JP2017095076A - ステアリング制御装置 - Google Patents

ステアリング制御装置 Download PDF

Info

Publication number
JP2017095076A
JP2017095076A JP2016099410A JP2016099410A JP2017095076A JP 2017095076 A JP2017095076 A JP 2017095076A JP 2016099410 A JP2016099410 A JP 2016099410A JP 2016099410 A JP2016099410 A JP 2016099410A JP 2017095076 A JP2017095076 A JP 2017095076A
Authority
JP
Japan
Prior art keywords
steering
torque
state quantity
value
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016099410A
Other languages
English (en)
Other versions
JP6790452B2 (ja
Inventor
青木 崇
Takashi Aoki
崇 青木
資章 片岡
Motoaki Kataoka
資章 片岡
庸介 平手
Yosuke Hirate
庸介 平手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to DE102016221500.0A priority Critical patent/DE102016221500B4/de
Priority to US15/346,608 priority patent/US10358161B2/en
Priority to CN201610991744.3A priority patent/CN107054446B/zh
Publication of JP2017095076A publication Critical patent/JP2017095076A/ja
Application granted granted Critical
Publication of JP6790452B2 publication Critical patent/JP6790452B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0466Controlling the motor for returning the steering wheel to neutral position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】操舵部材の操舵状態に応じた操舵フィールを実現するステアリング制御装置を提供する。【解決手段】状態量演算部23は、操舵軸95に加わるトルクの印加方向を示す能動状態量Qa、および、操舵軸の回転方向を示す回転状態量Qrに基づき、ハンドルが切り込み状態、切り戻し状態または保舵状態であることを示す指標である操舵状態量Qsを演算する。調整トルク演算部24は、操舵状態量Qsに基づき、調整トルクThを演算する。指令演算部41は、調整トルクThを用い、モータの駆動に係る指令値であるアシストトルク指令Ta*を演算する。これにより、ハンドルの切り込み、切り戻し、保舵を示す指標である操舵状態量Qsを、適切に設定することができ、ハンドルの操舵状態に応じた調整トルクThが適切に演算されるので、操舵フィールを適切に調整することができる。【選択図】 図3

