JP7017879B2 - A bridge equipped with a function-separated shock absorber and a function-separated shock absorber - Google Patents

A bridge equipped with a function-separated shock absorber and a function-separated shock absorber Download PDF

Info

Publication number
JP7017879B2
JP7017879B2 JP2017153324A JP2017153324A JP7017879B2 JP 7017879 B2 JP7017879 B2 JP 7017879B2 JP 2017153324 A JP2017153324 A JP 2017153324A JP 2017153324 A JP2017153324 A JP 2017153324A JP 7017879 B2 JP7017879 B2 JP 7017879B2
Authority
JP
Japan
Prior art keywords
displacement
core material
function
shock absorber
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153324A
Other languages
Japanese (ja)
Other versions
JP2019031827A (en
Inventor
稔 前島
Original Assignee
株式会社横河Nsエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社横河Nsエンジニアリング filed Critical 株式会社横河Nsエンジニアリング
Priority to JP2017153324A priority Critical patent/JP7017879B2/en
Publication of JP2019031827A publication Critical patent/JP2019031827A/en
Application granted granted Critical
Publication of JP7017879B2 publication Critical patent/JP7017879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、従来の棒状制振部材に対し、材軸方向の引張りおよび圧縮両方向の荷重に対する変形能力とエネルギー吸収能力に優れた機能分離型衝撃吸収装置及び機能分離型衝撃吸収装置を備えた橋梁に関するものであり、例えば、橋桁の端部と橋桁の端部を支える橋台との間に設置して、地震時の衝撃吸収部材として用いることができる。 The present invention is a bridge provided with a function-separated type shock absorber and a function-separated type shock absorber having excellent deformation ability and energy absorption ability with respect to a load in both tensile and compressive directions in the material axial direction, as compared with a conventional rod-shaped vibration damping member. For example, it can be installed between the end of the bridge girder and the abutment supporting the end of the bridge girder and used as a shock absorbing member at the time of an earthquake.

構造物の耐震性能、制震性能を高めるものとして、制振部材と構造部材を兼ねた制振ブレースなどの棒状制振部材が種々開発され、製品化されている。 Various rod-shaped vibration-damping members such as vibration-damping braces that also serve as vibration-damping members and structural members have been developed and commercialized to enhance the seismic performance and vibration-damping performance of structures.

例えば、特許文献1、特許文献2には、平板または断面十字形の鋼材からなる芯材とその座屈変形を拘束する山形鋼からなる拘束材を用いた座屈拘束型の軸力負担部材が記載されている。 For example, in Patent Document 1 and Patent Document 2, a buckling restraint type axial force bearing member using a core material made of a flat plate or a steel material having a cross section and a restraining material made of angle steel that restrains the buckling deformation thereof is described. Are listed.

また特許文献3には、鋼製芯材の外周をアンボンド層を介して座屈拘束用コンクリート部材で覆い、その座屈拘束用コンクリート部材の外周を鋼管で覆って補強した軸降伏型弾塑性履歴ブレースの改良技術が記載されている。 Further, in Patent Document 3, the outer circumference of the steel core material is covered with a buckling restraining concrete member via an unbonded layer, and the outer circumference of the buckling restraining concrete member is covered with a steel pipe to reinforce the shaft yield type elasto-plastic history. The improved technique of the brace is described.

図20(a),(b)は、従来の棒状制振部材の一例として、平板芯材を用いた座屈拘束型の棒状制振部材の具体例を示したものである。 FIGS. 20 (a) and 20 (b) show a specific example of a buckling restraint type rod-shaped vibration damping member using a flat plate core material as an example of a conventional rod-shaped vibration damping member.

基本的な構成は、低降伏点鋼あるいは普通鋼からなるエネルギー吸収材としての芯材30本体の両端部に断面が拡大された継手部31、32を形成し、芯材30本体を四方より変形拘束部材33としての山形鋼で抑え、スペーサー34を介して変形拘束部材33どうしを高力ボルト35で締め付けて、芯材30本体が座屈しないようにしたものである。 The basic configuration is to form joints 31 and 32 with enlarged cross sections at both ends of the core material 30 body as an energy absorber made of low yield point steel or ordinary steel, and deform the core material 30 body from all sides. It is held by angle steel as a restraining member 33, and the deformation restraining members 33 are tightened with a high-strength bolt 35 via a spacer 34 so that the core material 30 body does not buckle.

この例で、芯材30と変形拘束部材33とは、図20(a)における奥側の固定側継手部31と、手前側の可動側継手部32の2箇所において、それぞれ高力ボルト35で接合されており、可動側継手部32の高力ボルト35は芯材30に軸方向の引張力または圧縮力が作用したときに、変形拘束部材33に形成した長孔33aに沿って軸方向に摺動可能となっている。 In this example, the core material 30 and the deformation restraining member 33 are provided with high-strength bolts 35 at two locations, the fixed side joint portion 31 on the back side and the movable side joint portion 32 on the front side in FIG. 20 (a). The high-strength bolt 35 of the movable side joint portion 32 is joined in the axial direction along the elongated hole 33a formed in the deformation restraining member 33 when an axial tensile force or a compressive force is applied to the core material 30. It is slidable.

すなわち、芯材30に軸方向の引張力が作用したときは芯材30が弾性範囲または弾塑性範囲で伸び、芯材30に軸方向の圧縮力が作用したときは芯材30が弾性範囲または弾塑性範囲で縮み、変形拘束部材33には実質的に軸方向力が作用しないようになっている。 That is, when the axial tensile force acts on the core material 30, the core material 30 extends in the elastic range or the elasto-plastic range, and when the axial compressive force acts on the core material 30, the core material 30 has the elastic range or the elastic range. It shrinks in the elastic plastic range, and the deformation restraint member 33 is substantially free from axial force.

また、芯材30に軸方向の圧縮力が作用したとき、変形拘束部材33が芯材30本体を四方から拘束していることで、芯材30本体の座屈変形が生じないため、制振部材としてのエネルギー吸収能力をフルに発揮させることができる。 Further, when a compressive force in the axial direction acts on the core material 30, the deformation restraining member 33 restrains the core material 30 body from all sides, so that buckling deformation of the core material 30 body does not occur, so that vibration damping occurs. It is possible to fully demonstrate the energy absorption capacity as a member.

図21(a),(b)は、従来の棒状制振部材の一例として十字芯材を用いた座屈拘束ブレースの具体例を示したものであり、芯材30本体の断面を十字断面とした点以外の構成および作用効果は図18の平板の場合と同様であるが、同じ変形が生じた場合芯材30の方が断面が大きい分、エネルギー吸収能力が高い。 FIGS. 21 (a) and 21 (b) show a specific example of a buckling restraint brace using a cross core material as an example of a conventional rod-shaped vibration damping member, and the cross section of the core material 30 body is referred to as a cross section. The configuration and working effects other than the above points are the same as in the case of the flat plate of FIG. 18, but when the same deformation occurs, the core material 30 has a larger cross section and therefore has a higher energy absorption capacity.

ところで、道路橋などの橋梁においては、大規模地震時に上部工である橋桁の端部が橋桁端部を支える橋台や橋脚などの下部工から落橋しないように、下部工側に桁かかり長を十分に確保をしたり、上部工側の橋桁端部と下部工側の橋台や橋脚とを落橋防止材で連結することが行われ、また、特に近年では、棒状制振部材に落橋防止材としての機能を兼用させる検討をしたり,落橋防止材単体として使用をする検討がなされたりしている。 By the way, in bridges such as road bridges, the girder length is sufficient on the substructure side so that the end of the bridge girder, which is the superstructure, does not collapse from the substructure such as the pier or pier that supports the end of the bridge girder during a large-scale earthquake. In addition, the bridge girder end on the superstructure side and the bridge pier and pier on the substructure side are connected with a collapse prevention material, and especially in recent years, the rod-shaped vibration damping member is used as a bridge collapse prevention material. Consideration is being made to combine the functions, and to use it as a single bridge collapse prevention material.

特開2000-265706号公報Japanese Unexamined Patent Publication No. 2000-265706 特開2006-328688号公報Japanese Unexamined Patent Publication No. 2006-328688 特開2014-031654号公報Japanese Unexamined Patent Publication No. 2014-031654

従来の棒状制振部材の設計では、大規模地震時には芯材を必ず降伏させて履歴減衰により地震エネルギーを吸収させる設計をしていたが、想定外の地震も考慮した設計対応も要求されることがある。また、棒状制振部材には、引張り荷重と共に圧縮荷重が引張り荷重と交互に作用するため、圧縮荷重を受けて降伏する芯材を取り付けることにより、変形能力および地震エネルギーの吸収能力は倍増させることができる。 In the conventional design of rod-shaped vibration damping members, the core material was always yielded during a large-scale earthquake to absorb seismic energy by historical damping, but it is also required to take design measures that take into account unexpected earthquakes. There is. In addition, since the compressive load acts alternately with the tensile load on the rod-shaped vibration damping member, the deformation capacity and seismic energy absorption capacity should be doubled by attaching a core material that yields under the compressive load. Can be done.

例えば、橋桁と橋桁を支える橋台との間に取り付けて使用する場合、棒状制振部材の芯材が仮に大規模地震時の繰り返し履歴で既に破断をしていたとすると、それ以降の落橋防止材としての変形挙動に対しては地震エネルギーの吸収ができないことになる。 For example, when used by attaching it between the bridge girder and the abutment that supports the bridge girder, if the core material of the rod-shaped vibration damping member has already broken in the repeated history during a large-scale earthquake, it can be used as a bridge collapse prevention material after that. Seismic energy cannot be absorbed for the deformation behavior of.

また、主として落橋防止材を設計する場合は、落橋防止システムとして、支承部の機能が喪失するまでは、芯材を塑性変形させる必要はなく、その間、支承部の変形に追随できる構造が要求される。つまり、想定外の地震挙動で支承部の機能が喪失した場合、芯材を塑性変形させれば良いことになり、使用目的により芯材を塑性変形させる設計のタイミングが異なってくるのである。 Further, when mainly designing a bridge collapse prevention material, as a bridge collapse prevention system, it is not necessary to plastically deform the core material until the function of the bearing is lost, and a structure capable of following the deformation of the bearing is required during that time. Ru. In other words, if the function of the bearing is lost due to unexpected seismic behavior, the core material should be plastically deformed, and the design timing for plastically deforming the core material differs depending on the purpose of use.

本発明は、このような実情に鑑みてなされたもので、地震時の引張りおよび圧縮両方の荷重に対する変形能力とエネルギー吸収能力がきわめて高く、想定し得る範囲内で最大規模の地震(レベル2の地震動)に対してだけでなく、レベル2の範囲を超える想定外の大地震に対しても対応可能で、例えば、橋桁の端部と橋桁の端部を支える橋台との間に取り付けられる落橋防止材として適した機能分離型衝撃吸収装置及び機能分離型衝撃吸収装置を備えた橋梁を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and has extremely high deformation capacity and energy absorption capacity for both tensile and compressive loads during an earthquake, and is the largest earthquake (level 2) within a conceivable range. It is possible to respond not only to earthquake motion) but also to unexpected large earthquakes beyond the range of level 2, for example, bridge collapse prevention installed between the end of the bridge girder and the abutment that supports the end of the bridge girder. It is an object of the present invention to provide a bridge provided with a function-separated type shock absorber and a function-separated type shock absorber suitable as materials.

