JP7014028B2 - ステアリング制御装置 - Google Patents

ステアリング制御装置 Download PDF

Info

Publication number
JP7014028B2
JP7014028B2 JP2018080464A JP2018080464A JP7014028B2 JP 7014028 B2 JP7014028 B2 JP 7014028B2 JP 2018080464 A JP2018080464 A JP 2018080464A JP 2018080464 A JP2018080464 A JP 2018080464A JP 7014028 B2 JP7014028 B2 JP 7014028B2
Authority
JP
Japan
Prior art keywords
steering
torque
steering torque
assist
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018080464A
Other languages
English (en)
Other versions
JP2019188861A (ja
Inventor
崇 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018080464A priority Critical patent/JP7014028B2/ja
Priority to US16/384,187 priority patent/US11124227B2/en
Publication of JP2019188861A publication Critical patent/JP2019188861A/ja
Application granted granted Critical
Publication of JP7014028B2 publication Critical patent/JP7014028B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0466Controlling the motor for returning the steering wheel to neutral position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Description

本発明は、ステアリング制御装置に関する。
従来、ステアリング制御装置において、ハンドルの回転限界位置(以下、「エンド」という)での機械部品の衝突による破損等を防止するため、エンド当て衝撃を軽減する技術が知られている。
例えば特許文献1に開示された制御装置は、エンド付近での操舵速度に応じてモータ駆動電流を制限し、アシストトルクを減少補正する。すなわち、この制御装置のアシスト制御部は、検出車速及びトルクに応じた電流を決定する。操舵速度制限制御部は、操舵速度が所定値より大きい場合、アシスト制御部で決定される電流を減じる方向の電流値を演算し、アシスト制御部の出力にする。
特許第3741449号公報
特許文献1の技術は、アシスト制御により演算された基本アシストトルクに対し、アシストトルクを抑制するダンピングトルクが加算されるものである。ここで、ドライバが出力する操舵トルクの検出値の増加分のうち、操舵速度に応じて増加する操舵トルク検出値の増加分を「粘性負荷」と定義する。エンド当て時のように高いアシスト比でアシスト制御が動作している時には、特許文献1の技術によるダンピングトルクが打ち消され、ドライバに大きな粘性負荷を与えることができないという問題がある。
また、エンド当て時に限らず、操舵速度に対してアシストトルクを減少させてドライバに粘性負荷を与え、ドライバが出力する操舵トルクを増加させたい要求がある場合全般の制御について、特許文献1には言及されていない。
本発明は、このような点に鑑みて創作されたものであり、その目的は、ドライバが出力する操舵トルクを増加させる要求があるとき、ドライバの粘性感を好適に増大させるステアリング制御装置を提供することにある。
本発明は、ドライバの操舵トルク(Ts)に応じて操舵アシストモータ(80)が出力するアシストトルク(Ta)を制御するステアリング制御装置に係る発明である。このステアリング制御装置は、アシストトルクの基本量である基本アシストトルク(Tb)を生成するベースアシスト部(40)と、操舵トルク補正部(20)と、を備える。アシストトルクを減少させてドライバに粘性負荷を与える要求があるとき、操舵トルク補正部は、絶対値が操舵トルク検出値の絶対値より小さくなるように減少補正された補正後操舵トルク(Tcmp)を出力する。
ベースアシスト部は、目標操舵トルク演算部(49)と、サーボ制御器(55)と、を含む。目標操舵トルク演算部は、少なくとも操舵トルク及び操舵角速度に基づいて目標操舵トルク(Ts*)を演算する。サーボ制御器は、目標操舵トルクに補正後操舵トルクを追従させるように基本アシストトルクを演算する。
本発明では、アシストトルクを減少させてドライバに粘性負荷を与える要求があるとき、減少補正された補正後操舵トルクがサーボ制御器に入力される。これにより、アシスト制御により生成されるアシストトルクが減少し、その結果として、ドライバが出力しなければならない操舵トルクが増加する。したがって、本発明のステアリング制御装置は、ドライバの粘性感を好適に増大させることができる。
「アシストトルクを減少させてドライバに粘性負荷を与える要求があるとき」とは、例えば、操舵角の絶対値が所定閾値を超えたとき、すなわち操舵角の絶対値がエンドに接近したときである。このとき、操舵トルク補正部が操舵トルクの検出値を減少補正した補正後操舵トルクをサーボ制御器に出力することで、アシストトルクが減少補正され、エンド当ての衝撃が軽減される。また、エンド当て時にドライバの粘性感を増大させることができる。