Description

本発明は、ステアリング制御装置に関する。
従来、操舵部材の操舵状態に応じたフィールを実現するステアリング制御装置が知られている。例えば特許文献1では、操舵トルクと操舵軸の角速度の積であるドライバ仕事率に応じ、機械インピーダンス調整用のトルク生成に用いる剛性成分、粘性成分、および、慣性成分を変化させている。
特開2014−213781号公報
ドライバ仕事率は、操舵部材の切り始めの立ち上がりが遅いため、保舵、切り込み、切り戻しの切り替え判定が遅れる虞がある。また、ドライバ仕事率は、切り込み状態よりも、切り戻し状態にて、相対的に小さい値となる。そのため、機械インピーダンス要素の調整にドライバ仕事率を用いる場合、操舵部材の状態変化に対して、遅れなく、かつ、適切な量に機械インピーダンス要素を調整するのが難しい。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、操舵部材の操舵状態に応じた操舵フィールを実現するステアリング制御装置を提供することにある。
本発明のステアリング制御装置は、操舵部材(91)に連結された操舵軸(95)に加わる操舵トルクに応じたアシストトルクを出力するモータ(80)を制御するものであって、状態量演算部(23、43、230)と、補償値演算部(24、400)と、指令演算部(41)と、を備える。
状態量演算部は、操舵軸に加わるトルクの印加方向を示す能動状態量、および、操舵軸の回転方向を示す回転状態量に基づき、操舵部材が切り込み状態、切り戻し状態または保舵状態であることを示す指標である操舵状態量を演算する。
補償値演算部は、操舵状態量に基づき、指令補償値を演算する。
指令演算部は、指令補償値を用い、モータの駆動に係る指令値を演算する。
能動状態量および回転状態量の少なくとも一方は、操舵軸の運動状態を示す物理量から、関数またはマップを用いて換算した換算値である。
操舵状態量の演算に用いられる能動状態量または回転状態量の少なくとも一方を、操舵軸の運動状態を示す物理量そのものではなく、換算値とすることで、調整要素を含めることができる。これにより、操舵部材の切り込み、切り戻し、保舵を示す指標である操舵状態量を、適切に設定することができる。また、操舵状態量に基づき、操舵部材の操舵状態に応じた指令補償値が適切に演算されるので、操舵フィールを適切に調整することができる。
本発明の第1実施形態によるステアリングシステムを示す概略構成図である。 本発明の第1実施形態によるECUの構成を示すブロック図である。 本発明の第1実施形態による基本アシストトルク演算部を示すブロック図である。 本発明の第1実施形態による状態量演算部を示すブロック図である。 本発明の第1実施形態による(a)能動状態量、(b)回転状態量を示す説明図である。 本発明の第1実施形態による能動状態量を説明する説明図である。 本発明の第1実施形態による操舵状態量を説明するタイムチャートである。 本発明の第1実施形態による路面負荷基準剛性調整トルクを説明する説明図である。 本発明の第2実施形態による状態量演算部を示すブロック図である。 本発明の第3実施形態によるECUの構成を示すブロック図である。 本発明の第3実施形態による補正トルク演算部を示すブロック図である。
以下、本発明によるステアリング制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
本発明の第1実施形態によるステアリング制御装置を図1〜図8に示す。
図1に示すように、ステアリングシステム1は、運転者による操舵部材としてのハンドル91の操舵を、モータ80によってアシストするものである。ステアリングシステム1は、ハンドル91、操舵軸95、ギアボックス96、操舵輪99、モータ80、および、ECU10等を備える。
ハンドル91は、ステアリングシャフト92の一端に固定される。ステアリングシャフト92の他端側には、インターミディエイトシャフト93が設けられる。ステアリングシャフト92とインターミディエイトシャフト93との間には、トルクセンサ94が設けられる。ステアリングシャフト92とインターミディエイトシャフト93とは、トルクセンサ94のトーションバーにより接続される。以下、ステアリングシャフト92からトルクセンサ94を経てインターミディエイトシャフト93に至る軸全体を、まとめて操舵軸95とする。
トルクセンサ94は、操舵トルクTsを検出するためセンサである。具体的には、トルクセンサ94は、ステアリングシャフト92とインターミディエイトシャフト93とを連結するトーションバーを有し、トーションバーの捩れ角に基づき、トーションバーに加えられているトルクを検出する。トルクセンサ94の検出値は、操舵トルクTsに係る検出値として、ECU10に出力される。
インターミディエイトシャフト93のトルクセンサ94と反対側の端部には、ギアボックス96が設けられる。ギアボックス96は、ピニオンギア961およびラック962を含む。ピニオンギア961は、インターミディエイトシャフト93のトルクセンサ94と反対側の端部に設けられ、ラック962の歯と噛み合っている。
運転者がハンドル91を回すと、インターミディエイトシャフト93とともにピニオンギア961が回転し、ピニオンギア961の回転に伴って、ラック962が左右に移動する。
ラック962の両端には、タイロッド97が設けられる。タイロッド97は、ラック962とともに左右の往復運動を行う。タイロッド97は、ナックルアーム98を介して操舵輪99と接続される。タイロッド97がナックルアーム98を引っ張ったり押したりすることで、操舵輪99の向きが変わる。
モータ80は、ハンドル91の操舵力をアシストするアシストトルクを出力するものである。モータ80の回転は、減速機構85を経由して、インターミディエイトシャフト93に伝達される。すなわち本実施形態のステアリングシステム1は、モータ80の回転が操舵軸95に伝達される、所謂「コラムアシストタイプ」である。
減速機構85は、ウォームギア86およびウォームホイール87を有する。ウォームギア86は、モータ80の回転軸の先端に設けられる。ウォームホイール87は、ウォームギア86と噛み合った状態でインターミディエイトシャフト93と同軸に設けられる。これにより、モータ80の回転がインターミディエイトシャフト93に伝達される。また、ハンドル91の操舵や、路面からの反力によってインターミディエイトシャフト93が回転すると、この回転が減速機構85を経由してモータ80に伝達され、モータ80が回転する。
本実施形態のモータ80は、3相交流のブラシレスモータである。モータ80のU相コイル、V相コイルおよびW相コイルには、それぞれ、駆動電圧Vu、Vv、Vwが印加される。
モータ80には、図示しない回転センサが設けられる。回転センサは、例えばレゾルバ等であって、モータ80の回転状態を検出し、回転状態に係る検出値をECU10に出力する。本実施形態では、回転センサは、モータ80の回転角速度を示す情報であるモータ速度ωをECU10に出力する。なお、回転センサがモータ80の回転角度を検出する回転角センサであって、回転角センサの検出値に基づき、ECU10にてモータ速度ωを演算するようにしてもよい。モータ速度ωは、減速機構85のギア比に基づき、操舵軸95の回転速度に換算可能な値である。以下適宜、操舵軸95の回転速度を「操舵速度」とする。
本実施形態では、モータ80および減速機構85を含み、ハンドル91から操舵輪99に至る、ハンドル91の操舵力が伝達される機構全体を、操舵系メカ100とする。ここで、左方向の操舵トルクTsを正、右方向の操舵トルクTsを負とする。また、モータ速度ωは、ハンドル91が左方向に操舵されるときに正、右方向に操舵されるときに負とする。すなわち、本実施形態では、ハンドル91の左方向が「第1方向」、右方向が「第2方向」に対応するが、逆であってもよい。
ECU10は、モータ80の駆動を制御することで、操舵系メカ100を制御するものである。ECU10は、図示しない車載バッテリからの電力によって動作し、トルクセンサ94により検出された操舵トルクTs、回転センサにより検出されたモータ速度ω、および、車速センサ71により検出された車両の走行速度である車速S等に基づき、アシストトルク指令Ta*を演算する。そして、ECU10は、アシストトルク指令Ta*に基づいてモータ80の駆動を制御する。
図2に示すように、ECU10は、インバータ12、および、ステアリング制御装置としての制御部15等を備える。インバータ12は、3相インバータであって、モータ80の各相コイルに通電される電流を切り替えるスイッチング素子を有する。
制御部15は、マイコン等を含んで構成され、アシストトルク指令Ta*に応じた駆動電圧Vu、Vv、Vwがモータ80に印加されるように、例えばPWM制御等により、インバータ12のスイッチング素子のオンオフ作動を制御する。これにより、運転者によるハンドル91の操舵をアシストするアシスト量が制御される。制御部15における各種演算処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。後述の制御部16についても同様である。
制御部15は、機能ブロックとして、基本アシストトルク演算部20、補正トルク演算部40、指令演算部41、および、電流フィードバック部45等を備える。
基本アシストトルク演算部20は、基本アシストトルク指令Tb*を演算する。基本アシストトルク演算部20の詳細は後述する。
補正トルク演算部40は、基本アシストトルク指令Tb*を補正する補正トルクTrを演算する。補正トルクTrは、車両の挙動が不安定になることでハンドル91に伝わる振動等の不安定な挙動を抑制するためのものであって、操舵トルクTs、モータ速度ω、および、車速S等に基づいて演算される。補正トルクTrで基本アシストトルク指令Tb*を補正することで、車両の挙動が適切に収斂され、車両全体としての操作安定性を実現可能である。
指令演算部41は、基本アシストトルク指令Tb*を補正トルクTrで補正し、アシストトルク指令Ta*を演算する。本実施形態の指令演算部41は加算器であって、アシストトルク指令Ta*は、基本アシストトルク指令Tb*に補正トルクTrを加算して演算される。
電流フィードバック部45は、アシストトルク指令Ta*に応じたアシストトルクが操舵軸95に付与されるように、インバータ12のスイッチング素子のオンオフ作動を制御する駆動信号を生成する。
詳細には、電流フィードバック部45は、アシストトルク指令Ta*に基づき、モータ80に通電する電流指令値を演算する。また、電流フィードバック部45は、モータ80の各相コイルに通電される相電流Iu、Iv、Iwに係る検出値を、図示しない電流センサから取得する。電流フィードバック部45は、フィードバックされるモータ80の相電流Iu、Iv、Iwが電流指令値に収束するように、電圧指令値を演算し、電圧指令値に基づき、スイッチング素子のオンオフ作動を制御する駆動信号を生成する。生成された駆動信号に基づいてインバータ12のスイッチング素子をオンオフすることで、モータ80にアシストトルク指令Ta*に応じた駆動電圧Vu、Vv、Vwが印加される。
