JP6862057B2 - Building stigma displacement suppression structure - Google Patents

Building stigma displacement suppression structure Download PDF

Info

Publication number
JP6862057B2
JP6862057B2 JP2017222673A JP2017222673A JP6862057B2 JP 6862057 B2 JP6862057 B2 JP 6862057B2 JP 2017222673 A JP2017222673 A JP 2017222673A JP 2017222673 A JP2017222673 A JP 2017222673A JP 6862057 B2 JP6862057 B2 JP 6862057B2
Authority
JP
Japan
Prior art keywords
building
stigma
connecting member
displacement
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017222673A
Other languages
Japanese (ja)
Other versions
JP2019094630A (en
Inventor
洋一 向山
洋一 向山
Original Assignee
株式会社巴コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴コーポレーション filed Critical 株式会社巴コーポレーション
Priority to JP2017222673A priority Critical patent/JP6862057B2/en
Publication of JP2019094630A publication Critical patent/JP2019094630A/en
Application granted granted Critical
Publication of JP6862057B2 publication Critical patent/JP6862057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、体育館等の建物本体架構の上に乗せた、置き屋根形式の屋根架構において、その屋根架構およびその支承部を支持する本体架構(柱等)の耐震性能を向上させる技術に関する。 The present invention relates to a technique for improving the seismic performance of a main frame (pillar, etc.) that supports the roof frame and its support portion in a standing roof type roof frame placed on a building main frame such as a gymnasium.

近年の大地震(平成23年東北地方太平洋沖地震、平成28年熊本地震等)により、体育館等において、RC造の本体架構の上に乗せた置き屋根形式屋根架構の支承部(アンカーボルトやコンクリート)や柱の被害が多発し、問題視されている。 Due to recent major earthquakes (2011 Tohoku-Pacific Ocean Earthquake, 2016 Kumamoto Earthquake, etc.), the support part (anchor bolts and concrete) of the standing roof type roof frame placed on the RC main body frame at gymnasiums, etc. ) And pillars are frequently damaged, which is regarded as a problem.

体育館等の大張間建物では、屋根架構を支えるRC柱が床から軒まで片持ち状の場合が多く曲げ剛性が高くないため、地震時に建物内外方向に大きく揺れ易い。そのため、その本体架構の上に乗せた置き屋根形式屋根架構の支承部は、建物内外方向の支持条件をローラーとして、本体架構に作用する地震力が屋根架構に伝達されないようにすることが多い。 In Oharima buildings such as gymnasiums, the RC columns that support the roof frame are often cantilevered from the floor to the eaves, and the bending rigidity is not high, so they are prone to swaying in and out of the building during an earthquake. Therefore, the support portion of the standing roof type roof frame placed on the main body frame often uses the support conditions in the inside and outside of the building as rollers to prevent the seismic force acting on the main body frame from being transmitted to the roof frame.

例えば、屋根支承部のベースプレートにアンカーボルト用ルーズ孔(長孔)を設けて滑るようにすることで、本体架構と屋根支承部との相対変位を許容して、両者間の力の伝達を回避する設計をする。 For example, by providing a loose hole (long hole) for anchor bolts in the base plate of the roof bearing to allow it to slide, the relative displacement between the main frame and the roof bearing is allowed, and the transmission of force between the two is avoided. Design to do.

しかし、設計時に想定していた以上に柱頭変位が大きくなることもあり、アンカーボルト用ルーズ孔の限界を超えれば、そのルーズ孔端部とアンカーボルトとがぶつかり、その結果、アンカーボルトの変形や破断、或いは、アンカーボルトに押された本体架構(柱頭部)のコンクリートの割裂や脱落のような被害が発生する。 However, the stigma displacement may be larger than expected at the time of design, and if the limit of the loose hole for anchor bolts is exceeded, the loose hole end will collide with the anchor bolt, resulting in deformation of the anchor bolt. Damage such as breakage or cracking or falling off of concrete of the main body frame (pillar head) pushed by anchor bolts occurs.

更には、設計時に想定していた以上に柱頭部が大きく変位すると、柱自身も曲げ変形による損傷が発生し、その上、柱頭部と屋根部との境界(軒部)付近の仕上げ材も損傷して脱落被害も発生する。実際、前記大地震でも、そのような被害が何例も発生している。 Furthermore, if the stigma is displaced more than expected at the time of design, the stigma itself will be damaged due to bending deformation, and the finishing material near the boundary (eave) between the stigma and the roof will also be damaged. As a result, dropout damage also occurs. In fact, even in the big earthquake, many such damages have occurred.

屋根からの鉛直荷重を支えている屋根支承部や柱等本体架構にそのような損傷が生じると、コンクリート破片落下による人的被害だけでなく、復旧する際の修復困難性を高める結果となる。 If such damage occurs to the main frame such as the roof bearings and columns that support the vertical load from the roof, not only human damage due to the fall of concrete debris but also the difficulty of repair at the time of restoration will be increased.

屋根架構を利用し建物本体架構(柱)の内外方向への大きな揺れを抑制する方法としては、例えば、柱の上部と屋根架構の梁端部とを方杖で連結し、その方杖としてダンパーを用いる構造形式が考えられる。ダンパーは地震時にエネルギーを吸収して建物全体が大きく振動するのを抑制するので、耐震性能向上に有効であるが、装置は通常高価であり、維持管理も必要となる。 As a method of using a roof frame to suppress large shaking of the building frame (pillar) inward and outward, for example, the upper part of the pillar and the beam end of the roof frame are connected by a cane, and a damper is used as the cane. A structural form using is conceivable. Dampers absorb energy during an earthquake and suppress large vibrations of the entire building, which is effective for improving seismic performance, but the equipment is usually expensive and requires maintenance.

屋根架構を利用して、建物本体架構の大きな揺れ抑制を意図した技術に関連する文献としては、例えば、特許文献1がある。 For example, Patent Document 1 is a document related to a technique intended to suppress large shaking of a building body frame by using a roof frame.

特許文献1では、屋根支承部を水平2方向に移動可能にしておき、その支承部に、鋼棒、摩擦、粘性体等のダンパー部材を連結することによって、地震時に、屋根架構とそれを支持する下部構造とが相対的に水平変位を生じた場合、前記ダンパーがエネルギーを吸収して、屋根架構および支承部への作用力を抑制するとしており、建物本体架構の内外方向の振動にも有効なダンパー配置とすれば、支承部を支える柱頭部の内外方向の応答変位抑制も期待できる。 In Patent Document 1, the roof frame and its support are supported in the event of an earthquake by making the roof support movable in two horizontal directions and connecting a damper member such as a steel rod, friction, or a viscous body to the support. When a horizontal displacement occurs relative to the substructure, the damper absorbs energy and suppresses the acting force on the roof frame and the support part, which is also effective for internal and external vibration of the building body frame. With a proper damper arrangement, it can be expected that the response displacement of the pillar head supporting the support portion in the inward and outward directions will be suppressed.