電動パワーステアリングシステムの概略構成図。 一実施形態のステアリング装置の全体構成図。 一実施形態のステアリング装置のアシスト制御部の全体構成図。 操舵トルク補正部の構成図。 (a)操舵角ゲインマップの例、(b)操舵角速度ゲインマップの例。 ベースアシスト部の構成図。 サーボ制御構造を持たない比較例のアシスト制御部のモデル図。 一実施形態によるサーボ制御構造を持つアシスト制御部のモデル図。 アシスト倍率と粘性負荷との関係を示す特性図。 サーボ制御構造を持つベースアシスト部の簡略化した構成図。 図10の構成をさらに簡略化した検討用の簡易モデル図。 (a)構成候補(1)による制御の入出力特性を検討する簡易モデル図、(b)構成候補(2)による制御の入出力特性を検討する簡易モデル図、(c)構成候補(3)による制御の入出力特性を検討する簡易モデル図。
以下、ステアリング制御装置の一実施形態を図面に基づいて説明する。「ステアリング制御装置」としてのECUは、車両の電動パワーステアリングシステムに適用され、操舵アシストモータが出力するアシストトルクを制御する。
[電動パワーステアリングシステムの構成]
図1に示すように、電動パワーステアリングシステム1は、操舵アシストモータ(以下、単に「モータ」)80の駆動トルクにより、ドライバによるハンドル91の操作をアシストするシステムである。ステアリングシャフト92の一端にはハンドル91が固定されており、ステアリングシャフト92の他端側にはインターミディエイトシャフト93が設けられている。ステアリングシャフト92とインターミディエイトシャフト93とは、トルクセンサ94のトーションバーにより接続されており、これらにより操舵軸95が構成される。トルクセンサ94は、トーションバーの捩れ角に基づいて操舵トルクTsを検出する。
インターミディエイトシャフト93のトルクセンサ94と反対側の端部には、ピニオンギア961及びラック962を含むギアボックス96が設けられている。ドライバがハンドル91を回すと、インターミディエイトシャフト93とともにピニオンギア961が回転し、ピニオンギア961の回転に伴って、ラック962が左右に移動する。ラック962の両端に設けられたタイロッド97は、ナックルアーム98を介してタイヤ99と接続されている。タイロッド97が左右に往復運動し、ナックルアーム98を引っ張ったり押したりすることで、タイヤ99の向きが変わる。
モータ80は、例えば3相交流ブラシレスモータであり、ECU10から出力された駆動電圧Vdに応じて、ハンドル91の操舵力をアシストするアシストトルクを出力する。3相交流モータの場合、駆動電圧Vdは、U相、V相、W相の各相電圧を意味する。モータ80の回転は、ウォームギア86及びウォームホイール87等により構成される減速機構85を経由して、インターミディエイトシャフト93に伝達される。また、ハンドル91の操舵や、路面からの反力によるインターミディエイトシャフト93の回転は、減速機構85を経由してモータ80に伝達される。
なお、図1に示す電動パワーステアリングシステム1は、モータ80の回転が操舵軸95に伝達されるコラムアシスト式であるが、本実施形態のECU10は、ラックアシスト式の電動パワーステアリングシステム、或いは、ハンドルと操舵輪とが機械的に切り離されたステアバイワイヤシステムにも同様に適用可能である。また、他の実施形態では、操舵アシストモータとして、3相以外の多相交流モータや、ブラシ付DCモータが用いられてもよい。
ここで、ハンドル91からタイヤ99に至る、ハンドル91の操舵力が伝達される機構全体を「操舵系メカ100」という。ECU10は、モータ80が操舵系メカ100に出力する駆動トルクを制御することにより、操舵系メカ100が発生する操舵トルクTsを制御する。また、ECU10は、操舵系メカ100から操舵トルクTs、操舵角θ及び操舵角速度ωを取得する。さらにECU10は、車両の所定の部位に設けられた車速センサ71が検出した車速Vを取得する。
ECU10は、アシスト制御部15及び電流フィードバック部70を備え、図示しない車載バッテリからの電力によって動作する。アシスト制御部15は、ドライバの操舵をアシストするアシストトルクTaを演算する。電流フィードバック部70は、アシストトルクTaに基づく目標電流に対し、モータ80に流れる実電流をフィードバック制御することにより、モータ80へ印加する駆動電圧Vdを演算する。ECU10は、駆動電圧Vdをモータ80へ印加することにより、制御対象である操舵系メカ100に操舵トルクTsを発生させる。
ECU10における各種演算処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
[ECUの構成]
(一実施形態)
次に、図2~図6を参照し、一実施形態のECU10について全体構成から細部の構成まで順に説明する。ステアリング制御装置における周知の一般構成に関しては図示及び説明を適宜省略する。図2に、ECU10の全体構成を示す。ECU10の電流フィードバック部70は省略する。車両900には、モータ80及び操舵系メカ100が含まれる。図2における入出力情報のうち名称の記載の無いものは、トルク、角度、角速度、車速等の「何らかの情報」であり、一本の矢印に複数の情報が含まれる場合もある。詳しくは、図3~図6でブロック毎に記載する。
アシスト制御部15は、操舵トルク補正部20、ベースアシスト部40及びダンピング制御部60を含み、車両900に対しアシストトルクTaを出力する。車両900からの何らかの情報は、操舵トルク補正部20、ベースアシスト部40及びダンピング制御部60にそれぞれ入力される。操舵トルク補正部20は補正後操舵トルクTcmpを演算し、ベースアシスト部40に出力する。ベースアシスト部40は基本アシストトルクTbを生成する。ダンピング制御部60はダンピングトルクTdを演算する。基本アシストトルクTb及びダンピングトルクTdは加算器65で加算され、アシストトルクTaとして出力される。
