JP6850624B2 - Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method - Google Patents

Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method Download PDF

Info

Publication number
JP6850624B2
JP6850624B2 JP2017023958A JP2017023958A JP6850624B2 JP 6850624 B2 JP6850624 B2 JP 6850624B2 JP 2017023958 A JP2017023958 A JP 2017023958A JP 2017023958 A JP2017023958 A JP 2017023958A JP 6850624 B2 JP6850624 B2 JP 6850624B2
Authority
JP
Japan
Prior art keywords
construction
intubation
ground improvement
vibration
improvement body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017023958A
Other languages
Japanese (ja)
Other versions
JP2018131735A (en
Inventor
太郎 小粥
太郎 小粥
純一 竹谷
純一 竹谷
坂本 明伸
明伸 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2017023958A priority Critical patent/JP6850624B2/en
Publication of JP2018131735A publication Critical patent/JP2018131735A/en
Application granted granted Critical
Publication of JP6850624B2 publication Critical patent/JP6850624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高圧噴射撹拌工の施工状況を確認する技術に関する。 The present invention relates to a technique for confirming the construction status of a high-pressure jet agitator.

従来、高圧噴射撹拌工の施工状況を確認する技術として、例えば、特許文献1に開示された技術がある。この技術では、地盤中に挿入された注入管の周囲のこの注入管からの距離がそれぞれ異なる位置に複数の縦穴を形成し、この縦孔内に建込み管を挿入しその周囲にシール材を充填することで建込み管を固定する。その後、建込み管内に該建込み管の発する振動を検知する検知器を垂設し、その後、注入管の噴射ノズルから硬化材を高圧噴射してそのときの振動を検知器によって検知する。そして、この検知結果をモニタリングすることで地盤の切削状態を確認している。かかる技術では、検知器として集音マイクを用いている。また、注入管の引き上げ速度に同期させて上昇装置にて集音マイクを引き上げることで、硬化材の噴射位置に追従して集音マイクを移動し、建込み管に硬化材が当たる音をより鮮明に集音マイクによってモニタリングできるようにしている。 Conventionally, as a technique for confirming the construction status of a high-pressure injection agitator, for example, there is a technique disclosed in Patent Document 1. In this technique, a plurality of vertical holes are formed around the injection pipe inserted in the ground at different distances from the injection pipe, a built-in pipe is inserted into the vertical holes, and a sealing material is placed around the vertical holes. The built-in pipe is fixed by filling. After that, a detector for detecting the vibration generated by the built-in pipe is vertically installed in the built-in pipe, and then, the cured material is injected at high pressure from the injection nozzle of the injection pipe, and the vibration at that time is detected by the detector. Then, by monitoring this detection result, the cutting state of the ground is confirmed. In such a technique, a sound collecting microphone is used as a detector. In addition, by pulling up the sound collecting microphone with the raising device in synchronization with the pulling speed of the injection pipe, the sound collecting microphone is moved according to the injection position of the hardened material, and the sound of the hardened material hitting the built-in pipe is heard. It is possible to clearly monitor with a sound collecting microphone.

特開2012−62626号公報Japanese Unexamined Patent Publication No. 2012-62626

しかしながら、上記特許文献1の方法では、集音マイクが移動してその高さ位置が変化するため、噴射ノズルの高さ方向の正確な到達位置を把握することが困難である。そのため、噴射ノズルの正確な到達高さ位置情報が必要な例えば注入管の引き上げ速度(実速度)等の施工状況を把握することが困難となる。
また、土質の異なる複数の土層に対して共通の集音マイクを用いると共に移動させながら建込み管に硬化材が当たる音をモニタリングしているため、集音された音の変化の原因が土層を跨いだためなのかそれ以外の原因(径方向への噴射未到達等)なのか等の土層毎の施工状況を把握することが困難となる。
However, in the method of Patent Document 1, since the sound collecting microphone moves and its height position changes, it is difficult to grasp the exact arrival position of the injection nozzle in the height direction. Therefore, it is difficult to grasp the construction status such as the pulling speed (actual speed) of the injection pipe, which requires accurate reaching height position information of the injection nozzle.
In addition, since a common sound collecting microphone is used for multiple soil layers with different soil qualities and the sound of the hardening material hitting the built-in pipe is monitored while moving, the cause of the change in the collected sound is the soil. It is difficult to grasp the construction status of each soil layer, such as whether it is due to straddling the layers or other causes (such as non-arrival of injection in the radial direction).

そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、地盤改良体を造成する地盤部分を構成する各土層の特定高さ位置の正確な施工状況を確認することが可能な高圧噴射撹拌工の施工状況確認方法及びこの方法を用いた地盤改良体の造成方法を提供することを目的としている。 Therefore, the present invention has been made by paying attention to the unsolved problems of such conventional techniques, and the accuracy of the specific height position of each soil layer constituting the ground portion for creating the ground improvement body is accurate. and its object is to provide a Do construction status confirmation method of a high-pressure jet stirred Engineering capable of confirming the construction status and reclamation how the ground improvement body using this method.

上記目的を達成するために、本発明の第1の態様に係る高圧噴射撹拌工の施工状況確認方法は、地盤中に挿入された改良管の噴射ノズルから硬化材を高圧噴射すると共に前記改良管を回転させながら引き上げることで地盤改良体を造成する高圧噴射撹拌工の施工状況を確認する高圧噴射撹拌工の施工状況確認方法であって、前記地盤改良体の造成前にその造成位置から径方向に予め設定した距離だけ離れた位置に、観測孔を削孔する観測孔削孔工程と、前記観測孔内に、外挿管を建て込む外挿管建込み工程と、前記外挿管の内側における、前記地盤改良体の造成される地盤部分を構成する複数種類の土層の各土層の位置に対応する深さ位置のそれぞれに、前記外挿管を介して伝達される振動を検出する加速度センサを少なくとも1つずつ固定配置するセンサ配置工程と、前記センサ配置工程の後に前記噴射ノズルから硬化材を高圧噴射し、この高圧噴射によって前記外挿管を介して伝達される振動を、前記各土層に対応する深さ位置にそれぞれ固定配置された各前記加速度センサで検出し、その検出結果を示す振動データを記録する振動記録工程と、前記振動記録工程によって記録された前記振動データに基づき前記高圧噴射撹拌工の施工状況を確認する施工状況確認工程と、を含み、前記観測孔は前記地盤改良体の造成深さ以上の深さであり、前記外挿管は前記地盤改良体の造成深さ以上の長さであり、前記センサ配置工程においては、前記地盤改良体の造成深さ以上の長さを有する長尺の支持部材と該支持部材の前記各土層の深さ位置に対応する長さ位置にそれぞれ少なくとも1つずつ配置された複数の前記加速度センサとを有するセンサ支持体を、前記外挿管内に挿入し、挿入後に外挿管内を、振動を伝達可能な物質である振動伝達物質で充填するものである。
また、上記目的を達成するために、本発明の第1の態様に係る高圧噴射撹拌工の施工状況確認方法の別の態様は、地盤中に挿入された改良管の噴射ノズルから硬化材を高圧噴射すると共に前記改良管を回転させながら引き上げることで地盤改良体を造成する高圧噴射撹拌工の施工状況を確認する高圧噴射撹拌工の施工状況確認方法であって、前記地盤改良体の造成前にその造成位置から径方向に予め設定した距離だけ離れた位置に、観測孔を削孔する観測孔削孔工程と、前記観測孔内に、外挿管を建て込む外挿管建込み工程と、前記外挿管の内側における、前記地盤改良体の造成される地盤部分を構成する複数種類の土層の各土層の位置に対応する深さ位置のそれぞれに、前記外挿管を介して伝達される振動を検出する加速度センサを少なくとも1つずつ固定配置するセンサ配置工程と、前記センサ配置工程の後に前記噴射ノズルから硬化材を高圧噴射し、この高圧噴射によって前記外挿管を介して伝達される振動を、前記各土層に対応する深さ位置にそれぞれ固定配置された各前記加速度センサで検出し、その検出結果を示す振動データを記録する振動記録工程と、前記振動記録工程によって記録された前記振動データに基づき前記高圧噴射撹拌工の施工状況を確認する施工状況確認工程と、を含み、前記観測孔は前記地盤改良体の造成深さ以上の深さであり、前記外挿管は前記地盤改良体の造成深さ以上の長さであり、前記センサ配置工程においては、前記地盤改良体の造成深さ以上の長さを有する長尺の支持部材と該支持部材の前記各土層の深さ位置に対応する長さ位置にそれぞれ少なくとも1つずつ配置された複数の前記加速度センサとを有するセンサ支持体を、該センサ支持体が前記外挿管の内面に接した状態で固定配置されるように前記外挿管内に設置するものである。
In order to achieve the above object, the method for confirming the construction status of the high-pressure injection stirrer according to the first aspect of the present invention is to inject the cured material at high pressure from the injection nozzle of the improved pipe inserted in the ground and the improved pipe. This is a method of confirming the construction status of a high-pressure injection agitator that creates a ground improvement body by pulling it up while rotating. It is a method of confirming the construction status of a high-pressure injection agitator, in the radial direction from the construction position before the construction of the ground improvement body. An observation hole drilling step of drilling an observation hole at a position separated by a preset distance, an external tube construction step of building an external tube in the observation hole, and the above-mentioned inside the external tube. At least an acceleration sensor that detects vibration transmitted via the external pipe is installed at each depth position corresponding to the position of each soil layer of the plurality of types of soil layers constituting the ground portion where the ground improvement body is constructed. After the sensor placement step of fixing and arranging one by one and the sensor placement step, the cured material is injected at high pressure from the injection nozzle, and the vibration transmitted through the external pipe by this high pressure injection corresponds to each soil layer. A vibration recording step of detecting with each of the acceleration sensors fixedly arranged at each depth position and recording vibration data indicating the detection result, and the high-pressure injection stirring based on the vibration data recorded by the vibration recording step. seen including a construction status confirmation step of confirming construction status of engineering, and the observation hole is construction depth than a depth of the soil improvement material, said outer intubation above construction depth of the soil improvement material It is a length, and in the sensor arranging step, a long support member having a length equal to or longer than the construction depth of the ground improvement body and a length position corresponding to the depth position of each soil layer of the support member. A sensor support having a plurality of the acceleration sensors arranged in each of the above is inserted into the external tube, and after the insertion, the inside of the external tube is filled with a vibration transmitting substance which is a substance capable of transmitting vibration. Is what you do.
Further, in order to achieve the above object, another aspect of the method for confirming the construction status of the high-pressure injection stirrer according to the first aspect of the present invention is to apply high pressure to the hardened material from the injection nozzle of the improved pipe inserted in the ground. This is a method of confirming the construction status of a high-pressure injection agitator that creates a ground improvement body by injecting and pulling up the improved pipe while rotating it. An observation hole drilling step of drilling an observation hole at a position separated by a preset distance in the radial direction from the construction position, an external tube construction step of building an external tube in the observation hole, and the outside Vibration transmitted via the external intubation is applied to each of the depth positions corresponding to the positions of the respective soil layers of the plurality of types of soil layers constituting the ground portion formed by the ground improvement body inside the intubation. A sensor arranging step in which at least one acceleration sensor to be detected is fixedly arranged, and a vibration transmitted by high-pressure injection of a cured material from the injection nozzle after the sensor arranging step and transmitted through the external tube. A vibration recording step of detecting with each of the acceleration sensors fixedly arranged at a depth position corresponding to each of the soil layers and recording vibration data indicating the detection result, and the vibration data recorded by the vibration recording step. The observation hole has a depth equal to or greater than the construction depth of the ground improvement body, and the external pipe is the ground improvement body. In the sensor placement process, a long support member having a length equal to or longer than the construction depth and having a length equal to or longer than the construction depth of the ground improvement body and the depth position of each soil layer of the support member A sensor support having a plurality of the acceleration sensors arranged at least one at a corresponding length position is fixedly arranged so that the sensor support is in contact with the inner surface of the external tube. It is installed in the intubation.