本発明は、材軸方向の両端部に継手部を有し、引張りおよび圧縮荷重を受けて材軸方向に伸縮する棒状の機能分離型衝撃吸収装置であって、引張り荷重を受けて、塑性変形領域として設定される引張り側の第1の変位区間では、衝撃吸収装置を構成する引張り側の特定の第1の軸方向変形部材が弾性変形または塑性変形しつつ、前記第1の変位区間の上限において変位が拘束される構成とし、前記第1の変位区間を超え、引張り側の第2の塑性変形領域として設定される引張り側の第2の変位区間では、衝撃吸収装置を構成する引張り側の特定の第2の軸方向変形部材が弾性変形または塑性変形する構成とし、かつ圧縮荷重を受けて、圧縮側の塑性変形領域として設定された圧縮側の変位区間では、衝撃吸収装置を構成する圧縮側の軸方向変形部材が弾性変形または塑性変形する構成としたことを特徴とするものである。 The present invention is a rod-shaped function-separated shock absorber that has joints at both ends in the material axial direction and expands and contracts in the material axial direction by receiving tensile and compressive loads, and is plastically deformed by receiving a tensile load. In the first displacement section on the pulling side set as a region, the upper limit of the first displacement section is while the specific first axially deforming member on the pulling side constituting the shock absorber is elastically deformed or plastically deformed. In the second displacement section on the pulling side, which exceeds the first displacement section and is set as the second plastic deformation region on the pulling side, the displacement is constrained in the above. In the compression section on the compression side, which is configured such that a specific second axially deforming member is elastically deformed or plastically deformed and is set as a plastic deformation region on the compression side by receiving a compressive load, the compression constituting the shock absorber. It is characterized in that the axially deforming member on the side is elastically deformed or plastically deformed.

請求項1記載の機能分離型衝撃吸収装置において、引張り荷重を受けて、前記第2の軸方向変形部材が第2の変位区間を超え、第3の塑性変形領域として設定される第3の変位区間では、衝撃吸収装置を構成する特定の第3の軸方向変形部材が弾性変形または塑性変形する構成とすることができる。 In the function-separated shock absorber according to claim 1, the second axially deforming member exceeds the second displacement section and is set as a third plastic deformation region under a tensile load. In the section, a specific third axially deforming member constituting the shock absorbing device may be elastically deformed or plastically deformed.

また、請求項1または2記載の機能分離型衝撃吸収装置において、引張りおよび圧縮荷重を受けて、衝撃吸収装置を構成する引張り側の特定の軸方向変位部材が、前記継手部の一方との連結が切り離された状態で実質的に無抵抗に引張り方向および圧縮方向に変位する遊間領域として設定される変位区間を備えた構成とすることができる。 Further, in the function-separated type impact absorbing device according to claim 1 or 2, a specific axial displacement member on the pulling side constituting the shock absorbing device is connected to one of the joint portions by receiving a tensile and compressive load. It is possible to have a configuration having a displacement section set as a gap region in which the displacement is substantially non-resistive in the tensile direction and the compression direction in a separated state.

さらに、請求項1~3のいずれかひとつの機能分離型衝撃吸収装置において、衝撃吸収装置を構成する引張り側の特定の軸方向変形部材に、設定された引張り荷重で破断する破断誘発部を設けることにより、想定外の引張り荷重を受けた際に損傷が他の部分まで及ぶのを防止することができ、また、これにより早期にかつきわめて経済的に復旧させることができる。この場合の破断誘発部は、断面欠損を目的とした凹部または貫通孔などでよい。 Further, in the function-separated type impact absorber according to any one of claims 1 to 3, a fracture-inducing portion that breaks under a set tensile load is provided on a specific axially deforming member on the tension side constituting the impact absorber. Thereby, it is possible to prevent the damage from extending to other parts when an unexpected tensile load is applied, and it is possible to recover the damage at an early stage and extremely economically. In this case, the fracture-inducing portion may be a recess or a through hole for the purpose of cross-sectional defect.

軸方向変形部材の材料としては、要求性能に応じて、JIS材である普通鋼に加えて、変形能に優れた低降伏点鋼または形状記憶合金等を用いることができる。 As the material of the axially deformable member, low yield point steel or shape memory alloy having excellent deformability can be used in addition to ordinary steel which is a JIS material, depending on the required performance.

本発明の機能分離型衝撃吸収装置は、レベル2地震動以上の地震動での支承の破壊を許容する構成とした橋梁の下部工と上部工との間に設置することができ、さらにレベル2地震動以上の地震動により一方の芯材が破壊したとしても、他方の芯材が衝撃吸収装置として機能するように、芯材の降伏荷重の階層化を行うことで対応できる。 The function-separated impact absorber of the present invention can be installed between the substructure and superstructure of a bridge configured to allow the destruction of bearings by seismic motion of level 2 or higher, and further, level 2 seismic motion or higher. Even if one core material is destroyed by the earthquake motion of the above, it can be dealt with by layering the yield load of the core material so that the other core material functions as a shock absorber.

本発明の機能分離型衝撃吸収装置は、棒状制振部材の衝撃吸収装置の吸収材となる芯材を2つに切り離すことで、それぞれの機能を明確にし、芯材の降伏荷重の階層化が実現できる。また、切り離された芯材間に遊間長を設けることで、常時に対する変形の追随性を付加することに加え、従来のケーブルタイプでは対応ができなかった圧縮力に対しても衝撃吸収が可能となる。 The function-separated type shock absorber of the present invention clarifies each function by separating the core material, which is the absorbent material of the shock absorber of the rod-shaped vibration damping member, into two, and the yield load of the core material can be layered. realizable. In addition, by providing a clearance length between the separated core materials, in addition to adding the ability to follow the deformation at all times, it is possible to absorb the impact even with the compressive force that the conventional cable type could not handle. Become.

さらに、圧縮荷重を受けて、圧縮側の塑性変形領域として設定された圧縮側の変位区間を備え、当該圧縮側の変位区間では、衝撃吸収装置を構成する圧縮側の軸方向変形部材が弾性変形または塑性変形する構成としたことで、材軸方向の引張りおよび圧縮両方向の変形能力とエネルギー吸収能力に優れ、例えば、橋桁の端部と橋桁の端部を支える橋台との間に設置して地震時の衝撃吸収部材として用いることができる。 Further, it is provided with a compression side displacement section set as a plastic deformation region on the compression side by receiving a compression load, and in the compression side displacement section, the compression side axial deformation member constituting the shock absorbing device is elastically deformed. Or, because it is configured to be plastically deformed, it has excellent deformation capacity and energy absorption capacity in both tensile and compression directions in the material axis direction. It can be used as a shock absorbing member of time.

本発明の機能分離型衝撃吸収装置の第1の実施形態を図示したものであり、図1(a)は初期状態、図1(b)は橋軸方向の引張り力が作用し、左側の芯材が軸降伏後、塑性変形をして作動した状態、図1(c)は仮に継手部を破壊させた場合の最終破壊状態の斜視図である。The first embodiment of the function-separated shock absorber of the present invention is illustrated. FIG. 1 (a) shows an initial state, and FIG. 1 (b) shows a pulling force in the direction of the bridge axis acting on the left core. FIG. 1 (c) is a perspective view of the final fractured state when the joint is tentatively fractured, in which the material is plastically deformed and operated after the shaft yields. 図1に図示する機能分離型衝撃吸収装置の分解斜視図である。It is an exploded perspective view of the function-separated type shock absorber shown in FIG. 第1変形芯材の端部の端部を図示したものであり、図3(a)は連結部が破断する前の状態を示す斜視図、図3(b)は連結部が破断した後の状態を示す斜視図である。The end portion of the end portion of the first deformed core material is illustrated, FIG. 3 (a) is a perspective view showing a state before the connecting portion is broken, and FIG. 3 (b) is a perspective view after the connecting portion is broken. It is a perspective view which shows the state. 図4(a),(b)は、それぞれ図1(a)及び図15(a)におけるイ-イ線、ロ-ロ線断面図である。4 (a) and 4 (b) are cross-sectional views taken along the line 1 (a) and FIG. 15 (a), respectively. 本発明の衝撃吸収装置の設置例を図示したものであり、橋桁の端部と橋桁を支える橋台との間に設置された機能分離型衝撃吸収装置の側面図である。An example of installation of the shock absorber of the present invention is illustrated, and it is a side view of the function-separated type shock absorber installed between the end of the bridge girder and the abutment supporting the bridge girder. 橋桁端部と橋台との間に設置された本発明の機能分離型衝撃吸収装置の作動状態のうち引張り変形を示す側面図である。It is a side view which shows the tensile deformation in the operating state of the function separation type shock absorber of this invention installed between a bridge girder end part and an abutment. 橋桁端部と橋台との間に設置された本発明の機能分離型衝撃吸収装置の作動状態のうち圧縮変形を示す側面図である。It is a side view which shows the compression deformation in the operating state of the function separation type shock absorber of this invention installed between a bridge girder end part and an abutment. 第1および第2変形芯材と変位芯材の引張りおよび圧縮荷重による挙動を示す説明図である。It is explanatory drawing which shows the behavior by tension and compression load of the 1st and 2nd deformed core material and displacement core material. 図8の荷重-変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve of FIG. 図1の機能分離型衝撃吸収装置に橋軸方向の荷重(圧縮および引張力)が作用した際の荷重-変位設計曲線を示すグラフである。圧縮側には橋台があり変位が限定される。引張り側は、設計最大荷重で破断する設計とした事例である。It is a graph which shows the load-displacement design curve when the load (compression and tensile force) in the bridge axis direction are applied to the function-separated type impact absorber of FIG. There is an abutment on the compression side and the displacement is limited. The pull side is an example of a design that breaks at the maximum design load. 本発明の機能分離型衝撃吸収装置の第2の実施形態を図示したものであり、図11(a)は初期状態、図11(b)は引張り力が作用し、左側の芯材が軸降伏して作動した状態、図11(c)はその後、右側の芯材が軸降伏後塑性変形をし、仮に継手部を破壊させた場合の最終破壊状態の斜視図である。The second embodiment of the function-separated shock absorber of the present invention is illustrated. FIG. 11 (a) shows an initial state, FIG. 11 (b) shows a tensile force acting on the core material on the left side. FIG. 11 (c) is a perspective view of the final fractured state when the core material on the right side subsequently undergoes plastic deformation after the shaft yields and the joint portion is fractured. 図11に図示する機能分離型衝撃吸収装置に橋軸方向の荷重(圧縮および引張力)が作用した際の荷重-変位設計曲線を示すグラフである。分割された芯材が降伏荷重の階層化によりそれぞれ軸降伏した後、塑性変形をし、設計最大荷重で破断する設計とした事例である。It is a graph which shows the load-displacement design curve when the load (compression and tensile force) in the bridge axis direction are applied to the function-separated type impact absorber shown in FIG. This is an example of a design in which the divided core material undergoes axial yielding due to the layering of the yield load, then undergoes plastic deformation, and breaks at the maximum design load. 本発明の機能分離型衝撃吸収装置の第3の実施形態を図示したものであり、図13(a)は初期状態、図13(b)は引張り力が作用し、左側の芯材が軸降伏して作動した状態の斜視図である。A third embodiment of the function-separated shock absorber of the present invention is illustrated. FIG. 13 (a) shows an initial state, FIG. 13 (b) shows a tensile force acting on the core material on the left side. It is a perspective view of the state in which it was operated. 図13に図示する機能分離型衝撃吸収装置に橋軸方向の荷重(圧縮および引張力)が作用した際の荷重-変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve when the load (compression and tensile force) in the bridge axis direction are applied to the function-separated type impact absorber shown in FIG. 本発明の機能分離型衝撃吸収装置の第4の実施形態を図示したものであり、図15(a)は初期状態、図15(b)は左側の芯材が軸降伏後、圧縮・引張りの変位を繰り返した後、引張り荷重が右側の芯材の降伏荷重に達して塑性変形をした作動状態の斜視図である。A fourth embodiment of the function-separated shock absorber of the present invention is illustrated. FIG. 15 (a) shows an initial state, and FIG. 15 (b) shows that the core material on the left side is compressed and pulled after the shaft yields. It is a perspective view of the operating state in which the tensile load reaches the yield load of the core material on the right side and is plastically deformed after repeated displacements. 図15に図示する機能分離型衝撃吸収装置に橋軸方向の荷重(圧縮および引張力)が作用した際の荷重-変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve when the load (compression and tensile force) in the bridge axis direction are applied to the function-separated type impact absorber shown in FIG. 本発明の機能分離型衝撃吸収装置の第5の実施形態の機能分離型衝撃吸収装置に橋軸方向の荷重(圧縮および引張力)が作用した際の荷重-変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve when the load (compression and tensile force) in the bridge axis direction are applied to the function-separated type shock absorber of the 5th Embodiment of the function-separated type shock absorber of this invention. 本発明の機能分離型衝撃吸収装置の第6の実施形態の衝撃吸収装置に橋軸方向の荷重(圧縮および引張力)が作用した際の荷重-変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve when the load (compression and tensile force) in the bridge axis direction are applied to the shock absorber of the sixth embodiment of the function separation type shock absorber of this invention. 本発明の機能分離型衝撃吸収装置において芯材として用いられる代表的な鋼材の応力ひずみ曲線を示すグラフである。It is a graph which shows the stress-strain curve of the typical steel material used as a core material in the function separation type shock absorber of this invention. 図20(a)は従来の棒状制振部材としての座屈拘束ブレースの一例(平板芯材の場合)を示す部分透過斜視図、図20(b)は軸直角方向の断面図である。FIG. 20 (a) is a partially transparent perspective view showing an example of a buckling restraint brace (in the case of a flat plate core material) as a conventional rod-shaped vibration damping member, and FIG. 20 (b) is a cross-sectional view in a direction perpendicular to the axis. 図21(a)は従来の棒状制振部材としての座屈拘束ブレースの他の例(十字芯材の場合)を示す部分透過斜視図、図21 (b)は軸直角方向の断面図である。FIG. 21 (a) is a partially transparent perspective view showing another example (in the case of a cross core material) of a buckling restraint brace as a conventional rod-shaped vibration damping member, and FIG. 21 (b) is a cross-sectional view in the direction perpendicular to the axis. ..