これにより、モータ80からアシストトルク指令Ta*に応じたトルクが出力され、このトルクが操舵軸95に加わることで、運転者によるハンドル91の操舵がアシストされる。
以下、基本アシストトルク演算部20における基本アシストトルク指令Tb*の演算について説明する。基本アシストトルク演算部20は、操舵トルクTs、モータ速度ω、および、車速S等に基づき、路面負荷に応じた伝達感や操舵状態に応じた操舵フィールが実現されるように、基本アシストトルク指令Tb*を演算する。詳細には、基本アシストトルク指令Tb*は、路面反力に応じた反応が準定常的に運転者へ伝達されるようにすることで、車両の状態や路面の状態を運転者が把握しやすくなるようにするとともに、操舵状態に応じた手感を調整することで、操舵フィールを向上させるように演算される。ここで、運転者に与える手感には、操舵系メカ100の感覚的な硬さ、粘り、重さが含まれ、これらを調整することで、操舵フィールを向上させる。
図3に示すように、基本アシストトルク演算部20は、負荷推定部21、目標トルク演算部22、状態量演算部23、調整トルク演算部24、調整部としての目標操舵トルク演算部31、偏差演算部32、および、コントローラ部35等を有する。
負荷推定部21は、加算器211、および、フィルタ212を有し、路面反力に応じた路面負荷を推定する。加算器211は、基本アシストトルク指令Tb*と目標操舵トルクTs*とを加算する。フィルタ212は、基本アシストトルク指令Tb*と目標操舵トルクTs*との加算値から所定の周波数以下の帯域の成分を抽出するローパスフィルタである。フィルタ212にて抽出された周波数成分を、負荷トルクTxとする。負荷トルクTxは、路面負荷に応じたトルクである。
目標トルク演算部22は、負荷推定部21から出力される負荷トルクTxおよび車速Sに基づき、操舵トルクTsの目標値である目標操舵トルクTs*の基本成分である基本目標操舵トルクTf*を演算する。
状態量演算部23は、能動状態量演算部231、回転状態量演算部232、および、操舵状態量演算部235を有し、能動状態量Qaおよび回転状態量Qrに基づいて操舵状態量Qsを演算する。操舵状態量Qsは、運転者のハンドル91の操舵状態を示す指標であって、操舵状態が、少なくとも「切り込み」、「切り戻し」、「保舵」のいずれであるかを判定可能な指標である。本実施形態では、操舵状態量Qsは、−1以上、1以下の無次元量であり、0を含む所定範囲内である場合、「保舵」、1に近いほど「切り込み」の傾向が強く、−1に近いほど「切り戻し」の傾向が強いことを示す。
操舵状態量Qsの演算の詳細は、後述する。
調整トルク演算部24は、操舵状態量Qsに基づき、運転者に与える手感を調整する調整トルクThを演算する。調整トルクThは、操舵系メカ100における操舵トルクTsと操舵角θsとの関係を規定する機械インピーダンスを調整するためのものであって、いずれも操舵状態量Qsに基づく値である剛性調整トルクTk1、Tk2、粘性調整トルクTc、および、慣性調整トルクTiに基づいて演算される。
調整トルク演算部24は、剛性調整部25、粘性調整部26、慣性調整部27、および、加算器28を有する。
剛性調整部25は、操舵系メカ100の剛性特性を調整するための剛性調整トルクTk1、Tk2を演算するものであって、路面負荷基準剛性調整部251、および、舵角基準剛性調整部255を有する。
路面負荷基準剛性調整部251は、路面負荷基準剛性ゲイン設定部252、および、乗算器253を有する。
路面負荷基準剛性ゲイン設定部252は、操舵状態量Qsおよび車速Sに基づき、ハンドル91の操作時に運転者に与える剛性特性を調整するための路面負荷基準剛性ゲインK1を演算する。路面負荷基準剛性ゲインK1は、予め用意された路面負荷基準剛性調整マップを用いて演算される。
乗算器253は、負荷トルクTxに路面負荷基準剛性ゲインK1を乗じ、路面負荷基準剛性調整トルクTk1を演算する。すなわち、路面負荷基準剛性ゲインK1は、操舵系メカ100における機械インピーダンスの剛性成分に相当する値であって、路面負荷に対する調整ゲインといえる。
舵角基準剛性調整部255は、舵角基準剛性ゲイン設定部256、および、乗算器257を有する。
舵角基準剛性ゲイン設定部256は、操舵状態量Qsおよび車速Sに基づき、ハンドル91の操作時に運転者に与える剛性特性を調整するための舵角基準剛性ゲインK2を演算する。舵角基準剛性ゲインK2は、予め用意された舵角基準剛性調整マップを用いて演算される。
乗算器257は、操舵角θsに舵角基準剛性ゲインK2を乗じ、舵角基準剛性調整トルクTk2を演算する。すなわち、舵角基準剛性ゲインK2は、操舵系メカ100における機械インピーダンスの剛性成分に相当する値であって、操舵角θsに対する調整ゲインといえる。
剛性ゲインK1、K2は、操舵状態量Qsが0のときに0とし、操舵状態量Qsが1に近づくほど大きくなり、操舵状態量Qsが−1に近づくほど小さくなるように設定される。切り込み状態での剛性を増加させることで、操舵時の手応えをしっかりさせる。また、切り戻し状態での剛性を減少させることで、ハンドル91の戻りが緩やかになるので、戻され感が低減される。
また、舵角基準剛性ゲインK2は、操舵状態量Qsが0のときに0とし、操舵状態量Qsが1に近づくほど小さくなり、操舵状態量Qsが−1に近づくほど大きくなるように設定されてもよい。切り込み状態での剛性を低下させることで、操舵時の手応えが過剰とならないようにする。また、切り戻し状態での剛性を増加させることで、ハンドル91がセンターに戻りやすくなる。
粘性調整部26は、操舵系メカ100の粘性特性を調整するための粘性調整トルクTcを演算するものであって、粘性ゲイン設定部261、および、乗算器262を有する。
粘性ゲイン設定部261は、操舵状態量Qsおよび車速Sに基づき、ハンドル91の操作時に運転者に与える粘性特性を調整するための粘性ゲインCを演算する。粘性ゲインCは、予め用意された粘性調整マップを用いて演算される。
乗算器262は、モータ速度ωに粘性ゲインCを乗じ、粘性調整トルクTcを演算する。モータ速度ωは、減速機構85のギア比に基づいて操舵速度に換算可能な値であることを鑑みれば、粘性ゲインCは、操舵系メカ100における機械インピーダンスの粘性成分に相当する値であって、操舵速度に対する調整ゲインといえる。
粘性ゲインCは、操舵状態量Qsが0のときに0とし、操舵状態量Qsが1に近づくほど小さくなり、操舵状態量Qsが−1に近づくほど大きくなるように設定される。なお、操舵状態量Qsが0のときの粘性ゲインCは0でなくてもよく、0点がずれていてもよい。切り込み状態での粘性を減少させることで、ハンドル91を切り込んでいったときの余分な粘性特性を低減可能であり、心地よいすっきりした操舵フィールとすることができる。また、切り戻し状態での粘性を増加させることで、ハンドル91の戻りが緩やかになり、収斂性が向上する。
また、粘性ゲインCは、車速Sに応じて設定される。
慣性調整部27は、操舵系メカ100の慣性特性を調整するための慣性調整トルクTiを演算するものであって、慣性ゲイン設定部271、および、乗算器272を有する。
慣性ゲイン設定部271は、操舵状態量Qsに基づき、ハンドル91の操作時に運転者に与える慣性特性を調整するための慣性ゲインIを演算する。慣性ゲインIは、予め用意された慣性調整マップを用いて演算される。
乗算器272は、微分器29にてモータ速度ωを微分して得られるモータ加速度αに慣性ゲインIを乗じ、慣性調整トルクTiを演算する。すなわち、慣性調整トルクTiは、操舵系メカ100における機械インピーダンスの慣性成分に相当する値であって、モータ加速度αに対する調整ゲインといえる。
慣性ゲインIは、操舵状態量Qsが0を含む所定範囲内である微小操作域では、負の一定値に設定される。また、操舵状態量Qsが正の所定値以上、または、負の所定値以下の場合、慣性ゲインIは正の一定値に設定される。微小操作域の正側閾値から慣性ゲインIが一定値となる正の所定値までの範囲、および、微小操作域の負側閾値から慣性ゲインIが一定値となる負の所定値までの範囲では、操舵状態量Qsの絶対値の増加に伴い、慣性ゲインIが増加するように設定される。なお、慣性ゲインIについても、車速Sに応じて設定されるようにしてもよい。
微小操作域での慣性ゲインIを負の一定値とすることで、微小操作域におけるモータ80の慣性に起因する余分な慣性特性が低減されるため、運転者に自然な操舵フィールを与えることができる。また、ハンドル91が微小操作域を超えて操作されるときは、適度な慣性が与えられるため、慣性力に伴う反力成分に応じた操舵フィールを実現可能である。
加算器28は、剛性調整トルクTk1、Tk2、粘性調整トルクTc、および、慣性調整トルクTiを加算し、調整トルクThを演算する。
目標操舵トルク演算部31は、基本目標操舵トルクTf*を調整トルクThで調整し、目標操舵トルクTs*を演算する。本実施形態の目標操舵トルク演算部31は、加算器であって、基本目標操舵トルクTf*に調整トルクThを加算し、目標操舵トルクTs*を演算する。
偏差演算部32は、目標操舵トルクTs*と、トルクセンサ94にて検出される操舵トルクTsとの偏差であるトルク偏差ΔTsを演算する。
コントローラ部35は、トルク偏差ΔTsが0に収束し、操舵トルクTsが目標操舵トルクTs*に追従するように、基本アシストトルク指令Tb*を演算する。
以下、操舵状態量Qsの演算について説明する。
図4に示すように、状態量演算部23は、能動状態量演算部231、回転状態量演算部232、および、操舵状態量演算部235を有する。
能動状態量演算部231は、操舵トルクTsに基づき、能動状態量Qaを演算する。能動状態量Qaは、操舵軸95に対するトルクの印加方向を示す指標である。本実施形態では、能動状態量Qaが第1トルク判定値T1に近いほど、操舵軸95の正方向にトルクが印加されていることを示し、第2トルク判定値T2に近いほど、操舵軸95の負方向にトルクが印加されていることを示す。本実施形態では、第1トルク判定値T1を1、第2トルク判定値T2を−1とする。
能動状態量Qaは、第1トルク判定値T1と第2トルク判定値T2との間を連続的に補間する関数である能動状態量演算関数を用い、操舵トルクTsに基づいて演算される。
回転状態量演算部232は、モータ速度ωに基づき、回転状態量Qrを演算する。回転状態量Qrは、操舵軸95の回転方向を示す指標である。本実施形態では、回転状態量Qrが第1回転判定値R1に近いほど、操舵軸95が正方向に回転されていることを示し、第2回転判定値R2に近いほど、操舵軸95が負方向に回転されていることを示す。本実施形態では、第1回転判定値R1を1、第2回転判定値R2を−1とする。
回転状態量Qrは、第1回転判定値R1と第2回転判定値R2との間を連続的に補間する関数である回転状態量演算関数を用い、モータ速度ωに基づいて演算される。