また、上記目的を達成するために、本発明の第2の態様に係る地盤改良体の造成方法は、地盤中に挿入された改良管の噴射ノズルから硬化材を高圧噴射すると共に前記改良管を回転させながら引き上げることで地盤改良体を造成する高圧噴射撹拌工によって前記地盤改良体を造成する地盤改良体造成工程と、上記第1の態様に係る高圧噴射撹拌工の施工状況確認方法によって前記高圧噴射撹拌工の施工状況を確認する施工状況確認工程と、を含む。 Further, in order to achieve the above object, in the method for creating the ground improvement body according to the second aspect of the present invention, the hardened material is injected at high pressure from the injection nozzle of the improvement pipe inserted in the ground, and the improvement pipe is injected. The high pressure according to the ground improvement body construction step of creating the ground improvement body by the high pressure injection agitator which creates the ground improvement body by pulling up while rotating, and the construction status confirmation method of the high pressure injection agitator according to the first aspect. Includes a construction status confirmation process for confirming the construction status of the jet stirrer.

本発明によれば、観測孔内の地盤改良体を造成する地盤部分を構成する各土層の位置に対応する深さ位置にそれぞれ加速度センサを少なくとも1つずつ固定配置し、これら固定配置された各加速度センサによって、各土層位置の外挿管に生じる振動を個別に検出するようにした。これによって、高圧噴射撹拌工法の施工状況情報として、地盤改良体を造成時に各土層の深さ位置に配置された加速度センサに外挿管を介して伝達される振動の振動データを測定することが可能となる。加えて、測定した振動データに基づき加速度センサの配置された各土層におけるより正確な施工状況を確認することが可能となる。また、この確認結果を施工内容に反映させることで、より高品質な地盤改良体を造成することが可能となる。 According to the present invention, at least one acceleration sensor is fixedly arranged at a depth position corresponding to the position of each soil layer constituting the ground portion for creating the ground improvement body in the observation hole, and these are fixedly arranged. Each accelerometer is used to individually detect the vibration generated in the external tube at each soil layer position. As a result, as the construction status information of the high-pressure injection stirring method, it is possible to measure the vibration data of the vibration transmitted via the intubation to the acceleration sensor arranged at the depth position of each soil layer at the time of constructing the ground improvement body. It will be possible. In addition, it is possible to confirm the more accurate construction status in each soil layer where the acceleration sensor is placed based on the measured vibration data. In addition, by reflecting this confirmation result in the construction contents, it is possible to create a higher quality ground improvement body.

(a)〜(c)は、第1実施形態に係る高圧噴射撹拌工の施工状況確認方法及び地盤改良体の造成方法の流れの一例を示す図であり、外挿管を透過表示した図である。(A) to (c) are diagrams showing an example of the flow of the construction status confirmation method and the ground improvement body construction method of the high-pressure injection agitator according to the first embodiment, and are views in which the intubation tube is transparently displayed. .. 地盤改良部分の土層の構成、改良管の引き上げ速度、必要改良径及び加速度センサの配置位置の一例を示す図である。It is a figure which shows an example of the composition of the soil layer of the ground improvement part, the pulling speed of an improvement pipe, the required improvement diameter, and the arrangement position of an acceleration sensor. (a)〜(d)は、センサ支持体の構造及び加速度センサの取付構造を説明するための図であり、(a)は、センサ支持体の一部を正面側及び側面側から見た図、(b)は、(a)のリベット部分を含む一部拡大図、(c)は、(a)のセンサ取付部分を側面側及び裏面側から見た一部拡大図、(d)は、(a)のA−A線断面図である。(A) to (d) are views for explaining the structure of the sensor support and the mounting structure of the acceleration sensor, and (a) is a view of a part of the sensor support viewed from the front side and the side surface side. , (B) is a partially enlarged view including the rivet portion of (a), (c) is a partially enlarged view of the sensor mounting portion of (a) viewed from the side surface side and the back surface side, and (d) is a partially enlarged view. It is sectional drawing of the line AA of (a). 第1実施形態に係る測定装置の具体的な構成を示すブロック図である。It is a block diagram which shows the specific structure of the measuring apparatus which concerns on 1st Embodiment. (a)〜(c)は、地盤改良体の形成手順の一例を示す図である。(A) to (c) are diagrams showing an example of a procedure for forming a ground improvement body. (a)〜(c)は、第1〜第3の加速度センサで検出した振動の振動波形の一例を示す波形図である。(A) to (c) are waveform diagrams showing an example of the vibration waveform of the vibration detected by the first to third acceleration sensors. (a)〜(c)は、図6の各振動波形の一部を切り取って拡大表示した図である。(A) to (c) are views in which a part of each vibration waveform of FIG. 6 is cut out and enlarged. (a)〜(b)は、第2実施形態に係る第2の外挿管の構成例を示す図であり、(c)〜(d)は、引き抜き時の効果を説明するための図である。(A) to (b) are diagrams showing a configuration example of the second intubation according to the second embodiment, and (c) to (d) are diagrams for explaining the effect at the time of pulling out. .. 変形例に係るセンサ支持体の設置構成の一例を示す図である。It is a figure which shows an example of the installation structure of the sensor support which concerns on the modification.

次に、図面を参照して、本発明の第1〜第2実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、部材ないし部分の縦横の寸法や縮尺は実際のものとは異なる場合があることに留意すべきである。従って、具体的な寸法や縮尺は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合があることはもちろんである。
また、以下に示す第1〜第2実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
Next, the first and second embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic and the vertical and horizontal dimensions and scale of the members or parts may differ from the actual ones. Therefore, the specific dimensions and scale should be judged in consideration of the following explanation. In addition, it goes without saying that there may be parts in which the relations and ratios of the dimensions of the drawings are different from each other.
Further, the first and second embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material of a component. The shape, structure, arrangement, etc. are not specified as follows. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

(第1実施形態)
高圧噴射撹拌工法は、地盤中で液体の硬化材を高圧で噴射し、土と混合撹拌して地盤改良体を造成する地盤改良体造成工法の1つである。本発明の第1実施形態は、この高圧噴射撹拌工法を用いた工事(高圧噴射撹拌工)の施工状況を確認する方法の一実施形態である。
高圧噴射撹拌工の大まかな手順は、まず、図1(a)に示すように、高圧噴射撹拌工法によって改良地盤を造成する公知の施工機である地盤改良機20によって、改良対象の地盤における予め計画された削孔ポイントに例えば三重管ロッドから構成される改良管21を挿入する。この改良管21の挿入は、まず、改良管21よりも大径のケーシング管(図示略)によってその先端から削孔水を噴射しつつケーシング管を回転させて削孔ポイントを削孔し、ケーシング管を地盤中に挿入する。次に挿入したケーシング管の内側に改良管21を挿入し、挿入後に、図1(a)の例では、ケーシング管を引き抜く。これにより、ケーシング管によって削孔された縦穴30内に改良管21が挿入された状態となる。但し、地盤改良体の造成深さや地盤の状況などによってケーシング管を残す場合がある。ケーシング管を残した状態で地盤改良を行う場合は、ケーシング管の盛替え作業が発生する。
(First Embodiment)
The high-pressure injection stirring method is one of the ground improvement body construction methods in which a liquid hardening material is jetted in the ground at high pressure and mixed and stirred with soil to create a ground improvement body. The first embodiment of the present invention is an embodiment of a method for confirming the construction status of construction (high-pressure injection stirring work) using this high-pressure injection stirring method.
As shown in FIG. 1A, the rough procedure of the high-pressure injection agitation method is as follows: First, a ground improvement machine 20 which is a known construction machine for creating an improved ground by the high-pressure injection agitation method is used to advance the ground to be improved. An improved pipe 21 composed of, for example, a triple pipe rod is inserted into the planned drilling point. To insert the improved pipe 21, first, a casing pipe (not shown) having a diameter larger than that of the improved pipe 21 is used to inject drilling water from the tip thereof, rotate the casing pipe to drill a hole, and drill a hole in the casing. Insert the pipe into the ground. Next, the improved pipe 21 is inserted inside the inserted casing pipe, and after the insertion, the casing pipe is pulled out in the example of FIG. 1 (a). As a result, the improved pipe 21 is inserted into the vertical hole 30 drilled by the casing pipe. However, the casing pipe may be left depending on the depth of construction of the ground improvement body and the condition of the ground. When the ground is improved with the casing pipe left, the casing pipe needs to be replaced.

