JP2017089146A - Composite vibration control damper for structure - Google Patents

Composite vibration control damper for structure Download PDF

Info

Publication number
JP2017089146A
JP2017089146A JP2015217228A JP2015217228A JP2017089146A JP 2017089146 A JP2017089146 A JP 2017089146A JP 2015217228 A JP2015217228 A JP 2015217228A JP 2015217228 A JP2015217228 A JP 2015217228A JP 2017089146 A JP2017089146 A JP 2017089146A
Authority
JP
Japan
Prior art keywords
damper
elastic rubber
peripheral surface
fixed
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015217228A
Other languages
Japanese (ja)
Other versions
JP6696754B2 (en
Inventor
合田 裕一
Yuichi Aida
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBM Co Ltd
Kaimon KK
Miwa Tech Co Ltd
Original Assignee
BBM Co Ltd
Kaimon KK
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBM Co Ltd, Kaimon KK, Miwa Tech Co Ltd filed Critical BBM Co Ltd
Priority to JP2015217228A priority Critical patent/JP6696754B2/en
Publication of JP2017089146A publication Critical patent/JP2017089146A/en
Application granted granted Critical
Publication of JP6696754B2 publication Critical patent/JP6696754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composite vibration control damper for a structure, capable of coping even with displacement by vibration and a temperature change by a strong wind with a simple structure, having durability even in a low cycle fatigue area in earthquake time, and capable of coping with displacement except for the axial direction of a vibration control damper for the structure without using a universal joint.SOLUTION: A composite vibration control damper comprises a first vibration control damper connected to a relatively displacing one structure part and stiffening an axial force member for absorbing energy in earthquake time by elastically-plastically deforming by a buckling restraining member and a second vibration control damper having a cylindrical member connected to the relatively displacing other structure part, a rod member relatively displaceably inserted into the cylindrical member and ring-shaped elastic rubber fixed to an inner peripheral surface of the cylindrical member and forming a hole for inserting the rod member and absorbing relative displacement of the cylindrical member and the rod member by elastic deformation of the elastic rubber by transmitting to the elastic rubber, and the first vibration control damper and the second vibration control damper are connected in series.SELECTED DRAWING: Figure 1

Description

本発明は、建築物、橋梁等の構造物の制振装置として用いられる構造物用複合制振ダンパーに関する。   The present invention relates to a composite vibration damper for a structure used as a vibration damping device for a structure such as a building or a bridge.

建築物、橋梁等の構造物用の制振ダンパーとして、減衰定数が大きな低降伏点鋼を用いた座屈拘束型の構造物用ダンパーが実用化されている。このような、構造物用制振ダンパーは、低降伏点鋼が弾塑性変形する際の履歴エネルギーが大きく減衰定数が大きいことを利用し、大きな地震動であっても揺れを低減することができ、構造物が破損する等の被害を免れることができる。   As a damping damper for structures such as buildings and bridges, a buckling-restrained structure damper using a low yield point steel having a large damping constant has been put into practical use. Such a structure damping damper utilizes the fact that the low-yield point steel undergoes elasto-plastic deformation with a large hysteresis energy and a large damping constant, and can reduce shaking even in large earthquake motions. Damages such as structural damage can be avoided.

実開平5−57110号公報Japanese Utility Model Publication No. 5-57110 特開2015−45366号公報Japanese Patent Laid-Open No. 2015-45366

しかしながら、低降伏点鋼を用いた座屈断拘束型の構造物用制振ダンパーは、強風による振動や温度変化による変形ギーを吸収させるのには不向きであるという問題を有している。また、低降伏点鋼を用いた座屈拘束型の構造物用制振ダンパーにおいては、低降伏点鋼が地震時に作用する低サイクル疲労領域での耐久性に問題がある。さらに、低降伏点鋼を用いた座屈拘束型の構造物用制振ダンパーは、相対変位する2つの構造部間に配置されるが、構造物用制振ダンパーの軸方向以外の変位に対応するために、構造物用制振ダンパーを相対変位する構造部間に高価なユニバーサルジョイントで連結する必要があるという問題を有している。   However, a buckling-restrained structural vibration damper using a low yield point steel has a problem that it is not suitable for absorbing vibration due to strong winds or deformation ghee due to temperature changes. In addition, a buckling-restrained structural vibration damper using low yield point steel has a problem in durability in a low cycle fatigue region where the low yield point steel acts during an earthquake. In addition, buckling-restrained structural vibration dampers using low-yield-point steel are placed between two relatively displaced structural parts, but they can accommodate displacements other than the axial direction of structural vibration dampers. Therefore, there is a problem that it is necessary to connect the structural damping damper for the structure with an expensive universal joint between the structural parts that are relatively displaced.

本発明は、従来技術の持つ課題を解決する構造が簡単で強風による振動や温度変化による変位に対しても対応可能で、地震時の低サイクル疲労領域においても耐久性を有し、構造物用制振ダンパーの軸方向以外の変位に対してユニバーサルジョイントを用いることなく対応が可能な構造物用複合制振ダンパーを提供することを目的とする。   The present invention has a simple structure that solves the problems of the prior art, can cope with vibrations caused by strong winds and displacement due to temperature changes, has durability even in the low cycle fatigue region during earthquakes, An object of the present invention is to provide a composite vibration damper for a structure that can cope with a displacement other than the axial direction of the vibration damper without using a universal joint.

本発明の構造物用複合制振ダンパーは、前記課題を解決するために、相対変位する一方の構造部に連結され地震時のエネルギーを弾塑性変形して吸収する軸力部材を座屈拘束部材により補剛した第一の制振ダンパーと、相対変位する他方の構造部に連結される筒状部材と筒状部材に相対変位可能に挿入されるロッド部材と前記筒状部材の内周面に固定され前記ロッド部材を挿通する孔を形成したリング状の弾性ゴムを備え、前記筒状部材と前記ロッド部材の相対変位を前記弾性ゴムに伝達し前記弾性ゴムの弾性変形により吸収する第二の制振ダンパーと、を備え、前記第一の制振ダンパーと前記第二の制振ダンパーを直列に連結することを特徴とする。   In order to solve the above-mentioned problem, the composite vibration damper for a structure of the present invention is a buckling restraining member including an axial force member that is coupled to one of the structural parts that are relatively displaced and absorbs the energy at the time of earthquake by elastic-plastic deformation. A first damping damper stiffened by the rod, a cylindrical member connected to the other structural part that is relatively displaced, a rod member that is inserted into the cylindrical member so as to be relatively displaceable, and an inner peripheral surface of the cylindrical member A ring-shaped elastic rubber that is fixed and formed with a hole through which the rod member is inserted, and transmits a relative displacement between the cylindrical member and the rod member to the elastic rubber and absorbs it by elastic deformation of the elastic rubber; A damping damper, and the first damping damper and the second damping damper are connected in series.