[実施形態1]
図1~図10は、本発明の第1の実施形態であり、機能分離型衝撃吸収装置(以下「落橋防止材」)とその設置例を図示したものである。図において、橋桁1の端部と橋桁1の端部を支える橋台2との間に複数の落橋防止材3と支承4がそれぞれ設置され(図5,6,7参照)、いずれも、橋桁1の橋軸直角方向に間隔をおいて設置されている。符号17は橋桁1と橋台2間の挙動に追従して伸縮する伸縮装置である。
[Embodiment 1]
1 to 10 are the first embodiments of the present invention, and show a function-separated shock absorber (hereinafter referred to as “collapse prevention material”) and an installation example thereof. In the figure, a plurality of bridge collapse prevention materials 3 and bearings 4 are installed between the end of the bridge girder 1 and the abutment 2 supporting the end of the bridge girder 1 (see FIGS. 5, 6 and 7), and both of them are bridge girders 1. It is installed at right angles to the bridge axis. Reference numeral 17 is a telescopic device that expands and contracts according to the behavior between the bridge girder 1 and the abutment 2.

落橋防止材3は、落橋防止材3の材軸方向(以下「橋桁1の橋軸方向」)に伸縮する棒状に構成され、橋軸方向の両端部に継手部5と継手部6がそれぞれ取り付けられている。継手部5は橋台2の側面に固定され、継手部6は橋桁1端部の下端面に固定されている。 The bridge collapse prevention material 3 is configured in a rod shape that expands and contracts in the material axis direction of the bridge collapse prevention material 3 (hereinafter, “bridge axis direction of bridge girder 1”), and joint portions 5 and joint portions 6 are attached to both ends in the bridge axis direction, respectively. Has been done. The joint portion 5 is fixed to the side surface of the abutment 2, and the joint portion 6 is fixed to the lower end surface of the end portion of the bridge girder 1.

また、また、継手部5と継手部6との間に橋軸引張り方向の荷重によって弾塑性変形する引張り側第1変位区間L1橋軸圧縮方向の荷重によって弾塑性変形する圧縮側の変位区間L 3 がそれぞれ設けられている(図1、図8参照)。引張り側第1変位区間L1は継手部5側に、圧縮側の変位区間L 3 は継手部6側にそれぞれ設けられている。 Further, the first displacement section L 1 on the tension side that is elasto-plastically deformed by the load in the bridge shaft tensile direction between the joint portion 5 and the joint portion 6 and the compression side that is elasto-plastically deformed by the load in the bridge shaft compression direction. Displacement sections L 3 are provided respectively (see FIGS. 1 and 8). The first displacement section L 1 on the tension side is provided on the joint portion 5 side, and the displacement section L 3 on the compression side is provided on the joint portion 6 side.

圧縮側の変位区間L 3 と継手部6との間に、変位芯材8が引張りおよび圧縮荷重を受けて、軸引張り方向および軸圧縮方向に変位する遊間領域として設定された変位区間L 2 が設けられている。変位区間L 2 引張り側第1変位区間L1および圧縮側変位区間L 3 と同一材軸線上で互いに隣接して設けられている(図1、図8参照)。変位芯材8は継手部5との連結が切り離された状態で、実質的に無抵抗で軸引張り方向および軸圧縮方向に変位するBetween the displacement section L 3 on the compression side and the joint portion 6, there is a displacement section L 2 set as a clearance region in which the displacement core material 8 receives a tensile and compressive load and is displaced in the axial tension direction and the axial compression direction . It is provided. The displacement section L 2 is provided adjacent to each other on the same material axis as the first displacement section L 1 on the pulling side and the displacement section L 3 on the compression side (see FIGS. 1 and 8). The displacement core member 8 is displaced in the axial tension direction and the axial compression direction with substantially no resistance in a state where the connection with the joint portion 5 is disconnected .

引張り側第1変位区間L1と圧縮側変位区間L 3 に第1変形芯材7Aと第2変形芯材7Bがそれぞれ設置され、遊間領域として設定された変位区間L 2 には変位芯材8が設置されている。 The first deformed core material 7A and the second deformed core material 7B are installed in the first displacement section L 1 on the tension side and the displacement section L 3 on the compression side, respectively, and the displacement core is in the displacement section L 2 set as the clearance region. Material 8 is installed.

第1および第2変形芯材7A,7Bは、橋軸方向に連続する単体の細長い平板状に形成され、かつその橋軸方向の両端部に拡径部7a,7b、第1変形芯材7Aと第2変形芯材7B間に拡径部7cがそれぞれ形成されている。拡径部7a,7b,7cは、いずれも断面略十字形状に形成されている。 The first and second deformed core materials 7A and 7B are formed in the shape of a single elongated flat plate continuous in the bridge axis direction, and the enlarged diameter portions 7a and 7b and the first deformed core material 7A are formed at both ends in the bridge axis direction. An enlarged diameter portion 7c is formed between the second deformed core material 7B and the second deformed core material 7B, respectively. The enlarged diameter portions 7a, 7b, and 7c are all formed in a substantially cross-shaped cross section.

また、第1変形芯材7Aの継手部5側の端部に拡径部7aと同じ幅で継手部5側に延びる平板状の連結部7dが形成され、連結部7dは継手部5に回転自在に連結されている。さらに、拡径部7aと連結部7dとの境界部に破断誘発凹部7eと座屈拘束リブ7fがそれぞれ形成されている(図3(a),(b)参照)。 Further, a flat plate-shaped connecting portion 7d extending to the joint portion 5 side with the same width as the enlarged diameter portion 7a is formed at the end portion of the first deformed core material 7A on the joint portion 5 side, and the connecting portion 7d rotates to the joint portion 5. It is freely connected. Further, a fracture-inducing recess 7e and a buckling restraint rib 7f are formed at the boundary between the enlarged diameter portion 7a and the connecting portion 7d (see FIGS. 3 (a) and 3 (b)).

破断誘発凹部7eは、継手部5と6間に橋軸方向の引張り荷重が設計値以上作用した際に、
当該破断誘発凹部7eで計画的に破断させることで、破断等の破損が他の部分に及ばないようにするために設けられており、図示するような凹部の他、単に貫通孔であってもよい。
The rupture-inducing recess 7e is provided when a tensile load in the bridge axial direction acts between the joint portions 5 and 6 in excess of the design value.
It is provided to prevent damage such as breakage from reaching other parts by intentionally breaking the fracture-inducing recess 7e. In addition to the recess as shown in the figure, even if it is simply a through hole. good.

また、座屈拘束リブ7fは、継手部5と6間に作用する橋軸方向の圧縮荷重で、連結部7dが座屈しないように形成されている。当該座屈拘束リブ7fは、連結部7dの上下両面の中央に第1変形芯材7Aの拡径部7a,7aと同一鉛直面内で、拡径部7a,7aの端面と互いに当接するように形成されており、軸圧縮荷重のみを伝達し、引張り荷重は伝達しない。 Further, the buckling restraint rib 7f is formed so that the connecting portion 7d does not buckle due to the compressive load acting between the joint portions 5 and 6 in the bridge axial direction. The buckling restraint rib 7f is in contact with the end faces of the enlarged diameter portions 7a, 7a in the same vertical plane as the enlarged diameter portions 7a, 7a of the first deformed core material 7A at the center of both the upper and lower surfaces of the connecting portion 7d. It is formed in and transmits only the axial compressive load and not the tensile load.

