial position of the reflected wave written in (a).

【図10】この発明の測定装置の固定ガイドで、(a)
は解除状態、(b)は固定状態を夫々表す。
FIG. 10 shows a fixed guide of the measuring device of the present invention, and (a)
Indicates a released state, and (b) indicates a fixed state.

【符号の説明】[Explanation of symbols]

1 基軸 2 上基軸 3 下基軸 5 固定ガイド 6 当接板 7、7a 連結杆 8 エアーホース 9 エアーシリンダー 10 第一ケース 12 取付枠 15 長孔 16 背面端 17 正面端 20 センサーユニット 21 取付基板 22 操作突起 23 P波受振子 24 P波発振子 25 S波発振子 26 S波受振子 27 P直達波受振子 28 S直達波受振子 30 第二ケース 32 測定装置 35 基礎杭構造 36 杭穴 37 杭穴の軸部 38 杭穴の拡底部 39 既製杭 39a 上杭(既製杭) 39b 下杭(既製杭) 40 ソイルセメント(既製杭の中空部) 41 ソイルセメント(既製杭の外側) 42 測定穴 43 測定穴の穴壁 44 地上 45 固化したソイルセメント層の最外端 Reference Signs List 1 base shaft 2 upper base shaft 3 lower base shaft 5 fixed guide 6 contact plate 7, 7a connecting rod 8 air hose 9 air cylinder 10 first case 12 mounting frame 15 long hole 16 back end 17 front end 20 sensor unit 21 mounting board 22 operation Projection 23 P wave receiver 24 P wave oscillator 25 S wave oscillator 26 S wave receiver 27 P direct wave receiver 28 S direct wave receiver 30 Second case 32 Measuring device 35 Foundation pile structure 36 Pile hole 37 Pile hole Shaft part 38 Expanded bottom part of pile hole 39 Ready pile 39a Upper pile (ready pile) 39b Lower pile (ready pile) 40 Soil cement (hollow part of ready pile) 41 Soil cement (outside of ready pile) 42 Measurement hole 43 Measurement Hole wall of hole 44 Above ground 45 Outermost end of solidified soil cement layer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01S 15/88 G01S 15/88 Fターム(参考) 2F068 AA06 AA25 AA39 BB08 BB26 CC11 DD13 EE01 EE06 EE07 FF03 FF14 FF16 FF25 HH01 HH02 JJ17 KK02 KK06 KK14 KK17 KK18 QQ12 2G047 AA10 BA03 BC00 BC02 BC18 CB01 5J083 AA02 AB20 AC40 AD07 AD13 AD30 AE06 BA01 BD08 BD11 BE53 CA03 CA40 CA41 CA42 DC05 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) // G01S 15/88 G01S 15/88 F term (reference) 2F068 AA06 AA25 AA39 BB08 BB26 CC11 DD13 EE01 EE06 EE07 FF03 FF14 FF16 FF25 HH01 HH02 JJ17 KK02 KK06 KK14 KK17 KK18 QQ12 2G047 AA10 BA03 BC00 BC02 BC18 CB01 5J083 AA02 AB20 AC40 AD07 AD13 AD30 AE06 BA01 BD08 BD11 BE53 CA03 CA40 CA41 CA42 DC05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート系地中構造物からなる測定
対象を測定する方法であって、地上から測定対象物の測
定位置深さまで、測定穴を穿設し、該測定穴内の所定高
さで、測定穴壁に垂直に、一方向に伝搬速度既知の弾性
波を発振し、測定対象からの反射波を測定穴内で受振し
て、測定対象までの距離及び測定対象の品質状態を測定
することを特徴とした地中構造物の断面測定方法。
1. A method for measuring an object to be measured composed of a concrete-based underground structure, comprising: drilling a measurement hole from the ground to a depth of a measurement position of the object to be measured; It oscillates an elastic wave with a known propagation velocity in one direction perpendicular to the measurement hole wall, receives reflected waves from the measurement object in the measurement hole, and measures the distance to the measurement object and the quality state of the measurement object. Characteristic method of measuring cross section of underground structure.
【請求項2】 杭穴内に、中空部を有する既製杭を設置
し、該既製杭の周面、底部及び中空部内にセメント固化
物層を形成する基礎杭構造において、前記中空部の寸法
内に測定位置深さまで、測定穴を穿設し、該測定穴内の
所定高さで、測定穴壁に垂直に、一方向に伝搬速度既知
の弾性波を発振し、測定対象からの反射波を測定穴内で
受振して、判定対象までの距離及び測定対象の品質状態
を測定することを特徴とした地中構造物の断面測定方
法。
2. A foundation pile structure in which a prefabricated pile having a hollow portion is installed in a pile hole, and a cement solidified layer is formed in a peripheral surface, a bottom portion, and a hollow portion of the prefabricated pile. A measurement hole is drilled to the depth of the measurement position, an elastic wave having a known propagation velocity is oscillated in one direction perpendicular to the measurement hole wall at a predetermined height in the measurement hole, and a reflected wave from the measurement object is measured in the measurement hole. And measuring the distance to the object to be determined and the quality state of the object to be measured.
【請求項3】 同一高さにおいて、所定角度毎に複数の
方向において、弾性波を発振して、測定対象までの距離
及び測定対象の品質状態を測定することを特徴とした請
求項1又は2記載の地中構造物の断面測定方法。