また、本発明の構造物用複合制振ダンパーは、前記第一の制振ダンパーと前記第二の制振ダンパーを一方の構造部と他方の構造部にクレビス継手で連結することを特徴とする。   Further, the composite vibration damper for a structure according to the present invention is characterized in that the first vibration damper and the second vibration damper are connected to one structure portion and the other structure portion by a clevis joint. .

また、本発明の構造物用複合制振ダンパーは、前記第一の制振ダンパーの軸力部材の端部と前記第二の制振ダンパーのロッド部材の端部を連結することを特徴とする。   In the composite vibration damper for a structure according to the present invention, the end of the axial force member of the first vibration damper and the end of the rod member of the second vibration damper are connected. .

また、本発明の構造物用複合制振ダンパーは、前記筒状部材内面にその外周面ガ固定されたリング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定することを特徴とする。   In the composite vibration damper for a structure of the present invention, the rod member can be inserted into the inner peripheral surface of a ring-shaped elastic rubber that is fixed to the inner surface of the cylindrical member. It is characterized by fixing the outer peripheral surface of the hollow pipe which transmits the elastic rubber to the elastic rubber.

また、本発明の構造物用複合制振ダンパーは、前記筒状部材を複数の単位筒状体で構成し、前記単位筒状体毎にその内周面にリング状の弾性ゴムの外周面を固定し、前記リング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定し、前記複数の単位筒状体を一体に連結して筒状部材とすることを特徴とする。   Further, in the composite vibration damper for a structure of the present invention, the cylindrical member is composed of a plurality of unit cylindrical bodies, and an outer peripheral surface of a ring-shaped elastic rubber is provided on the inner peripheral surface of each unit cylindrical body. The rod member can be inserted into the inner peripheral surface of the ring-shaped elastic rubber, and the outer peripheral surface of the hollow pipe that transmits the relative displacement during the earthquake to the elastic rubber is fixed, and the plurality of unit cylindrical bodies are It is characterized by being integrally connected to form a cylindrical member.

また、本発明の構造物用複合制振ダンパーは、前記軸力部材をFe−Mn−Si合金で形成することを特徴とする。   In the composite vibration damper for a structure of the present invention, the axial force member is formed of an Fe—Mn—Si alloy.

また、本発明の構造物用複合制振ダンパーは、 第一の制振ダンパーの座屈拘束部材にピン孔と長孔を軸方向に所定間隔をおいて形成し、軸力部材に座屈拘束部材に形成したピン孔と長孔に係合するピンを固定することを特徴とする。   In the composite vibration damper for a structure of the present invention, a pin hole and a long hole are formed in the buckling restraining member of the first damping damper at predetermined intervals in the axial direction, and the buckling restraining member is restrained by the axial force member. The pin hole formed in the member and the pin engaged with the long hole are fixed.

また、本発明の構造物用複合制振ダンパーは、第二の制振ダンパーの筒状部材の端部にストッパーを固定し、ロッド部材にストッパーと係止し弾性ゴムの弾性変形を拘束する係止リングを固定することを特徴とする。   In the composite vibration damper for a structure of the present invention, a stopper is fixed to the end of the cylindrical member of the second vibration damper, and the rod member is locked with the stopper to restrain the elastic deformation of the elastic rubber. A stop ring is fixed.

また、本発明の構造物用複合制振ダンパーは、前記第一の制振ダンパーと前記第二の制振ダンパーとの間を軸方向及び軸方向以外の方向の変位を許容する脱落防止部材で連結することを特徴とする。   Further, the composite vibration damper for a structure of the present invention is a drop-off preventing member that allows displacement in the axial direction and directions other than the axial direction between the first vibration damper and the second vibration damper. It is characterized by connecting.