図3に、アシスト制御部15の全体構成例を示す。操舵トルク補正部20は、エンド当て時のアシストトルクTa及び操舵角速度ωを低減し、インターミディエイトシャフト93にかかる衝撃負荷を軽減するように、操舵トルクTsの検出値を減少補正する。操舵トルク補正部20には、操舵トルクTs、操舵角θ、操舵角速度ω、車速Vが入力される。
ベースアシスト部40は、ドライバがハンドル91を操作した時に手に感じる、「ハンドルが重い/軽い」、「手応えがある/ない」、「粘性感がある/ない」等の操舵感覚が適正となるように目標操舵トルクTs*を定め、それを実現する基本アシストトルクTbを演算する。ベースアシスト部40には、操舵トルクTs、操舵角速度ω、及び、操舵トルク補正部20が演算した補正後操舵トルクTcmpが入力される。
ダンピング制御部60は、ばね上の運動に関わる車両運動制御の一種として、アシストトルクTaを抑制するように補正して所望の車両運動特性を達成しようとするダンピング制御を行う。ダンピング制御部60には、操舵角速度ωが入力される。ダンピング制御では、ドライバがハンドル91に触っていない時にもアシストトルクTaを抑制する効果が得られる。
ここで、操舵角θ、操舵角速度ω及び操舵トルクTsの符号の定義について説明する。操舵角θの符号は、中立位置に対する現在のハンドル91の位置により定義される。例えば、中立位置に対し左側の操舵角θが正、中立位置に対し右側の操舵角θが負と定義される。操舵角速度ωの符号は、操舵角θの符号に応じた回転方向により定義される。すなわち、操舵角θの符号を上記のように定義したとき、左回転方向の操舵角速度ωが正、右回転方向の操舵角速度ωが負と定義される。
操舵トルクTsの符号は操舵角速度ωの符号と同様に定義される。ここで、操舵トルクTsの符号は、ハンドル91が実際にその方向に回転しているか否かに関係なく、あくまでトルクが加わっている方向を表す。例えば路面負荷や慣性トルク等により、操舵トルクTsが加わっていてもハンドル91が停止している場合や、操舵トルクTsとは逆方向にハンドル91が回転している場合があり得る。
なお、他の実施形態では、上記とは逆に、中立位置に対し右側の操舵角θ、右回転方向の操舵速度ω及び操舵トルクTsが正と定義され、中立位置に対し左側の操舵角θ、左回転方向の操舵速度ω及び操舵トルクTsが負と定義されてもよい。
以下、操舵角θの絶対値の上限値、すなわちハンドル91の回転限界位置を「エンド」という。エンドは、例えばラック962の端部が相手部品に機械的に衝突する位置に対応する。また、ハンドル91が中立位置からエンドに向かう回転方向の動作を「切り込み」といい、エンドから中立位置に向かう回転方向の動作を「切り戻し」という。切り込み又は切り戻しの状態は、操舵角θ、操舵角速度ω及び操舵トルクTsの符号によって判定可能である。
例えば、操舵角θと操舵角速度ωとが同符号のとき、切り込み状態であり、操舵角θと操舵角速度ωとが異符号のとき、切り戻し状態であると判定される。同様に、操舵角θと操舵トルクTs、操舵角速度ωと操舵トルクTs、操舵角θと操舵角速度ωと操舵トルクTsの組合せを用いても判定が可能である。
ところで、従来、エンド当て衝撃を軽減し、エンドを保護する技術として、エンド付近で基本アシストトルクにダンピングトルクを加算する技術が知られている。しかし、エンド当て時のように高いアシスト比でアシスト制御が動作している時には、ダンピングトルクが打ち消され、ドライバに大きな粘性負荷を与えることができないという問題がある。ここで「粘性負荷」とは、ドライバが出力する操舵トルクTsの検出値の増加分のうち、操舵角速度ωに応じて増加する操舵トルクTsの検出値の増加分をいう。
そこで、本実施形態のアシスト制御部15は、エンド当て時のように、ドライバが出力する操舵トルクを増加させる要求があるとき、ドライバの粘性感を好適に増大させることを目的とする。そして、そのための構成として、操舵トルク補正部20を備える。
次に図4に、操舵トルク補正部20の構成例を示す。操舵トルク補正部20は、操舵トルクTsの検出値の補正に関し、操舵角速度ゲイン演算部23、操舵角ゲイン演算部24及び車速ゲイン演算部25を有する。操舵角速度ゲイン演算部23は、操舵角速度ωに応じて変化する操舵角速度ゲインgωsを演算する。操舵角ゲイン演算部24は、操舵角θに応じて変化する操舵角ゲインgθsを演算する。車速ゲイン演算部25は、車速Vに応じて変化する車速ゲインgVsを演算する。
操舵角速度ωは、符号取得部21で取得された操舵角θの符号が符号乗算器22で乗算される。そして、符号乗算後操舵角速度ωsgnが操舵角速度ゲイン演算部23に入力される。操舵角θと操舵角速度ωとが同符号で符号乗算後操舵角速度ωsgnが正のとき、エンド方向にハンドル91が回転している切り込み状態であることを意味する。一方、操舵角θと操舵角速度ωとが異符号で符号乗算後操舵角速度ωsgnが負のとき、中立位置方向にハンドル91が回転している切り戻し状態であることを意味する。
このように操舵トルク補正部20は、符号乗算後操舵角速度ωsgnを用いることで、切り込み状態であるか切り戻し状態であるか、すなわち、エンドに衝突する可能性があるか否かを判定する。そして、エンドに衝突する可能性が有る切り込み状態の場合、操舵トルク補正部20は、以下に説明する通り、操舵トルクTsの検出値の絶対値を減少補正した補正後操舵トルクTcmpを出力し、エンド衝突時の衝撃を抑制する。一方、エンドに衝突する可能性が無い切り戻し状態の場合、操舵トルク補正部20は、減少補正を行わず、操舵トルクTsの検出値をそのまま出力する。したがって、切り戻し時に無用に操舵トルクTsを増加させることが回避される。