操舵状態量演算部235は、能動状態量Qaおよび回転状態量Qrに基づき、操舵状態量Qsを演算する。本実施形態の操舵状態量演算部235は、乗算器であって、操舵状態量Qsは、能動状態量Qaと回転状態量Qrとの積である。
本実施形態の能動状態量演算関数は、第1トルク判定値T1および第2トルク判定値T2に飽和する関数である。このような関数も、「第1トルク判定値と第2トルク判定値とを連続的に補間する関数」の概念に含まれるものとする。
一方、例えば、操舵トルクTs<0のときに第2トルク判定値T2、操舵トルクTs=0のときに0、操舵トルクTs>0のときに第1トルク判定値T1とする、といった具合に、能動状態量Qaがステップ状に演算されるものについては、本明細書における「第1トルク判定値と第2トルク判定値とを連続的に補完する関数」の概念には含まれないものとする。なお、状態量演算部23における各演算が離散系であることを考慮し、分解能等に応じ、第1トルク判定値T1と第2トルク判定値T2との偏差に対して十分に小さいとみなせる程度に不連続であることは許容されるものとする。
回転状態量演算関数についても同様である。また、関数に替えて、後述の第2実施形態のように、マップを実装する場合も同様である。
本実施形態の能動状態量演算関数および回転状態量演算関数は、双曲線正接(すなわちtanh)を用いた関数であって、能動状態量Qaおよび回転状態量Qrは、式(1−1)、(1−2)で演算される。式中のBa、Brは、−1から1に至る傾きを規定する調整定数であって、任意に設定可能である。また、式(1−1)で演算される能動状態量Qaを図5(a)、式(1−2)で演算される回転状態量Qrを図5(b)に示す。
Qa=tanh(Ts/Ba) ・・・(1−1)
Qr=tanh(ω/Br) ・・・(1−2)
また、能動状態量演算関数または回転状態量演算関数を、符号関数を用いた関数としてもよい。符号関数を用いて演算される能動状態量Qaおよび回転状態量Qrを式(2−1)、(2−2)に示す。式中の「sgn(X)」は、Xの符号を取り出す関数とする。また、式中のτa、τrは、−1から1に至る傾きを規定する調整定数である。
Figure 2017095076
さらにまた、能動状態量演算関数または回転状態量演算関数を、誤差関数を用いた関数としてもよい。誤差関数を用いて演算される能動状態量Qaおよび回転状態量Qrを式(3−1)、(3−2)に示す。また、誤差関数の定義を、式(3−3)に示す。式中のCa、Cr、Da、Drは、いずれも−1から1に至る傾きを規定する調整定数であって、実数とする。また、式(3−3)中のtは、積分の中間変数である。
Figure 2017095076
本実施形態の能動状態量演算関数および回転状態量演算関数は、原点を通り、かつ、原点に対して点対称な関数である。また、能動状態量演算関数は、第1トルク判定値T1と第2トルク判定値T2とを滑らかに繋ぐ関数である。ここで、操舵トルクTsには、ノイズ成分が含まれる。そのため、能動状態量演算関数がステップ状であると、能動状態量Qaの変化点近傍にてノイズを受けた場合、第1トルク判定値T1と第2トルク判定値T2とで頻繁に切り替わる振動的な値として、能動状態量Qaが演算される。また、直進保舵中等、操舵トルクTsの極性が細かく変動する状態においても同様に、第1トルク判定値T1と第2トルク判定値T2とで頻繁に切り替わる振動的な値として能動状態量Qaが演算される。そこで本実施形態では、第1トルク判定値T1と第2トルク判定値T2とを滑らかに繋ぐ関数である能動状態量演算関数を用いて能動状態量Qaを演算することで、能動状態量Qaの振動を抑制することができる。
また、回転状態量演算関数は、第1回転判定値R1と第2回転判定値R2とを滑らかに繋ぐ関数である。ここで、モータ速度ωには、ノイズ成分が含まれる。そのため、回転状態量演算関数がステップ状であると、回転状態量Qrの変化点近傍にてノイズを受けた場合、第1回転判定値R1と第2回転判定値R2とで頻繁に切り替わる振動的な値として、回転状態量Qrが演算される。また、直進保舵中等、モータ速度ωの極性が細かく変動する状態において、第1回転判定値R1と第2回転判定値R2とで頻繁に切り替わる振動的な値として回転状態量Qrが演算される。そこで本実施形態では、第1回転判定値R1と第2回転判定値R2とを滑らかに繋ぐ関数である回転状態量演算関数を用いて回転状態量Qrを演算することで、回転状態量Qrの振動を抑制することができる。
また、能動状態量Qaを、操舵トルクTsそのものではなく、適合等により設定された能動状態量演算関数を用いて操舵トルクTsを換算した換算値とすることで、トルクの印加方向を適切に判定することができる。
同様に、回転状態量Qrを、モータ速度ωそのものではなく、適合等により設定された回転状態量演算関数を用いてモータ速度ωを換算した換算値とすることで、モータ80の回転方向を適切に判定することができる。
すなわち、本実施形態の能動状態量Qaおよび回転状態量Qrには、能動状態量演算関数および回転状態量演算関数、ならびに、これらに含まれる調整定数を任意に設定することによる調整要素が含まれる、といえる。
図6には、参考例として、右方向に最大トルクが入力されたときの能動状態量Qaを−1、左方向に最大トルクが入力されたときの能動状態量Qaを1とし、線形補間した場合を破線で示す。実線は、本実施形態の能動状態量Qaであって、図5(a)と同様である。
図6に示すように、例えば、操舵トルクTsが正の値であるTs_pであるとき、本実施形態の能動状態量演算関数を用いた場合、能動状態量Qaが第1トルク判定値T1(すなわち1)に飽和しているのに対し、参考例では、第1トルク判定値T1より絶対値が小さいT1_cとなる。また、操舵トルクTsが負の値であるTs_nであるとき、本実施形態の能動状態量演算関数を用いた場合、能動状態量Qaが第2トルク判定値T2(すなわち−1)に飽和しているのに対し、参考例では第2トルク判定値T2より絶対値が小さいT2_cとなる。
本実施形態では、能動状態量演算関数、および、これに用いられる定数を調整することで、操舵トルクTsに対する能動状態量Qaの感度を調整可能である。図6の例では、能動状態量演算関数として、操舵トルクTsが0付近であるときの傾きが大きい関数を用いることで、操舵トルクTsの印加方向の切り替え感度を高めている。換言すると、本実施形態では、操舵トルクTsの印加方向が切り替わり、操舵トルクTsの正負が切り替わると、能動状態量Qaが、速やか、かつ、滑らかに第1トルク判定値T1または第2トルク判定値T2に漸近するように能動状態量演算関数を設定している。これにより、操舵トルクTsの印加方向を適切に判定可能である。
回転状態量Qrについても同様、回転状態量演算関数、および、これに用いられる定数を調整することで、モータ速度ωに対する回転状態量Qrの感度を調整可能である。本実施形態では、回転状態量演算関数として、操舵トルクTsが0付近であるときの傾きが大きい関数を用いることで、モータ80の回転方向の切り替え感度を高めている。換言すると、モータ速度ωの正負が切り替わると、回転状態量Qrが、速やか、かつ、滑らかに第1回転判定値R1または第2回転判定値R2に漸近するように回転状態量演算関数を設定している。これにより、モータ80の回転方向を適切に判定可能である。
本実施形態では、能動状態量Qaと回転状態量Qrとの積を、操舵状態量Qsとしている。上述の通り、能動状態量Qaおよび回転状態量Qrの感度を調整することで、その積である操舵状態量Qsの感度の調整が可能である。本実施形態では、操舵状態量Qsが0付近であるときの傾きが大きくなるように、能動状態量Qaおよび回転状態量Qrが演算される。これにより、操舵状態量Qsに基づき、操舵状態の切り替えを速やかに判定可能である。
図7は、ハンドル91を左方向、右方向、左方向と、操舵した場合の結果を示すタイムチャートである。図7は、共通時間軸を横軸とし、(a)が操舵トルクTs、(b)がモータ速度ω、(c)が操舵状態量Qs、(d)がドライバ仕事率Wである。ドライバ仕事率Wは、参考例であって、操舵トルクTsとモータ速度ωとを乗じた値とする。すなわち、ドライバ仕事率Wは、操舵トルクTsおよびモータ速度ωが決まると、一律に決まる値であって、調整の余地がない、と言える。
また、図7では、ハンドル91が切り込み状態である期間をPa、切り戻し状態である期間をPbと記載した。なお、切り込み状態から切り戻し状態へ移行する際、操舵状態量Qsが略0となり、一時的に保舵状態とみなされる期間が存在するが、図7中では保舵状態の記載を省略し、切り込み状態と切り戻し状態とが直接的に切り替わるものとして説明する。
図7に示すように、時刻x1から時刻x2までの期間、ハンドル91が左方向に操舵され、ハンドル91の操舵状態が「切り込み」である。図7(d)に示すように、ドライバ仕事率Wは、操舵トルクTsとモータ速度ωとの単なるかけ算であるため、立ち上がり特性は、操舵トルクTsとモータ速度ωの立ち上がり特性に依存する。そのため、ドライバ仕事率Wは、図7(c)に示す操舵状態量Qsと比較し、立ち上がりが遅い。また、図7の例よりも、さらにゆっくりとハンドル91を操舵すれば、ドライバ仕事率Wの立ち上がりは、さらに遅くなる。
一方、本実施形態では、操舵トルクTsに基づく能動状態量Qa、および、モータ速度ωに基づく回転状態量Qrを分離して演算しているので、それぞれの立ち上がり特性を個別に調整可能である。そのため、ハンドル91をゆっくり操舵しても、操舵状態量Qsの立ち上がりが早くなるように、能動状態量Qaおよび回転状態量Qrを調整可能である。
これにより、図7(c)に示すように、時刻x1でハンドル91が切り込まれると、操舵状態量Qsは、速やかに1に漸近する。また、時刻x2にて、ハンドル91の操舵状態が切り込み状態から切り戻し状態に移行すると、操舵状態量Qsは、速やかに−1に漸近する。同様に、ハンドル91が切り戻し状態から切り込み状態となる時刻x3、x5にて、操舵状態量Qsが速やかに1に漸近し、ハンドル91が切り込み状態から切り戻し状態となる時刻x4にて、操舵状態量Qsが速やかに−1に漸近する。
また、図7(a)に示すように、操舵トルクTsは、切り込み状態である期間Paにおいて、絶対値が大きくなる方向に推移するのに対し、切り戻し状態である期間Pbにおいて、絶対値が小さくなる方向に推移する。そのため、図7(d)に示すように、ドライバ仕事率Wの絶対値は、ハンドル91が切り込まれるときよりも、切り戻されるときに小さくなる。換言すると、ドライバ仕事率Wの絶対値は、切り込み時と切り戻し時との差が大きく、相対的に切り戻し状態を判定しにくい。
図7(d)では、ドライバ仕事率Wの絶対値が等しい箇所に基準値Wa、−Waを記載した。