この開示技術は、所謂屋根免震を目指したものであり、支承部の浮き上がり拘束と水平2方向移動可能を支持条件とするが、ダンパーが有効に作動するためには、水平2方向にある程度大きな相対変位を生じることが必要である。そのため、柱頭部と屋根部との境界(軒部)付近の仕上げ材の納まりは、その大きな水平2方向変位に追従可能でなければならないので、この部分のエキスパンションジョイントの設計が難しいという問題があった。 This disclosure technology aims at so-called roof seismic isolation, and is subject to the lifting restraint of the bearing and the ability to move in two horizontal directions, but in order for the damper to operate effectively, it is somewhat large in the two horizontal directions. It is necessary to generate relative displacement. Therefore, there is a problem that it is difficult to design an expansion joint in this part because the fitting of the finishing material near the boundary (eave part) between the stigma and the roof must be able to follow the large horizontal two-way displacement. It was.

非常に多く建設され、避難所としても使用される体育館等について、屋根架構と本体架構における地震被害を軽減する、あるいは被災後の早期復旧という観点からは、特許文献1のように機構が複雑あるいは高価な屋根免震や制振による高度な耐震性能の付与ではなく、より簡易かつ安価で手軽に採用し易い方法が望まれる。 For gymnasiums, etc., which are constructed in large numbers and are also used as evacuation centers, the mechanism is complicated as in Patent Document 1 from the viewpoint of reducing earthquake damage in the roof frame and main body frame, or early recovery after the disaster. A simpler, cheaper, and easier-to-adopt method is desired, rather than providing advanced seismic performance through expensive roof seismic isolation and vibration control.

特開2001−152696号公報Japanese Unexamined Patent Publication No. 2001-152696

本発明は、上記のような背景に鑑み、想定以上の地震水平荷重に対して、出来るだけ簡易かつ安価で、柱頭変位を抑制して屋根架構および本体架構の損傷を低減する、建物の柱頭変位抑制構造を提供するものである。 In view of the above background, the present invention is as simple and inexpensive as possible against an earthquake horizontal load exceeding an assumption, suppresses stigma displacement, and reduces damage to the roof frame and main body frame. It provides a restraining structure.

前記課題を解決するための本発明の手段は、以下の通りである。
本体架構の柱の柱頭上に屋根架構が複数の支承部を介して置かれた建物の前記柱頭の変位を抑制する建物の柱頭変位抑制構造であって、
(1)前記複数の支承部のうちの少なくとも1または2以上の支承部が、建物の内外方向であって、所定の水平1方向のみにローラー支持条件を満たす構成になっている。
(2)当該水平1方向のみにローラー支持条件を満たす前記支承部と、それらの支承部と当該水平1方向に相対する前記屋根架構の下弦節点と、が連結部材によって連結されており、前記連結部材の中間位置が、前記本体架構の柱頭側面から持ち出されたブラケットの先端部に接合されるとともに、前記連結部材が、前記ブラケットの先端部を挟んで2つの部分から成り、前記ブラケットの先端部にそれら2つの部分が接合されている。
(3)前記連結部材は、弾塑性特性を有し軸力で抵抗する材料(鋼材等)から成り、前記屋根架構に地震力が作用した時、前記屋根架構を支える前記本体架構の柱頭における過大な水平変位に対して、引張のみで抵抗する機構になっている。
以上の構成を有すること特徴とする、建物の柱頭変位抑制構造。
The means of the present invention for solving the above problems are as follows.
It is a stigma displacement suppression structure of a building that suppresses the displacement of the stigma of a building in which a roof frame is placed on the stigma of the column of the main frame via a plurality of bearings.
(1) At least one or two or more of the plurality of bearings are configured to satisfy the roller support condition only in a predetermined horizontal direction in the inside / outside direction of the building.
(2) The bearings that satisfy the roller support condition only in the horizontal one direction, and the bearings and the lower chord node of the roof frame facing the horizontal one direction are connected by a connecting member, and the connection is made. The intermediate position of the member is joined to the tip of the bracket brought out from the side surface of the stigma of the main body frame , and the connecting member is composed of two parts sandwiching the tip of the bracket, and the tip of the bracket. These two parts are joined to each other.
(3) The connecting member is made of a material (steel, etc.) that has elasto-plastic characteristics and resists by axial force, and when an earthquake force acts on the roof frame, the stigma of the main body frame that supports the roof frame is excessive. It is a mechanism that resists horizontal displacement only by pulling.
A stigma displacement suppression structure of a building, which is characterized by having the above configuration.

また、本発明は、上記の建物の柱頭変位抑制構造において、連結部材の一部をその連結部材のその他部分よりも軸耐力がある程度低いヒューズ部として加工し、もしくはそのような部位を着脱可能なヒューズ部材として連結部材に組み込んだことを特徴とする、建物の柱頭変位抑制構造である。 Further, according to the present invention, in the stigma displacement suppressing structure of the building described above, a part of the connecting member is processed as a fuse portion having a shaft strength lower to some extent than the other portion of the connecting member, or such a portion can be attached and detached. It is a stigma displacement suppression structure of a building, characterized in that it is incorporated into a connecting member as a fuse member.

また、本発明は、以上の何れか1つに記載の建物の柱頭変位抑制構造において、連結部材が圧縮力を伝達せず引張のみに抵抗する機構を組み込んだことを特徴とする、建物の柱頭変位抑制構造である。 Further, the present invention is characterized in that, in the stigma displacement suppressing structure of the building according to any one of the above, a mechanism is incorporated in which the connecting member does not transmit a compressive force and resists only tension. It is a displacement suppression structure.

圧縮力を伝達しない機構としては、例えば、連結部材両端にリンク機構を設けておき、圧縮力が作用しようとした場合にリンク部分が回転するようにする方法や、或いは、圧縮力の作用方向に長軸を有する長孔(ルーズ孔)を設ける方法等が考えられる。 As a mechanism that does not transmit the compressive force, for example, a method of providing link mechanisms at both ends of the connecting member so that the link portion rotates when the compressive force tries to act, or in the direction of the compressive force acting. A method of providing a long hole (loose hole) having a long axis can be considered.

また、本発明は、以上の何れか1つに記載の建物の柱頭変位抑制構造において、建物内外方向の、屋根架構支承部とその支承部を支える本体架構(柱等)との相対変位が一定寸法以上になるまでは、連結部材に軸力が発生しない機構を組み込んだことを特徴とする、建物の柱頭変位抑制構造である。前記の一定寸法とは、地震により柱が傾斜することにより生じるその柱頭部の水平変位を、例えば、柱高さの1/100と設定した設計値などを示す。 Further, in the present invention, in the stigma displacement suppressing structure of the building described in any one of the above, the relative displacement between the roof frame support portion and the main body frame (column, etc.) supporting the support portion in the inside and outside of the building is constant. It is a stigma displacement suppression structure of a building, characterized in that a mechanism that does not generate axial force is incorporated in the connecting member until it exceeds the dimensions. The above-mentioned constant dimension indicates a design value in which the horizontal displacement of the column head caused by the inclination of the column due to an earthquake is set to, for example, 1/100 of the column height.