改良管21を挿入し、ケーシング管を引き抜いた後は、図1(b)に示すように、改良管21を回転させながら、その噴射ノズル21aから超高圧水及び圧縮空気を噴射させて、地盤を切削しそのスライムSを地上のスライムピット32に排出させる。これと同時に地盤中に生じた空隙に例えばセメントミルク等の硬化材を高圧噴射する。このとき、改良管21が回転することで、改良管21の全周囲に対して硬化材の高圧噴射が行われると共に硬化材と切削地盤とを混合撹拌する。加えて、改良管21は、改良対象の地盤部分を構成する土層毎に予め設定された引き上げ速度で引き上げられる。これによって、必要改良径を有する略円柱形状の地盤改良体31が造成される。 After inserting the improved pipe 21 and pulling out the casing pipe, as shown in FIG. 1 (b), while rotating the improved pipe 21, ultra-high pressure water and compressed air are injected from the injection nozzle 21a to inject the ground. Is cut and the slime S is discharged to the slime pit 32 on the ground. At the same time, a hardening material such as cement milk is injected at high pressure into the voids formed in the ground. At this time, the rotation of the improved pipe 21 causes high-pressure injection of the cured material to the entire circumference of the improved pipe 21 and mixes and stirs the cured material and the cutting ground. In addition, the improved pipe 21 is pulled up at a preset pulling speed for each soil layer constituting the ground portion to be improved. As a result, a substantially cylindrical ground improvement body 31 having the required improvement diameter is created.

ここで、改良対象の地盤部分は、土質や深度等が異なる複数種類の土層から構成されている。そして、各土層の土質や必要改良径に応じて、高圧噴射の圧力や、改良管21の回転速度及び引き上げ速度がそれぞれ決められている。
地盤改良体31は、地中に造成されるため地上からはその出来の良し悪しを確認することができない。そのために、造成条件(所望の質)を満たす地盤改良体が造成されているのか(施工がうまくいっているのか)を確認(推定)する方法が必要となる。
Here, the ground portion to be improved is composed of a plurality of types of soil layers having different soil qualities, depths, and the like. Then, the pressure of high-pressure injection, the rotation speed of the improvement pipe 21, and the pulling speed are determined according to the soil quality of each soil layer and the required improvement diameter.
Since the ground improvement body 31 is constructed in the ground, its quality cannot be confirmed from the ground. Therefore, a method of confirming (estimating) whether a ground improvement body satisfying the construction conditions (desired quality) has been constructed (whether the construction is successful) is required.

次に、第1実施形態に係る高圧噴射撹拌工の施工状況確認方法及び地盤改良体の造成方法について説明する。
(1)まず、図1(a)に示すように、ボーリングマシン等の削孔機7によって、地盤中に挿入された改良管21から径方向に必要改良半径である距離rだけ離れた位置に、改良管21の挿入深さよりも深い観測孔10を削孔する。そして、この観測孔10内に第1実施形態では例えばポリ塩化ビニル製の円筒状の外挿管1を建て込む。
Next, a method of confirming the construction status of the high-pressure injection agitator and a method of creating a ground improvement body according to the first embodiment will be described.
(1) First, as shown in FIG. 1A, a drilling machine 7 such as a boring machine is used to position the improved pipe 21 inserted in the ground at a position separated by a distance r, which is the required improvement radius in the radial direction. , The observation hole 10 deeper than the insertion depth of the improved pipe 21 is drilled. Then, in the first embodiment, for example, a cylindrical intubation tube 1 made of polyvinyl chloride is built in the observation hole 10.

(2)次に、図1(b)に示すように、外挿管1の内部にセンサ支持体2を挿入する。
このセンサ支持体2は、図2に示すように、地上から地盤中に挿入された改良管21の先端位置(噴射ノズル21a側の端部)の深さまで届く長尺の支持部材2aと、この支持部材2aに固定された第1〜第3の加速度センサ3A〜3Cとを有している。
第1〜第3の加速度センサ3A〜3Cは、防水性を有し、水中、土中での使用が可能な、例えばひずみゲージ式の加速度変換器から構成されている。ひずみゲージ式の加速度変換器は、重力加速度を基準にして、被測定物にどの位の加速度が作用しているかを測定するセンサである。また、第1〜第3の加速度センサ3A〜3Cの信号出力端子には、それぞれが配置される深さ位置から地上の測定装置5(後述)まで到達可能な長さの電気ケーブル4の一端がそれぞれ接続されている。そして、電気ケーブル4の他端は測定装置5の動ひずみ測定器50(後述)の入力端子に接続されている。
(2) Next, as shown in FIG. 1 (b), the sensor support 2 is inserted inside the intubation 1.
As shown in FIG. 2, the sensor support 2 includes a long support member 2a that reaches the depth of the tip position (the end on the injection nozzle 21a side) of the improved pipe 21 inserted into the ground from the ground. It has first to third acceleration sensors 3A to 3C fixed to the support member 2a.
The first to third acceleration sensors 3A to 3C are composed of, for example, a strain gauge type acceleration converter that is waterproof and can be used in water or soil. The strain gauge type acceleration converter is a sensor that measures how much acceleration is acting on the object to be measured based on the gravitational acceleration. Further, at the signal output terminals of the first to third acceleration sensors 3A to 3C, one end of an electric cable 4 having a length that can reach the measuring device 5 (described later) on the ground from the depth position at which each is arranged is provided. Each is connected. The other end of the electric cable 4 is connected to the input terminal of the dynamic strain measuring device 50 (described later) of the measuring device 5.

更に、第1〜第3の加速度センサ3A〜3Cは、それぞれ、支持部材2aにおける観測対象の各土層の深さ位置に対応する長さ位置に固定配置されている。即ち、支持部材2aを外挿管1内に挿入して固定した際に、第1〜第3の加速度センサ3A〜3Cが、観測対象の各土層の深さ位置にそれぞれ固定されるように、支持部材2aの各対応する長さ位置に各加速度センサが固定配置されている。
具体的に、図2に示す例では、下層側から順に、第1の加速度センサ3Aが粘性土の土層(シルト層)の深さ位置に固定配置され、第2の加速度センサ3Bが砂質系の土層(砂質層)の深さ位置に固定配置され、第3の加速度センサ3Cが埋め土部分の土層(埋土層)の深さ位置に固定配置されている。また、第1実施形態において、第1〜第3の加速度センサ3A〜3Cは、各土層の深さ方向の中央高さ位置にそれぞれ配置されている。
Further, the first to third acceleration sensors 3A to 3C are fixedly arranged at length positions corresponding to the depth positions of the soil layers to be observed on the support member 2a, respectively. That is, when the support member 2a is inserted into the intubation tube 1 and fixed, the first to third acceleration sensors 3A to 3C are fixed at the depth positions of each soil layer to be observed. Each acceleration sensor is fixedly arranged at each corresponding length position of the support member 2a.
Specifically, in the example shown in FIG. 2, the first accelerometer 3A is fixedly arranged at the depth position of the soil layer (silt layer) of cohesive soil in order from the lower layer side, and the second accelerometer 3B is sandy. It is fixedly arranged at the depth position of the soil layer (sandy layer) of the system, and the third acceleration sensor 3C is fixedly arranged at the depth position of the soil layer (buried soil layer) of the buried soil portion. Further, in the first embodiment, the first to third acceleration sensors 3A to 3C are arranged at the central height position in the depth direction of each soil layer.

そして、外挿管1内へのセンサ支持体2の挿入及び固定が完了すると、外挿管1内を振動の伝達が可能な物質(以下、「振動伝達物質」と記載する)で充填する。第1実施形態では、振動伝達物質として砂を充填する。
また、第1実施形態において、支持部材2aは、図3(a)〜(c)に示すように、例えばアルミ製の半角筒状の長尺部材から構成されている。そして、第1〜第3の加速度センサ3A〜3C(以下、区別する必要が無い場合に「加速度センサ3」と略称する)は、この半角筒状の支持部材2aの内側に固定配置されている。
Then, when the insertion and fixing of the sensor support 2 into the intubation tube 1 is completed, the inside of the intubation tube 1 is filled with a substance capable of transmitting vibration (hereinafter, referred to as “vibration transmitter substance”). In the first embodiment, sand is filled as a vibration transmitter.
Further, in the first embodiment, the support member 2a is composed of, for example, a half-width tubular long member made of aluminum, as shown in FIGS. 3 (a) to 3 (c). The first to third acceleration sensors 3A to 3C (hereinafter, abbreviated as "accelerometer 3" when it is not necessary to distinguish them) are fixedly arranged inside the half-width tubular support member 2a. ..

具体的に、支持部材2aは、図3(a)及び(b)に示すように、複数の半角筒状の部材を、リベット2bによって長手方向につなぎ合わせて構成されている。そして、図3(a)及び(c)に示すように、支持部材2aの半角筒状の内側に加速度センサ3を配置し、外側から締結部材(図3の例では2本のトラスネジ2c)によって固定する。
より具体的には、図3(d)に示すように、支持部材2aの半角筒形状を構成する底部2dとその両端部から立ち上がる側壁2e及び2fとのうち、底部2dと側壁2fとに接するように略立方体形状の加速度センサ3を配置する。このとき、各加速度センサ3は、支持部材2aの各土層の深さ位置に対応する長さ位置に配置する。その後、底部2dの外側から2本のトラスネジ2cにて加速度センサ3を固定する。
Specifically, as shown in FIGS. 3A and 3B, the support member 2a is configured by connecting a plurality of half-width tubular members in the longitudinal direction by rivets 2b. Then, as shown in FIGS. 3A and 3C, the acceleration sensor 3 is arranged inside the half-width tubular shape of the support member 2a, and the fastening member (two truss screws 2c in the example of FIG. 3) is used from the outside. Fix it.
More specifically, as shown in FIG. 3D, of the bottom portion 2d forming the half-width tubular shape of the support member 2a and the side walls 2e and 2f rising from both ends thereof, the bottom portion 2d and the side wall 2f are in contact with each other. The acceleration sensor 3 having a substantially cubic shape is arranged as described above. At this time, each acceleration sensor 3 is arranged at a length position corresponding to the depth position of each soil layer of the support member 2a. After that, the acceleration sensor 3 is fixed with two truss screws 2c from the outside of the bottom 2d.