相対変位する一方の構造部に連結され地震時のエネルギーを塑性変形して吸収する軸力部材を座屈拘束部材により補剛した第一の制振ダンパーと、相対変位する他方の構造部に連結される筒状部材と筒状部材に相対変位可能に挿入されるロッド部材と前記筒状部材の内周面に固定され前記ロッド部材を挿通する孔を形成したリング状の弾性ゴムを備え、前記筒状部材と前記ロッド部材の相対変位を前記弾性ゴムに伝達し前記弾性ゴムの弾性変形により吸収する第二の制振ダンパーと、を備え、前記第一の制振ダンパーと前記第二の制振ダンパーを直列に連結することで、強風による振動や温度変化による変形程度の振動エネルギーに対しては、第二の制振ダンパーの弾性ゴムの弾性変形により吸収し、地震時に繰り返される大きな変位に対しては第一の制振ダンパーの軸力部材が弾塑性変形して吸収する耐久性のある構造物用複合制振ダンパーとすることが可能となる。
第一の制振ダンパーと第二の制振ダンパーを一方の構造部と他方の構造部にクレビス継手で連結することで、軸方向以外の変位に対して第二の制振ダンパーの弾性ゴムが弾性変形して吸収することが可能なので、高価なユニバーサルジョイントを用いなくても対応が可能となる。
第一の制振ダンパーの軸力部材の端部と第二の制振ダンパーのロッド部材の端部を連結することで、第二のダンパーの筒状部材の変位に対して軸力部材とロッド部材が直線的に相対変位することが可能となる。
筒状部材内面にその外周面が固定されたリング状の弾性ゴムの内周面にロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定することで、ロッド部材の筒状部材に対する相対移動が確保され、確実に地震時の相対変位を地震エネルギー吸収材に伝達することが可能となる。
筒状部材を複数の単位筒状体で構成し、前記単位筒状体毎にその内周面にリング状の弾性ゴムの外周面を固定し、前記リング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定し、前記複数の単位筒状体を一体に連結して筒状部材とすることで、長さの短い単位筒状体を専用金型で製作することができ安価で品質のばらつきの少ないダンパーを製造することが可能となる。また、短い単位筒状体への弾性ゴムの配置が長い筒状部材に比較し極めて容易とすることが可能となる。弾性ゴムを配置した単位筒状体がユニット化されているので必要に応じたバリエーションのダンパーを安価に且つ容易に製作することが可能となる。
軸力部材をFe−Mn−Si合金で形成することで、低温特性に優れ、地震エネルギー減衰効率が高く、且つ、大地震時に軸力部材に作用する低サイクル疲労領域で耐久性を有するダンパーとすることが可能となる。
第一の制振ダンパーの座屈拘束部材にピン孔と長孔を軸方向に所定間隔をおいて形成し、軸力部材に座屈拘束部材に形成したピン孔と長孔に係合するピンを固定することで、軸力部材と座屈拘束部材間の所定範囲の変位を許容し、大きな変位による軸力部材破断後は、変位をピンを介して座屈拘束部材に伝達可能とし第一の制振ダンパーの脱落を防止することが可能となる。
第二の制振ダンパーの筒状部材の端部にストッパーを固定し、ロッド部材にストッパーと係止し弾性ゴムの弾性変形を拘束する係止リングを固定することで、大きな変位による弾性ゴムの破断を防止することが可能となる。
第一の制振ダンパーと第二の制振ダンパーとの間を軸方向及び軸方向以外の方向の変位を許容する脱落防止部材で連結することで、地震時の極めて大きな応力の付加により軸力部材又は弾性ゴムが破断した場合でも第一の制振ダンパーと第二の制振ダンパーの脱落を防止することが可能となる。
Connected to one structural part that is relatively displaced and connected to the first damping damper that stiffens the axial force member that plastically deforms and absorbs the energy at the time of earthquake with a buckling restraining member, and the other structural part that is relatively displaced A cylindrical member that is inserted into the cylindrical member so as to be relatively displaceable to the cylindrical member, and a ring-shaped elastic rubber that is fixed to the inner peripheral surface of the cylindrical member and has a hole through which the rod member is inserted, A second damping damper that transmits relative displacement between the cylindrical member and the rod member to the elastic rubber and absorbs the elastic member by elastic deformation of the elastic rubber, and includes the first damping damper and the second damping damper. By connecting vibration dampers in series, vibration energy of the degree of vibration due to strong winds or deformation due to temperature changes is absorbed by the elastic deformation of the elastic rubber of the second damping damper, resulting in a large displacement that is repeated during an earthquake. Against It becomes possible to construct composite vibration dampers which axial force member of the first vibration dampers durable to absorb by elastic-plastic deformation.
By connecting the first damping damper and the second damping damper to one structural part and the other structural part with a clevis joint, the elastic rubber of the second damping damper against the displacement other than the axial direction Since it can be elastically deformed and absorbed, it can be handled without using an expensive universal joint.
By connecting the end of the axial force member of the first damping damper and the end of the rod member of the second damping damper, the axial force member and the rod against the displacement of the cylindrical member of the second damper The member can be relatively displaced linearly.
The rod member can be inserted into the inner peripheral surface of the ring-shaped elastic rubber whose outer peripheral surface is fixed to the inner surface of the cylindrical member, and by fixing the outer peripheral surface of the hollow pipe that transmits the relative displacement during the earthquake to the elastic rubber The relative movement of the rod member with respect to the cylindrical member is ensured, and the relative displacement during the earthquake can be reliably transmitted to the seismic energy absorber.
The cylindrical member is composed of a plurality of unit cylindrical bodies, the outer peripheral surface of the ring-shaped elastic rubber is fixed to the inner peripheral surface of each unit cylindrical body, and the inner peripheral surface of the ring-shaped elastic rubber is The rod member can be inserted, the outer peripheral surface of the hollow pipe that transmits the relative displacement during the earthquake to the elastic rubber is fixed, and the plurality of unit cylindrical bodies are integrally connected to form a cylindrical member. It is possible to manufacture a short unit cylindrical body with a dedicated mold, and to manufacture a damper that is inexpensive and has little variation in quality. Further, the arrangement of the elastic rubber on the short unit cylindrical body can be extremely facilitated as compared with the long cylindrical member. Since the unit cylindrical body in which the elastic rubber is disposed is unitized, it is possible to easily manufacture a damper of a variation as necessary at low cost.
By forming the axial force member with an Fe-Mn-Si alloy, a damper having excellent low temperature characteristics, high seismic energy attenuation efficiency, and durability in a low cycle fatigue region that acts on the axial force member during a large earthquake, It becomes possible to do.
A pin hole and a long hole are formed in the buckling constraining member of the first damping damper at predetermined intervals in the axial direction, and a pin that is engaged with the pin hole and the long hole formed in the buckling constraining member on the axial force member Is fixed to allow a predetermined range of displacement between the axial force member and the buckling restraint member, and after the axial force member breaks due to a large displacement, the displacement can be transmitted to the buckling restraint member via the pin. It is possible to prevent the vibration damper from falling off.
A stopper is fixed to the end of the cylindrical member of the second damping damper, and a locking ring that locks with the stopper and restrains the elastic deformation of the elastic rubber is fixed to the rod member. Breaking can be prevented.
By connecting the first damping damper and the second damping damper with a drop-off prevention member that allows displacement in the axial direction and directions other than the axial direction, an axial force is applied by applying an extremely large stress during an earthquake. Even when the member or the elastic rubber is broken, the first damping damper and the second damping damper can be prevented from falling off.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. (a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の構造物用複合制振ダンパーの実施の形態を図により説明する。図1は、本発明の構造物用複合制振ダンパーの概略図で、図2は、図1のA−A線断面図であり、図3は、図1のB−B線断面図である。   An embodiment of a composite vibration damper for a structure according to the present invention will be described with reference to the drawings. 1 is a schematic view of a composite vibration damper for a structure according to the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG. .