また、第1および第2変形芯材7A,7Bは橋軸方向に作用する引張り荷重に対して、連結部7dより先に弾塑性変形するように形成され、例えば、連結部7dより小径断面に形成されているか、或いは低降伏点鋼(例えば、LY225規格等)等から形成されている(図19参照)。 Further, the first and second deformable core materials 7A and 7B are formed so as to be elasto-plastically deformed before the connecting portion 7d with respect to the tensile load acting in the bridge axial direction, and for example, the cross section having a smaller diameter than the connecting portion 7d. It is either formed or made of low yield point steel (eg, LY225 standard, etc.) (see Figure 19).

変位芯材8は、橋軸方向に細長く連続する断面略十字形状に形成され、また、橋軸方向の両端部に拡径部8a,8aが形成されている。拡径部8aは変位芯材8より大径の断面略十字形状に形成されている。また、継手部6側の端部に拡径部8aと同じ幅で継手部6側に延びる平板状の連結部8bが形成され、連結部8bは継手部6に回転自在に連結されている。 The displacement core material 8 is formed in a substantially cross-shaped cross section that is elongated and continuous in the bridge axis direction, and diameter-expanded portions 8a and 8a are formed at both ends in the bridge axis direction. The enlarged diameter portion 8a is formed in a substantially cross-shaped cross section having a larger diameter than the displacement core material 8. Further, a flat plate-shaped connecting portion 8b having the same width as the enlarged diameter portion 8a and extending to the joint portion 6 side is formed at the end portion on the joint portion 6 side, and the connecting portion 8b is rotatably connected to the joint portion 6.

さらに、変位芯材8は橋軸方向の引張り荷重に対して、連結部7dより先に降伏破断しないように形成され、例えば、連結部7dより大断面形に形成されているか、或いは普通鋼(例えば、SM400)などから形成されている(図19参照)。 Further, the displacement core material 8 is formed so as not to yield and fracture before the connecting portion 7d with respect to a tensile load in the bridge axis direction. For example, it is formed from SM400) (see Fig. 19).

座屈拘束材9は、第1および第2変形芯材7A,7Bと変位芯材8の橋軸方向に連続し、第1および第2変形芯材7A,7Bと変位芯材8の全長とほぼ同等の長さを有し、かつ断面略等辺山形状に形成されている。 The buckling restraining material 9 is continuous in the bridge axis direction of the first and second deformed core materials 7A and 7B and the displacement core material 8, and is the total length of the first and second deformed core materials 7A and 7B and the displacement core material 8. It has almost the same length and is formed in a substantially equilateral mountain shape in cross section.

また、第1および第2変形芯材7A,7Bと変位芯材8の軸直角方向の外側に第1および第2変形芯材7A,7Bと変位芯材8を四方から挟み込むように設置されている。そして、第1および第2変形芯材7A,7Bの拡径部7a,7cおよび変位芯材8の拡径部8a,8aの両側面に複数の締付けボルト10aとガイドボルト10bによって接合され、また、拡径部7a,7c間、拡径部7b,7c間および拡径部8a,8a間において、それぞれスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。 Further, the first and second deformed core materials 7A, 7B and the displacement core material 8 are installed so as to sandwich the first and second deformed core materials 7A, 7B and the displacement core material 8 on the outside in the direction perpendicular to the axis. There is. Then, a plurality of tightening bolts 10a and guide bolts 10b are joined to both side surfaces of the enlarged diameter portions 7a, 7c of the first and second deformed core materials 7A, 7B and the enlarged diameter portions 8a, 8a of the displacement core material 8. , Between the enlarged diameter portions 7a and 7c, between the enlarged diameter portions 7b and 7c and between the enlarged diameter portions 8a and 8a, respectively, with spacers 11 interposed therebetween, which are joined to each other by a plurality of tightening bolts 10a.

なお、ガイドボルト10bのボルト孔9aは、橋軸方向に長い長孔に形成されている。また、拡径部8a,8aとスペーサー11間、拡径部8aと7b間に、それぞれ橋軸方向に幅広な遊間Lt,Lcが設けられている。 The bolt hole 9a of the guide bolt 10b is formed as a long hole long in the bridge axis direction. Further, wide clearance Lt and Lc are provided between the enlarged diameter portions 8a and 8a and the spacer 11 and between the enlarged diameter portions 8a and 7b, respectively, in the direction of the bridge axis.

このような構成において、継手部5と継手部6間に作用する橋軸方向の荷重(引張りおよび圧縮荷重)に対し、レベル2に至る大規模の地震エネルギー(想定し得る範囲内で最大規模の地震エネルギー)に対しては、変位芯材8が、継手部5との連結が切り離された状態で橋軸方向に実質的に無抵抗で変位し、座屈拘束材9のボルト孔9aの長孔の範囲内で橋軸方向に相対変位する(図8(a),(b),(c)、図9,10参照)。符号Lt,Lcは、変位芯材8が実施的に無抵抗で変位可能な遊間を示す。 In such a configuration, the large-scale seismic energy up to level 2 (the largest possible range) with respect to the load (tensile and compressive load) in the bridge axis direction acting between the joint portion 5 and the joint portion 6. With respect to seismic energy), the displacement core material 8 is displaced in the direction of the bridge axis with substantially no resistance in a state where the connection with the joint portion 5 is disconnected, and the length of the bolt hole 9a of the buckling restraining material 9 is obtained. Relative displacement in the direction of the bridge axis within the range of the hole (see Figures 8 (a), (b), (c), Figures 9 and 10). The reference numerals Lt and Lc indicate the gaps in which the displacement core material 8 can be displaced without any resistance.

これにより、橋桁1と橋台2間で引張りおよび圧縮荷重の伝達は起こらず、橋桁1の端部と橋台2間に作用するレベル2に至る大規模の地震エネルギーを吸収することができる(図10の荷重-変位設計曲線(1)-(2)-(2)'参照)。 As a result, tensile and compressive loads are not transmitted between the bridge girder 1 and the abutment 2, and large-scale seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 can be absorbed (Fig. 10). Load-displacement design curve (1)-(2)-(2)'see).

また、レベル2を超える想定外の地震エネルギー(大地震)に対し、圧縮荷重に対しては、変位芯材8が継手部方向に座屈拘束材9と相対変位して、変位芯材8の拡径部8aの端部が第2変形芯材7Bの拡径部7bの端部に面タッチする(図8(c)参照)。 Further, in response to an unexpected seismic energy (major earthquake) exceeding level 2, the displacement core material 8 is displaced relative to the buckling restraining material 9 in the joint portion 5 direction with respect to a compressive load, and the displacement core material 8 is displaced. The end of the enlarged diameter portion 8a touches the end of the enlarged diameter portion 7b of the second deformed core material 7B (see FIG. 8 (c)).

そして、変位芯材8、第2変形芯材7Bおよび座屈拘束材9を介して、継手部5と継手部6間、すなわち橋桁1の端部と橋台2間で圧縮荷重が伝達され、第2変形芯材7Bが橋軸圧縮方向に弾性または塑性変形する(図8(d),(e)、図9,10の荷重-変位設計曲線(2)'-(3)'-(4)'-(5)'参照)。これによりレベル2を越える想定外の地震エネルギー(圧縮荷重)を吸収することができる。 Then, the compressive load is transmitted between the joint portion 5 and the joint portion 6, that is, between the end portion of the bridge girder 1 and the abutment 2 via the displacement core material 8, the second deformable core material 7B, and the buckling restraining material 9. 2 Deformation core material 7B is elastically or plastically deformed in the compression direction of the bridge axis (Fig. 8 (d), (e), load-displacement design curve (2)'-(3)'-(4) in Fig. 9 and 10. See'-(5)'). This makes it possible to absorb unexpected seismic energy (compressive load) exceeding level 2.

なお、その際、第1変形芯材7Aと変位芯材8の外側に複数の座屈拘束材9が設置されていることにより、第1変形芯材7Aと変位芯材8が圧縮荷重で座屈することはない。また、連結部7dの上下面部に座屈拘束リブ7fが形成されていることにより、連結部7dも圧縮荷重で座屈することはない。 At that time, since a plurality of buckling restraining materials 9 are installed outside the first deformed core material 7A and the displacement core material 8, the first deformed core material 7A and the displacement core material 8 are seated under a compressive load. Never give in. Further, since the buckling restraining rib 7f is formed on the upper and lower surfaces of the connecting portion 7d, the connecting portion 7d also does not buckle due to the compressive load.

一方、引張り荷重に対しては、第1変形芯材7Aが橋軸引張り方向に弾塑性変形し(図8(f),(g),、図9,10の荷重-変位設計曲線(2)-(3)-(4)参照)、引張り荷重の増大と共に第1変形芯材7Aの連結部7dが弾性または塑性変形する(図9,10の荷重-変位設計曲線(4)-(5)参照)。これによりレベル2を越える想定外の地震エネルギー(引張り荷重)を吸収することができる。また、引張り荷重がPmaxに達した時点で連結部7dが破断することにより(図8(h)、図9,10の荷重-変位設計曲線((5)参照)、致命的な損傷に至るのを未然に防止することができる。 On the other hand, with respect to the tensile load, the first deformed core material 7A undergoes elasto-plastic deformation in the bridge axis tensile direction (load-displacement design curves (2) in FIGS. 8 (f), (g), 9 and 10). -(3)-(4)), the connecting portion 7d of the first deformed core material 7A is elastically or plastically deformed as the tensile load increases (load-displacement design curves (4)-(5) in FIGS. 9 and 10). reference). This makes it possible to absorb unexpected seismic energy (tensile load) exceeding level 2. In addition, when the tensile load reaches Pmax, the connecting portion 7d breaks (see Fig. 8 (h), load-displacement design curve in Fig. 9 and 10 (see (5)), resulting in fatal damage. Can be prevented in advance.

なお、連結部7dは、継手部5と6間に作用する橋軸方向の引張り荷重が予め設定された荷重を越えた時点で破断誘発凹部7eで計画的に破断させることができる。 The connecting portion 7d can be systematically broken at the fracture-inducing recess 7e when the tensile load acting between the joint portions 5 and 6 in the bridge axial direction exceeds a preset load.

[実施形態2]
図11と図12は、本発明の第2の実施形態を図示したものである。図において、各座屈拘束材9が変位芯材8のほぼ中間部で、橋軸方向に座屈拘束材ユニット(以下「ユニット」)9Aと9Bに分割され、かつ各ユニット9Aと9Bが棒状ストッパー12で連結された構成になっている点で、実施形態1の落橋防止材と構成が異なっている。このように構成されていることで、継手部5と6間に作用する想定外の地震エネルギーに対して変位芯材8を塑性変形芯材としても機能させることができる。
[Embodiment 2]
11 and 12 illustrate a second embodiment of the present invention. In the figure, each buckling restraining material 9 is approximately in the middle of the displacement core material 8, and is divided into buckling restraining material units (hereinafter referred to as “units”) 9A and 9B in the bridge axis direction, and the units 9A and 9B are rod-shaped. The structure is different from that of the bridge collapse prevention material of the first embodiment in that the structure is connected by the stopper 12. With such a configuration, the displacement core material 8 can also function as a plastically deformed core material against unexpected seismic energy acting between the joint portions 5 and 6.