(3)外挿管1内へのセンサ支持体2の挿入及び固定並びに砂の充填が完了すると、次に、図1(b)に示すように、地盤改良機20によって、地盤改良体31の造成を開始する。これと共に硬化材の高圧噴射によって外挿管1を介して伝達される振動を第1〜第3の加速度センサ3A〜3Cによって検出し、この検出結果である振動データを、図4に示す測定装置5によって記録する。即ち、高圧噴射によって土中を伝わる振動及び硬化材の衝突による衝撃が外挿管1を振動させ、この振動が外挿管1内に充填された砂を介してセンサ支持体2へと伝わり、加速度センサ3によって検出される。そして、加速度センサ3によって検出された振動のデータである振動データは、測定装置5によって記録される。 (3) When the insertion and fixing of the sensor support 2 into the intubation 1 and the filling of sand are completed, the ground improvement machine 20 then creates the ground improvement body 31 as shown in FIG. 1 (b). To start. At the same time, the vibrations transmitted through the intubation 1 by the high-pressure injection of the cured material are detected by the first to third acceleration sensors 3A to 3C, and the vibration data as the detection result is obtained by the measuring device 5 shown in FIG. Record by. That is, the vibration transmitted through the soil by the high-pressure injection and the impact due to the collision of the hardening material vibrate the intubation 1, and this vibration is transmitted to the sensor support 2 through the sand filled in the intubation 1, and the acceleration sensor. Detected by 3. Then, the vibration data, which is the vibration data detected by the acceleration sensor 3, is recorded by the measuring device 5.

この測定装置5は、図4に示すように、動ひずみ測定器50と、データレコーダ51と、計測制御用PC52と、表示装置53と、絶縁トランス54と、無停電電源55とを備えている。
発電機200から供給される電力は、絶縁トランス54を介して降圧されて無停電電源55に供給される。無停電電源55は、供給された降圧電力によって自身の備える二次電池を充電すると共に、駆動電力を、データレコーダ51、計測制御用PC52及び表示装置53にそれぞれ供給する。データレコーダ51、計測制御用PC52及び表示装置53は、無停電電源55から供給される駆動電力によって駆動する。また、第1実施形態において、動ひずみ測定器50にはデータレコーダ51から駆動電力が供給される。
As shown in FIG. 4, the measuring device 5 includes a dynamic strain measuring device 50, a data recorder 51, a measurement control PC 52, a display device 53, an isolation transformer 54, and an uninterruptible power supply 55. ..
The electric power supplied from the generator 200 is stepped down through the isolation transformer 54 and supplied to the uninterruptible power supply 55. The uninterruptible power supply 55 charges its own secondary battery with the supplied step-down power, and supplies drive power to the data recorder 51, the measurement control PC 52, and the display device 53, respectively. The data recorder 51, the measurement control PC 52, and the display device 53 are driven by the drive power supplied from the uninterruptible power supply 55. Further, in the first embodiment, drive power is supplied to the dynamic strain measuring instrument 50 from the data recorder 51.

動ひずみ測定器50は、図示省略するが、第1〜第3の加速度センサ3A〜3Cからそれぞれ電気ケーブル4を介して入力される検出信号(ひずみゲージの出力)を個別に受信する受信部を備えている。加えて、受信部で受信した各検出信号をそれぞれ増幅する増幅器と、増幅器で増幅した各アナログの検出信号をデジタルの信号に変換するA/D変換器とを備える。そして、A/D変換後の各デジタルの検出信号を振動信号(振動データ)としてデータレコーダ51に出力する。
データレコーダ51は、動ひずみ測定器50から時系列に入力される各振動データを、第1〜第3の加速度センサ3A〜3Cにそれぞれ対応する土層毎に分別して順次記録する。以下、第1の加速度センサ3Aに対応する土層(シルト層)を下層、第2の加速度センサ3Bに対応する土層(砂質層)を中層、第3の加速度センサ3Cに対応する土層(盛土層)を上層とする。
Although not shown, the dynamic strain measuring instrument 50 has a receiving unit that individually receives detection signals (strain gauge outputs) input from the first to third acceleration sensors 3A to 3C via the electric cable 4. I have. In addition, it includes an amplifier that amplifies each detection signal received by the receiving unit, and an A / D converter that converts each analog detection signal amplified by the amplifier into a digital signal. Then, each digital detection signal after A / D conversion is output to the data recorder 51 as a vibration signal (vibration data).
The data recorder 51 segregates and sequentially records each vibration data input in time series from the dynamic strain measuring device 50 for each soil layer corresponding to the first to third acceleration sensors 3A to 3C. Hereinafter, the soil layer (silt layer) corresponding to the first acceleration sensor 3A is the lower layer, the soil layer (sandy layer) corresponding to the second acceleration sensor 3B is the middle layer, and the soil layer corresponding to the third acceleration sensor 3C. (Silt layer) is the upper layer.

計測制御用PC52は、パーソナルコンピュータから構成されており、専用の計測用ソフトを実行することで、データレコーダ51で記録された土層毎の各振動データを解析することが可能である。例えば、横軸を時間、縦軸を加速度(振動レベル)として、上層、中層及び下層の3種類の土層にそれぞれ対応する振動波形を任意の倍率で表示装置53に表示したり、この振動波形の一部を切り出して拡大表示したりすることなどが可能である。 The measurement control PC 52 is composed of a personal computer, and by executing dedicated measurement software, it is possible to analyze each vibration data for each soil layer recorded by the data recorder 51. For example, the horizontal axis is time and the vertical axis is acceleration (vibration level), and the vibration waveform corresponding to each of the three types of soil layers of the upper layer, the middle layer, and the lower layer is displayed on the display device 53 at an arbitrary magnification. It is possible to cut out a part of the image and enlarge it.

次に、地盤改良の手順及び地盤改良によって発生する振動の測定手順の一例を説明する。
ここで、図2に示す土層の構成例、必要改良径(3.5[m])及び改良管21の引き上げ速度の設定例は、本発明者らが実際に高圧噴射撹拌工を実施したときのものと同様となる。
地盤改良体31の造成は、図2に示す例では、最下層の砂質層(厚さ0.5[m])から開始され、この砂質層部分の改良が完了すると、引き続き、図5(a)に示すように、振動の測定対象である下層のシルト層の改良が行われる。シルト層の厚さは、図2に示す例では、1.5[m]であり、地盤改良は12[分/m]の引き上げ速度で行われる。シルト層の深さ方向の中央高さ位置には、外挿管1内に第1の加速度センサ3Aが固定配置されており、高圧噴射される硬化材がこの中央高さ位置に近づくほどかつ外挿管1に近づくほど第1の加速度センサ3Aでは大きな振動(加速度)が検出される。第1の加速度センサ3Aで検出された振動の振動データは測定装置5にて記録される。シルト層の改良が完了すると、図5(a)に示すように、粘性土と硬化材とが撹拌混合した第1の地盤改良体31aが造成される。
Next, an example of the procedure for ground improvement and the procedure for measuring the vibration generated by the ground improvement will be described.
Here, the present inventors actually carried out a high-pressure injection stirring work for the configuration example of the soil layer shown in FIG. 2, the required improvement diameter (3.5 [m]), and the setting example of the pulling speed of the improvement pipe 21. It will be the same as the one at the time.
In the example shown in FIG. 2, the construction of the ground improvement body 31 is started from the lowest sandy layer (thickness 0.5 [m]), and when the improvement of this sandy layer portion is completed, it is continued in FIG. As shown in (a), the lower silt layer, which is the object of vibration measurement, is improved. The thickness of the silt layer is 1.5 [m] in the example shown in FIG. 2, and the ground improvement is performed at a lifting speed of 12 [minutes / m]. At the central height position in the depth direction of the silt layer, the first acceleration sensor 3A is fixedly arranged in the intubation 1, and the closer the hardened material injected with high pressure is to this central height position, the more the intubation tube 1 is located. The closer it is to 1, the larger the vibration (acceleration) is detected by the first acceleration sensor 3A. The vibration data of the vibration detected by the first acceleration sensor 3A is recorded by the measuring device 5. When the improvement of the silt layer is completed, as shown in FIG. 5A, a first ground improvement body 31a in which the cohesive soil and the hardening material are agitated and mixed is formed.

続いて、図5(b)に示すように、振動の測定対象である中層の砂質層の改良が行われる。砂質層の厚さは、図2に示す例では、7.5[m]であり、地盤改良は9[分/m]の引き上げ速度で行われる。砂質層の深さ方向の中央高さ位置には、外挿管1内に第2の加速度センサ3Bが固定配置されており、高圧噴射される硬化材がこの中央高さ位置に近づくほどかつ外挿管1に近づくほど第2の加速度センサ3Bでは大きな振動が検出される。第2の加速度センサ3Bで検出された振動の振動データは測定装置5にて記録される。砂質層の改良が完了すると、図5(b)に示すように、砂と硬化材とが撹拌混合した第2の地盤改良体31bが造成される。 Subsequently, as shown in FIG. 5B, the sandy layer of the middle layer, which is the measurement target of vibration, is improved. The thickness of the sandy layer is 7.5 [m] in the example shown in FIG. 2, and the ground improvement is performed at a lifting speed of 9 [minutes / m]. A second acceleration sensor 3B is fixedly arranged in the intubation 1 at the central height position in the depth direction of the sandy layer, and the hardened material injected at high pressure approaches the central height position and is outside. The closer to the intubation 1, the larger the vibration detected by the second accelerometer 3B. The vibration data of the vibration detected by the second acceleration sensor 3B is recorded by the measuring device 5. When the improvement of the sandy layer is completed, as shown in FIG. 5B, a second ground improvement body 31b in which the sand and the hardening material are agitated and mixed is formed.

引き続き、図5(c)に示すように、振動の測定対象である上層の盛土層の改良が行われる。盛土層の厚さは、図2に示す例では、2.8[m]であり、地盤改良は9[分/m]の引き上げ速度で行われる。なお、盛土層は中層と同じ砂質系の土から構成されている。盛土層の深さ方向の中央高さ位置には、外挿管1内に第3の加速度センサ3Cが固定配置されており、高圧噴射される硬化材がこの中央高さ位置に近づくほどかつ外挿管1に近づくほど第3の加速度センサ3Cでは大きな振動が検出される。第3の加速度センサ3Cで検出された振動の振動データは測定装置5にて記録される。盛土層の改良が完了すると、図5(c)に示すように、砂と硬化材とが撹拌混合した第3の地盤改良体31cが造成される。これにより、第1〜第3の地盤改良体31a〜31cが積層された構成の地盤改良体31の造成が完了する。 Subsequently, as shown in FIG. 5C, the upper embankment layer, which is the measurement target of vibration, is improved. The thickness of the embankment layer is 2.8 [m] in the example shown in FIG. 2, and the ground improvement is performed at a lifting speed of 9 [minutes / m]. The embankment layer is composed of the same sandy soil as the middle layer. A third acceleration sensor 3C is fixedly arranged in the intubation 1 at the central height position in the depth direction of the filling layer, and the hardened material injected at high pressure approaches the central height position and the intubation is intubated. The closer it is to 1, the larger the vibration is detected by the third acceleration sensor 3C. The vibration data of the vibration detected by the third acceleration sensor 3C is recorded by the measuring device 5. When the improvement of the embankment layer is completed, as shown in FIG. 5C, a third ground improvement body 31c in which sand and the hardening material are agitated and mixed is formed. As a result, the construction of the ground improvement body 31 having a structure in which the first to third ground improvement bodies 31a to 31c are laminated is completed.