本発明の構造物用複合制振ダンパー1は、相対変位する一方の構造部に連結される第一の制振ダンパー2と他方の構造部に連結される第二の制振ダンパー3を直列に連結して構成される。   The composite vibration damper 1 for a structure according to the present invention includes a first vibration damper 2 connected to one structure part that is relatively displaced and a second vibration damper 3 connected to the other structure part in series. Concatenated.

第一の制振ダンパー2は、軸力部材4が座屈拘束部材5内に配置され、地震時に軸方向の力が作用すると軸力部材4が弾塑性変形して地震エネルギーを吸収する座屈拘束型の構造物用制振ダンパーである。   In the first damping damper 2, the axial force member 4 is disposed in the buckling restraining member 5, and when an axial force is applied during an earthquake, the axial force member 4 is elastically plastically deformed to absorb the earthquake energy. This is a restraint type damping damper for structures.

通常、軸力部材4の弾塑性変形により地震エネルギーを吸収するタイプのダンパーにおいては、軸力部材4を低降伏点鋼で形成していた。しかし、低降伏点鋼は地震時に作用する低サイクル疲労領域での耐久性に問題がある。   Usually, in the type of damper that absorbs seismic energy by elastic-plastic deformation of the axial force member 4, the axial force member 4 is made of low yield point steel. However, low yield point steel has a problem in durability in a low cycle fatigue region that acts during an earthquake.

そこで、本発明の構造物用複合制振ダンパー1の座屈拘束型制振ダンパーである第一の制振ダンパー2の軸力部材4をFe−Mn−Si合金で形成する。Fe−Mn−Si合金は、形状記憶合金であり、地震エネルギー減衰効率が高く、且つ、大地震時に軸力部材4に作用する低サイクル疲労領域で耐久性を有するため、低降伏点鋼を用いた座屈拘束型制振ダンパーより優れている。   Therefore, the axial force member 4 of the first vibration damper 2 which is a buckling-restrained vibration damper of the composite vibration damper 1 for a structure of the present invention is formed of an Fe—Mn—Si alloy. The Fe-Mn-Si alloy is a shape memory alloy, has high seismic energy attenuation efficiency, and has durability in a low cycle fatigue region that acts on the axial force member 4 during a large earthquake. Therefore, a low yield point steel is used. It is superior to the buckling-restrained damping damper.

図2に示される実施形態では、軸力部材4を断面十字状、座屈拘束部材5を断面矩形中空状で示しているが、軸力部材4の断面形状はどのような形状であっても良い。また、座屈拘束部材5の断面形状もどのような形状であっても良い。   In the embodiment shown in FIG. 2, the axial force member 4 is shown in a cross shape in cross section, and the buckling restraining member 5 is shown in a hollow shape in cross section, but the axial force member 4 may have any shape in cross section. good. Further, the cross-sectional shape of the buckling restraining member 5 may be any shape.

第一の制振ダンパー2の一方の端部には、相対変位する一方の構造部に連結するための第一制振ダンパー用継手6が固定される。第一制振ダンパー用継手6は、通常のクレビス継手を用いる。第一の制振ダンパー2の他方の端部には、第二の制振ダンパー3を直列に連結するための連結部材7が固定される。連結部材7には雌ねじ孔が形成される。第一の制振ダンパー2と第二の制振ダンパー3の連結方式は他の連結方式を用いても良い。   A first damping damper joint 6 is fixed to one end of the first damping damper 2 so as to be connected to one structure part that is relatively displaced. The first damping damper joint 6 uses a normal clevis joint. A connecting member 7 for connecting the second damping damper 3 in series is fixed to the other end of the first damping damper 2. The connecting member 7 is formed with a female screw hole. As the connection method of the first vibration damping damper 2 and the second vibration damping damper 3, another connection method may be used.

第一の制振ダンパー2に直列に連結される第二の制振ダンパー3は、相対変位する他方の構造部に連結するための第二制振ダンパー用継手8を一方の端部に固定した筒状部材9を有する。筒状部材9内には、ロッド部材12を挿通可能な中空パイプ11が配置され、筒状部材5の内壁と中空パイプ11の外周との間にリング状の弾性ゴム10が加硫成形により筒状部材9の内壁と中空パイプ11の外周に一体に固定される。リング状の弾性ゴム10の第二制振ダンパー用継手8側には一定の空間を設ける。   The second damping damper 3 connected in series to the first damping damper 2 has a second damping damper joint 8 for coupling to the other structural part that is relatively displaced fixed to one end. A cylindrical member 9 is provided. A hollow pipe 11 through which the rod member 12 can be inserted is disposed in the cylindrical member 9, and a ring-shaped elastic rubber 10 is formed between the inner wall of the cylindrical member 5 and the outer periphery of the hollow pipe 11 by vulcanization. The inner wall of the member 9 and the outer periphery of the hollow pipe 11 are fixed integrally. A certain space is provided on the ring-like elastic rubber 10 on the side of the second damping damper joint 8.

中空パイプ11には、両端に雄ねじ部12a,12bを形成したロッド部材12が、その両端の雄ねじ部12a、12bが中空パイプ11の外側に突き出すように挿通される。ロッド部材12の中空パイプ11から突き出した雄ねじ部12a、12bには、雌ねじ孔13a、14aを有する変位伝達リング13、14が螺着される。変位伝達リング13、14は、中空パイプ11の両端面に密着するように螺着される。   A rod member 12 having male screw portions 12 a and 12 b formed at both ends is inserted into the hollow pipe 11 so that the male screw portions 12 a and 12 b at both ends protrude outside the hollow pipe 11. Displacement transmission rings 13 and 14 having female screw holes 13a and 14a are screwed into male screw portions 12a and 12b protruding from the hollow pipe 11 of the rod member 12, respectively. The displacement transmission rings 13 and 14 are screwed so as to be in close contact with both end faces of the hollow pipe 11.

ロッド部材12端部の雄ねじ部12bが第一の制振ダンパー2の端部に固定された連結部材7に形成した雌ねじ孔に螺着される。このようにして、第一の制振ダンパー2と第二の制振ダンパー3が直列に連結される。図に示される実施形態で筒状部材9は断面円形であるが、筒状部材9の断面形状を多角形としても良い。   The male screw portion 12b at the end of the rod member 12 is screwed into a female screw hole formed in the connecting member 7 fixed to the end of the first damping damper 2. In this way, the first damping damper 2 and the second damping damper 3 are connected in series. In the embodiment shown in the figure, the cylindrical member 9 has a circular cross section, but the cross sectional shape of the cylindrical member 9 may be a polygon.