詳しく説明すると、各座屈拘束材9は、変位芯材8のほぼ中間部を境に継手部5側のユニット9Aと継手部6側のユニット9Bの2本のユニットから形成されている。各ユニット9Aは、第1および第2変形芯材7A,7Bの拡径部7a,7cの側面に複数の締付けボルト10aとガイドボルト10bによって接合され、また、拡径部7a,7c間および拡径部7b,7c間においてスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。 More specifically, each buckling restraining material 9 is formed of two units, a unit 9A on the joint portion 5 side and a unit 9B on the joint portion 6 side, with the substantially intermediate portion of the displacement core material 8 as a boundary. Each unit 9A is joined to the side surface of the enlarged diameter portions 7a and 7c of the first and second deformed core materials 7A and 7B by a plurality of tightening bolts 10a and guide bolts 10b, and between the enlarged diameter portions 7a and 7c and expanded. A spacer 11 is interposed between the diameter portions 7b and 7c, and the spacers 11 are joined to each other by a plurality of tightening bolts 10a.

ユニット9Bは、変位芯材8の継手部6側に位置する拡径部8aの側面にガイドボルト10bによって接合され、かつ拡径部8a,8a間においてスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。 The unit 9B is joined to the side surface of the enlarged diameter portion 8a located on the joint portion 6 side of the displacement core material 8 by a guide bolt 10b, and a spacer 11 is interposed between the enlarged diameter portions 8a and 8a to accommodate a plurality of tightening bolts 10a. Joined to each other by.

棒状ストッパー12は、ユニット9Aと9B間の離間距離を制御するための制御部材であり、各ユニット9Aおよびユニット9Bの軸直角方向の外側に橋軸方向とほぼ平行に設置され、かつユニット9Aおよび9Bの両方向に所定長延長されている。 The rod-shaped stopper 12 is a control member for controlling the separation distance between the units 9A and 9B, and is installed on the outside of each unit 9A and the unit 9B in the direction perpendicular to the axis direction substantially parallel to the bridge axis direction, and the unit 9A and the unit 9B. It is extended by a predetermined length in both directions of 9B.

各棒状ストッパー12のユニット9B側の端部12bは、ユニット9Bの側部に突設された定着用リブ13に固定され、ユニット9A側の端部12aは、ユニット9Aの側部に突設された定着用リブ14に形成されたルーズ孔(図省略)を貫通し、先端部12aに抜止めストッパー15が取り付けられている。 The end portion 12b on the unit 9B side of each rod-shaped stopper 12 is fixed to the fixing rib 13 projecting from the side portion of the unit 9B, and the end portion 12a on the unit 9A side projects from the side portion of the unit 9A. A loose hole (not shown) formed in the fixing rib 14 is penetrated, and a retaining stopper 15 is attached to the tip portion 12a.

なお、棒状ストッパー12には長ボルト、抜止めストッパー15にはナットがそれぞれ用いられている。また、抜止めストッパー15にゴムなどの緩衝材(図省略)を取り付けることで、ユニット9Aと9B間の離間制限時に緩衝効果を高めることができる。 A long bolt is used for the rod-shaped stopper 12, and a nut is used for the retaining stopper 15. Further, by attaching a cushioning material such as rubber (not shown) to the retaining stopper 15, the cushioning effect can be enhanced when the separation between the units 9A and 9B is restricted.

このような構成において、継手部5と継手部6間に作用する橋軸方向の荷重(引張りおよび圧縮荷重)に対し、レベル2に至る規模の地震エネルギーに対しては、変位芯材8が、継手部5との連結が切り離された状態で橋軸方向に実質的に無抵抗で変位し、座屈拘束材9のボルト孔9aの長孔の範囲内で橋軸方向に相対変位する(図8(a),(b),(c)参照)。 In such a configuration, the displacement core material 8 is used for seismic energy up to level 2 with respect to the load (tensile and compressive load) in the bridge axis direction acting between the joint portion 5 and the joint portion 6. With the connection with the joint portion 5 disconnected, the displacement is substantially non-resistive in the direction of the bridge axis, and the displacement is relatively displaced in the direction of the bridge axis within the range of the elongated hole of the bolt hole 9a of the buckling restraining material 9 (FIG. 8 (a), (b), (c)).

これにより、橋桁1と橋台2間で引張りおよび圧縮荷重の伝達は起こらず、橋桁1の端部と橋台2間に作用するレベル2に至る規模の地震エネルギーを吸収することができる(図12の荷重-変位設計曲線(1)-(2)-(2)'参照)。 As a result, tensile and compressive loads are not transmitted between the bridge girder 1 and the abutment 2, and seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 can be absorbed (Fig. 12). Load-displacement design curve (1)-(2)-see (2)').

また、レベル2を超える想定外の地震エネルギー(大地震)に対し、圧縮荷重に対しては、変位芯材8が継手部方向に座屈拘束材9と相対変位して、拡径部8aの端部が第2変形芯材7Bの拡径部7bの端部に面タッチする(図8(c)参照)。 Further, for unexpected seismic energy (major earthquake) exceeding level 2, the displacement core material 8 is displaced relative to the buckling restraining material 9 in the joint portion 5 direction with respect to the compressive load, and the diameter expansion portion 8a The end of the second deformed core material 7B touches the end of the enlarged diameter portion 7b (see FIG. 8 (c)).

そして、変位芯材8、第2変形芯材7Bおよび座屈拘束材9を介して、継手部5と継手部6間、すなわち橋桁1の端部と橋台2間で圧縮荷重が伝達され、第2変形芯材7Bが橋軸圧縮方向に弾性または塑性変形する(図12の荷重-変位設計曲線(2)'-(3)'-(4)'-(5)'-(6)'参照)。これによりレベル2を越える想定外の地震エネルギー(圧縮荷重)を吸収することができる。 Then, the compressive load is transmitted between the joint portion 5 and the joint portion 6, that is, between the end portion of the bridge girder 1 and the abutment 2 via the displacement core material 8, the second deformable core material 7B, and the buckling restraining material 9. 2 Deformation The core material 7B is elastically or plastically deformed in the compression direction of the bridge axis (see the load-displacement design curve (2)'-(3)'-(4)'-(5)'-(6)' in Fig. 12). ). This makes it possible to absorb unexpected seismic energy (compressive load) exceeding level 2.

一方、引張り荷重に対しては、第1変形芯材7Aが橋軸引張り方向に弾塑性変形する(図12の荷重-変位設計曲線(2)-(3)-(4))し、さらに、引張り荷重が設計荷重Py2に達すると(図12の荷重-変位設計曲線(4)-(5))、変位芯材8が軸降伏して塑性変形することで衝撃吸収に寄与する。また、引張り荷重が設計最大荷重Pmaxに達した時点で継手部5側の連結部7dが破断することにより(図12の荷重-変位設計曲線(5)-(6)参照)、致命的な損傷に至るのを未然に防止することができる。 On the other hand, with respect to the tensile load, the first deformed core material 7A undergoes elasto-plastic deformation in the bridge axis tensile direction (load-displacement design curve (2)-(3)-(4) in Fig. 12), and further. When the tensile load reaches the design load Py2 (load-displacement design curve (4)-(5) in FIG. 12), the displacement core material 8 yields and plastically deforms, which contributes to shock absorption. In addition, when the tensile load reaches the design maximum load Pmax, the connecting portion 7d on the joint portion 5 side breaks (see the load-displacement design curve (5)-(6) in Fig. 12), resulting in fatal damage. Can be prevented in advance.

なお、変位芯材8と座屈拘束材9間の相対変位がボルト孔9aの長孔の範囲を超えた時点で、継手部5と継手部6間に作用する橋軸方向の引張り荷重は、座屈拘束材9を介して変位芯材8に伝達される。また、ユニット9Aと9B間に棒状ストッパー12が設置されていることにより、変位芯材8が第1変形芯材7Aの連結部7dより先に破断してしまうことはない。但し、設計制御として耐力の階層化を行うことで棒状ストッパー12の軸部を破断させることは可能である。 When the relative displacement between the displacement core material 8 and the buckling restraining material 9 exceeds the range of the elongated hole of the bolt hole 9a, the tensile load in the bridge axial direction acting between the joint portion 5 and the joint portion 6 is determined. It is transmitted to the displacement core material 8 via the buckling restraining material 9. Further, since the rod-shaped stopper 12 is installed between the units 9A and 9B, the displacement core material 8 does not break before the connecting portion 7d of the first deformed core material 7A. However, it is possible to break the shaft portion of the rod-shaped stopper 12 by layering the yield strength as design control.

[実施形態3]
図13と図14は、本発明の第3の実施形態を図示したものである。図において、各座屈拘束材9が第1変形芯材7Aのほぼ中間部で、橋軸方向に座屈拘束材ユニット(以下「ユニット」)9Aと9Bに分割され、かつユニット9Aと9Bが棒状ストッパー12で連結された構成になっている点でのみ、実施形態1の落橋防止材と構成が異なっている。
[Embodiment 3]
13 and 14 illustrate a third embodiment of the present invention. In the figure, each buckling restraining material 9 is approximately in the middle of the first deformed core material 7A, and is divided into buckling restraining material units (hereinafter referred to as “units”) 9A and 9B in the bridge axis direction, and the units 9A and 9B are divided into units 9A and 9B. The configuration is different from the bridge collapse prevention material of the first embodiment only in that the configuration is connected by the rod-shaped stopper 12.

詳しく説明すると、各座屈拘束材9は、第1変形芯材7Aのほぼ中間部を境に継手部5側のユニット9Aと継手部6側のユニット9Bの2本のユニットより形成されている。 More specifically, each buckling restraining material 9 is formed of two units, a unit 9A on the joint portion 5 side and a unit 9B on the joint portion 6 side, with the substantially intermediate portion of the first deformed core material 7A as a boundary. ..

各ユニット9Aは、第1変形芯材7Aの継手部5側の拡径部7aの側面部に複数の締付けボルト10aによって接合され、かつ拡径部7a,7c間においてスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。 Each unit 9A is joined to the side surface of the enlarged diameter portion 7a on the joint portion 5 side of the first deformed core material 7A by a plurality of tightening bolts 10a, and a spacer 11 is interposed between the enlarged diameter portions 7a and 7c. They are joined to each other by the tightening bolts 10a of.