3. The method according to claim 1, wherein an elastic wave is oscillated in a plurality of directions at predetermined angles at the same height to measure a distance to the measurement target and a quality state of the measurement target. The method for measuring the cross section of an underground structure according to the above.
【請求項4】 測定穴内で、発振子から発振された弾性
波を直達波受振子で受振して、到達までに要した時間
と、前記発振子と直達波受振子との距離とから測定対象
物内を伝わる弾性波の伝搬速度を測定することを特徴と
した請求項1又は2記載の地中構造物の断面測定方法。
4. An object to be measured based on a time required for an elastic wave oscillated from an oscillator to be received by a direct wave receiver in a measurement hole and to reach, and a distance between the oscillator and the direct wave receiver. 3. The method for measuring the cross section of an underground structure according to claim 1, wherein a propagation velocity of an elastic wave propagating in the object is measured.
【請求項5】 弾性波としてP波、S波を使用し、P波
によって測定対象までの距離を測定すると共に、P波及
び/又はS波によって測定対象の品質を測定することを
特徴とした請求項1又は2記載の地中構造物の断面測定
方法。
5. The method according to claim 1, wherein a P wave and an S wave are used as the elastic waves, and the distance to the measurement object is measured by the P wave, and the quality of the measurement object is measured by the P wave and / or the S wave. The method for measuring a cross section of an underground structure according to claim 1.
【請求項6】 P波の伝搬速度3500〜4500m/
sを用いて、測定対象までの距離及び測定対象の品質状
態を測定することを特徴とした請求項1又は2記載の地
中構造物の断面測定方法。
6. A P wave propagation velocity of 3500-4500 m /
3. The method for measuring the cross section of an underground structure according to claim 1, wherein the distance to the measurement target and the quality state of the measurement target are measured using s.
【請求項7】 測定穴の軸方向に配置される基軸の長さ
方向一側に、該基軸を測定穴の中央に保持する為の固定
ガイドを設け、前記基軸の長さ方向他側に、放射状に出
没できる弾性波の送受振子を備えたセンサーユニットを
設けたことを特徴とする断面測定装置。
7. A fixed guide for holding the base shaft at the center of the measurement hole is provided on one side in the length direction of the base shaft arranged in the axial direction of the measurement hole, and on the other side in the length direction of the base shaft, A cross-section measuring device comprising a sensor unit having an elastic wave transmitting / receiving element that can radially appear and disappear.
【請求項8】 センサーユニットは、弾性波の発振子、
受振子及び直達波受振子とを適宜順序で基軸方向に並列
して構成する請求項7記載の断面測定装置。
8. A sensor unit comprising: an elastic wave oscillator;
The cross-section measuring device according to claim 7, wherein the receiver and the direct wave receiver are arranged in parallel in the base axis direction in an appropriate order.
【請求項9】 センサーユニットは、P波受振子、P波
発振子、S波発振子、P直達波受振子、S波受振子を、
基軸方向に順に並べて配置したことを特徴とする請求項
7記載の断面測定装置。
9. The sensor unit includes a P-wave oscillator, a P-wave oscillator, an S-wave oscillator, a P direct wave oscillator, and an S-wave oscillator.
The cross-section measuring device according to claim 7, wherein the cross-section measuring device is arranged side by side in the base axis direction.
【請求項10】 センサーユニットは、ユニット全体を
上下に移動させる操作を変換して、ユニット全体を基軸
に平行に移動させて、放射状に出没させる請求項7記載
の断面測定装置。
10. The cross-section measuring apparatus according to claim 7, wherein the sensor unit converts an operation of moving the whole unit up and down, moves the whole unit in parallel with the base axis, and makes the sensor unit protrude and retract radially.
【請求項11】 固定ガイドは、放射状に出没して測定
穴壁に押圧して当接できる当接板を設け、該当接板を操
作するエアーシリンダーを設けたことを特徴とする請求
項7記載の断面測定装置。
11. The fixing guide according to claim 7, wherein a contact plate is provided which can radially protrude and retract to contact the measurement hole wall by pressing, and an air cylinder for operating the contact plate is provided. Cross section measuring device.
JP34071899A 1999-11-30 1999-11-30 Underground structure measuring device Expired - Lifetime JP4449048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34071899A JP4449048B2 (en) 1999-11-30 1999-11-30 Underground structure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34071899A JP4449048B2 (en) 1999-11-30 1999-11-30 Underground structure measuring device