(4)地盤改良体31の造成が完了し、振動データの記録が完了すると、次に、図1(c)に示すように、例えば、ボーリングマシン等によってセンサ支持体2及び外挿管1の引き抜き作業を行い、引き抜いたセンサ支持体2から加速度センサ3を回収する。 (4) When the construction of the ground improvement body 31 is completed and the recording of the vibration data is completed, then, as shown in FIG. 1 (c), the sensor support 2 and the intubation 1 are pulled out by, for example, a boring machine or the like. The work is performed, and the acceleration sensor 3 is collected from the pulled out sensor support 2.

(5)一方、施工状況を確認する現場担当者は、計測制御用PC52を操作して、データレコーダ51に記録された振動データに基づき、高圧噴射撹拌工の施工状況を確認する。
具体的に、現場担当者は、計測制御用PC52にて計測用ソフトを実行して、表示装置53に、例えば、図6(a)〜図6(c)に示すように、測定対象の土層毎に地盤改良の開始から終了までに記録した振動データに基づく振動波形を上から上層、中層、下層の順に並べて表示する。
ここで、図6(a)〜図6(c)は、図2の構成にて、実際に高圧噴射撹拌工を実施した際の実測データの波形となる。
(5) On the other hand, the person in charge of the site who confirms the construction status operates the measurement control PC 52 and confirms the construction status of the high-pressure injection agitator based on the vibration data recorded in the data recorder 51.
Specifically, the person in charge of the site executes the measurement software on the measurement control PC 52 and displays the soil to be measured on the display device 53, for example, as shown in FIGS. 6 (a) to 6 (c). The vibration waveforms based on the vibration data recorded from the start to the end of the ground improvement for each layer are displayed in the order of the upper layer, the middle layer, and the lower layer from the top.
Here, FIGS. 6 (a) to 6 (c) are waveforms of actual measurement data when the high-pressure injection stirring work is actually carried out in the configuration of FIG.

図6(c)に示すように、下層では、地盤改良の開始から約900[秒]〜1300[秒]の範囲で、第1の加速度センサ3Aにて、高圧噴射の振動が検出されていることが解る。また、図6(b)に示すように、中層では、約5200[秒]〜6500[秒]の範囲で、第2の加速度センサ3Bにて、高圧噴射の振動が検出されていることが解る。更にまた、図6(a)に示すように、上層では、約8000[秒]〜8400[秒]の範囲と、約9500[秒]〜9800[秒]の範囲とで、第3の加速度センサ3Cにて、高圧噴射の振動が検出されていることが解る。 As shown in FIG. 6C, in the lower layer, the vibration of the high-pressure injection is detected by the first acceleration sensor 3A in the range of about 900 [seconds] to 1300 [seconds] from the start of the ground improvement. I understand that. Further, as shown in FIG. 6B, it can be seen that the vibration of the high-pressure injection is detected by the second acceleration sensor 3B in the range of about 5200 [seconds] to 6500 [seconds] in the middle layer. .. Furthermore, as shown in FIG. 6A, in the upper layer, the third acceleration sensor has a range of about 8000 [seconds] to 8400 [seconds] and a range of about 9500 [seconds] to 9800 [seconds]. It can be seen that the vibration of the high pressure injection is detected at 3C.

なお、図6(b)中の約3500[秒]〜5200[秒]の間の空白期間と、図6(a)中の約8400[秒]〜9500[秒]の間の空白期間とは、ケーシング管の盛替えによって地盤改良作業が一時的に停止された期間となる。
また、現場担当者は、計測用ソフトによって、例えば、図7(a)〜図7(c)に示すように、上から上層、中層、下層の順に並べて、図6(a)〜図6(c)に示す振動波形の一部を切り出してレンジを拡大した拡大波形を表示装置53に表示する。
The blank period between about 3500 [seconds] and 5200 [seconds] in FIG. 6 (b) and the blank period between about 8400 [seconds] and 9500 [seconds] in FIG. 6 (a) are defined. , It will be a period when the ground improvement work is temporarily stopped due to the replacement of the casing pipe.
In addition, the person in charge at the site arranges the upper layer, the middle layer, and the lower layer in this order from the top, as shown in FIGS. 7 (a) to 7 (c), using the measurement software, and FIGS. A part of the vibration waveform shown in c) is cut out and an enlarged waveform whose range is expanded is displayed on the display device 53.

図7(c)に示すように、下層では、820[秒]付近で最大値が「15.985」となり、図7(b)に示すように、中層では、5910[秒]付近で最大値が「2.411」となり、図7(a)に示すように、上層では、9620[秒]付近で最大値が「19.111」となっていることが解る。即ち、これら最大値から第1〜第3の加速度センサ3A〜3Cの配置された高さ位置への高圧噴射の到達時間が解る。
このようにして、現場担当者は、解析用の各振動波形を表示装置53に表示し、表示された各振動波形を解析することで、硬化材が必要改良径(2r[m])の位置まで到達しているか否か、各加速度センサの高さ位置(既知)までの噴射到達時間などの施工状況を確認する。この確認結果は、同じ構成の地盤を改良する際に、改良管21の回転速度及び引き上げ速度、硬化材の噴射圧力などの各種設定に反映することができ、より高品質な地盤改良体の造成に役立てることが可能である。
As shown in FIG. 7 (c), the maximum value is "15.985" near 820 [seconds] in the lower layer, and the maximum value is around 5910 [seconds] in the middle layer as shown in FIG. 7 (b). Is "2.411", and as shown in FIG. 7A, it can be seen that in the upper layer, the maximum value is "19.111" near 9620 [seconds]. That is, from these maximum values, the arrival time of the high-pressure injection to the height positions where the first to third acceleration sensors 3A to 3C are arranged can be known.
In this way, the person in charge of the field displays each vibration waveform for analysis on the display device 53, and analyzes each displayed vibration waveform to position the hardened material at the required improved diameter (2r [m]). Check the construction status such as the injection arrival time to the height position (known) of each acceleration sensor. This confirmation result can be reflected in various settings such as the rotation speed and pulling speed of the improvement pipe 21 and the injection pressure of the hardened material when improving the ground having the same configuration, and the creation of a higher quality ground improvement body. It is possible to use it for.

また、振動の計測に加速度センサを用いたことによって、従来のマイクによる集音と比較して測定精度を高くすることが容易である。例えば、図7及び図8の振動波形は、30[Hz]のサンプリング周期で測定した波形となるが、加速度センサであれば、このサンプリング周期を例えば50[Hz]に上げて高精度化することが容易である。
また、振動波形だけはなく、硬化材の高圧噴射用ポンプ(図示略)の流量を計測する流量計(図示略)の計測結果を示すチャート紙の内容なども合わせて解析することで、より詳細な施工状況の確認を行うことが可能となる。
Further, by using the acceleration sensor for the measurement of vibration, it is easy to improve the measurement accuracy as compared with the sound collection by the conventional microphone. For example, the vibration waveforms of FIGS. 7 and 8 are waveforms measured with a sampling period of 30 [Hz], but in the case of an accelerometer, this sampling period should be increased to, for example, 50 [Hz] to improve accuracy. Is easy.
Further details can be obtained by analyzing not only the vibration waveform but also the contents of the chart paper showing the measurement results of the flow meter (not shown) that measures the flow rate of the high-pressure injection pump (not shown) of the hardened material. It is possible to confirm the construction status.

ここで、上記外挿管1、上記第1〜第3の加速度センサ3A〜3C、上記振動伝達物質(砂)及び上記測定装置5から、高圧噴射撹拌工用の施工状況情報測定装置が構成される。
また、測定装置5の動ひずみ測定器50及びデータレコーダ51は、振動データ記録部に対応する。
Here, the construction status information measuring device for the high-pressure injection agitator is configured from the external intubation 1, the first to third acceleration sensors 3A to 3C, the vibration transmitting material (sand), and the measuring device 5. ..
Further, the dynamic strain measuring device 50 and the data recorder 51 of the measuring device 5 correspond to the vibration data recording unit.

(第1実施形態の効果)
第1実施形態に係る高圧噴射撹拌工の施工状況確認方法は、まず、地盤改良体31の造成前にその造成位置から径方向に予め設定した距離rだけ離れた位置に、地盤改良体31の造成深さ以上の深さの観測孔10を削孔する。次に、観測孔10内に、地盤改良体31の造成深さ以上の長さの外挿管1を建て込み、建て込んだ外挿管1の内側における、地盤改良体31の造成される地盤部分を構成する複数種類の土層の各土層(第1実施形態では、シルト層、砂質層、盛土層の3つ)の位置に対応する深さ位置のそれぞれに、外挿管1を介して伝達される振動を検出する加速度センサを少なくとも1つずつ固定配置する。上記第1実施形態では、各層に対して1つずつの計3つの加速度センサ(第1〜第3の加速度センサ3A〜3C)を固定配置する。加速度センサ3の配置後に、噴射ノズル21aから硬化材を高圧噴射し、この高圧噴射によって外挿管1を介して伝達される振動を、各土層に対応する深さ位置にそれぞれ固定配置された各加速度センサ3で検出する。そして、この検出結果を示す振動データを記録する(第1実施形態では測定装置5にて記録する)。更に、記録された振動データに基づき高圧噴射撹拌工の施工状況を確認する。
(Effect of the first embodiment)
The method of confirming the construction status of the high-pressure injection agitator according to the first embodiment is as follows: First, before the construction of the ground improvement body 31, the ground improvement body 31 is located at a position separated by a preset distance r in the radial direction from the construction position. An observation hole 10 having a depth equal to or greater than the construction depth is drilled. Next, an intubation pipe 1 having a length equal to or greater than the creation depth of the ground improvement body 31 is built in the observation hole 10, and the ground portion where the ground improvement body 31 is formed is formed inside the built-in intubation pipe 1. It is transmitted via the intubation 1 to each of the depth positions corresponding to the positions of each of the constituent soil layers (three of the silt layer, the sandy layer, and the embankment layer in the first embodiment). At least one acceleration sensor that detects the vibration to be generated is fixedly arranged. In the first embodiment, a total of three acceleration sensors (first to third acceleration sensors 3A to 3C), one for each layer, are fixedly arranged. After arranging the acceleration sensor 3, the cured material is injected at high pressure from the injection nozzle 21a, and the vibration transmitted through the intubation 1 by this high pressure injection is fixedly arranged at the depth position corresponding to each soil layer. It is detected by the acceleration sensor 3. Then, the vibration data indicating the detection result is recorded (in the first embodiment, it is recorded by the measuring device 5). Furthermore, the construction status of the high-pressure injection agitator is confirmed based on the recorded vibration data.