本発明は、以上のような手段によるので、次のような効果が得られる。
(1)連結部材の軸耐力を、設計上の想定レベルの地震では弾性範囲に止まり、想定以上の大きな地震力が作用した場合には、その他の建物部分に先行して降伏するように断面を設計しておけば、その連結部材が降伏するような大地震が発生した時、屋根架構もしくは柱等の建物本体架構が損傷を受ける前に、連結部材が先行して塑性化して、それ以上の地震入力を抑えると共に、地震エネルギーを吸収することにより、屋根支承部とブラケットに作用する地震力を抑制することが可能になるので、屋根架構および建物本体架構の損傷を低減できる。
(2)特に柱は、建物内外方向に一定以上の柱頭変位が発生した場合、連結部材によって屋根架構と連結されているため過大な変形が抑制され、大きな損傷が回避される。
(3)何れかの連結部材が降伏するまでは、各ブラケットへの地震水平反力分布に大きなばらつきがあり、特定のブラケットに反力が集中することがあるが、想定以上の大地震では、その特定のブラケットに連結された連結部材が先行して降伏することにより、水平反力の再配分が促されるので、特定のブラケットへの水平反力集中が緩和され、それ以上の塑性化が抑制されるという効果もある。
(4)構成が単純であり、連結部材の材料として、弾塑性特性を有し安価な鋼材を用いれば、低コストで耐震性能の高い建物が実現可能である。
(5)地震力による損傷を連結部材に集中させるため、連結部材の取り替えのみで修復可能であり、またその取り替えは簡単なので工事期間も短く、支承部損傷に対する従来の修復工事に比べ、工事費が大幅に安くなる。
(6)万が一、ブラケットが損傷しても、屋根からの鉛直荷重を支持していないので、修復は比較的容易である。
(7)地震による連結部材降伏のために支承部の位置がずれていた場合、連結部材をジャッキに取り替えて、ブラケットを反力点として押し引きすれば、容易に屋根を元の位置に戻すことができる。
(8)以上のことから、地震後の被災建物の復旧を早期に実施し易いので、その建物の早期再使用に大きく寄与する。
Since the present invention is based on the above means, the following effects can be obtained.
(1) The axial bearing capacity of the connecting member stays within the elastic range in an earthquake of the assumed level in design, and when a larger earthquake force than expected is applied, the cross section is set so as to yield before other building parts. By designing, when a large earthquake occurs that causes the connecting members to yield, the connecting members will be plasticized in advance before the building frame such as the roof frame or pillars is damaged, and more. By suppressing the seismic input and absorbing the seismic energy, it is possible to suppress the seismic force acting on the roof support and the bracket, so that the damage to the roof frame and the building body frame can be reduced.
(2) In particular, when a column head displacement of a certain level or more occurs in the inside and outside of the building, the column is connected to the roof frame by a connecting member, so that excessive deformation is suppressed and large damage is avoided.
(3) Until one of the connecting members yields, there is a large variation in the horizontal seismic reaction force distribution to each bracket, and the reaction force may be concentrated on a specific bracket. Since the connecting member connected to the specific bracket yields in advance, the horizontal reaction force is promoted to be redistributed, so that the horizontal reaction force concentration on the specific bracket is relaxed and further plasticization is suppressed. There is also the effect of being done.
(4) A building with a simple structure, low cost, and high seismic performance can be realized by using an inexpensive steel material having elasto-plastic properties as a material for connecting members.
(5) Since the damage caused by the seismic force is concentrated on the connecting members, it can be repaired only by replacing the connecting members, and since the replacement is easy, the construction period is short, and the construction cost is compared with the conventional repair work for damage to the bearings. Will be significantly cheaper.
(6) Even if the bracket is damaged, it is relatively easy to repair because it does not support the vertical load from the roof.
(7) If the position of the bearing is displaced due to the surrender of the connecting member due to the earthquake, the roof can be easily returned to its original position by replacing the connecting member with a jack and pushing and pulling the bracket as a reaction force point. it can.
(8) From the above, it is easy to restore the damaged building after the earthquake at an early stage, which greatly contributes to the early reuse of the building.

体育館等の建物の1例であり、屋根支承部が設置された軒レベルにおける本体架構の柱と梁、および屋根架構(一部)の伏図であって、本発明の配置の一例を示した図である。It is an example of a building such as a gymnasium, and is a plan of the columns and beams of the main frame and the roof frame (part) at the eaves level where the roof bearing is installed, and shows an example of the arrangement of the present invention. It is a figure. 図1と同様、本発明の別配置の例を示した伏図である。Similar to FIG. 1, it is a plan showing an example of another arrangement of the present invention. 本発明の第1実施例であり、図1もしくは図2のA−A線断面の拡大説明図である。It is the 1st Example of this invention, and is the enlarged explanatory view of the cross section AA of FIG. 1 or FIG. 図3の第1実施例において、屋根架構と本体架構との相対変位が生じた状態を説明した図である。FIG. 3 is a diagram illustrating a state in which a relative displacement between the roof frame and the main body frame occurs in the first embodiment of FIG. 本発明の第2実施例であり、図1もしくは図2のA−A線断面の拡大説明図である。It is the 2nd Example of this invention and is the enlarged explanatory view of the cross section AA of FIG. 1 or FIG. 図5の第2実施例において、屋根架構と本体架構との相対変位が生じた状態を説明した図である。FIG. 5 is a diagram illustrating a state in which a relative displacement between the roof frame and the main body frame occurs in the second embodiment of FIG. 本発明の第3実施例であり、図1もしくは図2のA−A線断面の拡大説明図である。It is a 3rd Example of this invention, and is the enlarged explanatory view of the cross section of line AA of FIG. 1 or FIG. 図7のB−B線断面図である。FIG. 7 is a cross-sectional view taken along the line BB of FIG.

本発明の実施例を、図1〜図4を参照して説明する。図1および図2は、例として、体育館等の建物において、支承部3、3、…が設置された本体架構1(RC造等のRC系構造建物)の軒レベル(柱1a、梁1b)の伏図であり、立体トラスから成る鉄骨造の屋根架構2の一部を重ねて表示したものである。2aは上弦材、2cはラチス材を示し、2bと2dは立体トラスの下弦材を示すが、特に2dは後述の連結部材5を設けるために必要な補強部材である。 Examples of the present invention will be described with reference to FIGS. 1 to 4. 1 and 2 show, for example, the eaves level (truss 1a, beam 1b) of the main frame 1 (RC structure building such as RC structure) in which the support parts 3, 3, ... Are installed in a building such as a gymnasium. This is a plan of the above, and a part of the steel-framed roof frame 2 composed of three-dimensional trusses is superimposed and displayed. 2a indicates an upper chord material, 2c indicates a lattice material, and 2b and 2d indicate a lower chord material of a three-dimensional truss. In particular, 2d is a reinforcing member necessary for providing the connecting member 5 described later.

図1では、屋根架構2の四隅の支承部3、3、…は、水平2方向共にローラー(図1の十字矢印方向)、四隅以外は水平1方向ローラー(図1の矢印方向)の支持条件を満たす構成になっている。紙面左右方向の地震に対しては、Y通りおよびY通りの水平1方向ローラーと直交する方向の抵抗により、屋根架構2に作用する地震水平力は本体架構1に伝達される。 In FIG. 1, the support conditions 3, 3, ... At the four corners of the roof structure 2 are the support conditions of the rollers (in the direction of the cross arrow in FIG. 1) in both the horizontal two directions, and the horizontal one-way rollers (in the direction of the arrow in FIG. It is configured to satisfy. For left-right direction of the earthquake, depending on the direction of the resistor perpendicular to the horizontal one direction roller 1 kinds and Y 4 types Y, seismic horizontal force acting on the roof Frame 2 is transmitted to the body Frame 1.