本実施形態では、能動状態量演算関数を用いて演算される能動状態量Qa、および、回転状態量演算関数を用いて演算される回転状態量Qrを用いて操舵状態量Qsを演算している。そのため、図7(c)に示すように、操舵状態量Qsは、切り込み状態において略1となり、切り戻し状態において略−1となる。換言すると、切り込み状態における操舵状態量Qsの絶対値と、切り戻し状態における操舵状態量Qsの絶対値との差が小さい。すなわち、操舵状態量Qsは、ドライバ仕事率Wと比較し、ハンドル91の切り込み状態および切り戻し状態を、より正確に表現している、といえる。
補足として、ドライバ仕事率Wと操舵状態量Qsとの単位系が違うことを考慮すれば、Q2に対するQ1の比(すなわちQ1/Q2)は、W2に対するW1の比(すなわちW1/W2)より、1に近い、ともいえる。
本実施形態では、操舵状態量Qsに基づき、剛性調整トルクTk1、Tk2、粘性調整トルクTc、および、慣性調整トルクTiを演算している。一例として、路面負荷基準剛性調整トルクTk1を図8に示す。
図8(a)に示すように、操舵状態量Qsまたはドライバ仕事率Wが正のとき、すなわちハンドル91が切り込み状態のとき、操舵状態量Qsの増加に伴って路面負荷基準剛性ゲインK1を増加させることで、操舵の手応えをしっかりさせる。一方、操舵状態量Qsまたはドライバ仕事率Wが負のとき、すなわちハンドル91が切り戻し状態のとき、操舵状態量Qsの減少に伴って、路面負荷基準剛性ゲインK1を減少させることで、ハンドル91が緩やかに戻り、戻され感が低減される。なお、路面負荷基準剛性ゲインK1は、操舵状態が、「切り込み状態」、「保舵」、「切り戻し状態」に応じて設定される値であって、操舵方向は問わない。舵角基準剛性調整トルクTk2、粘性ゲインC、慣性ゲインIも同様である。
図8(b)は、ハンドル91を、図7と同様に操舵した場合の結果であり、横軸が時間、縦軸が路面負荷基準剛性調整トルクTk1を表している。図8(b)では、実線Lsが操舵状態量Qsに基づく値であり、破線Lwがドライバ仕事率Wに基づく値である。
図8(b)に示すように、ハンドル91が切り込み状態であるときの路面負荷基準剛性調整トルクTk1は、操舵状態量Qsを用いて演算することで、ドライバ仕事率Wを用いて演算する場合と比較し、速やかに増加している。これにより、ハンドル91の切り込み時に、よりしっかりとした手応えを与えることができる。
また、ハンドル91が切り戻し状態であるときの路面負荷基準剛性調整トルクTk1は、操舵状態量Qsを用いて演算することで、ドライバ仕事率Wを用いて演算する場合と比較し、速やかに、かつ、大きく減少している。換言すると、操舵状態量Qsを用いることで、路面負荷基準剛性調整トルクTk1が操舵状態に応じて適切に演算される。これにより、ハンドル91の切り戻し時に、ハンドル91がより緩やかに戻るので、戻され感をより低減することができる。
舵角基準剛性調整トルクTk2についても同様である。また、舵角基準にて剛性成分を調整することで、路面状態や車速によらず、操舵角θsに応じて同じような操舵フィールを出すことができ、特に路面の摩擦係数が小さいときの剛性感の調整に有効である。
なお、図示はしていないが、操舵状態量Qsを用いて粘性調整トルクTcを演算することで、ドライバ仕事率Wを用いて演算する場合と比較し、切り込み時の粘性を速やかに低減可能であり、よりすっきりとした操舵フィールとすることができる。また、切り戻し時の粘性を速やかに増加させることで、ハンドル91の戻りがより緩やかになり、収斂性を向上させることができる。
また、操舵状態量Qsを用いて慣性調整トルクTiを演算することで、ドライバ仕事率Wを用いて演算する場合と比較し、切り込み状態または切り戻し状態に応じた慣性力が与えられるため、反力成分により即した操舵フィールを実現可能である。
以上説明したように、本実施形態の制御部15は、ハンドル91に連結された操舵軸95に加わる操舵トルクTsに応じたアシストトルクを出力するモータ80を制御するものであって、状態量演算部23と、調整トルク演算部24と、指令演算部41と、を備える。
状態量演算部23は、操舵軸95に加わるトルクの印加方向を示す能動状態量Qa、および、操舵軸95の回転方向を示す回転状態量Qrに基づき、ハンドル91が切り込み状態、切り戻し状態または保舵状態であることを示す指標である操舵状態量Qsを演算する。
調整トルク演算部24は、操舵状態量Qsに基づき、調整トルクThを演算する。
指令演算部41は、調整トルクThを用い、モータ80の駆動に係る指令値であるアシストトルク指令Ta*を演算する。本実施形態では、調整トルクThにて調整された値である基本アシストトルク指令Tb*に基づき、アシストトルク指令Ta*を演算する。なお、調整トルクThを用いて演算された基本アシストトルク指令Tb*に基づいてアシストトルク指令Ta*を演算することは、「指令補償値を用い、モータの駆動に係る指令値を演算する」という概念に含まれることを補足しておく。
能動状態量Qaおよび回転状態量Qrの少なくとも一方は、操舵軸95の運動状態を示す物理量から、関数またはマップを用いて換算される換算値である。本実施形態では、操舵トルクTsおよびモータ速度ωが「操舵軸の運動状態を示す物理量」に対応する。
本実施形態では、操舵状態量Qsの演算に用いられる能動状態量Qaおよび回転状態量Qrは、操舵軸95の運動状態を示す物理量そのものではなく、換算値とすることで、調整要素を含めることができる。これにより、ハンドル91の切り込み、切り戻し、保舵を示す指標である操舵状態量Qsを、適切に設定することができる。また、操舵状態量Qsに基づき、ハンドル91の操舵状態に応じた調整トルクThが適切に演算されるので、操舵フィールを適切に調整することができる。
能動状態量Qaは、操舵トルクTsから換算される換算値である。すなわち本実施形態では、操舵トルクTsが「操舵トルク相当値」に対応する。
能動状態量Qaは、操舵トルクTsに基づき、操舵軸95の左方向にトルクが印加されていることを示す第1トルク判定値T1と、操舵軸95の右方向にトルクが印加されていることを示す第2トルク判定値T2とを、連続的に補間する関数またはマップを用いて演算される。第1トルク判定値T1と第2トルク判定値T2とを連続的に補間することで、能動状態量Qaの振動を低減することができる。
能動状態量Qaは、第1トルク判定値T1および第2トルク判定値T2に飽和する飽和特性を有する関数またはマップを用いて演算される。これにより、能動状態量Qaを適切に演算することができる。
回転状態量Qrは、操舵軸95の回転速度に応じて変化する物理量である物理量であるモータ速度ωから換算される換算値である。すなわち本実施形態では、モータ速度ωが「回転速度相当値」に対応する。
回転状態量Qrは、モータ速度ωに基づき、操舵軸95が左方向に回転していることを示す第1回転判定値R1と、操舵軸95が右方向に回転していることを示す第2回転判定値R2とを、連続的に補間する関数またはマップを用いて演算される。第1回転判定値R1と第2回転判定値R2とを連続的に補間することで、回転状態量Qrの振動を低減することができる。
回転状態量Qrは、第1回転判定値R1および第2回転判定値R2に飽和する飽和特性を有する関数またはマップを用いて演算される。これにより、回転状態量Qrを適切に演算することができる。
状態量演算部23は、能動状態量Qaと回転状態量Qrとの積に基づき、操舵状態量Qsを演算する。これにより、操舵状態量Qsに基づき、ハンドル91の操舵状態が、切り込み状態、切り戻し状態、または、保舵状態であることを適切に判定することができる。
調整トルク演算部24は、機械インピーダンス要素を調整する調整トルクThを演算するものであって、剛性調整部25、粘性調整部26、および、慣性調整部27の少なくとも1つを有する。
剛性調整部25は、操舵系メカ100の機械インピーダンスの剛性特性を調整する剛性調整トルクTk1、Tk2を、操舵状態量Qsに基づいて演算する。
粘性調整部26は、操舵系メカ100の機械インピーダンスの粘性特性を調整する粘性調整トルクTcを、操舵状態量Qsに基づいて演算する。
慣性調整部27は、操舵系メカ100の機械インピーダンスの慣性特性を調整する慣性調整トルクTiを、操舵状態量Qsに基づいて演算する。
調整トルク演算部24は、剛性調整トルクTk1、Tk2、粘性調整トルクTc、および、慣性調整トルクTiの少なくとも1つに基づき、調整トルクThを演算する。これにより、操舵状態量Qsに基づき、剛性特性、粘性特性および慣性特性が適切に調整されるので、操舵フィールを向上することができる。
剛性調整部25は、剛性調整トルクとして、路面負荷に応じた路面負荷基準剛性調整トルクTk1、および、操舵角θsに応じた舵角基準剛性調整トルクTk2の少なくとも一方を演算する。これにより、剛性特性をより適切に調整することができ、操舵フィールを向上することができる。
本実施形態では、調整トルク演算部24が「補償値演算部」に対応し、調整トルクThが「指令補償値」に対応する。また、操舵角θsが「操舵軸の回転角」に対応する。
(第2実施形態)
本発明の第2実施形態を図9に示す。
本実施形態は、上記実施形態の状態量演算部23に替えて、状態量演算部43である点が上記実施形態と異なるので、この点を中心に説明する。
状態量演算部43は、能動状態量演算部431、回転状態量演算部432、および、操舵状態量演算部435を有する。
能動状態量演算部431は、操舵トルクTsに基づき、予め設定されたマップMAを用いたマップ演算により、能動状態量Qaを演算する。本実施形態では、第1トルク判定値T1を2、第2トルク判定値T2を−2とする。
回転状態量演算部432は、モータ速度ωに基づき、予め設定されたマップMRを用いたマップ演算により、回転状態量Qrを演算する。本実施形態では、第1回転判定値R1を2、第2回転判定値R2を−2とする。
操舵状態量演算部435は、能動状態量Qaおよび回転状態量Qrに基づき、予め設定されたマップMSに基づき、操舵状態量Qsを演算する。
このように構成しても、上記実施形態と同様の効果を奏する。
(第3実施形態)
本発明の第3実施形態を図10および図11に示す。
図10に示すように、本実施形態のステアリング制御装置としての制御部16は、機能ブロックとして、基本アシストトルク演算部200、状態量演算部230、補正トルク演算部400、指令演算部41、および、電流フィードバック部45等を備える。
基本アシストトルク演算部200は、状態量演算部が省略されており、調整トルク演算部24にて用いる操舵状態量Qsを状態量演算部230から取得している。その他の点に関しては、第1実施形態の基本アシストトルク演算部20と同様である。
状態量演算部230での演算は、第1実施形態の状態量演算部23での演算と同様である。または、状態量演算部230での演算は、第2実施形態の状態量演算部43での演算と同様としてもよい。状態量演算部230にて演算された操舵状態量Qsは、基本アシストトルク演算部200および補正トルク演算部400に出力される。
図11に示すように、補正トルク演算部400は、収斂ゲイン設定部401、車速ゲイン設定部402、乗算器403、404を有し、車両の挙動収斂性を向上させる補正トルクTrを演算する。