これによって、各土層の深さ位置に固定配置された各加速度センサ3によって、外挿管1に生じる振動を個別に検出することが可能となり、加速度センサ3の配置された各土層におけるより正確な施工状況を確認することが可能となる。
第1実施形態に係る高圧噴射撹拌工の施工状況確認方法は、更に、加速度センサ3を配置する際に、地盤改良体31の造成深さ以上の長さを有する長尺の支持部材2aと該支持部材2aの各土層の深さ位置に対応する長さ位置にそれぞれ少なくとも1つずつ配置された複数の加速度センサ3(第1実施形態では第1〜第3の加速度センサ3A〜3C)とを有するセンサ支持体2を構成する。そして、このセンサ支持体2を、外挿管1内に挿入し、挿入後に外挿管1内を、振動を伝達可能な物質(第1実施形態では砂)で充填する。
これによって、加速度センサ3を外挿管1に直接接触させることなく、振動を加速度センサ3に伝達させることが可能となり、加速度センサの設置自由度を向上することが可能となる。
As a result, each acceleration sensor 3 fixedly arranged at the depth position of each soil layer can individually detect the vibration generated in the intubation 1, and more accurately in each soil layer where the acceleration sensor 3 is arranged. It is possible to check the construction status.
The method for confirming the construction status of the high-pressure injection agitator according to the first embodiment further comprises a long support member 2a having a length equal to or greater than the construction depth of the ground improvement body 31 when the acceleration sensor 3 is arranged. With a plurality of acceleration sensors 3 (first to third acceleration sensors 3A to 3C in the first embodiment) arranged at least one at a length position corresponding to the depth position of each soil layer of the support member 2a. The sensor support 2 having the above is configured. Then, the sensor support 2 is inserted into the intubation tube 1, and after the insertion, the inside of the intubation tube 1 is filled with a substance (sand in the first embodiment) capable of transmitting vibration.
As a result, the vibration can be transmitted to the acceleration sensor 3 without directly contacting the acceleration sensor 3 with the intubation 1, and the degree of freedom in installing the acceleration sensor can be improved.

また、第1実施形態に係る地盤改良体の造成方法は、地盤中に挿入された改良管21の噴射ノズル21aから硬化材を高圧噴射すると共に改良管21を回転させながら引き上げることで地盤改良体を造成する高圧噴射撹拌工によって地盤改良体31を造成する。加えて、上記の第1実施形態に係る高圧噴射撹拌工の施工状況確認方法によって高圧噴射撹拌工の施工状況を確認する。
これによって、上記高圧噴射撹拌工の施工状況確認方法と同様の効果が得られると共に、施工状況の確認結果を施工内容に反映させることで、より高品質な地盤改良体を造成することが可能となる。
Further, in the method for creating the ground improvement body according to the first embodiment, the hardened material is injected at high pressure from the injection nozzle 21a of the improvement pipe 21 inserted into the ground, and the improvement pipe 21 is pulled up while rotating to rotate the ground improvement body. The ground improvement body 31 is created by a high-pressure jet stirrer. In addition, the construction status of the high-pressure injection agitator is confirmed by the method for confirming the construction status of the high-pressure injection agitator according to the first embodiment.
As a result, the same effect as the construction status confirmation method of the high-pressure injection agitator can be obtained, and by reflecting the construction status confirmation result in the construction content, it is possible to create a higher quality ground improvement body. Become.

また、第1実施形態に係る高圧噴射撹拌工用の施工状況情報測定装置は、地盤改良体31の造成位置から径方向に予め設定した距離rだけ離れた位置に設けられた、地表から地盤改良体31の造成深度より下方まで達する外挿管1を備える。更に、外挿管1内であって、地盤改良体31の造成される地盤部分を構成する複数種類の土層の各土層の深さ位置に対応する位置に少なくとも1つずつ固定配置された第1〜第3の加速度センサ30A〜30Cを備える。なお更に、第1〜第3の加速度センサ30A〜30Cの配置された外挿管1内に充填された振動伝達物質(第1実施形態では砂)を備える。そして、測定装置5の動ひずみ測定器50及びデータレコーダ51が、高圧噴射撹拌工によって地盤改良体31を造成時に第1〜第3の加速度センサ30A〜30Cで検出した振動データを記録する。
この構成であれば、高圧噴射撹拌工法の施工状況情報として、地盤改良体を造成時に各土層の深さ位置に配置された加速度センサに外挿管1を介して伝達される振動の振動データを測定することが可能となる。これによって、測定した振動データに基づき加速度センサの配置された各土層におけるより正確な施工状況を確認することが可能となる。
Further, the construction status information measuring device for the high-pressure injection agitation work according to the first embodiment is provided at a position separated by a preset distance r in the radial direction from the construction position of the ground improvement body 31 to improve the ground from the ground surface. The intubation 1 is provided so as to reach below the construction depth of the body 31. Further, at least one fixedly arranged in the intubation 1 at a position corresponding to the depth position of each of the plurality of types of soil layers constituting the ground portion formed by the ground improvement body 31. The first to third acceleration sensors 30A to 30C are provided. Furthermore, a vibration transmitter (sand in the first embodiment) filled in the intubation 1 in which the first to third acceleration sensors 30A to 30C are arranged is provided. Then, the dynamic strain measuring device 50 and the data recorder 51 of the measuring device 5 record the vibration data detected by the first to third acceleration sensors 30A to 30C at the time of constructing the ground improvement body 31 by the high-pressure jet stirring work.
With this configuration, the vibration data of the vibration transmitted via the intubation 1 to the accelerometers arranged at the depth position of each soil layer at the time of construction of the ground improvement body is used as the construction status information of the high-pressure injection stirring method. It becomes possible to measure. This makes it possible to confirm the more accurate construction status in each soil layer where the acceleration sensor is placed based on the measured vibration data.

(第2実施形態)
次に、本発明の第2実施形態を説明する。
第2実施形態は、上記第1実施形態において円筒状の外挿管1を観測孔10に建て込んでいたのに対して、円筒状の外挿管1の底部側の端部に蓋部を設けた構成の第2の外挿管1Aを建て込む点が異なる。
以下、上記第1実施形態と同様の構成部については同じ符号を付して適宜説明を省略し、異なる点のみを詳細に説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described.
In the second embodiment, the cylindrical intubation 1 was built in the observation hole 10 in the first embodiment, whereas the lid portion was provided at the bottom end of the cylindrical intubation 1. The difference is that the second intubation tube 1A of the configuration is built.
Hereinafter, the same components as those in the first embodiment will be designated by the same reference numerals, description thereof will be omitted as appropriate, and only the differences will be described in detail.

図8(a)及び(b)に示すように、第2の外挿管1Aは、上記第1実施形態の外挿管1と同じ円筒形状の外挿管の底部側の端部に、十字形状のビット1bが形成された構成となっている。このビット1bは、十字部分以外の部分が空洞部となっており、外挿管の内部に通じている。このように底部側の端部を十字形状のビット1bで蓋をする構成としたことによって、図8(c)に示すように、第2の外挿管1Aを観測孔10から引き抜く際に、図8(d)に示すように、ビット1bの十字部分によって、センサ支持体2を受け止めることが可能となる。また、引き抜き時に、内部に充填された砂を、ビット1bの空洞部分を通じて観測孔10内に放出させることが可能となる。 As shown in FIGS. 8A and 8B, the second intubation tube 1A has a cross-shaped bit at the bottom end of the cylindrical intubation tube having the same cylindrical shape as the intubation tube 1 of the first embodiment. It has a structure in which 1b is formed. The bit 1b has a hollow portion other than the cross portion, and is connected to the inside of the intubation. By covering the bottom end with the cross-shaped bit 1b in this way, as shown in FIG. 8C, when the second intubation tube 1A is pulled out from the observation hole 10, FIG. As shown in 8 (d), the cross portion of the bit 1b makes it possible to receive the sensor support 2. Further, at the time of drawing out, the sand filled inside can be discharged into the observation hole 10 through the hollow portion of the bit 1b.

(第2実施形態の効果)
第2実施形態に係る高圧噴射撹拌工の施工状況確認方法によれば、観測孔10に建て込む外挿管として、その底部側の端部に、自身を引き抜き時にセンサ支持体2の通過を阻む形状の蓋部(第2実施形態では十字形状のビット1b)が形成された第2の外挿管1Aを用いるようにした。
これによって、第2の外挿管1Aを引き抜き時に、蓋部によって、センサ支持体2を受け止めることが可能となるので、センサ支持体2の抜け落ちを防止することが可能となる。
また、蓋の形状を十字形状とするなど空洞部分を設けることで、引き抜き時に空洞部分を通じて内部に充填された砂などの振動伝達物質を外部へと放出させることが可能となるため、引き抜き時の重量を軽減することが可能となる。
(Effect of the second embodiment)
According to the construction status confirmation method of the high-pressure injection agitator according to the second embodiment, as an intubation tube to be built in the observation hole 10, a shape that blocks the passage of the sensor support 2 when the sensor support 2 is pulled out at the bottom end thereof. The second intubation tube 1A in which the lid portion (cross-shaped bit 1b in the second embodiment) was formed was used.
As a result, when the second intubation tube 1A is pulled out, the sensor support 2 can be received by the lid portion, so that the sensor support 2 can be prevented from falling off.
In addition, by providing a hollow portion such as a cross shape of the lid, it is possible to release the vibration transmitter such as sand filled inside through the hollow portion to the outside at the time of pulling out. It is possible to reduce the weight.