Publications (2)

Publication Number Publication Date
JP2001153638A true JP2001153638A (en) 2001-06-08
JP4449048B2 JP4449048B2 (en) 2010-04-14

Family

ID=18339658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34071899A Expired - Lifetime JP4449048B2 (en) 1999-11-30 1999-11-30 Underground structure measuring device

Country Status (1)

Country Link
JP (1) JP4449048B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028622A (en) * 2001-07-13 2003-01-29 Fujita Corp Method for measuring shape of structure and method for measuring degradation/damage
JP2008185425A (en) * 2007-01-29 2008-08-14 Takenaka Komuten Co Ltd Elastic wave transmitting device and reflected elastic wave measuring device
JP2008185426A (en) * 2007-01-29 2008-08-14 Takenaka Komuten Co Ltd Integrity evaluation support device, method, and program of concrete pile
JP2009092444A (en) * 2007-10-05 2009-04-30 Tokyo Soil Research Co Ltd Method and device for measuring pile shape
JP2009102884A (en) * 2007-10-23 2009-05-14 Dai-Dan Co Ltd Structure of underground pile
JP2010117143A (en) * 2008-11-11 2010-05-27 Tokyo Soil Research Co Ltd Method and device for measuring shape of drilling hole
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
KR101121974B1 (en) * 2009-08-03 2012-03-09 김상일 Reusable and Versatile Pile Measuring Sensor
JP2013160013A (en) * 2012-02-08 2013-08-19 Giken Seisakusho Co Ltd Construction management device, pile driving machine and pile driving method
CN106284439A (en) * 2016-08-11 2017-01-04 四川省建筑科学研究院 Depth determination method at the bottom of the stake of a kind of existing engineering pile based on many ripples joint test
JP2017082498A (en) * 2015-10-29 2017-05-18 前田建設工業株式会社 Vertical accuracy measurement method of pile-shaped ground improvement body by mechanical agitation
JP2017125743A (en) * 2016-01-13 2017-07-20 株式会社大林組 Ultrasonic porous wall measurement instrument
CN108797662A (en) * 2018-07-24 2018-11-13 中南大学 Pile foundation length non-destructive test method and device under column
CN108825136A (en) * 2018-06-09 2018-11-16 宁波亿诺维信息技术有限公司 A kind of exploration drill bit and pile measurement device
CN109555169A (en) * 2018-12-26 2019-04-02 青岛大学 A kind of cement earth pile corrosion depth test device
CN112902802A (en) * 2021-02-01 2021-06-04 王安江 Pile hole aperture detection device capable of restoring
CN114215123A (en) * 2021-12-22 2022-03-22 中冶天工集团有限公司 T-shaped node marking device for water-stop steel plate and using method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790441A (en) * 2015-04-22 2015-07-22 杭州科技职业技术学院 Effective pile length researching simulation test box for variable parameter super-long pile
CN104846853A (en) * 2015-04-22 2015-08-19 杭州科技职业技术学院 Multi-pile-foundation simulation testing box
CN105220717B (en) * 2015-09-23 2017-04-12 武汉中岩科技有限公司 Foundation pile detection control method and device based on gating sonic sensor groups
CN105672374B (en) * 2016-03-23 2017-10-17 东华理工大学 A kind of bored concrete pile hole wall CAVE DETECTION device and its detection method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028622A (en) * 2001-07-13 2003-01-29 Fujita Corp Method for measuring shape of structure and method for measuring degradation/damage
JP2008185425A (en) * 2007-01-29 2008-08-14 Takenaka Komuten Co Ltd Elastic wave transmitting device and reflected elastic wave measuring device
JP2008185426A (en) * 2007-01-29 2008-08-14 Takenaka Komuten Co Ltd Integrity evaluation support device, method, and program of concrete pile
JP2009092444A (en) * 2007-10-05 2009-04-30 Tokyo Soil Research Co Ltd Method and device for measuring pile shape
JP2009102884A (en) * 2007-10-23 2009-05-14 Dai-Dan Co Ltd Structure of underground pile
JP2010117143A (en) * 2008-11-11 2010-05-27 Tokyo Soil Research Co Ltd Method and device for measuring shape of drilling hole
KR101121974B1 (en) * 2009-08-03 2012-03-09 김상일 Reusable and Versatile Pile Measuring Sensor
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
JP2013160013A (en) * 2012-02-08 2013-08-19 Giken Seisakusho Co Ltd Construction management device, pile driving machine and pile driving method
JP2017082498A (en) * 2015-10-29 2017-05-18 前田建設工業株式会社 Vertical accuracy measurement method of pile-shaped ground improvement body by mechanical agitation
JP2017125743A (en) * 2016-01-13 2017-07-20 株式会社大林組 Ultrasonic porous wall measurement instrument
CN106284439A (en) * 2016-08-11 2017-01-04 四川省建筑科学研究院 Depth determination method at the bottom of the stake of a kind of existing engineering pile based on many ripples joint test
CN106284439B (en) * 2016-08-11 2018-03-13 四川省建筑科学研究院 A kind of existing engineering pile stake bottom depth determination method based on more ripple joint tests
CN108825136A (en) * 2018-06-09 2018-11-16 宁波亿诺维信息技术有限公司 A kind of exploration drill bit and pile measurement device
CN108797662A (en) * 2018-07-24 2018-11-13 中南大学 Pile foundation length non-destructive test method and device under column
CN109555169A (en) * 2018-12-26 2019-04-02 青岛大学 A kind of cement earth pile corrosion depth test device
CN109555169B (en) * 2018-12-26 2023-11-14 青岛理工大学 Cement soil pile corrosion depth testing device
CN112902802A (en) * 2021-02-01 2021-06-04 王安江 Pile hole aperture detection device capable of restoring
CN114215123A (en) * 2021-12-22 2022-03-22 中冶天工集团有限公司 T-shaped node marking device for water-stop steel plate and using method