操舵角速度ゲインgωs、操舵角ゲインgθs及び車速ゲインgVsは、0から1までの範囲で設定され、操舵トルクTsを減少補正しないとき0、操舵トルクTsを減少補正するとき、減少量に応じて0より大きく1以下の値を取る。積ゲイン演算器26は、操舵角速度ゲインgωs、操舵角ゲインgθs及び車速ゲインgVsを乗算し、積ゲインgmsを演算する。
ゲイン減算器27は、1から積ゲインgmsを減じて操舵トルク補正ゲインKを演算する。フィルタ28は、操舵トルク補正ゲインKの高周波成分をフィルタ処理により除去する。補正ゲイン乗算器29は、操舵トルクTsにフィルタ後の操舵トルク補正ゲインKを乗じて、補正後操舵トルクTcmpを演算する。つまり、積ゲインgmsが増加すると操舵トルク補正ゲインKが減少し、その結果、補正後操舵トルクTcmpは減少する。アシストトルクを減少させてドライバに粘性負荷を与える要求があるとき、操舵トルク補正ゲインKは1未満の値に設定される。
図5(a)、図5(b)にそれぞれ、操舵角ゲインgθs及び操舵角速度ゲインgωsのマップ例を示す。図5(a)の例で、操舵角θが±460[deg]の位置がエンドであり、±400[deg]が角度閾値である。操舵角ゲインgθsは、操舵角θの絶対値が400[deg]以下のとき0であり、エンドに接近する400[deg]から420[deg]までの区間で0から1まで増加し、420[deg]以上のとき1である。したがって、操舵トルク補正部20は、操舵角θの絶対値がエンドに近づき角度閾値を超えたとき、補正後操舵トルクTcmpの絶対値を減少させる。
図5(b)の例で操舵角速度ゲインgωsは、符号乗算後操舵角速度ωsgnが300[deg/s]以下のとき0であり、300[deg/s]から400[deg/s]までの区間で0から1まで増加し、400[deg/s]以上のとき1である。車速ゲインgVsのマップ例は省略するが、基本的に高速走行時にはエンド付近まで操舵する可能性は低く、また、緊急時に急操舵した場合に操舵を抑制しない方がよい。そのため、車速ゲインgVsは、低速のときほど大きく、高速のときほど小さく設定される。したがって、操舵トルク補正部20は、車速Vに応じて補正後操舵トルクTcmpを演算する。
このようなマップにより、操舵トルク補正部20は、操舵角θの絶対値がエンドに近いほど、又は、エンドに向かう操舵角速度ωの絶対値が大きいほど、補正後操舵トルクTcmpの絶対値を減少させる。すなわち、補正後操舵トルクTcmpは、絶対値が操舵トルクTsの検出値の絶対値より小さくなるように減少補正された値となる。なお、通常操舵時には補正後操舵トルクTcmpの符号は操舵トルクTsの検出値と一致するが、上述のように路面からの入力でハンドル91が回された場合等には、回転方向と操舵トルクTsの符号とが一致しないエンド当てが実現し得る。
図6に、ベースアシスト部40の構成例を示す。ベースアシスト部40は、入力加算器41、フィルタ42、状態量演算部43、目標操舵トルク演算部49、トルク偏差算出器50及びサーボ制御器55を含む。目標操舵トルク演算部49は、少なくとも操舵トルクTs及び操舵角速度ωに基づいて目標操舵トルクTs*を演算する。トルク偏差算出器50は、目標操舵トルクTs*から補正後操舵トルクTcmpを差し引いてトルク偏差ΔTsを算出する。サーボ制御器55は、目標操舵トルクTs*に補正後操舵トルクTcmpを追従させるように、すなわち、トルク偏差ΔTsを0に近づけるように基本アシストトルクTbを演算する。
目標操舵トルク演算部49には、基本目標操舵トルク演算部44、剛性目標操舵トルク演算部45、粘性目標操舵トルク演算部46、慣性目標操舵トルク演算部47、調整成分合算部481及び合計目標操舵トルク算出部482が含まれる。なお、入力加算器41、フィルタ42及び状態量演算部43を目標操舵トルク演算部49に含めて考えてもよい。
入力加算器41は、基本アシストトルクTbと目標操舵トルクTs*とを加算する。なお、他の実施例では、基本アシストトルクTbと操舵トルクTsとが加算されてもよい。フィルタ42は、加算されたトルクから、所定の周波数、例えば10Hz以下の帯域の成分を抽出し、推定負荷Txとして出力する。基本目標操舵トルク演算部44は、推定負荷Txに基づいて基本目標操舵トルクTbaseを演算する。
ここで、推定負荷Txは、基本アシストトルクTb及び目標操舵トルクTs*に由来する。さらに、基本アシストトルクTbは、サーボ制御器55に入力される補正後操舵トルクTcmpが反映される。したがって、基本目標操舵トルク演算部44は、「操舵トルクに基づいて基本目標操舵トルクTbaseを演算する」と包括的に言うことができる。
状態量演算部43は、操舵トルクTs及び操舵角速度ωに基づき、切り込み状態であるか切り戻し状態であるかを示す状態量を演算する。剛性目標操舵トルク演算部45は、推定負荷Tx及び状態量に基づき、剛性目標操舵トルクTstiffを演算する。粘性目標操舵トルク演算部46は、操舵角速度ω及び状態量に基づき、粘性目標操舵トルクTviscを演算する。慣性目標操舵トルク演算部47は、操舵角速度ω及び状態量に基づき、慣性目標操舵トルクTinerを演算する。
剛性目標操舵トルクTstiff、粘性目標操舵トルクTvisc、慣性目標操舵トルクTinerは、それぞれ、操舵時にドライバに与える操舵系メカ100の剛性感、粘性感、慣性感を調整するための調整成分である。本実施形態では、特にドライバに粘性感を与える粘性目標操舵トルクTviscに着目する。操舵角速度ωに応じてドライバが出力する操舵トルクTsが増加することにより、ドライバは粘性感を感じやすくなる。なお、ダンピングトルクTdはドライバがハンドル91に触っていないときにもアシストトルクTaを低減する効果があるのに対し、粘性目標操舵トルクTviscは、ドライバが操舵しているときに粘性感を与えるという効果がある。