相対変位する一方の構造部に第一の制振ダンパー2の端部に固定した第一制振ダンパー用継手6をピン連結し、他方の構造部に第二の制振ダンパー3の端部に固定した第二制振ダンパー用継手8をピン連結する。第一制振ダンパー用継手6と第二制振ダンパー用継手8は通常のクレビス継ぎ手とする。相対変位する構造部間に配置される制振ダンパーは、軸方向以外の応力に対応するためにユニバーサルジョイントで連結するが、本発明の構造物用複合制振ダンパーにおいては、第二の制振ダンパー3の弾性ゴム10が、軸方向以外の応力を弾性変形して吸収するので高価なユニバーサルジョイントを用いることなく、安価なクレビス継手で対応することが可能となる。   The first damping damper joint 6 fixed to the end of the first damping damper 2 is pin-connected to one structural part that is relatively displaced, and the second damping damper 3 is joined to the other structural part. The fixed second damping damper joint 8 is pin-connected. The first damping damper joint 6 and the second damping damper joint 8 are normal clevis joints. The vibration dampers arranged between the structural parts that are relatively displaced are connected by a universal joint to cope with stresses other than the axial direction. However, in the composite vibration damper for a structure of the present invention, the second vibration dampers are connected. Since the elastic rubber 10 of the damper 3 elastically deforms and absorbs stresses other than in the axial direction, it is possible to cope with an inexpensive clevis joint without using an expensive universal joint.

図1に示すように、第一の制振ダンパー2の座屈拘束部材5の外周と第二の制振ダンパー3の筒状部材9の外周に脱落防止部材取付部材16、16を固定し、脱落防止部材取付部材16、16間を脱落防止部材17で連結する。脱落防止部材17は、軸方向の変位を許容する一定の遊びを設けて連結される。さらに、脱落防止部材17を一定の柔軟性を有するワイヤロープ等で形成することにより軸方向以外の方向の変位も許容する。脱落防止部材17は、構造物用複合制振ダンパー1に地震時極めて大きな応力が付加され、軸力部材4又は弾性ゴム10が破断した場合でも第一の制振ダンパーと第二の制振ダンパーの脱落を防止する。   As shown in FIG. 1, dropout prevention member mounting members 16, 16 are fixed to the outer periphery of the buckling restraining member 5 of the first damping damper 2 and the outer periphery of the cylindrical member 9 of the second damping damper 3, The drop-off prevention member mounting members 16 and 16 are connected by a drop-off prevention member 17. The drop-off prevention member 17 is connected with a certain play that allows axial displacement. Further, by forming the drop-off prevention member 17 with a wire rope having a certain flexibility, displacement in directions other than the axial direction is allowed. The drop-off prevention member 17 is provided with the first damping damper and the second damping damper even when an extremely large stress is applied to the composite damping damper 1 for a structure and the axial force member 4 or the elastic rubber 10 is broken. Prevents falling off.

このように構成された構造物用複合制振ダンパー1の作用について説明する。強風による振動や温度変化による変形等は、第二の制振ダンパー3の弾性ゴム10が弾性変形して対応する。地震時の大きな変位の繰り返しに対しては、第一の制振ダンパー2の軸力部材4の弾塑性変形により減衰する。軸力部材4が、Fe−Mn−Si合金で形成されており、低温特性に優れ、地震エネルギー減衰効率が高く、且つ、大地震時に作用する低サイクル疲労領域で耐久性を有する複合制振ダンパーとすることが可能となる。   The operation of the composite vibration damper 1 for a structure thus configured will be described. Vibrations due to strong winds, deformation due to temperature changes, and the like are dealt with by elastic deformation of the elastic rubber 10 of the second vibration damper 3. When a large displacement is repeated during an earthquake, the displacement is attenuated by elastic-plastic deformation of the axial force member 4 of the first vibration damper 2. A composite damping damper in which the axial force member 4 is formed of an Fe-Mn-Si alloy, has excellent low-temperature characteristics, has high earthquake energy attenuation efficiency, and has durability in a low cycle fatigue region that acts during a large earthquake. It becomes possible.

図4(a)(b)、図5は、第二の制振ダンパー3の他の実施形態を示す図である。この実施形態では、筒状部材9を複数の単位筒状体9aに分割して構成し、単位筒状体9a毎にリング状の弾性ゴム10とロッド部材12が挿通可能な中空パイプ12を配置し、弾性ゴムと単位筒状体9aと弾性ゴム10及び中空パイプ11を加硫成形により一体化する。長さの短い単位筒状体9aを専用金型で製作することができ安価で品質のばらつきの少ないダンパーを製造することが可能となる。また、短い単位筒状体9aへの弾性ゴム10の配置が長い筒状部材9に比較し極めて容易とすることが可能となる。弾性ゴム10を配置した単位筒状体9aがユニット化されているので必要に応じたバリエーションのダンパーを安価に且つ容易に製作することが可能となる。   FIGS. 4A and 4B and FIG. 5 are diagrams showing another embodiment of the second vibration damper 3. In this embodiment, the cylindrical member 9 is divided into a plurality of unit cylindrical bodies 9a, and a hollow pipe 12 into which the ring-shaped elastic rubber 10 and the rod member 12 can be inserted is arranged for each unit cylindrical body 9a. Then, the elastic rubber, the unit cylindrical body 9a, the elastic rubber 10, and the hollow pipe 11 are integrated by vulcanization molding. The short unit cylindrical body 9a can be manufactured with a dedicated mold, and it is possible to manufacture a damper that is inexpensive and has little variation in quality. Further, the arrangement of the elastic rubber 10 on the short unit cylindrical body 9a can be made extremely easy as compared with the long cylindrical member 9. Since the unit cylindrical body 9a in which the elastic rubber 10 is arranged is unitized, it is possible to manufacture a damper of a variation as needed at low cost and easily.