各ユニット9Bは、第1および第2変形芯材7A,7B間の拡径部7cの側面部および変位芯材8の継手部6側に位置する拡径部8aの側面に複数の締付けボルト10aとガイドボルト10bによって接合され、かつ第2変形芯材7Bの拡径部7b,7c間と変位芯材8の拡径部8a,8a間においてスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。ガイドボルト10bのボルト孔9aは橋軸方向に長軸を有する長孔に形成されている。 Each unit 9B has a plurality of tightening bolts 10a on the side surface of the enlarged diameter portion 7c between the first and second deformed core materials 7A and 7B and on the side surface of the enlarged diameter portion 8a located on the joint portion 6 side of the displacement core material 8. The spacer 11 is interposed between the enlarged diameter portions 7b and 7c of the second deformed core material 7B and between the enlarged diameter portions 8a and 8a of the displacement core material 8 and is joined to each other by a plurality of tightening bolts 10a. It is joined. The bolt hole 9a of the guide bolt 10b is formed in a long hole having a long axis in the direction of the bridge axis.

棒状ストッパー12は、ユニット9Aと9B間の離間距離を制御するための制御部材であり、各ユニット9Aおよびユニット9Bの軸直角方向の外側に橋軸方向とほぼ平行に設置され、かつユニット9Aおよび9Bの両方向に所定長延長されている。 The rod-shaped stopper 12 is a control member for controlling the separation distance between the units 9A and 9B, and is installed on the outside of each unit 9A and the unit 9B in the direction perpendicular to the axis direction substantially parallel to the bridge axis direction, and the unit 9A and the unit 9B. It is extended by a predetermined length in both directions of 9B.

各棒状ストッパー12のユニット9B側の端部12bは、ユニット9Bの側部に突設された定着用リブ13に固定され、ユニット9A側の端部12aは、ユニット9Aの側部に突設された定着用リブ14に形成されたルーズ孔(図省略)を貫通し、その先端部12aに抜止めストッパー15が取り付けられている。 The end portion 12b on the unit 9B side of each rod-shaped stopper 12 is fixed to the fixing rib 13 projecting from the side portion of the unit 9B, and the end portion 12a on the unit 9A side projects from the side portion of the unit 9A. A loose hole (not shown) formed in the fixing rib 14 is penetrated, and a retaining stopper 15 is attached to the tip portion 12a thereof.

なお、棒状ストッパー12には長ボルト、抜止めストッパー15にはナットがそれぞれ用いられている。また、抜止めストッパー15にゴムなどの緩衝材(図省略)を取り付けることで、変位制限時に緩衝効果を高めることができる。 A long bolt is used for the rod-shaped stopper 12, and a nut is used for the retaining stopper 15. Further, by attaching a cushioning material such as rubber (not shown) to the retaining stopper 15, the cushioning effect can be enhanced when the displacement is limited.

このような構成において、継手部5と継手部6間に作用する橋軸方向の荷重(引張りおよび圧縮荷重)に対し、レベル2に至る規模の地震エネルギーに対しては、変位芯材8が、継手部5との連結が切り離された状態で橋軸方向に実質的に無抵抗で変位し、座屈拘束材9のボルト孔9aの長孔の範囲内で橋軸方向に相対変位する(図8(a),(b),(c)参照)。 In such a configuration, the displacement core material 8 is used for seismic energy up to level 2 with respect to the load (tensile and compressive load) in the bridge axis direction acting between the joint portion 5 and the joint portion 6. With the connection with the joint portion 5 disconnected, the displacement is substantially non-resistive in the direction of the bridge axis, and the displacement is relatively displaced in the direction of the bridge axis within the range of the elongated hole of the bolt hole 9a of the buckling restraining material 9 (FIG. 8 (a), (b), (c)).

これにより、橋桁1と橋台2間で引張りおよび圧縮荷重の伝達は起こらず、橋桁1の端部と橋台2間に作用するレベル2に至る規模の地震エネルギーを吸収することができる(図14の荷重-変位設計曲線(1)-(2)-(2)'参照)。 As a result, tensile and compressive loads are not transmitted between the bridge girder 1 and the abutment 2, and seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 can be absorbed (Fig. 14). Load-displacement design curve (1)-(2)-see (2)').

また、レベル2を超える想定外の地震エネルギー(大地震)に対し、圧縮荷重に対しては、変位芯材8が継手部方向に座屈拘束材9と相対変位して、変位芯材8の拡径部8aの端部が第2変形芯材7Bの拡径部7bの端部に面タッチする(図8(c)参照)。 Further, in response to an unexpected seismic energy (major earthquake) exceeding level 2, the displacement core material 8 is displaced relative to the buckling restraining material 9 in the joint portion 5 direction with respect to a compressive load, and the displacement core material 8 is displaced. The end of the enlarged diameter portion 8a touches the end of the enlarged diameter portion 7b of the second deformed core material 7B (see FIG. 8 (c)).

そして、変位芯材8、第2変形芯材7Bおよび座屈拘束材9を介して、継手部5と継手部6間、すなわち橋桁1の端部と橋台2間で圧縮荷重が伝達されることにより、第2変形芯材7Bが橋軸圧縮方向に弾性または塑性変形する(図14の荷重-変位設計曲線(2)'-(3)'-(4)'-(5)'参照)。 Then, the compressive load is transmitted between the joint portion 5 and the joint portion 6, that is, between the end portion of the bridge girder 1 and the abutment 2 via the displacement core material 8, the second deformable core material 7B, and the buckling restraining material 9. As a result, the second deformed core material 7B is elastically or plastically deformed in the compression direction of the bridge axis (see the load-displacement design curve (2)'-(3)'-(4)'-(5)' in FIG. 14).

一方、引張り荷重に対しては、第1変形芯材7Aと変位芯材8が橋軸引張り方向に弾塑性変形し(図14の荷重-変位設計曲線(2)-(3)-(4)参照)、さらに、ユニット9Aと9B間の離間距離が変位制御されると荷重が立ち上がり、最終的に設計最大荷重Pmaxに達した時点で継手部5側の連結部7dが破断することにより(図14の荷重-変位設計曲線(4)-(5)参照)、致命的な損傷に至るのを未然に防止することができる。 On the other hand, with respect to the tensile load, the first deformed core material 7A and the displacement core material 8 are elasto-plastically deformed in the bridge axis tensile direction (load-displacement design curve (2)-(3)-(4) in FIG. 14). (See), and when the separation distance between the units 9A and 9B is controlled by displacement, the load rises, and when the maximum design load Pmax is finally reached, the connecting part 7d on the joint part 5 side breaks (Fig.). 14 Load-Displacement Design Curves (4)-(5)), can prevent fatal damage.

なお、変位芯材8と座屈拘束材9間の相対変位がボルト孔9aの長孔の範囲を超えた時点で、継手部5と継手部6間に作用する橋軸方向の引張り荷重は、座屈拘束材9を介して変位芯材8に伝達される。また、ユニット9Aと9B間に棒状ストッパー12が設置されていることにより、第1変形芯材7Aが連結部7dより先に破断してしまうことはない。 When the relative displacement between the displacement core material 8 and the buckling restraining material 9 exceeds the range of the elongated hole of the bolt hole 9a, the tensile load in the bridge axial direction acting between the joint portion 5 and the joint portion 6 is determined. It is transmitted to the displacement core material 8 via the buckling restraining material 9. Further, since the rod-shaped stopper 12 is installed between the units 9A and 9B, the first deformable core material 7A does not break before the connecting portion 7d.

[実施形態4]
図15と図16は、本発明の第4の実施形態である。図において、変位芯材8に代えて変形芯材16が設置され、また、第1変形芯材7Aの弾塑性変形領域を広く設定することによりダンパー機能が付与されている点で実施形態1の落橋防止材と異なっている。
[Embodiment 4]
15 and 16 are the fourth embodiments of the present invention. In the figure, the first modified core material 7A is provided with a damper function by setting a wide elasto-plastic deformation region in place of the deformed core material 16 instead of the displacement core material 8. It is different from the bridge collapse prevention material.

詳しく説明すると、第1変形芯材7Aは、第2変形芯材7Bおよび変形芯材16より長尺に形成され、これにより第1変形芯材7Aの弾塑性変形領域が広くなり、継手部5と6間に作用する地震エネルギーを減衰させるダンパー機能を備えている。それ以外については、第1変形芯材7Aと基本的に同一に形成されている。 More specifically, the first deformed core material 7A is formed to be longer than the second deformed core material 7B and the deformed core material 16, whereby the elasto-plastic deformation region of the first deformed core material 7A becomes wider, and the joint portion 5 It has a damper function that attenuates the seismic energy that acts between and 6. Other than that, it is basically formed in the same shape as the first deformable core material 7A.

また、変形芯材16は、橋軸方向に細長く連続する断面略十字形状に形成され、かつ橋軸方向の両端部に拡径部16a,16aが形成されており、基本的に変位芯材8とほぼ同じ形状に形成されている。 Further, the deformed core material 16 is formed in a substantially cross-shaped cross section that is elongated and continuous in the bridge axis direction, and enlarged diameter portions 16a and 16a are formed at both ends in the bridge axis direction, and basically the displacement core material 8 is formed. It is formed in almost the same shape as.

また、変形芯材16は、第2変形芯材7Bの継手部6側に第2変形芯材7Bと隣接して設置され、継手部6側の端部に拡径部16aと同じ幅で継手部6側に延びる平板状の連結部16bが形成され、連結部16bは継手部6に回転自在に連結されている。 Further, the deformed core material 16 is installed adjacent to the second deformed core material 7B on the joint portion 6 side of the second deformed core material 7B, and is joined at the end portion on the joint portion 6 side with the same width as the enlarged diameter portion 16a. A flat plate-shaped connecting portion 16b extending to the portion 6 side is formed, and the connecting portion 16b is rotatably connected to the joint portion 6.

さらに、継手部5と継手部6間に作用する橋軸方向の引張り荷重に対して、第1変形芯材7Aの連結部7dより先に降伏破断しないように形成され、例えば、連結部7dより大断面径に形成されているか、或いは普通鋼(例えば、SM400)などから形成されている(図19参照)。 Further, it is formed so as not to yield and break before the connecting portion 7d of the first deformed core material 7A with respect to the tensile load in the bridge axis direction acting between the joint portion 5 and the joint portion 6, for example, from the connecting portion 7d. It is formed to have a large cross-sectional diameter or is made of ordinary steel (eg, SM400) (see FIG. 19).

なお、これらの部材は、設計の要求性能に応じて適宜選択、または組み合わせて使用することが望ましく、例えば同じ鋼材でも普通鋼あるいは低降伏点鋼や形状記憶合金では鋼材の降伏応力、伸び性能に違いがある(図18参照)。また、低ひずみの繰り返しを受ける場合は、これらの累積損傷度の度合いを主眼にした選定が望ましい。 It is desirable to select or combine these members as appropriate according to the required performance of the design. For example, even if the same steel material is used, the yield stress and elongation performance of the steel material can be improved with ordinary steel, low yield point steel, and shape memory alloy. There is a difference (see Figure 18). In addition, when receiving repeated low strains, it is desirable to select based on the degree of cumulative damage.