一方、方向の地震に対しては、X1通りおよびX5通りの水平1方向ローラーと直交する方向の抵抗により、屋根架構2に作用する地震水平力は本体架構1に伝達される。従って、本体架構1には、建物内外方向の屋根架構2からの地震水平力は殆んど伝達されないので、柱1a、1a、…の建物内外方向の水平耐力と剛性は、主に本体架構1の各通りの建物自重(柱、梁、壁等)に作用する地震水平力を考慮すればよい。 On the other hand, for an earthquake in the Y direction, the seismic horizontal force acting on the roof frame 2 is transmitted to the main frame 1 by the resistance in the direction orthogonal to the horizontal one-way rollers in the X1 and X5 ways. Therefore, since the seismic horizontal force from the roof frame 2 in the inside and outside of the building is hardly transmitted to the main body frame 1, the horizontal strength and rigidity of the columns 1a, 1a, ... In the inside and outside of the building are mainly the main body frame 1. It is sufficient to consider the seismic horizontal force acting on the building weight (columns, beams, walls, etc.) of each street.

図2は、屋根架構2の支持条件が図1と異なる場合である。即ち、Y1通りの支承部3、3、…は全て方向に水平1方向ローラー、Y4通りは全てピン支点であり、X1通りおよびX5通りの中間部は水平2方向ローラー支点である。 FIG. 2 shows a case where the support conditions of the roof frame 2 are different from those in FIG. That is, the support portions 3, 3, ... Of Y1 ways are all horizontal one-way rollers in the Y direction, all Y4 ways are pin fulcrums, and the intermediate parts of X1 ways and X5 ways are horizontal two-way roller fulcrums.

よって、方向の地震に対しては、Y1通りは、水平1方向ローラーと直交する方向の抵抗により、Y4通りは、全てのピン支点により、屋根架構2に作用する地震水平力は本体架構1に伝達される。 Therefore, for an earthquake in the X direction, the earthquake horizontal force acting on the roof frame 2 is due to the resistance in the direction orthogonal to the horizontal one-way roller in the Y1 way and by all the pin fulcrums in the Y4 way. Is transmitted to.

一方、方向の地震に対しては、Y4通りのピン支点のみの抵抗により、屋根架構2に作用する地震水平力は本体架構1に伝達される。従って、図2のような支点条件の場合には、Y4通りの柱1a、1a…の建物内外方向の水平耐力と剛性は、本体架構1のY4通りの建物自重(柱、梁、壁等)に作用する地震水平力に加え、屋根架構2に作用する分も全て考慮して、十分に確保されていることが要求される。 On the other hand, for an earthquake in the Y direction, the horizontal force of the earthquake acting on the roof frame 2 is transmitted to the main frame 1 by the resistance of only the pin fulcrums of Y4. Therefore, in the case of the fulcrum condition as shown in FIG. 2, the horizontal strength and rigidity of the columns 1a, 1a ... In addition to the seismic horizontal force acting on the roof frame 2, it is required to be sufficiently secured in consideration of all the amount acting on the roof frame 2.

図3および図4は、本発明の第1実施例であり、図1もしくは図2のA−A線断面に対応する詳細図を示す。屋根架構2からの鉛直荷重は、1方向ローラーの支承部3、3、…によって支持され、それらの支承部3、3、…に相対する屋根架構2の下弦節点20、20、…と支承部3、3、…とが、建物の内外方向(ローラー方向)に連結部材5、5、…で連結されている。その連結部材5、5、…の中間位置が、屋根架構2を支える柱1a、1a、…の上部から持ち出されたブラケット10、10、…の先端部10a、10a、…に接合されている。 3 and 4 are the first embodiments of the present invention, and show detailed views corresponding to the cross section taken along the line AA of FIG. 1 or 2. The vertical load from the roof frame 2 is supported by the bearings 3, 3, ... Of the one-way rollers, and the lower chord nodes 20, 20, ... 3, 3, ... Are connected by connecting members 5, 5, ... In the inside / outside direction (roller direction) of the building. The intermediate positions of the connecting members 5, 5, ... Are joined to the tip portions 10a, 10a, ... Of the brackets 10, 10, ... Brought out from the upper part of the pillars 1a, 1a, ... Supporting the roof frame 2.

連結部材5は、先端部10aを挟んで2つの部分(5a、5b)から成り、それぞれ(5a、5b)の両端は、1本ピン7を両端部に挿通された2枚の連結板6で挟持されたリンク機構となっている。また、連結部材5(5a、5b)は、弾塑性特性を有し軸力で抵抗する材料(鋼材等)を用いる。 The connecting member 5 is composed of two portions (5a, 5b) with a tip portion 10a interposed therebetween, and both ends of each (5a, 5b) are two connecting plates 6 in which one pin 7 is inserted into both ends. It is a sandwiched link mechanism. Further, as the connecting member 5 (5a, 5b), a material (steel material or the like) having elasto-plastic characteristics and resisting by axial force is used.

また、支承部3のガセットプレート3a、先端部10aおよび下弦節点20のガセットプレート20aの1本ピン7が挿通された孔は長孔8(破線の長円表示)となっており、通常時(図3の状態)においては、連結部材5a、5bの両端に、1本ピン7と長孔8とのクリアランス分に対応した隙間(e、f)が確保されている。 Further, the hole through which the single pin 7 of the gusset plate 3a of the support portion 3, the tip portion 10a and the gusset plate 20a of the lower chord node 20 is inserted is an elongated hole 8 (indicated by an oval broken line). In the state of FIG. 3), gaps (e, f) corresponding to the clearance between the single pin 7 and the elongated hole 8 are secured at both ends of the connecting members 5a and 5b.

第1実施例は、以上のような構成であり、支承部3は1方向ローラー支点なので、図3の紙面左右方向に地震力が作用して、例えば図4のように、柱1aの頂部が支承部3に対して相対的(外側)に水平変位δだけ移動した場合で説明する。 In the first embodiment, since the support portion 3 has the above-mentioned configuration and the support portion 3 is a one-way roller fulcrum, an seismic force acts in the left-right direction of the paper surface of FIG. The case where the horizontal displacement δ is moved relative to (outside) the support portion 3 will be described.

図3の状態においては、連結部材5aと5bの連結板6、6、…に挿通された1本ピン7、7、…の一方の長孔8、8、…に左右方向のクリアランスがあるので、連結部材5aと5bには軸力は発生しない。 In the state of FIG. 3, since one of the elongated holes 8, 8, ... Of the single pins 7, 7, ... Inserted into the connecting plates 6, 6, ... Of the connecting members 5a and 5b has a clearance in the left-right direction. , No axial force is generated in the connecting members 5a and 5b.