複数の単位筒状体9aを連結リング15で連結し、中空パイプ11にロッド部材12を挿通し、ロッド部材12の両端の雄ねじ部12a、12bに変位伝達リング13、14を中空パイプ12の端面に密着するように螺着する。   A plurality of unit cylindrical bodies 9 a are connected by a connection ring 15, a rod member 12 is inserted into the hollow pipe 11, and displacement transmission rings 13 and 14 are connected to the male screw portions 12 a and 12 b at both ends of the rod member 12. Screw it so that it is in close contact.

図6、図7、図8、図9は、構造物用複合制振ダンパーの他の実施形態を示す図である。図6は、セット時の状態を示す図である。   FIGS. 6, 7, 8, and 9 are views showing another embodiment of the composite vibration damper for a structure. FIG. 6 is a diagram showing a state at the time of setting.

第一の制振ダンパー2の座屈拘束部材5にピン孔5aと長孔5bを軸方向に所定間隔をおいて形成する。軸力部材4に座屈拘束部材5に形成したピン孔5aと長孔5bに係合するピン4aとピン4bを固定し、軸力部材4ト座屈拘束部材5との一定範囲の相対変位を確保する。   A pin hole 5a and a long hole 5b are formed in the buckling restraining member 5 of the first damping damper 2 at predetermined intervals in the axial direction. The pin 4a and the pin 4b engaged with the pin hole 5a and the long hole 5b formed in the buckling restraining member 5 are fixed to the axial force member 4, and the relative displacement within a certain range of the axial force member 4 and the buckling restraining member 5 is fixed. Secure.

第二の制振ダンパー3の筒状部材9の端部にロッド部材12を挿通する孔を形成したストッパー9aを固定する。ロッド部材12に係止リング12cを固定する。係止リング12cとストッパー9aの係止により弾性ゴム10の所定以上の変形を拘束し、弾性ゴム10の破断を防止する。   A stopper 9a having a hole through which the rod member 12 is inserted is fixed to the end of the cylindrical member 9 of the second damping damper 3. The locking ring 12 c is fixed to the rod member 12. By locking the locking ring 12c and the stopper 9a, the elastic rubber 10 is restrained from being deformed more than a predetermined amount to prevent the elastic rubber 10 from being broken.

図6は、セット時の状態を示す図で、軸力部材4に固定したピン4bは、座屈拘束部材5に形成した長孔5bの中間位置に位置する。図7に示すように常時の温度変化、クリープ等による変位に対しては、弾性ゴム10の弾性変形で吸収し、軸力部材4は変形しない。   FIG. 6 is a diagram showing a state at the time of setting, and the pin 4 b fixed to the axial force member 4 is located at an intermediate position of the long hole 5 b formed in the buckling restraining member 5. As shown in FIG. 7, the displacement due to the constant temperature change, creep or the like is absorbed by the elastic deformation of the elastic rubber 10, and the axial force member 4 is not deformed.

図8は、地震時の状態を示す図である。地震時、第二の制振ダンパー3の弾性ゴム10の弾性変形により地震エネルギーを吸収する。また、第一の制振ダンパー2の軸力部材4が塑性変形して地震エネルギーを吸収する。   FIG. 8 is a diagram illustrating a state during an earthquake. During an earthquake, the seismic energy is absorbed by the elastic deformation of the elastic rubber 10 of the second damping damper 3. Further, the axial force member 4 of the first damping damper 2 is plastically deformed to absorb the seismic energy.

図8は、地震時に大きな変位により第一の制振ダンパー2の軸力部材4が破断した状態を示す。軸力部材4が破断した状態で軸力部材4の軸方向に間隔をおいて固定したピン4a、4bが、座屈拘束部材5に形成したピン孔5aと長孔5bに係合し、地震時の変位はピン4a、4bを介して座屈拘束部材5に伝達され、第一の制振ダンパー2の脱落を防止する。   FIG. 8 shows a state in which the axial force member 4 of the first damping damper 2 is broken due to a large displacement during an earthquake. The pins 4a and 4b fixed at intervals in the axial direction of the axial force member 4 in a state where the axial force member 4 is broken are engaged with the pin hole 5a and the long hole 5b formed in the buckling restraining member 5, and the earthquake The displacement at the time is transmitted to the buckling restraining member 5 through the pins 4a and 4b, and the first damping damper 2 is prevented from falling off.

地震時の大きな変位に対して、第二の制振ダンパー3のロッド部材12に固定した係止リング12cが、筒状部材9の端部に固定したストッパー9aに係止し、弾性ゴム10が破断するような変位を拘束する。   The locking ring 12c fixed to the rod member 12 of the second damping damper 3 is locked to the stopper 9a fixed to the end portion of the cylindrical member 9, and the elastic rubber 10 Restrain the displacement to break.

以上のように、本発明の構造物用複合制振ダンパーによれば、強風による振動や温度変化による変形等に対しては、第二の制振ダンパーの弾性ゴムの弾性変形により吸収し、地震時に繰り返される大きな変位に対しては第一の制振ダンパーの軸力部材が弾塑性変形して吸収する耐久性のある構造物用複合制振ダンパーとすることが可能となり、軸方向以外の変位に対して弾性ゴムが弾性変形して吸収するので高価なユニバーサルジョイントを用いなくても対応が可能となり、軸力部材をFe−Mn−Si合金で形成することで、低温特性に優れ、地震エネルギー減衰効率が高く、且つ、大地震時に軸力部材に作用する低サイクル疲労領域で耐久性を有するダンパーとすることが可能となる。   As described above, according to the composite vibration damper for a structure of the present invention, vibrations caused by strong winds and deformation due to temperature change are absorbed by the elastic deformation of the elastic rubber of the second vibration damper, and the earthquake For large displacements that are sometimes repeated, the axial force member of the first damping damper can be made into a durable composite damping damper for structures that absorbs by elastic-plastic deformation. The elastic rubber is elastically deformed and absorbed, so it can be handled without using an expensive universal joint. By forming the axial force member with an Fe-Mn-Si alloy, it has excellent low-temperature characteristics and seismic energy. It is possible to provide a damper having high damping efficiency and durability in a low cycle fatigue region that acts on the axial force member during a large earthquake.