調整成分合算部481は、3つの調整成分Tstiff、Tvisc、Tinerを合算する。合計目標操舵トルク算出部482は、基本目標操舵トルクTbaseに、調整成分合算部481が出力した調整成分のトルク値を加算し、合計の目標操舵トルクTs*を算出する。
以上の構成による本実施形態では、次の効果1、2が得られる。
<効果1>アシスト倍率によらず、安定した粘性負荷をドライバに与えることができる。
<効果2>ハイゲインにせずに、大きな粘性負荷をドライバに与えることができる。
続いて、アシスト制御にサーボ制御構造を持つ本実施形態で上記効果1、2が得られる理由について、アシスト制御にサーボ制御構造を持たない比較例と対比しつつ、図7~図9を参照して説明する。
比較例のアシスト制御部159の構成を簡略化したモデルを図7に示す。路面負荷TxとアシストトルクTaとの差分に相当する操舵トルクTsは、ベースアシスト部409に直接入力される。ベースアシスト部409は、操舵トルクTsにアシスト倍率KTsを乗じて基本アシストトルクTbを生成する。ダンピング制御部60で操舵角速度ωにダンピングゲインKωを乗じて演算されたダンピングトルクTdが基本アシストトルクTbに加算され、アシストトルクTaが演算される。比較例のアシスト制御モデルでは、操舵トルクTsは数式1で表される。
Figure 0007014028000001
数式1には、ダンピングトルクTdの係数の分母にアシスト倍率KTsがある。したがって、アシスト倍率KTsが大きくなるほど、ダンピングトルクTdによる粘性負荷は小さくなる。比較例での、アシスト倍率KTsとダンピングトルクTdによる粘性負荷との関係を図9に破線で示す。
次に、本実施形態によるサーボ制御構造を持つアシスト制御部15の構成を簡略化したモデルを図8に示す。操舵トルクTsにゲインK(0<K≦1)を乗じて減少補正された補正後操舵トルクTcmpがベースアシスト部40の目標操舵トルクTs*に対してフィードバックされる。サーボ制御器55は、補正後操舵トルクTcmpが目標操舵トルクTs*に追従するように、基本アシストトルクTbを演算する。
基本目標操舵トルクTbaseは、目標操舵トルクTs*と基本アシストトルクTbとの合計に基本ゲインKTxを乗じて演算される。粘性目標操舵トルクTviscは、操舵角速度ωに粘性ゲインKTωを乗じて演算される。基本目標操舵トルクTbaseと粘性目標操舵トルクTviscとが加算され、目標操舵トルクTs*が演算される。本実施形態のアシスト制御モデルでは、操舵トルクTsは数式2で表される。
Figure 0007014028000002
操舵トルクTsの式中の第2項の粘性目標操舵トルクTviscは、サーボ制御器55のアシスト倍率に相当する基本ゲインKTxによる影響を受けにくい。本実施形態での、アシスト倍率KTxと粘性目標操舵トルクTviscによる粘性負荷との関係を図9に破線で示す。このように、サーボ制御構造を持つ本実施形態のアシスト制御部15は、「高アシスト倍率で安定した粘性負荷を発生させることができる」という上記の<効果1>を奏する。
続いて、<効果2>の「ハイゲインにせずに、大きな粘性負荷をドライバに与えることができる」について説明する。数式2において注目する部分を囲んだ式を、あらたに数式3として再掲する。
Figure 0007014028000003
数式3のゲインGの式中、操舵トルクTsに乗じられるゲインK(0<K≦1)が小さくなるほど、操舵トルクTsの式の第2項「(1/G)・Tvisc」が大きくなることがわかる。つまり、ゲインKを小さくすることにより、粘性ゲインKやダンピングゲインKωを大きくすることなく、大きな粘性負荷を安定的に発生させることができる。
これに対し、大きな粘性負荷を得るために粘性目標操舵トルクTvisc又はダンピングトルクTdを大きくしようとすると、操舵角速度ωに乗算される粘性ゲインK又はダンピングゲインKωを大きくする、すなわちハイゲインにする必要がある。そのため、操舵角速度ωのフィードバックループの安定性を低下させざるを得ない。エンド当て時衝撃軽減制御のように急激に特性を変化させる制御の場合、安定性が高いほど適合の幅が広がり、良い操舵感を実現しやすくなる。よって、上記のように、エンド当て時に操舵トルクTsの減少補正ゲインKを小さくすることで、フィードバックループの安定性を確保しつつ粘性負荷を増加させることが好適である。
[本実施形態の構成に関する補足説明]
上記の通り、本実施形態では、目標操舵トルクTs*に対する差分がサーボ制御器55に入力される実操舵トルクとして、操舵トルクTsに補正ゲインを乗じた補正後操舵トルクTcmpを用いることで、エンド当て時に高アシスト倍率で安定した粘性負荷を発生させる。ここで、このような構成を採用した理由について、図10~図12を参照しつつ、数式を用いて説明する。図10~12では図8に対し、図中の一部の名称や記号を変更する。プラント(車両)900は、図8の車両900に対応する。補正トルクTc及び路面負荷TLは、図8のダンピングトルクTd及び路面負荷Txに対応する。
図10に、サーボ制御構造を持つベースアシスト部40の簡略化した構成を示す。最終的なアシストトルクTaを減少させ、ドライバが出力する操舵トルクTsを増加させるための構成案として3通りの構成候補(1)、(2)、(3)を想定する。以下の検討の結果、構成候補(1)が採用され、構成候補(2)、(3)は不採用となったものである。
(1)サーボ制御器55の入力となる操舵トルクTsにゲインを乗じる。
(2)サーボ制御器55が出力した基本アシストトルクTbにゲインを乗じる。
(3)基本アシストトルクTbに補正トルクTcを加算する。