図4の状態に至る過程で、長孔8、8、…のクリアランスが無くなり、図3の状態における連結部材5bの両端部の隙間fが最大隙間f´(>f)に達すると、連結部材5bには引張力が作用して、柱1aの頂部が更に外側(紙面左側)へ移動するのを抑制する。ここで、寸法L´(図4)が元の寸法L(図3)よりも2×(f´−f)を超過しようとすると、連結部材5bは引張軸力により伸びはじめ、引張軸力が連結部材5bの材料の降伏点に達すると塑性変形して地震エネルギーを吸収し始める。 In the process of reaching the state of FIG. 4, when the clearances of the elongated holes 8, 8, ... Are eliminated and the gaps f at both ends of the connecting member 5b in the state of FIG. 3 reach the maximum gap f'(> f), the connecting member A tensile force acts on 5b to prevent the top of the pillar 1a from moving further outward (on the left side of the paper). Here, when the dimension L 2 ′ (FIG. 4) tries to exceed the original dimension L 2 (FIG. 3) by 2 × (f ′ −f), the connecting member 5b begins to stretch due to the tensile axial force, and the tensile shaft When the force reaches the yield point of the material of the connecting member 5b, it plastically deforms and begins to absorb seismic energy.

連結部材5bからブラケット10の先端部10aに伝達された地震力は、ブラケット10を介して柱1aへと伝えられる。 The seismic force transmitted from the connecting member 5b to the tip portion 10a of the bracket 10 is transmitted to the pillar 1a via the bracket 10.

一方、連結部材5aについては、図4の状態に至る過程で、長孔8、8、…のクリアランスが無くなり、図3の状態における連結部材5aの両端部の隙間eが最少隙間e´(<e)に達すると、連結部材5aには圧縮力が作用しようとするが、連結部材5aの両端部の連結板6、6は、リンク機構になっているので、寸法L´(図4)が元の寸法Lよりも2×(e−e´)以上短くなろうとすると、図4のように回転し、連結部材5aは圧縮力を伝達することはない。 On the other hand, with respect to the connecting member 5a, the clearances of the elongated holes 8, 8, ... Are eliminated in the process of reaching the state of FIG. 4, and the gap e at both ends of the connecting member 5a in the state of FIG. 3 is the minimum gap e'(< When e) is reached, a compressive force tries to act on the connecting member 5a, but since the connecting plates 6 and 6 at both ends of the connecting member 5a have a link mechanism, the dimensions L 1 ′ (FIG. 4). There when you become short 2 × (e-e') more than the original dimension L 1, and rotated as in Figure 4, the coupling member 5a is not able to transmit a compressive force.

即ち、連結部材5(5a、5b)は引張のみに抵抗し、柱1a頂部の過大な水平変位を抑制する。地震力が設計で想定した以上に大きい場合には、連結部材5の引張側(5aまたは5b)が降伏することにより、地震エネルギーを吸収すると共に、降伏していない他の場所の連結部材5への地震反力再配分を促すので、屋根架構2は勿論、本体架構1も耐震性能が向上する。 That is, the connecting member 5 (5a, 5b) resists only tension and suppresses an excessive horizontal displacement of the top of the column 1a. When the seismic force is larger than expected in the design, the tension side (5a or 5b) of the connecting member 5 yields to absorb the seismic energy and to the connecting member 5 in another place where the connecting member 5 does not yield. Since the seismic reaction force is promoted to be redistributed, not only the roof frame 2 but also the main body frame 1 has improved seismic performance.

また、降伏した連結部材5は、1本ピン7、7、…を抜いて連結板6、6、…を外すことにより簡単に取り替えられるので、被災建物の早期修復による再使用が可能になる。 Further, since the surrendered connecting member 5 can be easily replaced by pulling out one pin 7, 7, ... And removing the connecting plates 6, 6, ..., The damaged building can be reused by early repair.

図5および図6は、本発明の第2実施例であり、図1もしくは図2のA−A線断面に対応する詳細図を示す。屋根架構2からの鉛直荷重は、1方向ローラーの支承部3、3、…によって支持され、それらの支承部3、3、…に相対する屋根架構2の下弦節点20、20、…と支承部3、3、…とが、建物の内外方向(ローラー方向)に連結部材5、5、…で連結されている。その連結部材5、5、…の中間位置が、屋根架構2を支える柱1a、1a、…の上部から持ち出されたブラケット10、10、…の先端部10a、10a、…に接合されている。 5 and 6 are the second embodiment of the present invention, and show a detailed view corresponding to the cross section taken along the line AA of FIG. 1 or 2. The vertical load from the roof frame 2 is supported by the bearings 3, 3, ... Of the one-way rollers, and the lower chord nodes 20, 20, ... 3, 3, ... Are connected by connecting members 5, 5, ... In the inside / outside direction (roller direction) of the building. The intermediate positions of the connecting members 5, 5, ... Are joined to the tip portions 10a, 10a, ... Of the brackets 10, 10, ... Brought out from the upper part of the pillars 1a, 1a, ... Supporting the roof frame 2.

連結部材5は、先端部10aを挟んで2つの部分(5a、5b)から成り、それぞれ(5a、5b)の両端は、片側に1本ピン7を挿通し、他端を複数ボルト7aで綴った2枚の連結板6で挟持されている。また、連結部材5(5a、5b)は、弾塑性特性を有し軸力で抵抗する材料(鋼材等)を用いる。 The connecting member 5 is composed of two parts (5a, 5b) with a tip portion 10a sandwiched between them. At both ends of each (5a, 5b), one pin 7 is inserted on one side, and the other end is bound with a plurality of bolts 7a. It is sandwiched between two connecting plates 6. Further, as the connecting member 5 (5a, 5b), a material (steel material or the like) having elasto-plastic characteristics and resisting by axial force is used.

また、支承部3のガセットプレート3a、先端部10aおよび下弦節点20のガセットプレート20aの1本ピン7が挿通された孔は長孔8(破線の長円表示)となっており、通常時(図5の状態)においては、連結部材5a、5bの両端に、1本ピン7と長孔とのクリアランス分に対応した隙間(e、f)が確保されている。 Further, the hole through which the single pin 7 of the gusset plate 3a of the support portion 3, the tip portion 10a and the gusset plate 20a of the lower chord node 20 is inserted is an elongated hole 8 (indicated by an oval broken line). In the state of FIG. 5), gaps (e, f) corresponding to the clearance between the single pin 7 and the elongated hole are secured at both ends of the connecting members 5a and 5b.

第2実施例は、以上のような構成であり、支承部3は1方向ローラー支点なので、図5の紙面左右方向に地震力が作用して、例えば図6のように、柱1aの頂部が支承部3に対して相対的(外側)に水平変位δだけ移動した場合で説明する。 In the second embodiment, since the support portion 3 has the above-mentioned configuration and the support portion 3 is a one-way roller fulcrum, an seismic force acts in the left-right direction of the paper surface of FIG. The case where the horizontal displacement δ is moved relative to (outside) the support portion 3 will be described.

図5の状態においては、連結部材5aと5bの連結板6、6、…に挿通された1本ピン7、7、…の一方の長孔8、8、…に左右方向のクリアランスがあるので、連結部材5aと5bには軸力は発生しない。 In the state of FIG. 5, since one of the elongated holes 8, 8, ... Of the single pins 7, 7, ... Inserted into the connecting plates 6, 6, ... Of the connecting members 5a and 5b has a clearance in the left-right direction. , No axial force is generated in the connecting members 5a and 5b.