1:構造物用複合制振ダンパー、2:第一の制振ダンパー、3:第二の制振ダンパー、4:軸力部材、4a、4b:ピン、5:座屈拘束部材、5a:ピン孔、5b:長孔、6:第一制振ダンパー用継手、7:連結部材、8:第二制振ダンパー用継手、9:筒状部材、9a:ストッパー、10:弾性ゴム、11:中空パイプ、12:ロッド部材、12a,12b:雄ねじ部、12c:係止リング、13:変位伝達リング、14:変位伝達リング、15:連結リング、16:脱落防止部材取付部材、17:脱落防止部材   1: composite vibration damper for structure, 2: first vibration damper, 3: second vibration damper, 4: axial force member, 4a, 4b: pin, 5: buckling restraining member, 5a: pin Hole: 5b: Long hole, 6: Fitting for first damping damper, 7: Connecting member, 8: Fitting for second damping damper, 9: Tubular member, 9a: Stopper, 10: Elastic rubber, 11: Hollow Pipe, 12: Rod member, 12a, 12b: Male thread portion, 12c: Locking ring, 13: Displacement transmission ring, 14: Displacement transmission ring, 15: Connection ring, 16: Falling prevention member mounting member, 17: Falling prevention member

Claims (9)

相対変位する一方の構造部に連結され地震時のエネルギーを弾塑性変形して吸収する軸力部材を座屈拘束部材により補剛した第一の制振ダンパーと、
相対変位する他方の構造部に連結される筒状部材と筒状部材に相対変位可能に挿入されるロッド部材と前記筒状部材の内周面に固定され前記ロッド部材を挿通する孔を形成したリング状の弾性ゴムを備え、前記筒状部材と前記ロッド部材の相対変位を前記弾性ゴムに伝達し前記弾性ゴムの弾性変形により吸収する第二の制振ダンパーと、
を備え、
前記第一の制振ダンパーと前記第二の制振ダンパーを直列に連結することを特徴とする構造物用複合制振ダンパー。
A first damping damper that is connected to one structural part that is relatively displaced and stiffens an axial force member that absorbs and absorbs the energy at the time of an earthquake by means of a buckling restraint member;
A tubular member connected to the other structural portion that is relatively displaced, a rod member that is inserted into the tubular member so as to be relatively displaceable, and a hole that is fixed to the inner peripheral surface of the tubular member and that passes through the rod member is formed. A second damping damper comprising a ring-shaped elastic rubber, transmitting a relative displacement between the tubular member and the rod member to the elastic rubber and absorbing the elastic rubber by elastic deformation;
With
A composite vibration damper for a structure, wherein the first vibration damper and the second vibration damper are connected in series.
前記第一の制振ダンパーと前記第二の制振ダンパーを一方の構造部と他方の構造部にクレビス継手で連結することを特徴とする請求項1に記載の構造物用複合制振ダンパー。   The composite vibration damping damper for a structure according to claim 1, wherein the first damping damper and the second damping damper are connected to one structure portion and the other structure portion by a clevis joint. 前記第一の制振ダンパーの軸力部材の端部と前記第二の制振ダンパーのロッド部材の端部を連結することを特徴とする請求項1又は2に記載の構造物用複合制振ダンパー。   The composite vibration damping for a structure according to claim 1 or 2, wherein an end of the axial force member of the first damping damper and an end of the rod member of the second damping damper are connected. Damper. 前記筒状部材内周面に外周面が固定されたリング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定することを特徴とする請求項1ないし3のいずれか1項に記載の構造物用複合制振ダンパー。   The rod member can be inserted into the inner peripheral surface of a ring-shaped elastic rubber whose outer peripheral surface is fixed to the inner peripheral surface of the cylindrical member, and the outer peripheral surface of a hollow pipe that transmits relative displacement during an earthquake to the elastic rubber is fixed. The composite vibration damper for a structure according to any one of claims 1 to 3, characterized in that: 前記筒状部材を複数の単位筒状体で構成し、前記単位筒状体毎にその内周面にリング状の弾性ゴムの外周面を固定し、前記リング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定し、前記複数の単位筒状体を一体に連結して筒状部材とすることを特徴とする請求項4に記載の構造物用複合制振ダンパー。   The cylindrical member is composed of a plurality of unit cylindrical bodies, an outer peripheral surface of a ring-shaped elastic rubber is fixed to an inner peripheral surface of each unit cylindrical body, and an inner peripheral surface of the ring-shaped elastic rubber is fixed The rod member can be inserted, the outer peripheral surface of a hollow pipe that transmits relative displacement at the time of an earthquake to elastic rubber is fixed, and the unit cylindrical bodies are integrally connected to form a cylindrical member. The composite vibration damper for a structure according to claim 4. 前記軸力部材をFe−Mn−Si合金で形成することを特徴とする請求項1ないし5のいずれか1項に記載の構造物用複合制振ダンパー。   The composite vibration damper for a structure according to any one of claims 1 to 5, wherein the axial force member is formed of an Fe-Mn-Si alloy. 第一の制振ダンパーの座屈拘束部材にピン孔と長孔を軸方向に所定間隔をおいて形成し、軸力部材に座屈拘束部材に形成したピン孔と長孔に係合するピンを固定することを特徴とする請求項1ないし6のいずれか1項に記載の構造物用制振ダンパー。   A pin hole and a long hole are formed in the buckling constraining member of the first damping damper at predetermined intervals in the axial direction, and a pin that is engaged with the pin hole and the long hole formed in the buckling constraining member on the axial force member The structure damper according to any one of claims 1 to 6, wherein the damper is fixed. 第二の制振ダンパーの筒状部材の端部にストッパーを固定し、ロッド部材にストッパーと係止し弾性ゴムの弾性変形を拘束する係止リングを固定することを特徴とする請求項1ないし6のいずれか1項に記載の構造物用制振ダンパー。   A stopper is fixed to the end of the cylindrical member of the second damping damper, and a locking ring that locks the stopper with the stopper and restrains elastic deformation of the elastic rubber is fixed to the rod member. 6. A vibration damper for a structure according to any one of 6 above. 前記第一の制振ダンパーと前記第二の制振ダンパートの間を軸方向及び軸方向以外の方向の変位を許容する脱落防止部材で連結することを特徴とする請求項1ないし8のいずれか1項に記載の構造物用制振ダンパー。   9. The drop-off preventing member that allows displacement in a direction other than the axial direction and the axial direction is connected between the first damping damper and the second damping damper part. The vibration damper for a structure according to item 1.
JP2015217228A 2015-11-05 2015-11-05 Composite vibration damper for structures Active JP6696754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217228A JP6696754B2 (en) 2015-11-05 2015-11-05 Composite vibration damper for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217228A JP6696754B2 (en) 2015-11-05 2015-11-05 Composite vibration damper for structures