(変形例)
(1)上記各実施形態では、外挿管内を砂などの振動伝達物質で充填する構成としたが、この構成に限らない。例えば、図9に示すように、板バネ2sによって、センサ支持体2を外挿管1(又は第2の外挿管1A)の内周面に押し付けて、硬化材の高圧噴射によって外挿管1(又は第2の外挿管1A)に生じる振動をセンサ支持体2に直接伝達する構成としてもよい。このとき、例えば、図9に示すように、少なくともセンサ支持体2の加速度センサ3の配置位置の部分が外挿管に接するように板バネ2sを設け、それ以外の部分については例えば補助的に設けるようにする。この構成とすることで、外挿管内を砂などの振動伝達物質で充填する必要がなくなるので、引き上げ時の重量増加を抑えることが可能となると共に、振動伝達物質による加速度センサや支持部材の損耗を抑えることが可能となる。
(Modification example)
(1) In each of the above embodiments, the inside of the intubation is filled with a vibration transmitter such as sand, but the configuration is not limited to this. For example, as shown in FIG. 9, the sensor support 2 is pressed against the inner peripheral surface of the intubation 1 (or the second intubation 1A) by the leaf spring 2s, and the intubation 1 (or the second intubation 1A) is injected with high pressure of the hardening material. The vibration generated in the second intubation tube 1A) may be directly transmitted to the sensor support 2. At this time, for example, as shown in FIG. 9, the leaf spring 2s is provided so that at least the portion of the sensor support 2 at the arrangement position of the acceleration sensor 3 is in contact with the intubation, and the other portions are provided, for example, as an auxiliary. To do so. With this configuration, it is not necessary to fill the inside of the intubation with a vibration transmitter such as sand, so it is possible to suppress the weight increase at the time of pulling up, and the acceleration sensor and the support member are worn due to the vibration transmitter. Can be suppressed.

(2)上記各実施形態では、振動の測定対象の各土層に対して加速度センサを1つずつ設ける構成としたが、この構成に限らず、各土層に対して2つ以上の加速度センサを設ける構成としてもよい。
(3)上記各実施形態では、加速度センサを設ける土層を3種類の土層としたが、この構成に限らず、2種類以下又は4種類以上の土層に対して加速度センサを設ける構成としてもよい。
(4)上記各実施形態では、改良対象の地盤中に挿入した改良管21から、径方向に距離rだけ離れた位置に1つの観測孔10を削孔して振動の測定をする構成とした。この構成に限らず、改良管21の周囲に2つ以上の観測孔を設けて複数の観測孔位置にて振動を測定する構成としてもよい。
(2) In each of the above embodiments, one acceleration sensor is provided for each soil layer to be measured for vibration, but the present invention is not limited to this configuration, and two or more acceleration sensors are provided for each soil layer. May be provided.
(3) In each of the above embodiments, the soil layer to which the acceleration sensor is provided is three types of soil layers, but the configuration is not limited to this configuration, and the configuration is such that the acceleration sensor is provided for two or less types or four or more types of soil layers. May be good.
(4) In each of the above embodiments, one observation hole 10 is drilled at a position separated by a distance r in the radial direction from the improved pipe 21 inserted into the ground to be improved, and vibration is measured. .. Not limited to this configuration, two or more observation holes may be provided around the improved pipe 21 to measure vibration at a plurality of observation hole positions.

(5)上記各実施形態では、地盤改良体の形成に、三重管ロッドから構成される改良管21を用いて空気と水とを高圧噴射して地盤を切削撹拌した後に硬化材(グラウト)を高圧噴射する三重管方式を用いる構成としたが、この構成に限らない。例えば、単管ロッドを用いて硬化材のみを高圧噴射する単管方式、二重管ロッドを用いて硬化材と空気とを混合噴射する二重管方式等の他の方式にも本発明は適用可能である。
(6)上記各実施形態では、センサ支持体2を挿入後の外挿管1内を砂で充填する構成としたが、この構成に限らず、振動を伝達可能な物質であれば、例えば水などの他の物質を充填する構成としてもよい。
(5) In each of the above embodiments, in order to form the ground improvement body, an improved pipe 21 composed of a triple pipe rod is used to inject air and water at high pressure to cut and stir the ground, and then a hardening material (grout) is applied. The configuration uses a triple pipe method for high-pressure injection, but the configuration is not limited to this configuration. For example, the present invention is also applied to other methods such as a single tube method in which only a hardened material is injected at high pressure using a single tube rod, and a double tube method in which a hardened material and air are mixed and injected using a double tube rod. It is possible.
(6) In each of the above embodiments, the inside of the intubation tube 1 after the sensor support 2 is inserted is filled with sand. However, the present invention is not limited to this configuration, and any substance capable of transmitting vibration, such as water, is used. It may be configured to be filled with other substances.

(7)上記各実施形態では、振動を測定する加速度センサとして、ひずみゲージ式の加速度変換器を例に挙げて説明したが、この構成に限らない。例えば、圧電式加速度センサや半導体式加速度センサなど他の方式の加速度センサを採用する構成としてもよい。
(8)上記各実施形態では、改良管21を地盤中に挿入した後に、この地盤中に挿入された改良管21から径方向に必要改良半径である距離rだけ離れた位置に観測孔10を削孔する構成とした。この構成に限らず、例えば、地盤改良体を造成する削孔ポイントにケーシング管を挿入する前などに観測孔10を削孔する構成としてもよい。また、改良管21を挿入後でも、先に挿入したケーシング管を引き抜く前に観測孔10を削孔する構成としてもよい。
(7) In each of the above embodiments, as an acceleration sensor for measuring vibration, a strain gauge type acceleration converter has been described as an example, but the present invention is not limited to this configuration. For example, other types of acceleration sensors such as a piezoelectric acceleration sensor and a semiconductor acceleration sensor may be adopted.
(8) In each of the above embodiments, after the improved pipe 21 is inserted into the ground, the observation hole 10 is provided at a position separated by a distance r, which is the required improvement radius in the radial direction, from the improved pipe 21 inserted into the ground. It was configured to drill holes. The configuration is not limited to this, and for example, the observation hole 10 may be drilled before the casing pipe is inserted at the drilling point for creating the ground improvement body. Further, even after the improved pipe 21 is inserted, the observation hole 10 may be drilled before the previously inserted casing pipe is pulled out.

(9)上記各実施形態では、測定対象の全ての土層に対する振動データの記録が完了してから施工状況を確認する構成としたが、この構成に限らない。例えば、土層毎の測定完了後など、振動データの記録途中に土層毎に確認作業を行うなど他のタイミングで行う構成としてもよい。
(10)上記各実施形態では、観測孔10の深さ、外挿管1の長さ及びセンサ支持体2の長さを、地盤改良体31の造成深さ以上の深さ及び長さとする構成としたが、この構成に限らない。例えば、複数種類の土層のうち最下層よりも上層にある特定の土層のみを対象に振動を測定する場合は、その測定対象の土層の測定を行うのに必要な深さ及び長さに構成してもよい。
(9) In each of the above embodiments, the construction status is confirmed after the recording of the vibration data for all the soil layers to be measured is completed, but the configuration is not limited to this. For example, the configuration may be such that the confirmation work is performed for each soil layer during the recording of the vibration data, such as after the measurement for each soil layer is completed, at other timings.
(10) In each of the above embodiments, the depth of the observation hole 10, the length of the intubation 1 and the length of the sensor support 2 are set to be equal to or greater than the construction depth of the ground improvement body 31. However, it is not limited to this configuration. For example, when measuring vibration only for a specific soil layer above the bottom layer among multiple types of soil layers, the depth and length required to measure the soil layer to be measured. It may be configured as.

1 外挿管
1A 第2の外挿管
1b ビット
2 センサ支持体
2a 支持部材
2s 板バネ
3A〜3C 第1〜第3の加速度センサ
4 電気ケーブル
5 測定装置
7 削孔機
10 観測孔
20 地盤改良機
21 改良管
21a 噴射ノズル
31 地盤改良体
31a〜31c 第1〜第3の地盤改良体
50 動ひずみ測定器
51 データレコーダ
52 計測制御用PC
53 表示装置
1 External tube 1A 2nd external tube 1b Bit 2 Sensor support 2a Support member 2s Leaf spring 3A to 3C 1st to 3rd acceleration sensors 4 Electric cable 5 Measuring device 7 Drilling machine 10 Observation hole 20 Ground improvement machine 21 Improved tube 21a Injection nozzle 31 Ground improved body 31a to 31c First to third ground improved body 50 Dynamic strain measuring instrument 51 Data recorder 52 Measurement control PC
53 Display device

Claims (4)