図6の状態に至る過程で、長孔8、8、…のクリアランスが無くなり、図5の状態における連結部材5bの両端部の隙間fが最大隙間f´(>f)に達すると、連結部材5bには引張力が作用して、柱1aの頂部が更に外側(紙面左側)へ移動するのを抑制する。ここで、寸法L´(図6)が元の寸法L(図5)よりも2×(f´−f)を超過しようとすると、連結部材5bは引張軸力により伸びはじめ、引張軸力が連結部材5bの材料の降伏点に達すると塑性変形して地震エネルギーを吸収し始める。 In the process of reaching the state of FIG. 6, when the clearances of the elongated holes 8, 8, ... Are eliminated and the gaps f at both ends of the connecting member 5b in the state of FIG. 5 reach the maximum gap f'(> f), the connecting member A tensile force acts on 5b to prevent the top of the pillar 1a from moving further to the outside (left side of the paper surface). Here, when the dimension L 2 ′ (FIG. 6) tries to exceed the original dimension L 2 (FIG. 5) by 2 × (f ′ −f), the connecting member 5b begins to stretch due to the tensile axial force, and the tensile shaft When the force reaches the yield point of the material of the connecting member 5b, it plastically deforms and begins to absorb seismic energy.

連結部材5bからブラケット10の先端部10aに伝達された地震力は、ブラケット10を介して柱1aへと伝えられる。 The seismic force transmitted from the connecting member 5b to the tip portion 10a of the bracket 10 is transmitted to the pillar 1a via the bracket 10.

一方、連結部材5aについては、図6の状態に至る過程で、長孔8、8、…のクリアランスが無くなり、図5の状態における連結部材5aの両端部の隙間eが最少隙間e´(<e)に達するまでは、連結部材5aには圧縮力は作用しない。しかし、寸法L´(図6)が元の寸法Lよりも2×(e−e´)以上短くなると、連結部材5aに圧縮力が作用するので、長孔8、8、…を十分な長さにしておく必要がある。 On the other hand, with respect to the connecting member 5a, the clearances of the elongated holes 8, 8, ... Are eliminated in the process of reaching the state of FIG. 6, and the gap e at both ends of the connecting member 5a in the state of FIG. 5 is the minimum gap e'(< No compressive force acts on the connecting member 5a until it reaches e). However, when the dimension L 1 ′ (FIG. 6) is shorter than the original dimension L 1 by 2 × (e−e ′) or more, a compressive force acts on the connecting member 5a, so that the elongated holes 8, 8, ... It is necessary to keep the length.

即ち、第2実施例も第1実施例と同様、連結部材5(5a、5b)は引張のみに抵抗し、柱1a頂部の過大な水平変位を抑制する。地震力が設計で想定した以上に大きい場合には、連結部材5の引張側(5aまたは5b)が降伏することにより、地震エネルギーを吸収すると共に、降伏していない他の場所の連結部材5への地震反力再配分を促すので、屋根架構2は勿論、本体架構1も耐震性能が向上する。 That is, in the second embodiment as in the first embodiment, the connecting member 5 (5a, 5b) resists only tension and suppresses an excessive horizontal displacement of the top of the column 1a. When the seismic force is larger than expected in the design, the tension side (5a or 5b) of the connecting member 5 yields to absorb the seismic energy and to the connecting member 5 in another place where the connecting member 5 does not yield. Since the seismic reaction force is promoted to be redistributed, not only the roof frame 2 but also the main body frame 1 has improved seismic performance.

また、降伏した連結部材5は、1本ピン7、7、…及び複数ボルト7a、7a、…を抜いて連結板6、6、…を外すことにより簡単に取り替えられるので、被災建物の早期修復による再使用が可能になる。 Further, the surrendered connecting member 5 can be easily replaced by removing the single pins 7, 7, ... And the plurality of bolts 7a, 7a, ... And the connecting plates 6, 6, ... Therefore, early repair of the damaged building. Can be reused by.

図7は、本発明の第3実施例であり、図1もしくは図2のA−A線断面に対応する詳細図を示す。図8は、図7のB−B線断面図である。屋根架構2からの鉛直荷重は、1方向ローラーの支承部3、3、…によって支持され、それらの支承部3、3、…に相対する屋根架構2の下弦節点20、20、…と支承部3、3、…とが、建物の内外方向(ローラー方向)に連結部材5、5、…で連結されている。その連結部材5、5、…の中間位置が、屋根架構2を支える柱1a、1a、…の上部から持ち出されたブラケット10、10、…の先端部10a、10a、…に接合されている。 FIG. 7 is a third embodiment of the present invention, and shows a detailed view corresponding to the cross section taken along the line AA of FIG. 1 or FIG. FIG. 8 is a cross-sectional view taken along the line BB of FIG. The vertical load from the roof frame 2 is supported by the bearings 3, 3, ... Of the one-way rollers, and the lower chord nodes 20, 20, ... 3, 3, ... Are connected by connecting members 5, 5, ... In the inside / outside direction (roller direction) of the building. The intermediate positions of the connecting members 5, 5, ... Are joined to the tip portions 10a, 10a, ... Of the brackets 10, 10, ... Brought out from the upper part of the pillars 1a, 1a, ... Supporting the roof frame 2.

連結部材5は、先端部10aを挟んで2つの部分(5a、5b)から成り、それぞれ(5a、5b)の端部において、先端部10a側は、片端を2列の1本ピン7、7を挿通し他端を複数ボルト7aで綴った連結板6a、6aにより、先端部10aの天板を挟持して取付けられ、支承部3側および下弦節点20側は、両端を複数ボルト7aにて綴った連結板6、6により取付けられている。また、連結部材5(5a、5b)として、弾塑性特性を有し軸力で抵抗する薄い材料(鋼板)を、水平に用いて設置されている。 The connecting member 5 is composed of two portions (5a, 5b) with the tip portion 10a interposed therebetween, and at the ends of the respective portions (5a, 5b), the tip portion 10a side has one pin 7 and 7 in two rows at one end. The other end is spelled with a plurality of bolts 7a, and the top plate of the tip portion 10a is sandwiched between the connecting plates 6a and 6a. It is attached by the spelled connecting plates 6 and 6. Further, as the connecting member 5 (5a, 5b), a thin material (steel plate) having elasto-plastic characteristics and resisting by axial force is horizontally used and installed.

また、先端部10aの1本ピン7、7が挿通された孔は長孔8、8(破線の長円表示)となっており、通常時(図7の状態)においては、連結部材5a、5bの両端に、1本ピン7、7と長孔8、8とのクリアランス分に対応した隙間(e、f)が確保されている。 Further, the holes through which the single pins 7 and 7 of the tip portion 10a are inserted are elongated holes 8 and 8 (indicated by an oval broken line), and in the normal state (state of FIG. 7), the connecting member 5a, At both ends of 5b, gaps (e, f) corresponding to the clearance between the single pins 7 and 7 and the elongated holes 8 and 8 are secured.

第3実施例は以上のような構成であるので、紙面左右方向の地震により柱1aが建物の内外方向に傾斜してブラケット10の先端部10aも傾斜すると、連結部材5(5a、5b)は紙面直交軸回りに曲げ変形を強制されるが、連結部材5(5a、5b)は薄い鋼板のため、その曲げ剛性は低く、ある程度までの板面外曲げ変形に対しては降伏することはないという特徴がある。 Since the third embodiment has the above configuration, when the pillar 1a is tilted in the inside-out direction of the building and the tip portion 10a of the bracket 10 is also tilted due to the earthquake in the left-right direction of the paper surface, the connecting members 5 (5a, 5b) are Bending deformation is forced around the axis orthogonal to the paper surface, but since the connecting member 5 (5a, 5b) is a thin steel plate, its bending rigidity is low, and it does not yield to a certain degree of out-of-plate bending deformation. There is a feature.