収斂ゲイン設定部401は、操舵状態量Qsに基づき、収斂ゲインB1を演算する。収斂ゲインB1は、操舵状態量Qsが1に近づくほど小さくなり、操舵状態量が−1に近づくほど大きくなるように設定される。これにより、切り込み時におけるドライバの操舵を妨げることなく、保舵時および切り戻し時における車両の挙動収斂性を高めることができ、操舵フィールを向上させることができる。
車速ゲイン設定部402は、車速Sに基づき、車速ゲインB2を演算する。
乗算器403は、モータ速度ωに収斂ゲインB1を乗じる。
乗算器404は、乗算器403の演算値に車速ゲインB2を乗算し、補正トルクTrを演算する。
補正トルク演算部400は、操舵状態量Qsおよびモータ速度ωに基づく補正トルクTrを指令補償値として演算する。操舵状態量Qsに基づいて補正トルクTrを演算することで、車両の挙動収斂性を高めるとともに、操舵フィールを向上させることができる。
また、上記実施形態と同様の効果を奏する。
本実施形態では、調整トルク演算部24(図10中では不図示)に加え、補正トルク演算部400が「補償値演算部」に対応し、調整トルクThおよび補正トルクTrが「指令補償値」に対応する。
(他の実施形態)
(ア)状態量演算部
能動状態量および回転状態量は、第1実施形態では関数を用いて演算され、第2実施形態ではマップを用いて演算される。他の実施形態では、例えば、双曲線正接を用いた関数で能動状態量を演算し、符号関数を用いて回転状態量を演算する、といった具合に、能動状態量を演算する関数と、回転状態量を演算する関数とが異なっていてもよい。また、能動状態量または回転状態量の一方を関数で演算し、他方をマップで演算してもよい。
また、例えば、能動状態量および回転状態量を関数で演算し、操舵状態量をマップで演算する等、演算方法の組み合わせはどのようであってもよい。
第1実施形態では、能動状態量は、原点を通り、第1トルク判定値および第2トルク判定値に飽和する飽和特性を有する関数で演算される。他の実施形態では、能動状態量の演算に係る関数は、原点を通らないものであってもよい。
第1実施形態では、第1トルク判定値を1、第2トルク判定値を−1とする。また、第2実施形態では、第1トルク判定値を2、第2トルク判定値を−2とする。他の実施形態では、第1トルク判定値は、1または2以外の値であってもよいし、第2トルク判定値は、1または2以外の値であってもよい。第1回転判定値および第2回転判定値についても同様である。
また、能動状態量演算関数は、飽和特性を有さないものであってもよい。例えば、能動状態量演算関数は、操舵トルクが第1所定値より大きいとき、第1トルク判定値、第2所定値より小さいとき第2トルク判定値とし、操舵トルクが第1所定値と第2所定値との間の領域を、線形補間してもよい。第1所定値と第2所定値との間における関数は、線形補間する関数に限らず、2次以上の関数や、第1トルク判定値および第2トルク判定値に飽和する関数等であってもよい。この場合、第1所定値と第2所定値との間の関数の設定に加え、第1所定値および第2所定値が調整要素となり、第1所定値および第2所定値を適宜設定することで、能動状態量の傾きを調整することができる。
上記実施形態では、操舵トルクの印加方向の切り替え感度を高めるように、能動状態量を演算する。他の実施形態では、切り替え感度を下げるように、能動状態量を演算してもよい。
また、回転状態量演算関数についても同様である。また、関数に替えて、マップを用いる場合も同様である。
このように構成しても、上記実施形態と同様の効果を奏する。
上記実施形態では、操舵状態量の演算に用いられる能動状態量および回転状態量は、共に、操舵軸の運動状態を示す物理量からの換算値である。他の実施形態では、操舵状態量の演算に用いられる能動状態量または回転状態量は、操舵軸の運動状態を示す物理量そのものであってもよい。すなわち、回転状態量が換算値であれば、能動状態量は操舵トルクそのものであってもよい。また、能動状態量が換算値であれば、回転状態量は、回転速度相当値そのものであってもよい。
上記実施形態では、能動状態量の演算に用いる操舵トルク相当値は、操舵トルクそのものである。上記実施形態のように、操舵トルクを目標操舵トルクに追従させるように制御する場合、操舵トルクと目標操舵トルクとは、略同じ値となる。そこで他の実施形態では、操舵トルクそのものに替えて、目標操舵トルクを操舵トルク相当値としてもよい。このように構成しても、上記実施形態と同様の効果を奏する。
また、他の実施形態では、操舵トルク相当値を、電流検出値等の検出値に基づいて演算されるアシストトルク検出値、演算により推定される値である負荷トルクやラック推力、または、制御によって結果的に生じる目標または指令となる値であるアシストトルク指令値等としてもよい。また他の実施形態では、操舵トルク相当値は、電流指令値であってもよい。
また、上記実施形態では、回転状態量の演算に用いる回転速度相当値は、モータ速度である。他の実施形態では、回転速度相当値は、操舵速度、または、操舵速度に応じて変化する他のパラメータであってもよい。
また、操舵トルク相当値および回転速度相当値は、各パラメータの指令値、検出値、または、推定値のいずれとしてもよい。
第3実施形態では、操舵状態量演算部は、基本アシストトルク演算部および補正トルク演算部とは別途に設けられる。他の実施形態では、第1実施形態のように、基本アシストトルク演算部の操舵状態量演算部にて演算された操舵状態量を補正トルク演算部に出力し、補正トルクの演算に用いてもよい。また他の実施形態では、補正トルク演算部に操舵状態量演算部を設け、補正トルク演算部の操舵状態量演算部にて演算された操舵状態量を基本アシストトルク演算部に出力し、調整トルクの演算に用いてもよい。
(イ)補償値演算部
上記実施形態では、補償値演算部である調整トルク演算部は、いずれも操舵状態量に基づいて演算される路面負荷基準剛性調整トルク、舵角基準剛性調整トルク、粘性調整トルク、および、慣性調整トルクに基づいて調整トルクを演算する。他の実施形態では、路面負荷基準剛性調整トルク、舵角基準剛性調整トルク、粘性調整トルク、または、慣性調整トルクの一部は、操舵状態量に基づいて演算されていなくてもよい。また他の実施形態では、路面負荷基準剛性調整トルク、舵角基準剛性調整トルク、粘性調整トルク、または、慣性調整トルクの一部を、調整トルクの演算に用いなくてもよい。
上記実施形態では、舵角基準剛性調整トルクは、操舵軸の回転角として、ハンドルの回転角である操舵角を用いて演算される。他の実施形態では、舵角基準剛性調整トルクの演算に用いる操舵角の回転角は、操舵角に限らず、直進時をゼロ点としたモータ回転角や、タイヤの転舵角等、モータを含むハンドルからタイヤに至る機構に含まれる回転軸の角度であればよい。また、操舵角の回転角は、検出値に限らず、推定値であってもよい。
上記実施形態では、補償値演算部である調整トルク演算部は、基本目標操舵トルクを変更するトルク値として、調整トルクを出力する。他の実施形態では、調整トルク演算部は、調整トルクを電流換算し、電流指令値を補正する値である調整トルク換算値を出力してもよい。
第3実施形態では、補正トルク演算部は、収斂ゲインおよび車速ゲインを回転速度相当値に乗じることで補正トルクを演算する。他の実施形態では、回転速度相当値に収斂ゲインおよび車速ゲインを乗じた乗算値に、他の値の加算等の演算を行った演算値を補正トルクとしてもよい。すなわち、補正トルク演算部における演算の全てに操舵状態量を用いていなくてもよい、ということである。また、収斂ゲインおよび車速ゲインに替えて、操舵状態量および車速に応じて決定される1つの収斂ゲインを回転速度相当値に乗じることで補正トルクを演算してもよい。さらにまた、車速ゲインを省略してもよい。
第3実施形態では、補正トルク演算部は、基本アシストトルク指令を変更するトルク値として、補正トルクを出力する。他の実施形態では、補正トルク演算部は、補正トルクを電流換算し、電流指令値を補正する補正トルク換算値を出力してもよい。
すなわち、「モータの駆動に係る指令値」は、トルク指令値に限らず、電流指令値であってもよい。この場合、補償値演算部は、電流指令値を補償する値を「指令補償値」として演算してもよい。
第1実施形態では、調整トルク演算部が「補償値演算部」に対応し、第3実施形態では、調整トルク演算部および補正トルク演算部が「補償値演算部」に対応する。他の実施形態では、補正トルク演算部のみが「補償値演算部」に対応していてもよい。すなわち、例えば、調整トルクの演算に操舵状態量を用いなくてもよい。また、調整トルク演算部を省略してもよい。
(ウ)指令値演算部
上記実施形態では、調整トルクに基づき、基本目標操舵トルクを調整する。また上記実施形態では、補正トルクに基づき、基本アシストトルク指令を補正する。他の実施形態では、調整トルクに基づいて調整する指令値は、運転者の操舵部材の操舵をアシストするモータの駆動に係る指令値であれば、基本目標操舵トルク以外の値であってもよい。同様に、他の実施形態では、補正トルクに基づいて補正される指令値は、運転者の操舵部材の操舵をアシストするモータの駆動に係る指令値であれば、基本アシストトルク指令以外の値であってもよい。
また、基本アシストトルク指令、および、基本アシストトルク指令の演算に用いられる各パラメータ等は、上記実施形態で説明した方法に限らず、運転者の操舵部材の操舵をアシストするものであれば、他の演算方法でもよい。
上記実施形態では、基本アシストトルク指令を補正トルクで補正し、アシストトルク指令を演算する。他の実施形態では、指令演算部を省略し、基本アシストトルク指令を、そのままアシストトルク指令としてもよい。この場合、調整部が「指令演算部」に対応する。また、アシストトルク指令の演算方法についても、上記実施形態に限らず、運転者の操舵部材の操舵をアシストするものであれば、他の演算方法でもよい。
(エ)ステアリングシステム
上記実施形態のステアリングシステムは、モータの駆動力が操舵軸に伝達される、所謂
「コラムアシストタイプ」の電動パワーステアリングシステムである。他の実施形態では、モータの駆動力がラックに伝達される、所謂「ラックアシストタイプ」の電動パワーステアリングシステムとしてもよい。また他の実施形態では、ステアリングシステムは、ハンドルと操舵輪とが機械的に切り離されている、所謂「ステアバイワイヤ」であってもよい。また、上記実施形態のモータは、3相交流モータであるが、他の実施形態では、3相交流モータ以外のモータであってもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
1・・・ステアリングシステム
15、16・・・制御部(ステアリング制御装置)
23、43、230・・・状態量演算部
24・・・調整トルク演算部(補償値演算部)
41・・・指令演算部
80・・・モータ
91・・・ハンドル(操舵部材)
95・・・操舵軸 100・・・操舵系メカ
400・・・補正トルク演算部(補償値演算部)