地盤中に挿入された改良管の噴射ノズルから硬化材を高圧噴射すると共に前記改良管を回転させながら引き上げることで地盤改良体を造成する高圧噴射撹拌工の施工状況を確認する高圧噴射撹拌工の施工状況確認方法であって、
前記地盤改良体の造成前にその造成位置から径方向に予め設定した距離だけ離れた位置に、観測孔を削孔する観測孔削孔工程と、
前記観測孔内に、外挿管を建て込む外挿管建込み工程と、
前記外挿管の内側における、前記地盤改良体の造成される地盤部分を構成する複数種類の土層の各土層の位置に対応する深さ位置のそれぞれに、前記外挿管を介して伝達される振動を検出する加速度センサを少なくとも1つずつ固定配置するセンサ配置工程と、
前記センサ配置工程の後に前記噴射ノズルから硬化材を高圧噴射し、この高圧噴射によって前記外挿管を介して伝達される振動を、前記各土層に対応する深さ位置にそれぞれ固定配置された各前記加速度センサで検出し、その検出結果を示す振動データを記録する振動記録工程と、
前記振動記録工程によって記録された前記振動データに基づき前記高圧噴射撹拌工の施工状況を確認する施工状況確認工程と、を含み、
前記観測孔は前記地盤改良体の造成深さ以上の深さであり、前記外挿管は前記地盤改良体の造成深さ以上の長さであり、
前記センサ配置工程においては、前記地盤改良体の造成深さ以上の長さを有する長尺の支持部材と該支持部材の前記各土層の深さ位置に対応する長さ位置にそれぞれ少なくとも1つずつ配置された複数の前記加速度センサとを有するセンサ支持体を、前記外挿管内に挿入し、挿入後に前記外挿管内を、振動を伝達可能な物質である振動伝達物質で充填する高圧噴射撹拌工の施工状況確認方法。
Check the construction status of the high-pressure injection agitator that creates a ground improvement body by injecting the hardening material at high pressure from the injection nozzle of the improved pipe inserted in the ground and pulling up the improved pipe while rotating it. It is a construction status confirmation method,
An observation hole drilling step of drilling an observation hole at a position separated by a preset distance in the radial direction from the construction position before the construction of the ground improvement body.
The process of building an intubation tube in the observation hole, and the process of building an intubation tube,
It is transmitted via the intubation to each of the depth positions corresponding to the positions of the soil layers of the plurality of types of soil layers constituting the ground portion formed by the ground improvement body inside the intubation. A sensor placement process in which at least one acceleration sensor that detects vibration is fixedly placed,
After the sensor placement step, the hardened material is injected at high pressure from the injection nozzle, and the vibration transmitted through the intubation by this high pressure injection is fixedly arranged at the depth position corresponding to each soil layer. A vibration recording step of detecting with the acceleration sensor and recording vibration data indicating the detection result,
See containing and a construction condition confirmation step of confirming construction status of the high-pressure injection stirring Engineering based on the recorded the vibration data was by the vibration recording step,
The observation hole has a depth equal to or greater than the formation depth of the ground improvement body, and the intubation has a length equal to or greater than the formation depth of the ground improvement body.
In the sensor placement step, at least one long support member having a length equal to or greater than the construction depth of the ground improvement body and one at a length position corresponding to the depth position of each soil layer of the support member. A sensor support having a plurality of the acceleration sensors arranged one by one is inserted into the external tube, and after the insertion, the inside of the external tube is filled with a vibration transmitting substance which is a substance capable of transmitting vibration. How to check the construction status of the work.
地盤中に挿入された改良管の噴射ノズルから硬化材を高圧噴射すると共に前記改良管を回転させながら引き上げることで地盤改良体を造成する高圧噴射撹拌工の施工状況を確認する高圧噴射撹拌工の施工状況確認方法であって、
前記地盤改良体の造成前にその造成位置から径方向に予め設定した距離だけ離れた位置に、観測孔を削孔する観測孔削孔工程と、
前記観測孔内に、外挿管を建て込む外挿管建込み工程と、
前記外挿管の内側における、前記地盤改良体の造成される地盤部分を構成する複数種類の土層の各土層の位置に対応する深さ位置のそれぞれに、前記外挿管を介して伝達される振動を検出する加速度センサを少なくとも1つずつ固定配置するセンサ配置工程と、
前記センサ配置工程の後に前記噴射ノズルから硬化材を高圧噴射し、この高圧噴射によって前記外挿管を介して伝達される振動を、前記各土層に対応する深さ位置にそれぞれ固定配置された各前記加速度センサで検出し、その検出結果を示す振動データを記録する振動記録工程と、
前記振動記録工程によって記録された前記振動データに基づき前記高圧噴射撹拌工の施工状況を確認する施工状況確認工程と、を含み、
前記観測孔は前記地盤改良体の造成深さ以上の深さであり、前記外挿管は前記地盤改良体の造成深さ以上の長さであり、
前記センサ配置工程においては、前記地盤改良体の造成深さ以上の長さを有する長尺の支持部材と該支持部材の前記各土層の深さ位置に対応する長さ位置にそれぞれ少なくとも1つずつ配置された複数の前記加速度センサとを有するセンサ支持体を、該センサ支持体が前記外挿管の内面に接した状態で固定配置されるように前記外挿管内に設置する高圧噴射撹拌工の施工状況確認方法。
Check the construction status of the high-pressure injection agitator that creates a ground improvement body by injecting the hardening material at high pressure from the injection nozzle of the improved pipe inserted in the ground and pulling up the improved pipe while rotating it. It is a construction status confirmation method,
An observation hole drilling step of drilling an observation hole at a position separated by a preset distance in the radial direction from the construction position before the construction of the ground improvement body.
The process of building an intubation tube in the observation hole, and the process of building an intubation tube,
It is transmitted via the intubation to each of the depth positions corresponding to the positions of the soil layers of the plurality of types of soil layers constituting the ground portion formed by the ground improvement body inside the intubation. A sensor placement process in which at least one acceleration sensor that detects vibration is fixedly placed,
After the sensor placement step, the hardened material is injected at high pressure from the injection nozzle, and the vibration transmitted through the intubation by this high pressure injection is fixedly arranged at the depth position corresponding to each soil layer. A vibration recording step of detecting with the acceleration sensor and recording vibration data indicating the detection result,
Including a construction status confirmation step of confirming the construction status of the high-pressure injection agitator based on the vibration data recorded by the vibration recording step.
The observation hole has a depth equal to or greater than the formation depth of the ground improvement body, and the intubation has a length equal to or greater than the formation depth of the ground improvement body.
In the sensor placement step, at least one long support member having a length equal to or greater than the construction depth of the ground improvement body and one at a length position corresponding to the depth position of each soil layer of the support member. A high-pressure injection stirrer in which a sensor support having a plurality of the acceleration sensors arranged one by one is installed in the external intubation so that the sensor support is fixedly arranged in a state of being in contact with the inner surface of the intubation. Construction status confirmation method.
前記センサ配置工程においては、前記外挿管として、底部側の端部に、該外挿管を引き抜き時に前記センサ支持体の通過を阻む形状の蓋部が形成されたものを用いる請求項又はに記載の高圧噴射撹拌工の施工状況確認方法。 In the sensor arranging step, claim 1 or 2 uses the intubation having a lid formed at the bottom end to prevent the sensor support from passing through when the intubation is pulled out. The method for confirming the construction status of the high-pressure injection agitator described. 地盤中に挿入された改良管の噴射ノズルから硬化材を高圧噴射すると共に前記改良管を回転させながら引き上げることで地盤改良体を造成する高圧噴射撹拌工によって前記地盤改良体を造成する地盤改良体造成工程と、
請求項1〜のいずれか1項に記載の高圧噴射撹拌工の施工状況確認方法によって前記高圧噴射撹拌工の施工状況を確認する施工状況確認工程と、を含むことを特徴とする地盤改良体の造成方法。
A ground improvement body that creates the ground improvement body by a high-pressure injection stirrer that creates a ground improvement body by injecting a hardened material at high pressure from the injection nozzle of the improvement pipe inserted into the ground and pulling up the improvement pipe while rotating it. The construction process and
A ground improvement body comprising a construction status confirmation step of confirming the construction status of the high pressure injection agitator by the construction status confirmation method of the high pressure injection agitator according to any one of claims 1 to 3. How to create.
JP2017023958A 2017-02-13 2017-02-13 Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method Active JP6850624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023958A JP6850624B2 (en) 2017-02-13 2017-02-13 Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023958A JP6850624B2 (en) 2017-02-13 2017-02-13 Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method

Publications (2)

Publication Number Publication Date
JP2018131735A JP2018131735A (en) 2018-08-23
JP6850624B2 true JP6850624B2 (en) 2021-03-31

Family

ID=63248011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023958A Active JP6850624B2 (en) 2017-02-13 2017-02-13 Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method

Country Status (1)

Country Link
JP (1) JP6850624B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7310085B2 (en) 2019-12-23 2023-07-19 株式会社竹中工務店 SOIL IMPROVEMENT JUDGMENT PIPE AND SOIL IMPROVEMENT DETERMINATION METHOD
JP6858385B1 (en) * 2020-07-22 2021-04-14 エポコラム機工株式会社 Ground improvement method construction data display system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871265B2 (en) * 1992-02-27 1999-03-17 鹿島建設株式会社 Process control method of ground improvement work using jet jet
JP5542593B2 (en) * 2010-09-14 2014-07-09 三信建設工業株式会社 Ground cutting condition monitoring method and monitoring device in high-pressure jet agitation method
JP6162053B2 (en) * 2014-02-10 2017-07-12 三信建設工業株式会社 Setting method of construction specifications for high-pressure jet agitation method
JP6564247B2 (en) * 2015-06-04 2019-08-21 小野田ケミコ株式会社 How to check the radius of improvement

Also Published As

Publication number Publication date
JP2018131735A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6463871B2 (en) Borehole test equipment
US11619018B2 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
JP5542593B2 (en) Ground cutting condition monitoring method and monitoring device in high-pressure jet agitation method
CN104818735B (en) Detect drill bit and the method carrying out pile measurement using this detection drill bit
JP4449048B2 (en) Underground structure measuring device
CN108802193A (en) A kind of detecting devices and detection method of Exploring Loose Rock Country in Tunnels
JP6850624B2 (en) Construction status confirmation method of high-pressure injection agitator and construction method of ground improvement body using this method
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
CN106643589A (en) High-pressure jet grouting pile construction formed-pile diameter real-time monitoring method and monitoring device
JP6737608B2 (en) Ground evaluation system, ready-made pile with acceleration sensor
CN107869156B (en) Parallel seismic wave method determines the detection method of foundation pile length
JP2007010473A (en) Position measuring method of base rock injection material
US7152467B2 (en) Parallel seismic depth testing using a cone penetrometer
JP5057149B2 (en) Strength estimation method of ground improvement body
CN109469119A (en) A kind of test method of offshore wind farm steel tube pile embeded in rock
CN110306606B (en) Pile foundation quality monitoring method and device for construction process
JP6696934B2 (en) Method and device for extracting pile elements from the ground
CN106049566A (en) Detection device and method for determining length of foundation pile through bypass port transmission wave method
Tsegay Vibration caused by sheet pile driving-effect of driving equipment
Kurtulus Field measurements of the linear and nonlinear shear moduli of soils using drilled shafts as dynamic cylindrical sources
JP6841704B2 (en) Ground improvement method
CN205875237U (en) Detection apparatus for foundation pile length is confirmed to parallel seismic wave method
JP7188768B2 (en) Support layer determination system
JPH01192910A (en) Multi-purpose survey of ground
JP3850543B2 (en) Self-boring pressure meter test method by wire line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6850624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150