図7および図8の状態においては、連結部材5aと5bの先端部10a側連結板6a、6a、…に挿通された1本ピン7、7、…の長孔8、8、…に左右方向のクリアランスがあるので、連結部材5aと5bには軸力は発生しない。 In the state of FIGS. 7 and 8, the elongated holes 8, 8, ... Of the single pins 7, 7, ... Inserted into the connecting plates 6a, 6a, ... No axial force is generated in the connecting members 5a and 5b because of the clearance of.

紙面左右方向の地震により、柱1aの頂部が支承部3に対して建物外側への相対変位δが発生した場合(図示せず)、連結部材5b側の長孔8、8のクリアランスが無くなって引張力が連結部材5bに作用するので、連結部材5bからブラケット10の先端部10aに伝達された地震力は、ブラケット10を介して柱1aへと伝えられる。 When the top of the pillar 1a has a relative displacement δ to the outside of the building with respect to the bearing 3 due to an earthquake in the left-right direction of the paper (not shown), the clearances of the elongated holes 8 and 8 on the connecting member 5b side are lost. Since the tensile force acts on the connecting member 5b, the seismic force transmitted from the connecting member 5b to the tip portion 10a of the bracket 10 is transmitted to the column 1a via the bracket 10.

一方、連結部材5a側の長孔8、8のクリアランスが無くなると圧縮力が連結部材5aに作用しようとするが、連結部材5aは薄い鋼板のため、直ぐに弾性座屈して板面外曲げ変形(図7の2重破線で表示)を生じるので、実質的に圧縮力を伝達することはなく、ブラケット10に伝達される地震力は無視できる。但し、板面外曲げ変形が生じる場合であっても、弾性範囲に止まるように、連結部材5a(5b)の板厚や長孔8、8の長さを設計しておく必要がある。 On the other hand, when the clearances of the elongated holes 8 and 8 on the connecting member 5a side disappear, the compressive force tries to act on the connecting member 5a, but since the connecting member 5a is a thin steel plate, it immediately elastically buckles and deforms from the plate surface. Since the double broken line in FIG. 7) is generated, the compressive force is not substantially transmitted, and the seismic force transmitted to the bracket 10 can be ignored. However, it is necessary to design the plate thickness of the connecting member 5a (5b) and the lengths of the elongated holes 8 and 8 so as to stay within the elastic range even when the plate surface bending deformation occurs.

本発明の上記何れの実施例においても、連結板6(6a)の1本ピン7の何れかに長孔8を設けている理由は、次の通りである。即ち、長孔によるクリアランスがなかった場合、屋根架構2の下弦材2bに引張力が作用する積雪荷重によって、支承部3が建物外側に移動するのに伴い、連結部材5との接続点であるブラケット10の先端部10aから柱1aに強制的に変形を与えてしまうと共に、連結部材5に、地震以外の荷重による応力を発生させてしまう、という事態を避けるためである。 In any of the above embodiments of the present invention, the reason why the elongated hole 8 is provided in any one of the single pins 7 of the connecting plate 6 (6a) is as follows. That is, when there is no clearance due to the elongated holes, it is a connection point with the connecting member 5 as the support portion 3 moves to the outside of the building due to the snow load applied by the tensile force acting on the lower chord member 2b of the roof frame 2. This is to avoid a situation in which the tip portion 10a of the bracket 10 forcibly deforms the pillar 1a and the connecting member 5 is stressed by a load other than an earthquake.

また、そもそも、連結部材5に接続した支承部3の支持条件は1方向ローラーであるにも関わらず、長孔8によるクリアランスをなくしてしまうと、支承部3と柱1aの頂部との相対変位は実質的に発生しないので、実質的にピン支点と同じことになる。 Further, although the support condition of the support portion 3 connected to the connecting member 5 is a one-way roller, if the clearance due to the elongated hole 8 is eliminated, the relative displacement between the support portion 3 and the top of the pillar 1a is eliminated. Does not occur substantially, so it is substantially the same as a pin fulcrum.

従って、長孔8によるクリアランスを設けることにより、設計上想定した地震力までは、各支承部3、3、…は一方向ローラー支持条件を満たし、それ以上の大きな地震時において、連結部材5に作用する引張力によって、柱1aの頂部の過大な水平変位を抑制するという機能を付与することが出来る。 Therefore, by providing the clearance by the elongated hole 8, each of the support portions 3, 3, ... Satisfies the unidirectional roller support condition up to the seismic force assumed in the design, and in the event of a larger earthquake, the connecting member 5 is connected. The acting tensile force can impart a function of suppressing an excessive horizontal displacement of the top of the column 1a.

なお、以上の実施例では、ブラケット5を鉄骨造としているが、RC造であってもよい。 In the above embodiment, the bracket 5 is made of steel, but it may be made of RC.

また、上記何れの実施例においても、RC系構造の建物本体架構上に設置された屋根支承部であったが、建物本体架構が鉄骨造の場合でも、ローラー支承部およびブラケットの設置が可能であれば、本発明の適用は可能である。 Further, in any of the above embodiments, the roof bearings were installed on the building body frame of the RC structure, but even if the building body frame is made of steel, the roller support parts and brackets can be installed. If so, the present invention can be applied.

本発明は、主にRC系構造建物の本体架構の上に乗せた、置き屋根形式の屋根架構の支承部において、想定以上の大地震が発生した場合でも、屋根支承部に作用する地震力を抑制して、屋根架構や本体架構の被害を低減できる、簡易かつ安価な技術を提供できるので、建物の耐震性能向上に貢献すると共に、被災建物(特に避難所となる多くの体育館等)の地震後の早期復旧および早期再使用にも大きく寄与する。 The present invention mainly applies the seismic force acting on the roof support even if a larger earthquake than expected occurs in the support of the roof frame of the standing roof type, which is placed on the main frame of the RC structure building. Since it is possible to provide simple and inexpensive technology that can suppress damage to the roof frame and main body frame, it contributes to improving the seismic performance of the building and also causes earthquakes in damaged buildings (especially many gymnasiums that serve as shelters). It also greatly contributes to early recovery and early reuse later.