また、これらの部材断面の強度の階層化を行うことにより、塑性化させる順番を設計制御することが可能となる。例えば、同一鋼材の選定をした場合に断面積は、第1変形芯材7Aが一番小さく、続いて変形芯材16、第1変形芯材7Aの連結部7dの順で大きく、連結部16bの断面積が一番大きくなるように形成することで、これらの部材をこの順番で弾塑性変形させることができる。 Further, by layering the strength of these member cross sections, it is possible to design and control the order of plasticization. For example, when the same steel material is selected, the cross-sectional area of the first deformed core material 7A is the smallest, followed by the deformed core material 16 and the connecting portion 7d of the first deformed core material 7A, in that order, and the connecting portion 16b. By forming the members so as to have the largest cross-sectional area, these members can be elasto-plastically deformed in this order.

このような構成において、レベル2に至る規模の地震エネルギーに対しては、継手部5と継手部6間に作用する橋軸方向の軸力(引張りおよび圧縮荷重)に対し、第1変形芯材7Aが弾塑性変形する(図16の荷重-変位設計曲線(1)-(2)-(3) (4)-(5)-(6) -(7)参照)。これにより、継手部5と継手部6間に作用するレベル2に至る大規模の地震エネルギーを吸収することができる。 In such a configuration, for seismic energy up to level 2, the first deformed core material is subjected to the axial force (tensile and compressive load) in the bridge axial direction acting between the joint portion 5 and the joint portion 6. 7A undergoes elasto-plastic deformation (see Load-Displacement Design Curve (1)-(2)-(3) (4)-(5)-(6)-(7) in Fig. 16). As a result, it is possible to absorb a large-scale seismic energy up to level 2 acting between the joint portion 5 and the joint portion 6.

また、レベル2を越える想定外の地震エネルギーに対し、圧縮荷重に対しては、変形芯材16がボルト孔9aの長孔の範囲で継手部5方向に座屈拘束材9と相対変位することにより、変形芯材16の拡径部16aの端部が第2変形芯材7Bの拡径部7bの端部に面タッチする(図8(c)参照)。 Further, for unexpected seismic energy exceeding level 2, the deformed core material 16 is displaced relative to the buckling restraining material 9 in the joint portion 5 direction within the range of the elongated hole of the bolt hole 9a with respect to the compressive load. As a result, the end of the enlarged diameter portion 16a of the deformed core material 16 touches the end of the enlarged diameter portion 7b of the second deformed core material 7B (see FIG. 8 (c)).

そして、変形芯材16、第2変形芯材7Bおよび座屈拘束材9を介して、継手部5と継手部6間、すなわち橋桁1の端部と橋台2間で圧縮荷重が伝達され、第2変形芯材7Bが橋軸圧縮方向に弾性または塑性変形する(図16の荷重-変位設計曲線(8)'-(9)'-(10)'参照)。これによりレベル2を越える想定外の地震エネルギー(圧縮荷重)を吸収することができる。 Then, the compressive load is transmitted between the joint portion 5 and the joint portion 6, that is, between the end portion of the bridge girder 1 and the abutment base 2 via the deformable core material 16, the second deformable core material 7B, and the buckling restraining material 9. 2 Deformation The core material 7B is elastically or plastically deformed in the compression direction of the bridge axis (see the load-displacement design curve (8)'-(9)'-(10)' in Fig. 16). This makes it possible to absorb unexpected seismic energy (compressive load) exceeding level 2.

一方、引張り荷重に対しては、変形芯材16が長孔16aの範囲で橋軸引張り方向に弾塑性変形し(図16の荷重-変位設計曲線(3)-(8)-(9)参照)、さらに、第1変形芯材7Aの連結部7dが弾性または塑性変形する(図16の荷重-変位設計曲線(9)-(10)参照)。これによりレベル2を越える想定外の地震エネルギー(引張り荷重)を吸収することができる。また、引張り荷重がPmaxに達した時点で連結部7dが破断することにより、致命的な損傷に至るのを未然に防止することができる。 On the other hand, with respect to the tensile load, the deformed core material 16 elastically deforms in the bridge axis tensile direction within the range of the elongated hole 16a (see the load-displacement design curve (3)-(8)-(9) in Fig. 16). ), Further, the connecting portion 7d of the first deformed core material 7A is elastically or plastically deformed (see the load-displacement design curve (9)-(10) in FIG. 16). This makes it possible to absorb unexpected seismic energy (tensile load) exceeding level 2. Further, when the tensile load reaches Pmax, the connecting portion 7d breaks, so that it is possible to prevent fatal damage from occurring.

なお、第1変形芯材7Aの弾塑性変形がボルト孔9aの範囲を超えた時点で、継手部5と継手部6間に作用する引張り荷重は座屈拘束材9を介して変形芯材16に伝達される。 When the elasto-plastic deformation of the first deformed core material 7A exceeds the range of the bolt hole 9a , the tensile load acting between the joint portion 5 and the joint portion 6 is applied to the deformed core material 16 via the buckling restraining material 9. Is transmitted to.

[実施形態5]
図17は、本発明の第5の実施形態であり、第4の実施形態において、各座屈拘束材9を変形芯材16のほぼ中間部で、橋軸方向に2本の座屈拘束ユニットに分割すると共に、各ユニットどうしをユニット間の離間を制御する棒状ストッパーでそれぞれ連結した場合の設計事例であり、荷重-変位設計曲線を示している。
[Embodiment 5]
FIG. 17 is a fifth embodiment of the present invention. In the fourth embodiment, each buckling restraining material 9 is placed at a substantially intermediate portion of the deformed core material 16 and two buckling restraining units are provided in the bridge axial direction. It is a design example in the case where each unit is connected to each other by a rod-shaped stopper that controls the separation between the units, and the load-displacement design curve is shown.

[実施形態6]
図18は、本発明の第6の実施形態であり、第4の実施形態において、変形芯材16に代えて実施形態1における変位芯材8を設置することにより、無抵抗で軸方向に変位する遊間領域を設定した場合の設計事例であり、荷重-変位設計曲線を示している。
[Embodiment 6]
FIG. 18 is a sixth embodiment of the present invention. In the fourth embodiment, the displacement core material 8 in the first embodiment is installed in place of the deformed core material 16, so that the displacement core material 8 is displaced in the axial direction without resistance. This is a design example when the clearance area is set, and the load-displacement design curve is shown.

本発明は、地震時の引張りおよび圧縮両方向の荷重に対する変形能力およびエネルギー吸収能力がきわめて大きく、想定し得る範囲内で最大規模の地震(レベル2の地震動)に対してだけでなく、レベル2の範囲を超える想定外の大地震に対しても対応が可能で、例えば、橋桁の端部と橋桁端部を支える橋台との間に取り付けられる落橋防止材として用いることができる。 The present invention has extremely large deformation capacity and energy absorption capacity for loads in both tensile and compressive directions during an earthquake, and is not only for the largest possible earthquake (level 2 seismic motion) but also for level 2 earthquakes. It can respond to unexpected large earthquakes that exceed the range, and can be used as a bridge collapse prevention material installed between the end of the bridge girder and the abutment that supports the end of the bridge girder, for example.

1 橋桁の端部
2 橋台
3 落橋防止材(機能分離型衝撃吸収装置)
4 支承
5 継手部
6 継手部
7A 第1変形芯材(軸方向変形部材)
7B 第2変形芯材(軸方向変形部材)
7a 拡径部
7b 拡径部
7c 拡径部
7d 連結部
7e 破断誘発凹部(破断誘発部)
7f 座屈拘束リブ
8 変位芯材(軸方向変位部材)
8a 拡径部
8b 連結部
9 座屈拘束材
9A ユニット(座屈拘束材ユニット)
9B ユニット(座屈拘束材ユニット)
9a ボルト孔
10a 締付けボルト
10b ガイドボルト
11 スペーサー
12 棒状ストッパー
13 定着用リブ
14 定着用リブ
15 抜止めストッパー
16 変形芯材(軸方向変形部材)
16a 拡径部
16b 連結部
17 伸縮装置
1 End of bridge girder 2 Abutment 3 Collapse prevention material (function separation type shock absorber)
4 Bearings 5 Fittings 6 Fittings
7A 1st deformable core material (axially deformable member)
7B 2nd deformable core material (axially deformable member)
7a Enlarged diameter part
7b Enlarged diameter part
7c Enlarged diameter part
7d connection
7e Break-inducing recess (break-inducing part)
7f Buckling restraint rib 8 Displacement core material (axial displacement member)
8a Enlarged diameter part
8b Connection 9 Buckling restraint
9A unit (buckling restraint unit)
9B unit (buckling restraint unit)
9a bolt holes
10a tightening bolt
10b guide bolt
11 Spacer
12 Rod stopper
13 Fixing rib
14 Fixing ribs
15 Retaining stopper
16 Deformed core material (axially deforming member)
16a Enlarged diameter part
16b Connection
17 Telescopic device

Claims (7)