図10の構成をさらに簡略化した検討用の簡易モデルを図11に示す。この簡易モデルにおいて、ベースアシスト部40におけるサーボ制御器55の入力のうち目標操舵トルクTs*に相当する基準操舵トルクTrを定数とする。サーボ制御器55は、積分器に近似される。プラントにおける路面負荷TLを定数とし、釣り合いの式「Ts=TL-Ta」が成り立つものとする。路面負荷TLからアシストトルクTaを減じた差分である操舵トルクTsが基準操舵トルクTrに対してフィードバックされる。
図11における3つの構成候補(1)、(2)、(3)を1つずつ採用した構成をそれぞれ図12(a)、(b)、(c)に示し、制御の入出力特性について順に検討する。以下の数式におけるゲイン「G」及びステップ応答「Y」の記号は、モデル毎に独立である。
<構成候補(1)>
図12(a)に示すように、構成候補(1)では、サーボ制御器55の入力となる操舵トルクTsにゲインGが乗じられる。このモデルを数式化し、Tsについて整理すると、数式4のように表される。
Figure 0007014028000004
次にTsのステップ応答を求めることで、Tsの収束値を導出する。Tsのステップ応答Yは、数式5で表される。
Figure 0007014028000005
数式5のラプラス逆変換は、数式6で表される。
Figure 0007014028000006
Tsの収束値は、数式7のように導かれる。
Figure 0007014028000007
よって、構成候補(1)ではゲインGを「0<G≦1」に設定することで、操舵トルクTsはゲインGの逆数倍で増加する。つまり、サーボ制御器55の入力となる操舵トルクTsに乗じるゲインGをエンド当て時に1から減少させることで、ドライバに与える粘性負荷を好適に増大させることができる。
<構成候補(2)>
図12(b)に示すように、構成候補(2)では、サーボ制御器55が出力した基本アシストトルクTbにゲインGが乗じられる。このモデルを数式化し、Tsについて整理すると、数式8のように表される。
Figure 0007014028000008
次にTsのステップ応答を求めることで、Tsの収束値を導出する。Tsのステップ応答Yは、数式9で表される。
Figure 0007014028000009
数式9のラプラス逆変換は、数式10で表される。
Figure 0007014028000010
Tsの収束値は、数式11のように導かれる。
Figure 0007014028000011
よって、構成候補(2)ではゲインGをどのような値に設定しようとも操舵トルクTsは基準操舵トルクTrに収束する。そのため、過渡的な変化はあっても静的な操舵トルクTsは変化しない。つまり、入力周波数が小さく応答性の高い制御器を対象とする本件では、基本アシストトルクTbにゲインGを乗じる構成によって操舵トルクTsを増加させる効果は小さい。
<構成候補(3)>
図12(c)に示すように、構成候補(3)では、基本アシストトルクTbに、アシストトルクを抑制する補正トルクTcが加算される。補正トルクTcは、図2、図3のダンピングトルクTdに対応する。このモデルを数式化し、Tsについて整理すると、数式12のように表される。
Figure 0007014028000012
次にTsのステップ応答を求めることで、Tsの収束値を導出する。Tsのステップ応答Yは、数式13で表される。
Figure 0007014028000013
数式13のラプラス逆変換は、数式14で表される。
Figure 0007014028000014
Tsの収束値は、数式15のように導かれる。
Figure 0007014028000015
よって、構成候補(3)では補正トルクTcをどのような値に設定しようとも操舵トルクTsは基準操舵トルクTrに収束する。そのため、過渡的な変化はあっても静的な操舵トルクTsは変化しない。つまり、入力周波数が小さく応答性の高い制御器を対象とする本件では、基本アシストトルクTbに補正トルクTcを加算する構成によって操舵トルクTsを増加させる効果は小さい。
以上のように、3つの構成候補(1)、(2)、(3)のうち、操舵トルクTsの収束値を増加させる効果が得られるのは構成候補(1)のみである。したがって本実施形態では、構成候補(1)を採用し、図8に示すように、サーボ制御器55の入力となる操舵トルクTsに1以下のゲインKを乗じることで、エンド当て時における安定した粘性負荷の発生を実現することができる。
(その他の実施形態)
(a)上記実施形態では、従来技術との効果を対比する上で、アシスト制御部15にダンピング制御部60を備える構成としている。ただし本発明では、アシスト制御部15にダンピング制御部60を備えなくてもよい。
(b)操舵トルク補正部20は、エンド当て時に限らず、アシストトルクTaを減少させてドライバに粘性負荷を与える要求があるとき、操舵トルクTsの検出値を減少補正するようにしてもよい。また、切り込み状態であるか切り戻し状態であるかの判定をしなくてもよい。
(c)ベースアシスト部40の目標操舵トルク演算部49は、上記実施形態のように4つの目標操舵トルクTbase、Tstiff、Tvisc、Tinerを合算する構成に限らず、少なくとも操舵トルクTs及び操舵角速度ωに基づいて目標操舵トルクTs*を演算するものであればよい。
(d)ベースアシスト部40のサーボ制御器55は、「目標操舵トルクTs*に補正後操舵トルクTcmpを追従させるように基本アシストトルクTbを演算する」ものであればよく、その具体的な構成は、上記実施形態のものに限らない。
以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
10・・・ECU(ステアリング制御装置)
20・・・操舵トルク補正部、
40・・・ベースアシスト部、
49・・・目標操舵トルク演算部、
55・・・サーボ制御器、
80・・・操舵アシストモータ。