1:本体架構
1a:柱
1b:梁
2:屋根架構
2a:上弦材
2b、2d:下弦材
2c:ラチス材
3:支承部
3a:ガセットプレート
5、5a、5b:連結部材
6、6a:連結板
7:1本ピン
7a:複数ボルト
8:長孔
10:ブラケット
10a:先端部
20:下弦節点
20a:ガセットプレート
e、f:元の隙間
e´:最少隙間
f´:最大隙間
L1、L2:元の寸法
L1´、L2´:変位後の寸法
δ:水平変位
1: Body frame 1a: Pillar 1b: Beam 2: Roof frame 2a: Upper chord material 2b, 2d: Lower chord material 2c: Lattice material 3: Support part 3a: Gusset plate 5, 5a, 5b: Connecting member 6, 6a: Connecting plate 7: 1 pin 7a: Multiple bolts 8: Long hole 10: Bracket 10a: Tip 20: Lower chord node 20a: Gusset plate
e, f: Original gap
e´: Minimum gap
f´: Maximum gap
L 1 , L 2 : Original dimensions
L 1 ´, L 2 ´: Dimension after displacement δ: Horizontal displacement

Claims (3)

本体架構の柱の柱頭上に屋根架構が複数の支承部を介して置かれた建物の前記柱頭の変位を抑制する建物の柱頭変位抑制構造であって、
(1)前記複数の支承部のうちの少なくとも1または2以上の支承部が、建物の内外方向であって、所定の水平1方向のみにローラー支持条件を満たす構成になっている。
(2)当該水平1方向のみにローラー支持条件を満たす前記支承部と、それらの支承部と当該水平1方向に相対する前記屋根架構の下弦節点と、が連結部材によって連結されており、前記連結部材の中間位置が、前記本体架構の柱頭側面から持ち出されたブラケットの先端部に接合されるとともに、前記連結部材が、前記ブラケットの先端部を挟んで2つの部分から成り、前記ブラケットの先端部にそれら2つの部分が接合されている。
(3)前記連結部材は、弾塑性特性を有し軸力で抵抗する材料から成り、前記屋根架構に地震力が作用した時、前記屋根架構を支える前記本体架構の柱頭における過大な水平変位に対して、引張のみで抵抗する機構になっている。
以上の構成を有すること特徴とする、建物の柱頭変位抑制構造。
It is a stigma displacement suppression structure of a building that suppresses the displacement of the stigma of a building in which a roof frame is placed on the stigma of the column of the main frame via a plurality of bearings.
(1) At least one or two or more of the plurality of bearings are configured to satisfy the roller support condition only in a predetermined horizontal direction in the inside / outside direction of the building.
(2) The bearings that satisfy the roller support condition only in the horizontal one direction, and the bearings and the lower chord node of the roof frame facing the horizontal one direction are connected by a connecting member, and the connection is made. The intermediate position of the member is joined to the tip of the bracket brought out from the side surface of the stigma of the main body frame , and the connecting member is composed of two parts sandwiching the tip of the bracket, and the tip of the bracket. These two parts are joined to each other.
(3) The connecting member is made of a material having elasto-plastic properties and resisting by an axial force, and when an seismic force acts on the roof frame, it causes an excessive horizontal displacement at the stigma of the main body frame that supports the roof frame. On the other hand, it is a mechanism that resists only by pulling.
A stigma displacement suppression structure of a building, which is characterized by having the above configuration.
請求項1記載の建物の柱頭変位抑制構造において、前記連結部材は2つの部分から成り、それぞれの両端が1本ピンを両端部に挿通された2枚の連結板で挟持されることにより圧縮力を伝達せず引張のみに抵抗するリンク機構が組み込まれていることを特徴とする、建物の柱頭変位抑制構造。 In the stigma displacement suppressing structure of the building according to claim 1, the connecting member is composed of two parts, and each end is sandwiched by two connecting plates having one pin inserted at both ends, thereby compressing force. The stigma displacement suppression structure of the building is characterized by incorporating a link mechanism that resists only tension without transmitting. 請求項1記載の建物の柱頭変位抑制構造において、前記連結部材は2つの部分から成り、それぞれの両端は、片端に1本ピンが挿通され、他端が複数本のボルトにて綴られた2枚の連結板で挟持されており、かつ前記支承部、前記ブラケットの先端部、及び前記下弦節点において前記1本ピンが挿通されている孔が長孔であることにより圧縮力を伝達せず引張のみに抵抗する機構が組み込まれていることを特徴とする、建物の柱頭変位抑制構造。 In the stigma displacement suppressing structure of the building according to claim 1, the connecting member is composed of two parts, one pin is inserted into one end of each of both ends, and the other end is spelled with a plurality of bolts. Since the holes sandwiched between the connecting plates and through which the one pin is inserted at the bearing portion, the tip portion of the bracket, and the lower chord node are elongated holes, the compressive force is not transmitted and tension is applied. A stigma displacement suppression structure of a building, characterized by a built-in mechanism that resists only.
JP2017222673A 2017-11-20 2017-11-20 Building stigma displacement suppression structure Active JP6862057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017222673A JP6862057B2 (en) 2017-11-20 2017-11-20 Building stigma displacement suppression structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017222673A JP6862057B2 (en) 2017-11-20 2017-11-20 Building stigma displacement suppression structure

Publications (2)

Publication Number Publication Date
JP2019094630A JP2019094630A (en) 2019-06-20
JP6862057B2 true JP6862057B2 (en) 2021-04-21

Family

ID=66971131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222673A Active JP6862057B2 (en) 2017-11-20 2017-11-20 Building stigma displacement suppression structure

Country Status (1)

Country Link
JP (1) JP6862057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289109B2 (en) 2019-05-20 2023-06-09 パナソニックIpマネジメント株式会社 Boehmite structure and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216650U (en) * 1985-07-15 1987-01-31
JP3858480B2 (en) * 1998-11-05 2006-12-13 Jfeスチール株式会社 Splice plate and beam joint structure
JP3718114B2 (en) * 2000-07-31 2005-11-16 株式会社巴コーポレーション Seismic isolation structure
JP2010001602A (en) * 2008-06-18 2010-01-07 Shimizu Corp Composite structure building consisting of suspension floor and string beam
JP5787534B2 (en) * 2011-02-01 2015-09-30 三菱重工業株式会社 Seismic structure

Also Published As

Publication number Publication date
JP2019094630A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
CN101824922B (en) Self reset curvature-prevention support component
US20080022610A1 (en) Composite energy absorbing structure
JP2017150179A (en) Column beam structure with vibration damping structure
KR20160048298A (en) Circular Shear Panel Damper
KR102083066B1 (en) Frame-type Damping Device and Reinforcing Method Using The Same
JP2007197930A (en) Seismic isolation and control devices for arch bridges, piers, cable stayed bridges and suspension bridge main towers
KR101051058B1 (en) Damping system for buildings
JP6862057B2 (en) Building stigma displacement suppression structure
JP5483525B2 (en) Seismic wall
JP7017879B2 (en) A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
KR101294289B1 (en) Buckling restrained brace of dry type, and manufacturing method for the same
Javanmardi et al. Seismic pounding mitigation of an existing cable-stayed bridge using metallic dampers
JP6833292B2 (en) Roof seismic structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP7081745B2 (en) Seismic isolation structure
JP6976653B2 (en) Axial force member
TWI435019B (en) Piping support structure
KR102074040B1 (en) Steel Damper and Frame-type Damping Device usig the Damper and Reinforcing Method thereof
JP2008297727A (en) Seismic reinforcing structure of existing building
JP6872359B2 (en) Shock absorber
JP5415093B2 (en) Vibration control structure
JP5060842B2 (en) Damping structure
JP7245513B2 (en) METHOD AND INSTALLATION STRUCTURE FOR SUPPRESSING DAMAGE TO MULTILAYER SHARE WALL
JP4698389B2 (en) Seismic retrofit equipment and seismic retrofit method for buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6862057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250