エネルギー吸収材としての変形芯材の材軸方向両端部に断面が拡大された継手部を有し、前記継手部を除く前記変形芯材を四方より座屈拘束材で挟み込んで、前記変形芯材の座屈を拘束するとともに、前記変形芯材と前記座屈拘束材とは、材軸直角方向に貫通する締付けボルトにより接合され、材軸方向の相対移動を拘束した固定部と、前記座屈拘束材に形成された長孔を材軸直角方向に貫通するガイドボルトによって接合され、前記長孔の長さの範囲内で材軸方向の相対移動を許容する可動部とを備え、両端の前記継手部間に作用する引張りおよび圧縮荷重を受けて材軸方向に伸縮する棒状の衝撃吸収装置において、
前記変形芯材の同一材軸線上に、材軸方向の引張り荷重を受けて弾塑性変形しつつ、あらかじめ設定された上限の変位において変位が拘束される構成とした引張り側の第1の変位区間と、前記設定された上限の変位において前記引張り側の第1の変位区間における変位が拘束された状態で、材軸方向の引張り荷重を受けて弾性変形または弾塑性変形する引張り側の第2の変位区間と、材軸方向の圧縮荷重を受けて弾塑性変形する圧縮側の変位区間とを設定し、
前記引張り側の第1の変位区間の一端には材軸直角方向に貫通する締付けボルトにより前記座屈拘束材と接合され、材軸方向の相対移動を拘束した固定部が形成され、他端には前記座屈拘束材に形成された長孔を材軸直角方向に貫通するガイドボルトによって接合され、前記長孔の長さの範囲内で材軸方向の相対移動を許容しつつ前記長孔の端部で材軸方向の変位が拘束される可動部が形成され、
前記引張り側の第2の変位区間の一端には材軸直角方向に貫通する締付けボルトにより前記座屈拘束材と接合され、材軸方向の相対移動を拘束した固定部が形成され、他端には材軸方向の相対移動を許容する可動部が形成され、
前記圧縮側の変位区間の一端には材軸直角方向に貫通する締付けボルトにより前記座屈拘束材と接合され、材軸方向の相対移動を拘束した固定部が形成され、他端には材軸方向の相対移動を許容する可動部が形成され、
ていることを特徴とする機能分離型衝撃吸収装置。
The deformed core material as an energy absorbing material has joints with enlarged cross sections at both ends in the axial direction, and the deformed core material excluding the joints is sandwiched between buckling restraining materials from all sides to form the deformed core material. The deformed core material and the buckling restraining material are joined by a tightening bolt penetrating in the direction perpendicular to the material axis to restrain the relative movement in the material axis direction, and the buckling. The elongated hole formed in the restraining material is joined by a guide bolt penetrating in the direction perpendicular to the material axis, and is provided with a movable portion that allows relative movement in the material axis direction within the range of the length of the elongated hole. In a rod-shaped shock absorber that expands and contracts in the direction of the material axis in response to the tensile and compressive loads acting between the joints.
The first displacement section on the tension side is configured so that the displacement is constrained at the preset upper limit displacement while being elasto-plastically deformed on the same material axis of the deformed core material by receiving a tensile load in the material axis direction. And, in a state where the displacement in the first displacement section on the tension side is constrained by the displacement of the set upper limit, the second displacement on the tension side undergoes elastic deformation or elasto-plastic deformation by receiving a tensile load in the material axial direction. Set the displacement section and the displacement section on the compression side that undergoes elasto-plastic deformation by receiving a compressive load in the material axis direction.
At one end of the first displacement section on the pulling side, a fixing portion is formed by being joined to the buckling restraining material by a tightening bolt penetrating in the direction perpendicular to the material axis to restrain the relative movement in the material axis direction, and at the other end. Is joined by a guide bolt penetrating the long hole formed in the buckling restraining material in the direction perpendicular to the material axis, and the long hole is allowed to move relative to the material axis within the range of the length of the long hole. A movable part is formed at the end where the displacement in the material axis direction is constrained.
At one end of the second displacement section on the pulling side, a fixing portion is formed by being joined to the buckling restraining material by a tightening bolt penetrating in the direction perpendicular to the material axis to restrain the relative movement in the material axis direction, and at the other end. Is formed with a movable part that allows relative movement in the material axis direction.
One end of the displacement section on the compression side is joined to the buckling restraining material by a tightening bolt penetrating in the direction perpendicular to the material axis to form a fixing portion that restrains the relative movement in the material axis direction, and the other end is the material shaft. A movable part that allows relative movement in the direction is formed,
A function-separated shock absorber characterized by being
請求項1記載の機能分離型衝撃吸収装置において、前記変形芯材の第2の変位区間は、引張り荷重を受けて弾塑性変形しつつ、あらかじめ設定された上限の変位において変位が拘束される構成とし、かつ前記第2の変位区間があらかじめ設定された上限の変位において拘束された状態で、材軸方向の引張り荷重を受けて弾性変形または弾塑性変形する引張り側の第3の変位区間を前記変形芯材の同一材軸線上に備えていることを特徴とする機能分離型衝撃吸収装置。 In the function-separated type shock absorber according to claim 1 , the second displacement section of the deformed core material is configured to be elastically deformed by receiving a tensile load, and the displacement is constrained at a preset upper limit displacement. And, in a state where the second displacement section is constrained by the preset upper limit displacement, the third displacement section on the tension side which is elastically deformed or elasto-plastically deformed by receiving a tensile load in the material axial direction is described above. A function-separated shock absorber characterized by being provided on the same material axis of the deformed core material . 請求項1または2記載の機能分離型衝撃吸収装置において、前記衝撃吸収装置を構成する変位芯材が、引張りおよび圧縮荷重を受けて、前記継手部の一方との連結が切り離された状態で実質的に無抵抗で軸引張り方向および軸圧縮方向に変位する遊間領域として設定される変位区間を前記変形芯材の同一材軸線上に備えていることを特徴とする機能分離型衝撃吸収装置。 In the function-separated type impact absorber according to claim 1 or 2, the displacement core material constituting the impact absorber is substantially disconnected from one of the joint portions by receiving a tensile and compressive load. A function-separated impact absorbing device characterized in that a displacement section set as a clearance region that is displaced in the axial tension direction and the axial compression direction without resistance is provided on the same material axis of the deformed core material . 請求項1~3の何れか一項に記載の機能分離型衝撃吸収装置において、前記変形芯材の第1,第2または第3の変位区間に、設定された引張り荷重で破断する破断誘発部が設けられていることを特徴とする機能分離型衝撃吸収装置。 In the function-separated impact absorbing device according to any one of claims 1 to 3, a fracture-inducing portion that breaks with a set tensile load in the first, second, or third displacement sections of the deformed core material. A function-separated shock absorber characterized by being provided with. 請求項1~4の何れかに記載の機能分離型衝撃吸収装置において、前記変形芯材の第1、第2および/または第3の変位区間の材料として、形状記憶合金または低降伏点鋼を用いていることを特徴とする機能分離型衝撃吸収装置。 In the function-separated shock absorber according to any one of claims 1 to 4, a shape memory alloy or a low yield point steel is used as a material for the first, second and / or third displacement sections of the deformed core material. A function-separated shock absorber characterized by being used. レベル2地震動以上の地震動で支承の破壊を許容する構成とした橋梁の下部工と上部工との間に、請求項1~5の何れか一項に記載の機能分離型衝撃吸収装置が介在されていることを特徴とする機能分離型衝撃吸収装置を備えた橋梁。 The function-separated shock absorber according to any one of claims 1 to 5 is interposed between the substructure and the superstructure of the bridge having a structure that allows the destruction of the bearing due to a ground motion of level 2 or higher. A bridge equipped with a function-separated shock absorber. 請求項6記載の機能分離型衝撃吸収装置を備えた橋梁において、レベル2地震動以上の地震動であって、前記支承が破壊する地震動以下の地震動で、前記機能分離型衝撃吸収装置が破壊することを許容するように前記変形芯材の変位区間が設定されていることを特徴とする機能分離型衝撃吸収装置を備えた橋梁。 In the bridge provided with the function-separated shock absorber according to claim 6, the function-separated shock absorber is destroyed by a ground motion of level 2 or higher and a ground motion equal to or less than the ground motion destroyed by the bearing. A bridge provided with a function-separated shock absorber, characterized in that the displacement section of the deformed core material is set to allow it.
JP2017153324A 2017-08-08 2017-08-08 A bridge equipped with a function-separated shock absorber and a function-separated shock absorber Active JP7017879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153324A JP7017879B2 (en) 2017-08-08 2017-08-08 A bridge equipped with a function-separated shock absorber and a function-separated shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153324A JP7017879B2 (en) 2017-08-08 2017-08-08 A bridge equipped with a function-separated shock absorber and a function-separated shock absorber

Publications (2)

Publication Number Publication Date
JP2019031827A JP2019031827A (en) 2019-02-28
JP7017879B2 true JP7017879B2 (en) 2022-02-09

Family

ID=65523085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153324A Active JP7017879B2 (en) 2017-08-08 2017-08-08 A bridge equipped with a function-separated shock absorber and a function-separated shock absorber

Country Status (1)

Country Link
JP (1) JP7017879B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433727B2 (en) 2019-09-25 2024-02-20 株式会社免制震ディバイス Vibration damping device for structures
CN111058546B (en) * 2020-01-02 2024-04-26 广州大学 Buckling restrained brace with tension and compression function and design method thereof
CN112575674B (en) * 2020-12-16 2022-08-02 石家庄铁道大学 Combined multistage three-dimensional anti-seismic bridge limiting device based on BRB technology

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070006538A1 (en) 2005-07-07 2007-01-11 Kuo-Jung Chuang Earthquake shock damper
JP2012036601A (en) 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Vibration control damper
JP2012122288A (en) 2010-12-10 2012-06-28 Ihi Corp Fall prevention device
JP2012197864A (en) 2011-03-22 2012-10-18 Nagoya Institute Of Technology Hysteresis damper
JP2014031670A (en) 2012-08-06 2014-02-20 Ihi Infrastructure Systems Co Ltd Damper fitting device
JP2017082904A (en) 2015-10-28 2017-05-18 株式会社横河住金ブリッジ Rod-like vibration isolation member
JP2017089146A (en) 2015-11-05 2017-05-25 株式会社ビービーエム Composite vibration control damper for structure
JP6173553B1 (en) 2016-12-07 2017-08-02 株式会社ハナミズキ・ブリッジ・プランニング Seismic control device for bridge
JP6872359B2 (en) 2016-12-08 2021-05-19 株式会社横河Nsエンジニアリング Shock absorber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070006538A1 (en) 2005-07-07 2007-01-11 Kuo-Jung Chuang Earthquake shock damper
JP2012036601A (en) 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Vibration control damper
JP2012122288A (en) 2010-12-10 2012-06-28 Ihi Corp Fall prevention device
JP2012197864A (en) 2011-03-22 2012-10-18 Nagoya Institute Of Technology Hysteresis damper
JP2014031670A (en) 2012-08-06 2014-02-20 Ihi Infrastructure Systems Co Ltd Damper fitting device
JP2017082904A (en) 2015-10-28 2017-05-18 株式会社横河住金ブリッジ Rod-like vibration isolation member
JP2017089146A (en) 2015-11-05 2017-05-25 株式会社ビービーエム Composite vibration control damper for structure
JP6173553B1 (en) 2016-12-07 2017-08-02 株式会社ハナミズキ・ブリッジ・プランニング Seismic control device for bridge
JP6872359B2 (en) 2016-12-08 2021-05-19 株式会社横河Nsエンジニアリング Shock absorber

Also Published As

Publication number Publication date
JP2019031827A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
KR101632255B1 (en) Earthquake resisting design method on the basis of pc binding articulation construction method
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP7017879B2 (en) A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
CN105926794A (en) Assembly type soft steel damper optimized through equal-stress line
CN105421610A (en) Self-resetting soft steel energy dissipating brace
KR101425444B1 (en) Brace damping system having connection for preventing out plane buckling
JP6184789B2 (en) Damping / seismic composite material and building using the same
JP4468212B2 (en) Fall bridge prevention device
JP4861683B2 (en) Damping brace structure
JP4838898B1 (en) Damping damper
JP4746023B2 (en) Seismic retrofit method for steel structures and seismic steel structures
US11371241B2 (en) Damper for energy dissipation
JP6872359B2 (en) Shock absorber
JP2001336304A (en) Vibration control device and vibration control structure
JP4191687B2 (en) Damping damper connector, damping damper, and building damping structure
JP6352845B2 (en) V brace fulcrum structure
JP2017082904A (en) Rod-like vibration isolation member
JP6780632B2 (en) Composite damper
JP4553631B2 (en) Vibration control device
CN110685484A (en) Viscoelastic self-resetting support
JP5214371B2 (en) Structure
JP4277649B2 (en) Composite damper and column beam structure
JP6862057B2 (en) Building stigma displacement suppression structure
JPH10280727A (en) Damping frame by composite type damper and damping method
JP6882071B2 (en) Damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7017879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150