Also Published As

Publication number Publication date
JP4449048B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP2001153638A (en) Cross section measuring method and measuring device for underground structure
Pennington et al. Horizontally mounted bender elements for measuring anisotropic shear moduli in triaxial clay specimens
KR100685178B1 (en) Apparatus For Non Destructive Testing
US11619018B2 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
JP3016196B2 (en) Method and apparatus for evaluating soundness of underground concrete structures such as cast-in-place concrete piles
RU2006107215A (en) MULTI-MODE ACOUSTIC IMAGE CONSTRUCTION IN CASED WELLS
CN108802187B (en) Grouting fullness detection method and system based on sleeve surface ultrasound
CA2632687A1 (en) Method and apparatus for investigating a borehole with a caliper
JP2007231729A (en) Method and device for prior survey in tunnel construction
JP2017090101A (en) Non-destructive inspection method and non-destructive inspection system of prefabricated concrete pile installed underground
JPH0988110A (en) Method of diagnosing defect of foundation pile
CN106770643B (en) Method for detecting pile bottom grouting effect of expanded-bottom cast-in-place pile based on sound wave propagation principle
CN108978740A (en) Drilled pile quality determining method based on distributed ultrasound wave sensor
JP4050172B2 (en) Evaluation method for soundness of concrete piles
CN102141544B (en) Method for testing surrounding rock relaxation depth
Finno et al. Non-destructive evaluation of a deep foundation test section at the Northwestern University national geotechnical experimentation site
JP5062574B2 (en) In-situ gel time estimation method for ground injection chemical
JP2944515B2 (en) Shape diagnosis method for natural structures
JP2003028622A (en) Method for measuring shape of structure and method for measuring degradation/damage
JP3099042B2 (en) Judgment method for strength of ground improvement body
JP6850624B2 (en) Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method
KR100862028B1 (en) Measuring system for grouting-defect of rock-bolt and Measuring method using the same
Han et al. Evaluation of rock bolt integrity using guided ultrasonic waves
Amir Single-tube ultrasonic testing of pile integrity
JPH05179646A (en) Inspection for pile placing work quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Ref document number: 4449048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term