Claims (11)

  1. 操舵部材(91)に連結された操舵軸(95)に加わる操舵トルクに応じたアシストトルクを出力するモータ(80)を制御するステアリング制御装置であって、
    前記操舵軸に加わるトルクの印加方向を示す能動状態量、および、前記操舵軸の回転方向を示す回転状態量に基づき、前記操舵部材が切り込み状態、切り戻し状態または保舵状態であることを示す指標である操舵状態量を演算する状態量演算部(23、43、230)と、
    前記操舵状態量に基づき、指令補償値を演算する補償値演算部(24、400)と、
    前記指令補償値を用い、前記モータの駆動に係る指令値を演算する指令演算部(41)と、
    を備え、
    前記能動状態量および前記回転状態量の少なくとも一方は、前記操舵軸の運動状態を示す物理量から関数またはマップを用いて換算した換算値であるステアリング制御装置。
  2. 前記能動状態量は、前記操舵軸の運動状態を示す物理量である前記操舵トルクまたは前記操舵トルクに応じて変化する値である操舵トルク相当値から換算される換算値である請求項1に記載のステアリング制御装置。
  3. 前記能動状態量は、前記操舵トルク相当値に基づき、前記操舵軸の第1方向にトルクが印加されていることを示す第1トルク判定値と、前記操舵軸の第2方向にトルクが印加されていることを示す第2トルク判定値と、を連続的に補間する関数またはマップを用いて演算される請求項2に記載のステアリング制御装置。
  4. 前記能動状態量は、前記第1トルク判定値および前記第2トルク判定値に飽和する飽和特性を有する関数またはマップを用いて演算される請求項3に記載のステアリング制御装置。
  5. 前記回転状態量は、前記操舵軸の運動状態を示す物理量である前記操舵軸の回転速度または前記回転速度に応じて変化する値である回転速度相当値から換算される換算値である請求項1〜4のいずれか一項に記載のステアリング制御装置。
  6. 前記回転状態量は、前記回転速度相当値に基づき、前記操舵軸が第1方向に回転していることを示す第1回転判定値と、前記操舵軸が第2方向に回転していることを示す第2回転判定値と、を連続的に補間する関数またはマップを用いて演算される請求項5に記載のステアリング制御装置。
  7. 前記回転状態量は、前記第1回転判定値および前記第2回転判定値に飽和する飽和特性を有する関数またはマップを用いて演算される請求項6に記載のステアリング制御装置。
  8. 前記状態量演算部は、前記能動状態量と前記回転状態量との積に基づき、前記操舵状態量を演算する請求項1〜7のいずれか一項に記載のステアリング制御装置。
  9. 前記補償値演算部(24)は、機械インピーダンス要素を調整する調整トルクを前記指令補償値として演算するものであって、
    前記操舵軸を含む操舵系メカ(100)の機械インピーダンスの剛性特性を調整する剛性調整トルクを、前記操舵状態量に基づいて演算する剛性調整部(25)、
    前記操舵系メカの機械インピーダンスの粘性特性を調整する粘性調整トルクを、前記操舵状態量に基づいて演算する粘性調整部(26)、
    および、前記操舵系メカの機械インピーダンスの慣性特性を調整する慣性調整トルクを、前記操舵状態量に基づいて演算する慣性調整部(27)の少なくとも1つを含み、
    前記剛性調整トルク、前記粘性調整トルク、および、前記慣性調整トルクの少なくとも1つに基づき、前記調整トルクを演算する請求項1〜8のいずれか一項に記載のステアリング制御装置。
  10. 前記剛性調整部は、前記剛性調整トルクとして、路面負荷に応じた路面負荷基準剛性調整トルク、および、前記操舵軸の回転角に応じた舵角基準剛性調整トルクの少なくとも一方を演算する請求項9に記載のステアリング制御装置。
  11. 前記補償値演算部(400)は、前記操舵状態量および前記操舵軸の回転速度または前記回転速度に応じて変化する値である回転速度相当値に基づく補正トルクを前記指令補償値として演算する請求項1〜10のいずれか一項に記載のステアリング制御装置。
JP2016099410A 2015-11-13 2016-05-18 ステアリング制御装置 Active JP6790452B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102016221500.0A DE102016221500B4 (de) 2015-11-13 2016-11-02 Lenksteuerung
US15/346,608 US10358161B2 (en) 2015-11-13 2016-11-08 Steering controller
CN201610991744.3A CN107054446B (zh) 2015-11-13 2016-11-10 转向控制器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015222984 2015-11-13
JP2015222984 2015-11-13