Publications (2)

Publication Number Publication Date
JP2017089146A true JP2017089146A (en) 2017-05-25
JP6696754B2 JP6696754B2 (en) 2020-05-20

Family

ID=58768880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217228A Active JP6696754B2 (en) 2015-11-05 2015-11-05 Composite vibration damper for structures

Country Status (1)

Country Link
JP (1) JP6696754B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031827A (en) * 2017-08-08 2019-02-28 株式会社横河住金ブリッジ Function separation type shock absorber and bridge provided with function separation type shock absorber
CN110175426A (en) * 2019-05-31 2019-08-27 中铁二院工程集团有限责任公司 Railroad bridge Elasto-plastic Metal limits shock absorption energy consuming device design method
CN110374222A (en) * 2019-08-06 2019-10-25 广州大学 A kind of re-centring damper
KR102207863B1 (en) * 2020-08-07 2021-01-25 이채성 Routine vibration absorber and long-lived vibration control system
CN112482196A (en) * 2020-12-03 2021-03-12 中国地震局工程力学研究所 Self-reaction type anti-falling beam structure
CN113502734A (en) * 2021-07-21 2021-10-15 河北工业大学 Speed locking type three-order yield damper capable of achieving self-resetting
CN116180583A (en) * 2023-04-24 2023-05-30 湖南省潇振工程科技有限公司 Ball screw type eddy current damping stay cable vibration damper
JP7330122B2 (en) 2020-03-16 2023-08-21 株式会社フジタ Support structure for superstructure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309670A (en) * 2001-04-16 2002-10-23 Taisei Corp Composite damping brace
JP2006328688A (en) * 2005-05-24 2006-12-07 Sumikin Kansai Kogyo Kk Buckling restraining-type axial force bearing member
US20130152490A1 (en) * 2011-12-19 2013-06-20 Andrew Hinchman Buckling-restrained brace
JP2014066300A (en) * 2012-09-26 2014-04-17 Miwa Tech Co Ltd Vibration damper for structure
JP2014129567A (en) * 2012-12-28 2014-07-10 National Institute For Materials Science Damping alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309670A (en) * 2001-04-16 2002-10-23 Taisei Corp Composite damping brace
JP2006328688A (en) * 2005-05-24 2006-12-07 Sumikin Kansai Kogyo Kk Buckling restraining-type axial force bearing member
US20130152490A1 (en) * 2011-12-19 2013-06-20 Andrew Hinchman Buckling-restrained brace
JP2014066300A (en) * 2012-09-26 2014-04-17 Miwa Tech Co Ltd Vibration damper for structure
JP2014129567A (en) * 2012-12-28 2014-07-10 National Institute For Materials Science Damping alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031827A (en) * 2017-08-08 2019-02-28 株式会社横河住金ブリッジ Function separation type shock absorber and bridge provided with function separation type shock absorber
JP7017879B2 (en) 2017-08-08 2022-02-09 株式会社横河Nsエンジニアリング A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
CN110175426A (en) * 2019-05-31 2019-08-27 中铁二院工程集团有限责任公司 Railroad bridge Elasto-plastic Metal limits shock absorption energy consuming device design method
CN110175426B (en) * 2019-05-31 2022-06-14 中铁二院工程集团有限责任公司 Design method of railway bridge elastic-plastic metal limiting, damping and energy-consuming device
CN110374222A (en) * 2019-08-06 2019-10-25 广州大学 A kind of re-centring damper
JP7330122B2 (en) 2020-03-16 2023-08-21 株式会社フジタ Support structure for superstructure
KR102207863B1 (en) * 2020-08-07 2021-01-25 이채성 Routine vibration absorber and long-lived vibration control system
CN112482196A (en) * 2020-12-03 2021-03-12 中国地震局工程力学研究所 Self-reaction type anti-falling beam structure
CN112482196B (en) * 2020-12-03 2022-04-05 中国地震局工程力学研究所 Self-reaction type anti-falling beam structure
CN113502734A (en) * 2021-07-21 2021-10-15 河北工业大学 Speed locking type three-order yield damper capable of achieving self-resetting
CN116180583A (en) * 2023-04-24 2023-05-30 湖南省潇振工程科技有限公司 Ball screw type eddy current damping stay cable vibration damper

Also Published As

Publication number Publication date
JP6696754B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP2017089146A (en) Composite vibration control damper for structure
JP5694175B2 (en) LAMINATED RUBBER BODY JOINING MEMBER AND LAMINATED RUBBER BODY AND STRUCTURE USING THE JOINING MEMBER
JP4288370B2 (en) Damper device
KR101907104B1 (en) Double seismic hanger system of plumbing
JP2017517659A (en) Energy absorber
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
KR20170045255A (en) Vibration damping device for structure
JP2015055293A (en) Vibration control device
CN103590320A (en) Stay cable vibration damper of cable-stayed bridge
JP4838898B1 (en) Damping damper
JP2005337403A (en) Pipe fitting
CN206397239U (en) A kind of damper displacement qualifier
JP4746023B2 (en) Seismic retrofit method for steel structures and seismic steel structures
JP2017082904A (en) Rod-like vibration isolation member
JP5438790B2 (en) Vibration control panel
JP5144919B2 (en) Vibration control panel
JP2010222797A (en) Base-isolated structure
JP2016070352A (en) Forced double-surface slide supporting device for structure
JP5062752B2 (en) Friction damper
JP2019031827A (en) Function separation type shock absorber and bridge provided with function separation type shock absorber
JP6266988B2 (en) Sealing device for through-wall piping
JP4870483B2 (en) Member holding device and member holding method
JP6306416B2 (en) Structure damping device
JP6872359B2 (en) Shock absorber
JPH0415351B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6696754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250