Claims (5)

  1. ドライバの操舵トルク(Ts)に応じて操舵アシストモータ(80)が出力するアシストトルク(Ta)を制御するステアリング制御装置であって、
    アシストトルクの基本量である基本アシストトルク(Tb)を生成するベースアシスト部(40)と、
    アシストトルクを減少させてドライバに粘性負荷を与える要求があるとき、絶対値が操舵トルク検出値の絶対値より小さくなるように減少補正された補正後操舵トルク(Tcmp)を出力する操舵トルク補正部(20)と、
    を備え、
    前記ベースアシスト部は、
    少なくとも操舵トルク及び操舵角速度に基づいて目標操舵トルク(Ts*)を演算する目標操舵トルク演算部(49)と、
    前記目標操舵トルクに前記補正後操舵トルクを追従させるように前記基本アシストトルクを演算するサーボ制御器(55)と、
    を含むステアリング制御装置。
  2. 前記操舵トルク補正部は、操舵角の絶対値が上限値であるエンドに近づき角度閾値を超えたとき、前記補正後操舵トルクの絶対値を減少させる請求項1に記載のステアリング制御装置。
  3. 前記操舵トルク補正部は、操舵角の絶対値が前記エンドに近いほど、又は、前記エンドに向かう操舵角速度の絶対値が大きいほど、前記補正後操舵トルクの絶対値を減少させる請求項2に記載のステアリング制御装置。
  4. 前記操舵トルク補正部は、切り込み状態であるか切り戻し状態であるかを判定し、
    切り込み状態の場合、操舵トルク検出値の絶対値を減少補正した前記補正後操舵トルクを出力し、
    切り戻し状態の場合、操舵トルク検出値をそのまま出力する請求項2または3に記載のステアリング制御装置。
  5. 前記操舵トルク補正部は、車速に応じて、前記補正後操舵トルクを演算する請求項1~4のいずれか一項に記載のステアリング制御装置。
JP2018080464A 2018-04-19 2018-04-19 ステアリング制御装置 Active JP7014028B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018080464A JP7014028B2 (ja) 2018-04-19 2018-04-19 ステアリング制御装置
US16/384,187 US11124227B2 (en) 2018-04-19 2019-04-15 Steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080464A JP7014028B2 (ja) 2018-04-19 2018-04-19 ステアリング制御装置