Publications (2)

Publication Number Publication Date
JP2017095076A true JP2017095076A (ja) 2017-06-01
JP6790452B2 JP6790452B2 (ja) 2020-11-25

Family

ID=58816443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099410A Active JP6790452B2 (ja) 2015-11-13 2016-05-18 ステアリング制御装置

Country Status (2)

Country Link
JP (1) JP6790452B2 (ja)
CN (1) CN107054446B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003874A (ko) * 2017-06-30 2019-01-10 현대모비스 주식회사 전동식 파워 스티어링 시스템의 토크 보상 장치 및 방법
JP2019188861A (ja) * 2018-04-19 2019-10-31 株式会社デンソー ステアリング制御装置
KR20190123098A (ko) * 2018-04-23 2019-10-31 현대자동차주식회사 조향시스템의 요크유격 소음저감방법
JP2020199968A (ja) * 2019-06-12 2020-12-17 Kyb株式会社 電動パワーステアリング装置
EP3871951A1 (en) * 2020-01-28 2021-09-01 Jtekt Corporation Control apparatus for steering system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087854B2 (ja) * 2018-09-07 2022-06-21 株式会社デンソー ステアリング制御装置
JP7133452B2 (ja) * 2018-12-04 2022-09-08 株式会社ジェイテクト 転舵制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893498B2 (ja) * 2012-04-26 2016-03-23 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置
FR2992938B1 (fr) * 2012-07-04 2015-12-04 Jtekt Europe Sas Procede de centrage du volant de conduite d'une direction assistee de vehicule automobile
US9136785B2 (en) * 2013-03-12 2015-09-15 Steering Solutions Ip Holding Corporation Motor control system to compensate for torque ripple
JP6160860B2 (ja) * 2013-06-11 2017-07-12 株式会社ジェイテクト 電動パワーステアリング装置
JP6260818B2 (ja) * 2014-02-18 2018-01-17 株式会社ジェイテクト 電動パワーステアリング装置
JP6314552B2 (ja) * 2014-03-07 2018-04-25 株式会社ジェイテクト 電動パワーステアリング装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003874A (ko) * 2017-06-30 2019-01-10 현대모비스 주식회사 전동식 파워 스티어링 시스템의 토크 보상 장치 및 방법
CN109204446A (zh) * 2017-06-30 2019-01-15 现代摩比斯株式会社 用于补偿电动助力转向系统的转矩的装置及方法
KR102224996B1 (ko) * 2017-06-30 2021-03-10 현대모비스 주식회사 전동식 파워 스티어링 시스템의 토크 보상 장치 및 방법
CN109204446B (zh) * 2017-06-30 2021-03-16 现代摩比斯株式会社 用于补偿电动助力转向系统的转矩的装置及方法
JP2019188861A (ja) * 2018-04-19 2019-10-31 株式会社デンソー ステアリング制御装置
JP7014028B2 (ja) 2018-04-19 2022-02-15 株式会社デンソー ステアリング制御装置
KR20190123098A (ko) * 2018-04-23 2019-10-31 현대자동차주식회사 조향시스템의 요크유격 소음저감방법
KR102529446B1 (ko) * 2018-04-23 2023-05-08 현대자동차주식회사 조향시스템의 요크유격 소음저감방법
JP2020199968A (ja) * 2019-06-12 2020-12-17 Kyb株式会社 電動パワーステアリング装置
JP7240264B2 (ja) 2019-06-12 2023-03-15 Kyb株式会社 電動パワーステアリング装置
EP3871951A1 (en) * 2020-01-28 2021-09-01 Jtekt Corporation Control apparatus for steering system
US11794806B2 (en) 2020-01-28 2023-10-24 Jtekt Corporation Control apparatus for steering system

Also Published As

Publication number Publication date
JP6790452B2 (ja) 2020-11-25
CN107054446B (zh) 2020-10-02
CN107054446A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6790452B2 (ja) ステアリング制御装置
JP6079942B2 (ja) 電動パワーステアリング装置
EP3517406B1 (en) Steering control apparatus
US9205862B2 (en) Steering control device
JP5194716B2 (ja) 電動パワーステアリング装置
US10358161B2 (en) Steering controller
JP5994480B2 (ja) 電動パワーステアリング装置
JP2014136558A (ja) 電動パワーステアリング装置
JP7133393B2 (ja) 操舵制御装置
JP6565847B2 (ja) 電動パワーステアリング装置
JP5967336B2 (ja) 電動パワーステアリング装置
CN111315637A (zh) 电动助力转向装置
JP6387657B2 (ja) 電動パワーステアリング制御装置
JP7047686B2 (ja) モータ駆動装置、及び操舵システム
JP5155815B2 (ja) 電動パワーステアリング装置
JP2012183881A (ja) 電動パワーステアリング装置
JP7133452B2 (ja) 転舵制御装置
JP4552649B2 (ja) 操舵制御装置
JP2008092633A (ja) 電動パワーステアリング装置
JP2008006919A (ja) 電動パワーステアリング装置
JP6643935B2 (ja) 電動パワーステアリング装置、プログラム
JP6643934B2 (ja) 電動パワーステアリング装置、プログラム
JP5217901B2 (ja) 電動パワーステアリング装置
JP5979079B2 (ja) 電動パワーステアリング装置
JP4556464B2 (ja) 電動パワーステアリング装置の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250