Publications (2)

Publication Number Publication Date
JP2019188861A JP2019188861A (ja) 2019-10-31
JP7014028B2 true JP7014028B2 (ja) 2022-02-15

Family

ID=68237395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080464A Active JP7014028B2 (ja) 2018-04-19 2018-04-19 ステアリング制御装置

Country Status (2)

Country Link
US (1) US11124227B2 (ja)
JP (1) JP7014028B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051385A (ko) * 2018-11-05 2020-05-13 현대자동차주식회사 차량용 조향시스템의 댐핑 제어방법 및 시스템
DE102019204857A1 (de) * 2019-04-04 2020-10-08 Thyssenkrupp Ag Verfahren zur Steuerung eines Steer-by-Wire-Lenksystems und Steer-by-Wire-Lenksystem für ein Kraftfahrzeug
EP3932778B1 (en) * 2020-04-21 2023-09-06 NSK Ltd. Steering device
DE102021201141A1 (de) * 2021-02-08 2022-08-11 Continental Automotive Gmbh Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203089A (ja) 2002-12-24 2004-07-22 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2005088666A (ja) 2003-09-16 2005-04-07 Favess Co Ltd 電動パワーステアリング装置
JP2006248252A (ja) 2005-03-08 2006-09-21 Nsk Ltd 電動パワーステアリング装置の制御装置
US20170101126A1 (en) 2015-10-12 2017-04-13 Hyundai Mobis Co., Ltd. Method and apparatus for controlling motor driven power steering system
JP2017095076A (ja) 2015-11-13 2017-06-01 株式会社デンソー ステアリング制御装置
JP2018047725A (ja) 2016-09-20 2018-03-29 日立オートモティブシステムズ株式会社 パワーステアリング装置の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3741449B2 (ja) 1993-06-01 2006-02-01 光洋精工株式会社 電動パワーステアリング装置
JP5687166B2 (ja) * 2011-09-26 2015-03-18 株式会社ショーワ 電動パワーステアリング装置
JP6044440B2 (ja) 2013-04-26 2016-12-14 株式会社デンソー ステアリング制御装置
JP6036522B2 (ja) 2013-04-26 2016-11-30 株式会社デンソー 電動ステアリング制御装置
JP6314752B2 (ja) 2014-08-28 2018-04-25 株式会社デンソー 電動ステアリング制御装置
JP6519545B2 (ja) * 2016-07-21 2019-05-29 トヨタ自動車株式会社 車両用運転支援装置
JP6729212B2 (ja) 2016-09-07 2020-07-22 株式会社デンソー ステアリング制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203089A (ja) 2002-12-24 2004-07-22 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2005088666A (ja) 2003-09-16 2005-04-07 Favess Co Ltd 電動パワーステアリング装置
JP2006248252A (ja) 2005-03-08 2006-09-21 Nsk Ltd 電動パワーステアリング装置の制御装置
US20170101126A1 (en) 2015-10-12 2017-04-13 Hyundai Mobis Co., Ltd. Method and apparatus for controlling motor driven power steering system
JP2017095076A (ja) 2015-11-13 2017-06-01 株式会社デンソー ステアリング制御装置
JP2018047725A (ja) 2016-09-20 2018-03-29 日立オートモティブシステムズ株式会社 パワーステアリング装置の制御装置

Also Published As

Publication number Publication date
US11124227B2 (en) 2021-09-21
US20190322311A1 (en) 2019-10-24
JP2019188861A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP7194326B2 (ja) モータ制御装置
JP7014028B2 (ja) ステアリング制御装置
CN111315639B (zh) 转向操纵控制装置
EP2937266B1 (en) Electric power steering device
US8818636B2 (en) Electric power steering apparatus, control method thereof and computer readable medium
JP5068327B2 (ja) 操舵制御装置
CN110406589B (zh) 马达控制装置
EP1764284A2 (en) Method and system for improved active damping of steering systems
US9586619B1 (en) Motor controller
CN110027609B (zh) 电动助力转向装置
WO2018190086A1 (ja) ステアリング制御装置
US20140114535A1 (en) Pid control system
CN110294013B (zh) 电动助力转向装置
WO2020115973A1 (ja) 車両用操向装置
JP7133452B2 (ja) 転舵制御装置
JP6326171B1 (ja) 操舵制御装置、電動パワーステアリング装置
JP2008092633A (ja) 電動パワーステアリング装置
JP7014029B2 (ja) ステアリング制御装置
JP5040414B2 (ja) 電動パワーステアリング装置の制御装置
JP2023016624A (ja) ステアリング制御装置
JP2009248838A (ja) 電動パワーステアリング装置の制御装置
JP2017154632A (ja) 電動パワーステアリング装置、プログラム
JP2019189149A (ja) ステアリング制御装置
JP2009126263A (ja) 電動パワーステアリング装置
JP2004255932A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103

R151 Written notification of patent or utility model registration

Ref document number: 7014028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151